xref: /openbmc/linux/drivers/gpu/drm/tegra/dc.c (revision 5029615e)
1 /*
2  * Copyright (C) 2012 Avionic Design GmbH
3  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/debugfs.h>
12 #include <linux/iommu.h>
13 #include <linux/reset.h>
14 
15 #include <soc/tegra/pmc.h>
16 
17 #include "dc.h"
18 #include "drm.h"
19 #include "gem.h"
20 
21 #include <drm/drm_atomic.h>
22 #include <drm/drm_atomic_helper.h>
23 #include <drm/drm_plane_helper.h>
24 
25 struct tegra_dc_soc_info {
26 	bool supports_border_color;
27 	bool supports_interlacing;
28 	bool supports_cursor;
29 	bool supports_block_linear;
30 	unsigned int pitch_align;
31 	bool has_powergate;
32 };
33 
34 struct tegra_plane {
35 	struct drm_plane base;
36 	unsigned int index;
37 };
38 
39 static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
40 {
41 	return container_of(plane, struct tegra_plane, base);
42 }
43 
44 struct tegra_dc_state {
45 	struct drm_crtc_state base;
46 
47 	struct clk *clk;
48 	unsigned long pclk;
49 	unsigned int div;
50 
51 	u32 planes;
52 };
53 
54 static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
55 {
56 	if (state)
57 		return container_of(state, struct tegra_dc_state, base);
58 
59 	return NULL;
60 }
61 
62 struct tegra_plane_state {
63 	struct drm_plane_state base;
64 
65 	struct tegra_bo_tiling tiling;
66 	u32 format;
67 	u32 swap;
68 };
69 
70 static inline struct tegra_plane_state *
71 to_tegra_plane_state(struct drm_plane_state *state)
72 {
73 	if (state)
74 		return container_of(state, struct tegra_plane_state, base);
75 
76 	return NULL;
77 }
78 
79 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
80 {
81 	stats->frames = 0;
82 	stats->vblank = 0;
83 	stats->underflow = 0;
84 	stats->overflow = 0;
85 }
86 
87 /*
88  * Reads the active copy of a register. This takes the dc->lock spinlock to
89  * prevent races with the VBLANK processing which also needs access to the
90  * active copy of some registers.
91  */
92 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
93 {
94 	unsigned long flags;
95 	u32 value;
96 
97 	spin_lock_irqsave(&dc->lock, flags);
98 
99 	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
100 	value = tegra_dc_readl(dc, offset);
101 	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
102 
103 	spin_unlock_irqrestore(&dc->lock, flags);
104 	return value;
105 }
106 
107 /*
108  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
109  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
110  * Latching happens mmediately if the display controller is in STOP mode or
111  * on the next frame boundary otherwise.
112  *
113  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
114  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
115  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
116  * into the ACTIVE copy, either immediately if the display controller is in
117  * STOP mode, or at the next frame boundary otherwise.
118  */
119 void tegra_dc_commit(struct tegra_dc *dc)
120 {
121 	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
122 	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
123 }
124 
125 static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
126 {
127 	/* assume no swapping of fetched data */
128 	if (swap)
129 		*swap = BYTE_SWAP_NOSWAP;
130 
131 	switch (fourcc) {
132 	case DRM_FORMAT_XBGR8888:
133 		*format = WIN_COLOR_DEPTH_R8G8B8A8;
134 		break;
135 
136 	case DRM_FORMAT_XRGB8888:
137 		*format = WIN_COLOR_DEPTH_B8G8R8A8;
138 		break;
139 
140 	case DRM_FORMAT_RGB565:
141 		*format = WIN_COLOR_DEPTH_B5G6R5;
142 		break;
143 
144 	case DRM_FORMAT_UYVY:
145 		*format = WIN_COLOR_DEPTH_YCbCr422;
146 		break;
147 
148 	case DRM_FORMAT_YUYV:
149 		if (swap)
150 			*swap = BYTE_SWAP_SWAP2;
151 
152 		*format = WIN_COLOR_DEPTH_YCbCr422;
153 		break;
154 
155 	case DRM_FORMAT_YUV420:
156 		*format = WIN_COLOR_DEPTH_YCbCr420P;
157 		break;
158 
159 	case DRM_FORMAT_YUV422:
160 		*format = WIN_COLOR_DEPTH_YCbCr422P;
161 		break;
162 
163 	default:
164 		return -EINVAL;
165 	}
166 
167 	return 0;
168 }
169 
170 static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
171 {
172 	switch (format) {
173 	case WIN_COLOR_DEPTH_YCbCr422:
174 	case WIN_COLOR_DEPTH_YUV422:
175 		if (planar)
176 			*planar = false;
177 
178 		return true;
179 
180 	case WIN_COLOR_DEPTH_YCbCr420P:
181 	case WIN_COLOR_DEPTH_YUV420P:
182 	case WIN_COLOR_DEPTH_YCbCr422P:
183 	case WIN_COLOR_DEPTH_YUV422P:
184 	case WIN_COLOR_DEPTH_YCbCr422R:
185 	case WIN_COLOR_DEPTH_YUV422R:
186 	case WIN_COLOR_DEPTH_YCbCr422RA:
187 	case WIN_COLOR_DEPTH_YUV422RA:
188 		if (planar)
189 			*planar = true;
190 
191 		return true;
192 	}
193 
194 	if (planar)
195 		*planar = false;
196 
197 	return false;
198 }
199 
200 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
201 				  unsigned int bpp)
202 {
203 	fixed20_12 outf = dfixed_init(out);
204 	fixed20_12 inf = dfixed_init(in);
205 	u32 dda_inc;
206 	int max;
207 
208 	if (v)
209 		max = 15;
210 	else {
211 		switch (bpp) {
212 		case 2:
213 			max = 8;
214 			break;
215 
216 		default:
217 			WARN_ON_ONCE(1);
218 			/* fallthrough */
219 		case 4:
220 			max = 4;
221 			break;
222 		}
223 	}
224 
225 	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
226 	inf.full -= dfixed_const(1);
227 
228 	dda_inc = dfixed_div(inf, outf);
229 	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
230 
231 	return dda_inc;
232 }
233 
234 static inline u32 compute_initial_dda(unsigned int in)
235 {
236 	fixed20_12 inf = dfixed_init(in);
237 	return dfixed_frac(inf);
238 }
239 
240 static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
241 				  const struct tegra_dc_window *window)
242 {
243 	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
244 	unsigned long value, flags;
245 	bool yuv, planar;
246 
247 	/*
248 	 * For YUV planar modes, the number of bytes per pixel takes into
249 	 * account only the luma component and therefore is 1.
250 	 */
251 	yuv = tegra_dc_format_is_yuv(window->format, &planar);
252 	if (!yuv)
253 		bpp = window->bits_per_pixel / 8;
254 	else
255 		bpp = planar ? 1 : 2;
256 
257 	spin_lock_irqsave(&dc->lock, flags);
258 
259 	value = WINDOW_A_SELECT << index;
260 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
261 
262 	tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
263 	tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
264 
265 	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
266 	tegra_dc_writel(dc, value, DC_WIN_POSITION);
267 
268 	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
269 	tegra_dc_writel(dc, value, DC_WIN_SIZE);
270 
271 	h_offset = window->src.x * bpp;
272 	v_offset = window->src.y;
273 	h_size = window->src.w * bpp;
274 	v_size = window->src.h;
275 
276 	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
277 	tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
278 
279 	/*
280 	 * For DDA computations the number of bytes per pixel for YUV planar
281 	 * modes needs to take into account all Y, U and V components.
