1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 Avionic Design GmbH 4 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 5 */ 6 7 #include <linux/clk.h> 8 #include <linux/debugfs.h> 9 #include <linux/iommu.h> 10 #include <linux/of_device.h> 11 #include <linux/pm_runtime.h> 12 #include <linux/reset.h> 13 14 #include <soc/tegra/pmc.h> 15 16 #include "dc.h" 17 #include "drm.h" 18 #include "gem.h" 19 #include "hub.h" 20 #include "plane.h" 21 22 #include <drm/drm_atomic.h> 23 #include <drm/drm_atomic_helper.h> 24 #include <drm/drm_plane_helper.h> 25 26 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats) 27 { 28 stats->frames = 0; 29 stats->vblank = 0; 30 stats->underflow = 0; 31 stats->overflow = 0; 32 } 33 34 /* Reads the active copy of a register. */ 35 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset) 36 { 37 u32 value; 38 39 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS); 40 value = tegra_dc_readl(dc, offset); 41 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS); 42 43 return value; 44 } 45 46 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane, 47 unsigned int offset) 48 { 49 if (offset >= 0x500 && offset <= 0x638) { 50 offset = 0x000 + (offset - 0x500); 51 return plane->offset + offset; 52 } 53 54 if (offset >= 0x700 && offset <= 0x719) { 55 offset = 0x180 + (offset - 0x700); 56 return plane->offset + offset; 57 } 58 59 if (offset >= 0x800 && offset <= 0x839) { 60 offset = 0x1c0 + (offset - 0x800); 61 return plane->offset + offset; 62 } 63 64 dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset); 65 66 return plane->offset + offset; 67 } 68 69 static inline u32 