282 	 */
283 	if (yuv && planar)
284 		bpp = 2;
285 
286 	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
287 	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
288 
289 	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
290 	tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
291 
292 	h_dda = compute_initial_dda(window->src.x);
293 	v_dda = compute_initial_dda(window->src.y);
294 
295 	tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
296 	tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
297 
298 	tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
299 	tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
300 
301 	tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
302 
303 	if (yuv && planar) {
304 		tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
305 		tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
306 		value = window->stride[1] << 16 | window->stride[0];
307 		tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
308 	} else {
309 		tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
310 	}
311 
312 	if (window->bottom_up)
313 		v_offset += window->src.h - 1;
314 
315 	tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
316 	tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
317 
318 	if (dc->soc->supports_block_linear) {
319 		unsigned long height = window->tiling.value;
320 
321 		switch (window->tiling.mode) {
322 		case TEGRA_BO_TILING_MODE_PITCH:
323 			value = DC_WINBUF_SURFACE_KIND_PITCH;
324 			break;
325 
326 		case TEGRA_BO_TILING_MODE_TILED:
327 			value = DC_WINBUF_SURFACE_KIND_TILED;
328 			break;
329 
330 		case TEGRA_BO_TILING_MODE_BLOCK:
331 			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
332 				DC_WINBUF_SURFACE_KIND_BLOCK;
333 			break;
334 		}
335 
336 		tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
337 	} else {
338 		switch (window->tiling.mode) {
339 		case TEGRA_BO_TILING_MODE_PITCH:
340 			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
341 				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
342 			break;
343 
344 		case TEGRA_BO_TILING_MODE_TILED:
345 			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
346 				DC_WIN_BUFFER_ADDR_MODE_TILE;
347 			break;
348 
349 		case TEGRA_BO_TILING_MODE_BLOCK:
350 			/*
351 			 * No need to handle this here because ->atomic_check
352 			 * will already have filtered it out.
353 			 */
354 			break;
355 		}
356 
357 		tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
358 	}
359 
360 	value = WIN_ENABLE;
361 
362 	if (yuv) {
363 		/* setup default colorspace conversion coefficients */
364 		tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
365 		tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
366 		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
367 		tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
368 		tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
369 		tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
370 		tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
371 		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
372 
373 		value |= CSC_ENABLE;
374 	} else if (window->bits_per_pixel < 24) {
375 		value |= COLOR_EXPAND;
376 	}
377 
378 	if (window->bottom_up)
379 		value |= V_DIRECTION;
380 
381 	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
382 
383 	/*
384 	 * Disable blending and assume Window A is the bottom-most window,
385 	 * Window C is the top-most window and Window B is in the middle.
386 	 */
387 	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
388 	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
389 
390 	switch (index) {
391 	case 0:
392 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
393 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
394 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
395 		break;
396 
397 	case 1:
398 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
399 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
400 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
401 		break;
402 
403 	case 2:
404 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
405 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
406 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
407 		break;
408 	}
409 
410 	spin_unlock_irqrestore(&dc->lock, flags);
411 }
412 
413 static void tegra_plane_destroy(struct drm_plane *plane)
414 {
415 	struct tegra_plane *p = to_tegra_plane(plane);
416 
417 	drm_plane_cleanup(plane);
418 	kfree(p);
419 }
420 
421 static const u32 tegra_primary_plane_formats[] = {
422 	DRM_FORMAT_XBGR8888,
423 	DRM_FORMAT_XRGB8888,
424 	DRM_FORMAT_RGB565,
425 };
426 
427 static void tegra_primary_plane_destroy(struct drm_plane *plane)
428 {
429 	tegra_plane_destroy(plane);
430 }
431 
432 static void tegra_plane_reset(struct drm_plane *plane)
433 {
434 	struct tegra_plane_state *state;
435 
436 	if (plane->state)
437 		__drm_atomic_helper_plane_destroy_state(plane, plane->state);
438 
439 	kfree(plane->state);
440 	plane->state = NULL;
441 
442 	state = kzalloc(sizeof(*state), GFP_KERNEL);
443 	if (state) {
444 		plane->state = &state->base;
445 		plane->state->plane = plane;
446 	}
447 }
448 
449 static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
450 {
451 	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
452 	struct tegra_plane_state *copy;
453 
454 	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
455 	if (!copy)
456 		return NULL;
457 
458 	__drm_atomic_helper_plane_duplicate_state(plane, &copy->base);
459 	copy->tiling = state->tiling;
460 	copy->format = state->format;
461 	copy->swap = state->swap;
462 
463 	return &copy->base;
464 }
465 
466 static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
467 					     struct drm_plane_state *state)
468 {
469 	__drm_atomic_helper_plane_destroy_state(plane, state);
470 	kfree(state);
471 }
472 
473 static const struct drm_plane_funcs tegra_primary_plane_funcs = {
474 	.update_plane = drm_atomic_helper_update_plane,
475 	.disable_plane = drm_atomic_helper_disable_plane,
476 	.destroy = tegra_primary_plane_destroy,
477 	.reset = tegra_plane_reset,
478 	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
479 	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
480 };
481 
482 static int tegra_plane_prepare_fb(struct drm_plane *plane,
483 				  struct drm_framebuffer *fb,
484 				  const struct drm_plane_state *new_state)
485 {
486 	return 0;
487 }
488 
489 static void tegra_plane_cleanup_fb(struct drm_plane *plane,
490 				   struct drm_framebuffer *fb,
491 				   const struct drm_plane_state *old_fb)
492 {
493 }
494 
495 static int tegra_plane_state_add(struct tegra_plane *plane,
496 				 struct drm_plane_state *state)
497 {
498 	struct drm_crtc_state *crtc_state;
499 	struct tegra_dc_state *tegra;
500 
501 	/* Propagate errors from allocation or locking failures. */
502 	crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
503 	if (IS_ERR(crtc_state))
504 		return PTR_ERR(crtc_state);
505 
506 	tegra = to_dc_state(crtc_state);
507 
508 	tegra->planes |= WIN_A_ACT_REQ << plane->index;
509 
510 	return 0;
511 }
512 
513 static int tegra_plane_atomic_check(struct drm_plane *plane,
514 				    struct drm_plane_state *state)
515 {
516 	struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
517 	struct tegra_bo_tiling *tiling = &plane_state->tiling;
518 	struct tegra_plane *tegra = to_tegra_plane(plane);
519 	struct tegra_dc *dc = to_tegra_dc(state->crtc);
520 	int err;
521 
522 	/* no need for further checks if the plane is being disabled */
523 	if (!state->crtc)
524 		return 0;
525 
526 	err = tegra_dc_format(state->fb->pixel_format, &plane_state->format,
527 			      &plane_state->swap);
528 	if (err < 0)
529 		return err;
530 
531 	err = tegra_fb_get_tiling(state->fb, tiling);
532 	if (err < 0)
533 		return err;
534 
535 	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
536 	    !dc->soc->supports_block_linear) {
537 		DRM_ERROR("hardware doesn't support block linear mode\n");
538 		return -EINVAL;
539 	}
540 
541 	/*
542 	 * Tegra doesn't support different strides for U and V planes so we
543 	 * error out if the user tries to display a framebuffer with such a
544 	 * configuration.
545 	 */
546 	if (drm_format_num_planes(state->fb->pixel_format) > 2) {
547 		if (state->fb->pitches[2] != state->fb->pitches[1]) {
548 			DRM_ERROR("unsupported UV-plane configuration\n");
549 			return -EINVAL;
550 		}
551 	}
552 
553 	err = tegra_plane_state_add(tegra, state);
554 	if (err < 0)
555 		return err;
556 
557 	return 0;
558 }
559 
560 static void tegra_plane_atomic_update(struct drm_plane *plane,
561 				      struct drm_plane_state *old_state)
562 {
563 	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
564 	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
565 	struct drm_framebuffer *fb = plane->state->fb;
566 	struct tegra_plane *p = to_tegra_plane(plane);
567 	struct tegra_dc_window window;
568 	unsigned int i;
569 
570 	/* rien ne va plus */
571 	if (!plane->state->crtc || !plane->state->fb)
572 		return;
573 
574 	memset(&window, 0, sizeof(window));
575 	window.src.x = plane->state->src_x >> 16;
576 	window.src.y = plane->state->src_y >> 16;
577 	window.src.w = plane->state->src_w >> 16;
578 	window.src.h = plane->state->src_h >> 16;
579 	window.dst.x = plane->state->crtc_x;
580 	window.dst.y = plane->state->crtc_y;
581 	window.dst.w = plane->state->crtc_w;
582 	window.dst.h = plane->state->crtc_h;
583 	window.bits_per_pixel = fb->bits_per_pixel;
584 	window.bottom_up = tegra_fb_is_bottom_up(fb);
585 
586 	/* copy from state */
587 	window.tiling = state->tiling;
588 	window.format = state->format;
589 	window.swap = state->swap;
590 
591 	for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) {
592 		struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
593 
594 		window.base[i] = bo->paddr + fb->offsets[i];
595 		window.stride[i] = fb->pitches[i];
596 	}
597 
598 	tegra_dc_setup_window(dc, p->index, &window);
599 }
600 
601 static void tegra_plane_atomic_disable(struct drm_plane *plane,
602 				       struct drm_plane_state *old_state)
603 {
604 	struct tegra_plane *p = to_tegra_plane(plane);
605 	struct tegra_dc *dc;
606 	unsigned long flags;
607 	u32 value;
608 
609 	/* rien ne va plus */
610 	if (!old_state || !old_state->crtc)
611 		return;
612 
613 	dc = to_tegra_dc(old_state->crtc);
614 
615 	spin_lock_irqsave(&dc->lock, flags);
616 
617 	value = WINDOW_A_SELECT << p->index;
618 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
619 
620 	value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
621 	value &= ~WIN_ENABLE;
622 	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
623 
624 	spin_unlock_irqrestore(&dc->lock, flags);
625 }
626 
627 static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = {
628 	.prepare_fb = tegra_plane_prepare_fb,
629 	.cleanup_fb = tegra_plane_cleanup_fb,
630 	.atomic_check = tegra_plane_atomic_check,
631 	.atomic_update = tegra_plane_atomic_update,
632 	.atomic_disable = tegra_plane_atomic_disable,
633 };
634 
635 static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
636 						       struct tegra_dc *dc)
637 {
638 	/*
639 	 * Ideally this would use drm_crtc_mask(), but that would require the
640 	 * CRTC to already be in the mode_config's list of CRTCs. However, it
641 	 * will only be added to that list in the drm_crtc_init_with_planes()
642 	 * (in tegra_dc_init()), which in turn requires registration of these
643 	 * planes. So we have ourselves a nice little chicken and egg problem
644 	 * here.
645 	 *
646 	 * We work around this by manually creating the mask from the number
647 	 * of CRTCs that have been registered, and should therefore always be
648 	 * the same as drm_crtc_index() after registration.
649 	 */
650 	unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
651 	struct tegra_plane *plane;
652 	unsigned int num_formats;
653 	const u32 *formats;
654 	int err;
655 
656 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
657 	if (!plane)
658 		return ERR_PTR(-ENOMEM);
659 
660 	num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
661 	formats = tegra_primary_plane_formats;
662 
663 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
664 				       &tegra_primary_plane_funcs, formats,
665 				       num_formats, DRM_PLANE_TYPE_PRIMARY);
666 	if (err < 0) {
667 		kfree(plane);
668 		return ERR_PTR(err);
669 	}
670 
671 	drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs);
672 
673 	return &plane->base;
674 }
675 
676 static const u32 tegra_cursor_plane_formats[] = {
677 	DRM_FORMAT_RGBA8888,
678 };
679 
680 static int tegra_cursor_atomic_check(struct drm_plane *plane,
681 				     struct drm_plane_state *state)
682 {
683 	struct tegra_plane *tegra = to_tegra_plane(plane);
684 	int err;
685 
686 	/* no need for further checks if the plane is being disabled */
687 	if (!state->crtc)
688 		return 0;
689 
690 	/* scaling not supported for cursor */
691 	if ((state->src_w >> 16 != state->crtc_w) ||
692 	    (state->src_h >> 16 != state->crtc_h))
693 		return -EINVAL;
694 
695 	/* only square cursors supported */
696 	if (state->src_w != state->src_h)
697 		return -EINVAL;
698 
699 	if (state->crtc_w != 32 && state->crtc_w != 64 &&
700 	    state->crtc_w != 128 && state->crtc_w != 256)
701 		return -EINVAL;
702 
703 	err = tegra_plane_state_add(tegra, state);
704 	if (err < 0)
705 		return err;
706 
707 	return 0;
708 }
709 
710 static void tegra_cursor_atomic_update(struct drm_plane *plane,
711 				       struct drm_plane_state *old_state)
712 {
713 	struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
714 	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
715 	struct drm_plane_state *state = plane->state;
716 	u32 value = CURSOR_CLIP_DISPLAY;
717 
718 	/* rien ne va plus */
719 	if (!plane->state->crtc || !plane->state->fb)
720 		return;
721 
722 	switch (state->crtc_w) {
723 	case 32:
724 		value |= CURSOR_SIZE_32x32;
725 		break;
726 
727 	case 64:
728 		value |= CURSOR_SIZE_64x64;
729 		break;
730 
731 	case 128:
732 		value |= CURSOR_SIZE_128x128;
733 		break;
734 
735 	case 256:
736 		value |= CURSOR_SIZE_256x256;
737 		break;
738 
739 	default:
740 		WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
741 		     state->crtc_h);
742 		return;
743 	}
744 
745 	value |= (bo->paddr >> 10) & 0x3fffff;
746 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
747 
748 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
749 	value = (bo->paddr >> 32) & 0x3;
750 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
751 #endif
752 
753 	/* enable cursor and set blend mode */
754 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
755 	value |= CURSOR_ENABLE;
756 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
757 
758 	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
759 	value &= ~CURSOR_DST_BLEND_MASK;
760 	value &= ~CURSOR_SRC_BLEND_MASK;
761 	value |= CURSOR_MODE_NORMAL;
762 	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
763 	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
764 	value |= CURSOR_ALPHA;
765 	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
766 
767 	/* position the cursor */
768 	value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
769 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
770 }
771 
772 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
773 					struct drm_plane_state *old_state)
774 {
775 	struct tegra_dc *dc;
776 	u32 value;
777 
778 	/* rien ne va plus */
779 	if (!old_state || !old_state->crtc)
780 		return;
781 
782 	dc = to_tegra_dc(old_state->crtc);
783 
784 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
785 	value &= ~CURSOR_ENABLE;
786 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
787 }
788 
789 static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
790 	.update_plane = drm_atomic_helper_update_plane,
791 	.disable_plane = drm_atomic_helper_disable_plane,
792 	.destroy = tegra_plane_destroy,
793 	.reset = tegra_plane_reset,
794 	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
795 	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
796 };
797 
798 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
799 	.prepare_fb = tegra_plane_prepare_fb,
800 	.cleanup_fb = tegra_plane_cleanup_fb,
801 	.atomic_check = tegra_cursor_atomic_check,
802 	.atomic_update = tegra_cursor_atomic_update,
803 	.atomic_disable = tegra_cursor_atomic_disable,
804 };
805 
806 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
807 						      struct tegra_dc *dc)
808 {
809 	struct tegra_plane *plane;
810 	unsigned int num_formats;
811 	const u32 *formats;
812 	int err;
813 
814 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
815 	if (!plane)
816 		return ERR_PTR(-ENOMEM);
817 
818 	/*
819 	 * This index is kind of fake. The cursor isn't a regular plane, but
820 	 * its update and activation request bits in DC_CMD_STATE_CONTROL do
821 	 * use the same programming. Setting this fake index here allows the
822 	 * code in tegra_add_plane_state() to do the right thing without the
823 	 * need to special-casing the cursor plane.
824 	 */
825 	plane->index = 6;
826 
827 	num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
828 	formats = tegra_cursor_plane_formats;
829 
830 	err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
831 				       &tegra_cursor_plane_funcs, formats,
832 				       num_formats, DRM_PLANE_TYPE_CURSOR);
833 	if (err < 0) {
834 		kfree(plane);
835 		return ERR_PTR(err);
836 	}
837 
838 	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
839 
840 	return &plane->base;
841 }
842 
843 static void tegra_overlay_plane_destroy(struct drm_plane *plane)
844 {
845 	tegra_plane_destroy(plane);
846 }
847 
848 static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
849 	.update_plane = drm_atomic_helper_update_plane,
850 	.disable_plane = drm_atomic_helper_disable_plane,
851 	.destroy = tegra_overlay_plane_destroy,
852 	.reset = tegra_plane_reset,
853 	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
854 	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
855 };
856 
857 static const uint32_t tegra_overlay_plane_formats[] = {
858 	DRM_FORMAT_XBGR8888,
859 	DRM_FORMAT_XRGB8888,
860 	DRM_FORMAT_RGB565,
861 	DRM_FORMAT_UYVY,
862 	DRM_FORMAT_YUYV,
863 	DRM_FORMAT_YUV420,
864 	DRM_FORMAT_YUV422,
865 };
866 
867 static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = {
868 	.prepare_fb = tegra_plane_prepare_fb,
869 	.cleanup_fb = tegra_plane_cleanup_fb,
870 	.atomic_check = tegra_plane_atomic_check,
871 	.atomic_update = tegra_plane_atomic_update,
872 	.atomic_disable = tegra_plane_atomic_disable,
873 };
874 
875 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
876 						       struct tegra_dc *dc,
877 						       unsigned int index)
878 {
879 	struct tegra_plane *plane;
880 	unsigned int num_formats;
881 	const u32 *formats;
882 	int err;
883 
884 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
885 	if (!plane)
886 		return ERR_PTR(-ENOMEM);
887 
888 	plane->index = index;
889 
890 	num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
891 	formats = tegra_overlay_plane_formats;
892 
893 	err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
894 				       &tegra_overlay_plane_funcs, formats,
895 				       num_formats, DRM_PLANE_TYPE_OVERLAY);
896 	if (err < 0) {
897 		kfree(plane);
898 		return ERR_PTR(err);
899 	}
900 
901 	drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs);
902 
903 	return &plane->base;
904 }
905 
906 static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
907 {
908 	struct drm_plane *plane;
909 	unsigned int i;
910 
911 	for (i = 0; i < 2; i++) {
912 		plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
913 		if (IS_ERR(plane))
914 			return PTR_ERR(plane);
915 	}
916 
917 	return 0;
918 }
919 
920 u32 tegra_dc_get_vblank_counter(struct tegra_dc *dc)
921 {
922 	if (dc->syncpt)
923 		return host1x_syncpt_read(dc->syncpt);
924 
925 	/* fallback to software emulated VBLANK counter */
926 	return drm_crtc_vblank_count(&dc->base);
927 }
928 
929 void tegra_dc_enable_vblank(struct tegra_dc *dc)
930 {
931 	unsigned long value, flags;
932 
933 	spin_lock_irqsave(&dc->lock, flags);
934 
935 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
936 	value |= VBLANK_INT;
937 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
938 
939 	spin_unlock_irqrestore(&dc->lock, flags);
940 }
941 
942 void tegra_dc_disable_vblank(struct tegra_dc *dc)
943 {
944 	unsigned long value, flags;
945 
946 	spin_lock_irqsave(&dc->lock, flags);
947 
948 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
949 	value &= ~VBLANK_INT;
950 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
951 
952 	spin_unlock_irqrestore(&dc->lock, flags);
953 }
954 
955 static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
956 {
957 	struct drm_device *drm = dc->base.dev;
958 	struct drm_crtc *crtc = &dc->base;
959 	unsigned long flags, base;
960 	struct tegra_bo *bo;
961 
962 	spin_lock_irqsave(&drm->event_lock, flags);
963 
964 	if (!dc->event) {
965 		spin_unlock_irqrestore(&drm->event_lock, flags);
966 		return;
967 	}
968 
969 	bo = tegra_fb_get_plane(crtc->primary->fb, 0);
970 
971 	spin_lock(&dc->lock);
972 
973 	/* check if new start address has been latched */
974 	tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
975 	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
976 	base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
977 	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
978 
979 	spin_unlock(&dc->lock);
980 
981 	if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
982 		drm_crtc_send_vblank_event(crtc, dc->event);
983 		drm_crtc_vblank_put(crtc);
984 		dc->event = NULL;
985 	}
986 
987 	spin_unlock_irqrestore(&drm->event_lock, flags);
988 }
989 
990 void tegra_dc_cancel_page_flip(struct drm_crtc *crtc, struct drm_file *file)
991 {
992 	struct tegra_dc *dc = to_tegra_dc(crtc);
993 	struct drm_device *drm = crtc->dev;
994 	unsigned long flags;
995 
996 	spin_lock_irqsave(&drm->event_lock, flags);
997 
998 	if (dc->event && dc->event->base.file_priv == file) {
999 		dc->event->base.destroy(&dc->event->base);
1000 		drm_crtc_vblank_put(crtc);
1001 		dc->event = NULL;
1002 	}
1003 
1004 	spin_unlock_irqrestore(&drm->event_lock, flags);
1005 }
1006 
1007 static void tegra_dc_destroy(struct drm_crtc *crtc)
1008 {
1009 	drm_crtc_cleanup(crtc);
1010 }
1011 
1012 static void tegra_crtc_reset(struct drm_crtc *crtc)
1013 {
1014 	struct tegra_dc_state *state;
1015 
1016 	if (crtc->state)
1017 		__drm_atomic_helper_crtc_destroy_state(crtc, crtc->state);
1018 
1019 	kfree(crtc->state);
1020 	crtc->state = NULL;
1021 
1022 	state = kzalloc(sizeof(*state), GFP_KERNEL);
1023 	if (state) {
1024 		crtc->state = &state->base;
1025 		crtc->state->crtc = crtc;
1026 	}
1027 
1028 	drm_crtc_vblank_reset(crtc);
1029 }
1030 
1031 static struct drm_crtc_state *
1032 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1033 {
1034 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1035 	struct tegra_dc_state *copy;
1036 
1037 	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1038 	if (!copy)
1039 		return NULL;
1040 
1041 	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1042 	copy->clk = state->clk;
1043 	copy->pclk = state->pclk;
1044 	copy->div = state->div;
1045 	copy->planes = state->planes;
1046 
1047 	return &copy->base;
1048 }
1049 
1050 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1051 					    struct drm_crtc_state *state)
1052 {
1053 	__drm_atomic_helper_crtc_destroy_state(crtc, state);
1054 	kfree(state);
1055 }
1056 
1057 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1058 	.page_flip = drm_atomic_helper_page_flip,
1059 	.set_config = drm_atomic_helper_set_config,
1060 	.destroy = tegra_dc_destroy,
1061 	.reset = tegra_crtc_reset,
1062 	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1063 	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1064 };
1065 
1066 static int tegra_dc_set_timings(struct tegra_dc *dc,
1067 				struct drm_display_mode *mode)
1068 {
1069 	unsigned int h_ref_to_sync = 1;
1070 	unsigned int v_ref_to_sync = 1;
1071 	unsigned long value;
1072 
1073 	tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1074 
1075 	value = (v_ref_to_sync << 16) | h_ref_to_sync;
1076 	tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1077 
1078 	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1079 		((mode->hsync_end - mode->hsync_start) <<  0);
1080 	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1081 
1082 	value = ((mode->vtotal - mode->vsync_end) << 16) |
1083 		((mode->htotal - mode->hsync_end) <<  0);
1084 	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1085 
1086 	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1087 		((mode->hsync_start - mode->hdisplay) <<  0);
1088 	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1089 
1090 	value = (mode->vdisplay << 16) | mode->hdisplay;
1091 	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1092 
1093 	return 0;
1094 }
1095 
1096 /**
1097  * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1098  *     state
1099  * @dc: display controller
1100  * @crtc_state: CRTC atomic state
1101  * @clk: parent clock for display controller
1102  * @pclk: pixel clock
1103  * @div: shift clock divider
1104  *
1105  * Returns:
1106  * 0 on success or a negative error-code on failure.
1107  */
1108 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1109 			       struct drm_crtc_state *crtc_state,
1110 			       struct clk *clk, unsigned long pclk,
1111 			       unsigned int div)
1112 {
1113 	struct tegra_dc_state *state = to_dc_state(crtc_state);
1114 
1115 	if (!clk_has_parent(dc->clk, clk))
1116 		return -EINVAL;
1117 
1118 	state->clk = clk;
1119 	state->pclk = pclk;
1120 	state->div = div;
1121 
1122 	return 0;
1123 }
1124 
1125 static void tegra_dc_commit_state(struct tegra_dc *dc,
1126 				  struct tegra_dc_state *state)
1127 {
1128 	u32 value;
1129 	int err;
1130 
1131 	err = clk_set_parent(dc->clk, state->clk);
1132 	if (err < 0)
1133 		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1134 
1135 	/*
1136 	 * Outputs may not want to change the parent clock rate. This is only
1137 	 * relevant to Tegra20 where only a single display PLL is available.
1138 	 * Since that PLL would typically be used for HDMI, an internal LVDS
1139 	 * panel would need to be driven by some other clock such as PLL_P
1140 	 * which is shared with other peripherals. Changing the clock rate
1141 	 * should therefore be avoided.
1142 	 */
1143 	if (state->pclk > 0) {
1144 		err = clk_set_rate(state->clk, state->pclk);
1145 		if (err < 0)
1146 			dev_err(dc->dev,
1147 				"failed to set clock rate to %lu Hz\n",
1148 				state->pclk);
1149 	}
1150 
1151 	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1152 		      state->div);
1153 	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1154 
1155 	value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1156 	tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1157 }
1158 
1159 static void tegra_dc_stop(struct tegra_dc *dc)
1160 {
1161 	u32 value;
1162 
1163 	/* stop the display controller */
1164 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1165 	value &= ~DISP_CTRL_MODE_MASK;
1166 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1167 
1168 	tegra_dc_commit(dc);
1169 }
1170 
1171 static bool tegra_dc_idle(struct tegra_dc *dc)
1172 {
1173 	u32 value;
1174 
1175 	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1176 
1177 	return (value & DISP_CTRL_MODE_MASK) == 0;
1178 }
1179 
1180 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1181 {
1182 	timeout = jiffies + msecs_to_jiffies(timeout);
1183 
1184 	while (time_before(jiffies, timeout)) {
1185 		if (tegra_dc_idle(dc))
1186 			return 0;
1187 
1188 		usleep_range(1000, 2000);
1189 	}
1190 
1191 	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1192 	return -ETIMEDOUT;
1193 }
1194 
1195 static void tegra_crtc_disable(struct drm_crtc *crtc)
1196 {
1197 	struct tegra_dc *dc = to_tegra_dc(crtc);
1198 	u32 value;
1199 
1200 	if (!tegra_dc_idle(dc)) {
1201 		tegra_dc_stop(dc);
1202 
1203 		/*
1204 		 * Ignore the return value, there isn't anything useful to do
1205 		 * in case this fails.
1206 		 */
1207 		tegra_dc_wait_idle(dc, 100);
1208 	}
1209 
1210 	/*
1211 	 * This should really be part of the RGB encoder driver, but clearing
1212 	 * these bits has the side-effect of stopping the display controller.
1213 	 * When that happens no VBLANK interrupts will be raised. At the same
1214 	 * time the encoder is disabled before the display controller, so the
1215 	 * above code is always going to timeout waiting for the controller
1216 	 * to go idle.
1217 	 *
1218 	 * Given the close coupling between the RGB encoder and the display
1219 	 * controller doing it here is still kind of okay. None of the other
1220 	 * encoder drivers require these bits to be cleared.
1221 	 *
1222 	 * XXX: Perhaps given that the display controller is switched off at
1223 	 * this point anyway maybe clearing these bits isn't even useful for
1224 	 * the RGB encoder?
1225 	 */
1226 	if (dc->rgb) {
1227 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1228 		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1229 			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1230 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1231 	}
1232 
1233 	tegra_dc_stats_reset(&dc->stats);
1234 	drm_crtc_vblank_off(crtc);
1235 }
1236 
1237 static void tegra_crtc_enable(struct drm_crtc *crtc)
1238 {
1239 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1240 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1241 	struct tegra_dc *dc = to_tegra_dc(crtc);
1242 	u32 value;
1243 
1244 	tegra_dc_commit_state(dc, state);
1245 
1246 	/* program display mode */
1247 	tegra_dc_set_timings(dc, mode);
1248 
1249 	/* interlacing isn't supported yet, so disable it */
1250 	if (dc->soc->supports_interlacing) {
1251 		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1252 		value &= ~INTERLACE_ENABLE;
1253 		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1254 	}
1255 
1256 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1257 	value &= ~DISP_CTRL_MODE_MASK;
1258 	value |= DISP_CTRL_MODE_C_DISPLAY;
1259 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1260 
1261 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1262 	value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1263 		 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1264 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1265 
1266 	tegra_dc_commit(dc);
1267 
1268 	drm_crtc_vblank_on(crtc);
1269 }
1270 
1271 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
1272 				   struct drm_crtc_state *state)
1273 {
1274 	return 0;
1275 }
1276 
1277 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1278 				    struct drm_crtc_state *old_crtc_state)
1279 {
1280 	struct tegra_dc *dc = to_tegra_dc(crtc);
1281 
1282 	if (crtc->state->event) {
1283 		crtc->state->event->pipe = drm_crtc_index(crtc);
1284 
1285 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1286 
1287 		dc->event = crtc->state->event;
1288 		crtc->state->event = NULL;
1289 	}
1290 }
1291 
1292 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1293 				    struct drm_crtc_state *old_crtc_state)
1294 {
1295 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1296 	struct tegra_dc *dc = to_tegra_dc(crtc);
1297 
1298 	tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
1299 	tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
1300 }
1301 
1302 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1303 	.disable = tegra_crtc_disable,
1304 	.enable = tegra_crtc_enable,
1305 	.atomic_check = tegra_crtc_atomic_check,
1306 	.atomic_begin = tegra_crtc_atomic_begin,
1307 	.atomic_flush = tegra_crtc_atomic_flush,
1308 };
1309 
1310 static irqreturn_t tegra_dc_irq(int irq, void *data)
1311 {
1312 	struct tegra_dc *dc = data;
1313 	unsigned long status;
1314 
1315 	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1316 	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1317 
1318 	if (status & FRAME_END_INT) {
1319 		/*
1320 		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1321 		*/
1322 		dc->stats.frames++;
1323 	}
1324 
1325 	if (status & VBLANK_INT) {
1326 		/*
1327 		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1328 		*/
1329 		drm_crtc_handle_vblank(&dc->base);
1330 		tegra_dc_finish_page_flip(dc);
1331 		dc->stats.vblank++;
1332 	}
1333 
1334 	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1335 		/*
1336 		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1337 		*/
1338 		dc->stats.underflow++;
1339 	}
1340 
1341 	if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1342 		/*
1343 		dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1344 		*/
1345 		dc->stats.overflow++;
1346 	}
1347 
1348 	return IRQ_HANDLED;
1349 }
1350 
1351 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1352 {
1353 	struct drm_info_node *node = s->private;
1354 	struct tegra_dc *dc = node->info_ent->data;
1355 	int err = 0;
1356 
1357 	drm_modeset_lock_crtc(&dc->base, NULL);
1358 
1359 	if (!dc->base.state->active) {
1360 		err = -EBUSY;
1361 		goto unlock;
1362 	}
1363 
1364 #define DUMP_REG(name)						\
1365 	seq_printf(s, "%-40s %#05x %08x\n", #name, name,	\
1366 		   tegra_dc_readl(dc, name))
1367 
1368 	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
1369 	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1370 	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
1371 	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
1372 	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
1373 	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
1374 	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
1375 	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
1376 	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
1377 	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
1378 	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
1379 	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
1380 	DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
1381 	DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
1382 	DUMP_REG(DC_CMD_DISPLAY_COMMAND);
1383 	DUMP_REG(DC_CMD_SIGNAL_RAISE);
1384 	DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
1385 	DUMP_REG(DC_CMD_INT_STATUS);
1386 	DUMP_REG(DC_CMD_INT_MASK);
1387 	DUMP_REG(DC_CMD_INT_ENABLE);
1388 	DUMP_REG(DC_CMD_INT_TYPE);
1389 	DUMP_REG(DC_CMD_INT_POLARITY);
1390 	DUMP_REG(DC_CMD_SIGNAL_RAISE1);
1391 	DUMP_REG(DC_CMD_SIGNAL_RAISE2);
1392 	DUMP_REG(DC_CMD_SIGNAL_RAISE3);
1393 	DUMP_REG(DC_CMD_STATE_ACCESS);
1394 	DUMP_REG(DC_CMD_STATE_CONTROL);
1395 	DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
1396 	DUMP_REG(DC_CMD_REG_ACT_CONTROL);
1397 	DUMP_REG(DC_COM_CRC_CONTROL);
1398 	DUMP_REG(DC_COM_CRC_CHECKSUM);
1399 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
1400 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
1401 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
1402 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
1403 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
1404 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
1405 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
1406 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
1407 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
1408 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
1409 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
1410 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
1411 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
1412 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
1413 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
1414 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
1415 	DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
1416 	DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
1417 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
1418 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
1419 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
1420 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
1421 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
1422 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
1423 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
1424 	DUMP_REG(DC_COM_PIN_MISC_CONTROL);
1425 	DUMP_REG(DC_COM_PIN_PM0_CONTROL);
1426 	DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
1427 	DUMP_REG(DC_COM_PIN_PM1_CONTROL);
1428 	DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
1429 	DUMP_REG(DC_COM_SPI_CONTROL);
1430 	DUMP_REG(DC_COM_SPI_START_BYTE);
1431 	DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
1432 	DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
1433 	DUMP_REG(DC_COM_HSPI_CS_DC);
1434 	DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
1435 	DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
1436 	DUMP_REG(DC_COM_GPIO_CTRL);
1437 	DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
1438 	DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
1439 	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
1440 	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
1441 	DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
1442 	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
1443 	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1444 	DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
1445 	DUMP_REG(DC_DISP_REF_TO_SYNC);
1446 	DUMP_REG(DC_DISP_SYNC_WIDTH);
1447 	DUMP_REG(DC_DISP_BACK_PORCH);
1448 	DUMP_REG(DC_DISP_ACTIVE);
1449 	DUMP_REG(DC_DISP_FRONT_PORCH);
1450 	DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
1451 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
1452 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
1453 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
1454 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
1455 	DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
1456 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
1457 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
1458 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
1459 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
1460 	DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
1461 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
1462 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
1463 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
1464 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
1465 	DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
1466 	DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
1467 	DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
1468 	DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
1469 	DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
1470 	DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
1471 	DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
1472 	DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
1473 	DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
1474 	DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
1475 	DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
1476 	DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
1477 	DUMP_REG(DC_DISP_M0_CONTROL);
1478 	DUMP_REG(DC_DISP_M1_CONTROL);
1479 	DUMP_REG(DC_DISP_DI_CONTROL);
1480 	DUMP_REG(DC_DISP_PP_CONTROL);
1481 	DUMP_REG(DC_DISP_PP_SELECT_A);
1482 	DUMP_REG(DC_DISP_PP_SELECT_B);
1483 	DUMP_REG(DC_DISP_PP_SELECT_C);
1484 	DUMP_REG(DC_DISP_PP_SELECT_D);
1485 	DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
1486 	DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
1487 	DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
1488 	DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
1489 	DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
1490 	DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
1491 	DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
1492 	DUMP_REG(DC_DISP_BORDER_COLOR);
1493 	DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
1494 	DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
1495 	DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
1496 	DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
1497 	DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
1498 	DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
1499 	DUMP_REG(DC_DISP_CURSOR_START_ADDR);
1500 	DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
1501 	DUMP_REG(DC_DISP_CURSOR_POSITION);
1502 	DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
1503 	DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
1504 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
1505 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
1506 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
1507 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
1508 	DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
1509 	DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
1510 	DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
1511 	DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
1512 	DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
1513 	DUMP_REG(DC_DISP_DAC_CRT_CTRL);
1514 	DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
1515 	DUMP_REG(DC_DISP_SD_CONTROL);
1516 	DUMP_REG(DC_DISP_SD_CSC_COEFF);
1517 	DUMP_REG(DC_DISP_SD_LUT(0));
1518 	DUMP_REG(DC_DISP_SD_LUT(1));
1519 	DUMP_REG(DC_DISP_SD_LUT(2));
1520 	DUMP_REG(DC_DISP_SD_LUT(3));
1521 	DUMP_REG(DC_DISP_SD_LUT(4));
1522 	DUMP_REG(DC_DISP_SD_LUT(5));
1523 	DUMP_REG(DC_DISP_SD_LUT(6));
1524 	DUMP_REG(DC_DISP_SD_LUT(7));
1525 	DUMP_REG(DC_DISP_SD_LUT(8));
1526 	DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
1527 	DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
1528 	DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
1529 	DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
1530 	DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
1531 	DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
1532 	DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
1533 	DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
1534 	DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
1535 	DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
1536 	DUMP_REG(DC_DISP_SD_BL_TF(0));
1537 	DUMP_REG(DC_DISP_SD_BL_TF(1));
1538 	DUMP_REG(DC_DISP_SD_BL_TF(2));
1539 	DUMP_REG(DC_DISP_SD_BL_TF(3));
1540 	DUMP_REG(DC_DISP_SD_BL_CONTROL);
1541 	DUMP_REG(DC_DISP_SD_HW_K_VALUES);
1542 	DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
1543 	DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
1544 	DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
1545 	DUMP_REG(DC_WIN_WIN_OPTIONS);
1546 	DUMP_REG(DC_WIN_BYTE_SWAP);
1547 	DUMP_REG(DC_WIN_BUFFER_CONTROL);
1548 	DUMP_REG(DC_WIN_COLOR_DEPTH);
1549 	DUMP_REG(DC_WIN_POSITION);
1550 	DUMP_REG(DC_WIN_SIZE);
1551 	DUMP_REG(DC_WIN_PRESCALED_SIZE);
1552 	DUMP_REG(DC_WIN_H_INITIAL_DDA);
1553 	DUMP_REG(DC_WIN_V_INITIAL_DDA);
1554 	DUMP_REG(DC_WIN_DDA_INC);
1555 	DUMP_REG(DC_WIN_LINE_STRIDE);
1556 	DUMP_REG(DC_WIN_BUF_STRIDE);
1557 	DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1558 	DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1559 	DUMP_REG(DC_WIN_DV_CONTROL);
1560 	DUMP_REG(DC_WIN_BLEND_NOKEY);
1561 	DUMP_REG(DC_WIN_BLEND_1WIN);
1562 	DUMP_REG(DC_WIN_BLEND_2WIN_X);
1563 	DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1564 	DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1565 	DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1566 	DUMP_REG(DC_WINBUF_START_ADDR);
1567 	DUMP_REG(DC_WINBUF_START_ADDR_NS);
1568 	DUMP_REG(DC_WINBUF_START_ADDR_U);
1569 	DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1570 	DUMP_REG(DC_WINBUF_START_ADDR_V);
1571 	DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1572 	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1573 	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1574 	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1575 	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1576 	DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1577 	DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1578 	DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1579 	DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1580 
1581 #undef DUMP_REG
1582 
1583 unlock:
1584 	drm_modeset_unlock_crtc(&dc->base);
1585 	return err;
1586 }
1587 
1588 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1589 {
1590 	struct drm_info_node *node = s->private;
1591 	struct tegra_dc *dc = node->info_ent->data;
1592 	int err = 0;
1593 	u32 value;
1594 
1595 	drm_modeset_lock_crtc(&dc->base, NULL);
1596 
1597 	if (!dc->base.state->active) {
1598 		err = -EBUSY;
1599 		goto unlock;
1600 	}
1601 
1602 	value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1603 	tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1604 	tegra_dc_commit(dc);
1605 
1606 	drm_crtc_wait_one_vblank(&dc->base);
1607 	drm_crtc_wait_one_vblank(&dc->base);
1608 
1609 	value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1610 	seq_printf(s, "%08x\n", value);
1611 
1612 	tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1613 
1614 unlock:
1615 	drm_modeset_unlock_crtc(&dc->base);
1616 	return err;
1617 }
1618 
1619 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1620 {
1621 	struct drm_info_node *node = s->private;
1622 	struct tegra_dc *dc = node->info_ent->data;
1623 
1624 	seq_printf(s, "frames: %lu\n", dc->stats.frames);
1625 	seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1626 	seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1627 	seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1628 
1629 	return 0;
1630 }
1631 
1632 static struct drm_info_list debugfs_files[] = {
1633 	{ "regs", tegra_dc_show_regs, 0, NULL },
1634 	{ "crc", tegra_dc_show_crc, 0, NULL },
1635 	{ "stats", tegra_dc_show_stats, 0, NULL },
1636 };
1637 
1638 static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1639 {
1640 	unsigned int i;
1641 	char *name;
1642 	int err;
1643 
1644 	name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1645 	dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1646 	kfree(name);
1647 
1648 	if (!dc->debugfs)
1649 		return -ENOMEM;
1650 
1651 	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1652 				    GFP_KERNEL);
1653 	if (!dc->debugfs_files) {
1654 		err = -ENOMEM;
1655 		goto remove;
1656 	}
1657 
1658 	for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1659 		dc->debugfs_files[i].data = dc;
1660 
1661 	err = drm_debugfs_create_files(dc->debugfs_files,
1662 				       ARRAY_SIZE(debugfs_files),
1663 				       dc->debugfs, minor);
1664 	if (err < 0)
1665 		goto free;
1666 
1667 	dc->minor = minor;
1668 
1669 	return 0;
1670 
1671 free:
1672 	kfree(dc->debugfs_files);
1673 	dc->debugfs_files = NULL;
1674 remove:
1675 	debugfs_remove(dc->debugfs);
1676 	dc->debugfs = NULL;
1677 
1678 	return err;
1679 }
1680 
1681 static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1682 {
1683 	drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1684 				 dc->minor);
1685 	dc->minor = NULL;
1686 
1687 	kfree(dc->debugfs_files);
1688 	dc->debugfs_files = NULL;
1689 
1690 	debugfs_remove(dc->debugfs);
1691 	dc->debugfs = NULL;
1692 
1693 	return 0;
1694 }
1695 
1696 static int tegra_dc_init(struct host1x_client *client)
1697 {
1698 	struct drm_device *drm = dev_get_drvdata(client->parent);
1699 	struct tegra_dc *dc = host1x_client_to_dc(client);
1700 	struct tegra_drm *tegra = drm->dev_private;
1701 	struct drm_plane *primary = NULL;
1702 	struct drm_plane *cursor = NULL;
1703 	u32 value;
1704 	int err;
1705 
1706 	if (tegra->domain) {
1707 		err = iommu_attach_device(tegra->domain, dc->dev);
1708 		if (err < 0) {
1709 			dev_err(dc->dev, "failed to attach to domain: %d\n",
1710 				err);
1711 			return err;
1712 		}
1713 
1714 		dc->domain = tegra->domain;
1715 	}
1716 
1717 	primary = tegra_dc_primary_plane_create(drm, dc);
1718 	if (IS_ERR(primary)) {
1719 		err = PTR_ERR(primary);
1720 		goto cleanup;
1721 	}
1722 
1723 	if (dc->soc->supports_cursor) {
1724 		cursor = tegra_dc_cursor_plane_create(drm, dc);
1725 		if (IS_ERR(cursor)) {
1726 			err = PTR_ERR(cursor);
1727 			goto cleanup;
1728 		}
1729 	}
1730 
1731 	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1732 					&tegra_crtc_funcs);
1733 	if (err < 0)
1734 		goto cleanup;
1735 
1736 	drm_mode_crtc_set_gamma_size(&dc->base, 256);
1737 	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1738 
1739 	/*
1740 	 * Keep track of the minimum pitch alignment across all display
1741 	 * controllers.
1742 	 */
1743 	if (dc->soc->pitch_align > tegra->pitch_align)
1744 		tegra->pitch_align = dc->soc->pitch_align;
1745 
1746 	err = tegra_dc_rgb_init(drm, dc);
1747 	if (err < 0 && err != -ENODEV) {
1748 		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1749 		goto cleanup;
1750 	}
1751 
1752 	err = tegra_dc_add_planes(drm, dc);
1753 	if (err < 0)
1754 		goto cleanup;
1755 
1756 	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1757 		err = tegra_dc_debugfs_init(dc, drm->primary);
1758 		if (err < 0)
1759 			dev_err(dc->dev, "debugfs setup failed: %d\n", err);
1760 	}
1761 
1762 	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1763 			       dev_name(dc->dev), dc);
1764 	if (err < 0) {
1765 		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1766 			err);
1767 		goto cleanup;
1768 	}
1769 
1770 	/* initialize display controller */
1771 	if (dc->syncpt) {
1772 		u32 syncpt = host1x_syncpt_id(dc->syncpt);
1773 
1774 		value = SYNCPT_CNTRL_NO_STALL;
1775 		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1776 
1777 		value = SYNCPT_VSYNC_ENABLE | syncpt;
1778 		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1779 	}
1780 
1781 	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1782 		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1783 	tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1784 
1785 	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1786 		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1787 	tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1788 
1789 	/* initialize timer */
1790 	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1791 		WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1792 	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1793 
1794 	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1795 		WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1796 	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1797 
1798 	value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1799 		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1800 	tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1801 
1802 	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1803 		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1804 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1805 
1806 	if (dc->soc->supports_border_color)
1807 		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1808 
1809 	tegra_dc_stats_reset(&dc->stats);
1810 
1811 	return 0;
1812 
1813 cleanup:
1814 	if (cursor)
1815 		drm_plane_cleanup(cursor);
1816 
1817 	if (primary)
1818 		drm_plane_cleanup(primary);
1819 
1820 	if (tegra->domain) {
1821 		iommu_detach_device(tegra->domain, dc->dev);
1822 		dc->domain = NULL;
1823 	}
1824 
1825 	return err;
1826 }
1827 
1828 static int tegra_dc_exit(struct host1x_client *client)
1829 {
1830 	struct tegra_dc *dc = host1x_client_to_dc(client);
1831 	int err;
1832 
1833 	devm_free_irq(dc->dev, dc->irq, dc);
1834 
1835 	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1836 		err = tegra_dc_debugfs_exit(dc);
1837 		if (err < 0)
1838 			dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1839 	}
1840 
1841 	err = tegra_dc_rgb_exit(dc);
1842 	if (err) {
1843 		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1844 		return err;
1845 	}
1846 
1847 	if (dc->domain) {
1848 		iommu_detach_device(dc->domain, dc->dev);
1849 		dc->domain = NULL;
1850 	}
1851 
1852 	return 0;
1853 }
1854 
1855 static const struct host1x_client_ops dc_client_ops = {
1856 	.init = tegra_dc_init,
1857 	.exit = tegra_dc_exit,
1858 };
1859 
1860 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1861 	.supports_border_color = true,
1862 	.supports_interlacing = false,
1863 	.supports_cursor = false,
1864 	.supports_block_linear = false,
1865 	.pitch_align = 8,
1866 	.has_powergate = false,
1867 };
1868 
1869 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1870 	.supports_border_color = true,
1871 	.supports_interlacing = false,
1872 	.supports_cursor = false,
1873 	.supports_block_linear = false,
1874 	.pitch_align = 8,
1875 	.has_powergate = false,
1876 };
1877 
1878 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1879 	.supports_border_color = true,
1880 	.supports_interlacing = false,
1881 	.supports_cursor = false,
1882 	.supports_block_linear = false,
1883 	.pitch_align = 64,
1884 	.has_powergate = true,
1885 };
1886 
1887 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1888 	.supports_border_color = false,
1889 	.supports_interlacing = true,
1890 	.supports_cursor = true,
1891 	.supports_block_linear = true,
1892 	.pitch_align = 64,
1893 	.has_powergate = true,
1894 };
1895 
1896 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
1897 	.supports_border_color = false,
1898 	.supports_interlacing = true,
1899 	.supports_cursor = true,
1900 	.supports_block_linear = true,
1901 	.pitch_align = 64,
1902 	.has_powergate = true,
1903 };
1904 
1905 static const struct of_device_id tegra_dc_of_match[] = {
1906 	{
1907 		.compatible = "nvidia,tegra210-dc",
1908 		.data = &tegra210_dc_soc_info,
1909 	}, {
1910 		.compatible = "nvidia,tegra124-dc",
1911 		.data = &tegra124_dc_soc_info,
1912 	}, {
1913 		.compatible = "nvidia,tegra114-dc",
1914 		.data = &tegra114_dc_soc_info,
1915 	}, {
1916 		.compatible = "nvidia,tegra30-dc",
1917 		.data = &tegra30_dc_soc_info,
1918 	}, {
1919 		.compatible = "nvidia,tegra20-dc",
1920 		.data = &tegra20_dc_soc_info,
1921 	}, {
1922 		/* sentinel */
1923 	}
1924 };
1925 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
1926 
1927 static int tegra_dc_parse_dt(struct tegra_dc *dc)
1928 {
1929 	struct device_node *np;
1930 	u32 value = 0;
1931 	int err;
1932 
1933 	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1934 	if (err < 0) {
1935 		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1936 
1937 		/*
1938 		 * If the nvidia,head property isn't present, try to find the
1939 		 * correct head number by looking up the position of this
1940 		 * display controller's node within the device tree. Assuming
1941 		 * that the nodes are ordered properly in the DTS file and
1942 		 * that the translation into a flattened device tree blob
1943 		 * preserves that ordering this will actually yield the right
1944 		 * head number.
1945 		 *
1946 		 * If those assumptions don't hold, this will still work for
1947 		 * cases where only a single display controller is used.
1948 		 */
1949 		for_each_matching_node(np, tegra_dc_of_match) {
1950 			if (np == dc->dev->of_node)
1951 				break;
1952 
1953 			value++;
1954 		}
1955 	}
1956 
1957 	dc->pipe = value;
1958 
1959 	return 0;
1960 }
1961 
1962 static int tegra_dc_probe(struct platform_device *pdev)
1963 {
1964 	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1965 	const struct of_device_id *id;
1966 	struct resource *regs;
1967 	struct tegra_dc *dc;
1968 	int err;
1969 
1970 	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1971 	if (!dc)
1972 		return -ENOMEM;
1973 
1974 	id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
1975 	if (!id)
1976 		return -ENODEV;
1977 
1978 	spin_lock_init(&dc->lock);
1979 	INIT_LIST_HEAD(&dc->list);
1980 	dc->dev = &pdev->dev;
1981 	dc->soc = id->data;
1982 
1983 	err = tegra_dc_parse_dt(dc);
1984 	if (err < 0)
1985 		return err;
1986 
1987 	dc->clk = devm_clk_get(&pdev->dev, NULL);
1988 	if (IS_ERR(dc->clk)) {
1989 		dev_err(&pdev->dev, "failed to get clock\n");
1990 		return PTR_ERR(dc->clk);
1991 	}
1992 
1993 	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
1994 	if (IS_ERR(dc->rst)) {
1995 		dev_err(&pdev->dev, "failed to get reset\n");
1996 		return PTR_ERR(dc->rst);
1997 	}
1998 
1999 	if (dc->soc->has_powergate) {
2000 		if (dc->pipe == 0)
2001 			dc->powergate = TEGRA_POWERGATE_DIS;
2002 		else
2003 			dc->powergate = TEGRA_POWERGATE_DISB;
2004 
2005 		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2006 							dc->rst);
2007 		if (err < 0) {
2008 			dev_err(&pdev->dev, "failed to power partition: %d\n",
2009 				err);
2010 			return err;
2011 		}
2012 	} else {
2013 		err = clk_prepare_enable(dc->clk);
2014 		if (err < 0) {
2015 			dev_err(&pdev->dev, "failed to enable clock: %d\n",
2016 				err);
2017 			return err;
2018 		}
2019 
2020 		err = reset_control_deassert(dc->rst);
2021 		if (err < 0) {
2022 			dev_err(&pdev->dev, "failed to deassert reset: %d\n",
2023 				err);
2024 			return err;
2025 		}
2026 	}
2027 
2028 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2029 	dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2030 	if (IS_ERR(dc->regs))
2031 		return PTR_ERR(dc->regs);
2032 
2033 	dc->irq = platform_get_irq(pdev, 0);
2034 	if (dc->irq < 0) {
2035 		dev_err(&pdev->dev, "failed to get IRQ\n");
2036 		return -ENXIO;
2037 	}
2038 
2039 	dc->syncpt = host1x_syncpt_request(&pdev->dev, flags);
2040 	if (!dc->syncpt)
2041 		dev_warn(&pdev->dev, "failed to allocate syncpoint\n");
2042 
2043 	INIT_LIST_HEAD(&dc->client.list);
2044 	dc->client.ops = &dc_client_ops;
2045 	dc->client.dev = &pdev->dev;
2046 
2047 	err = tegra_dc_rgb_probe(dc);
2048 	if (err < 0 && err != -ENODEV) {
2049 		dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2050 		return err;
2051 	}
2052 
2053 	err = host1x_client_register(&dc->client);
2054 	if (err < 0) {
2055 		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2056 			err);
2057 		return err;
2058 	}
2059 
2060 	platform_set_drvdata(pdev, dc);
2061 
2062 	return 0;
2063 }
2064 
2065 static int tegra_dc_remove(struct platform_device *pdev)
2066 {
2067 	struct tegra_dc *dc = platform_get_drvdata(pdev);
2068 	int err;
2069 
2070 	host1x_syncpt_free(dc->syncpt);
2071 
2072 	err = host1x_client_unregister(&dc->client);
2073 	if (err < 0) {
2074 		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2075 			err);
2076 		return err;
2077 	}
2078 
2079 	err = tegra_dc_rgb_remove(dc);
2080 	if (err < 0) {
2081 		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2082 		return err;
2083 	}
2084 
2085 	reset_control_assert(dc->rst);
2086 
2087 	if (dc->soc->has_powergate)
2088 		tegra_powergate_power_off(dc->powergate);
2089 
2090 	clk_disable_unprepare(dc->clk);
2091 
2092 	return 0;
2093 }
2094 
2095 struct platform_driver tegra_dc_driver = {
2096 	.driver = {
2097 		.name = "tegra-dc",
2098 		.of_match_table = tegra_dc_of_match,
2099 	},
2100 	.probe = tegra_dc_probe,
2101 	.remove = tegra_dc_remove,
2102 };
2103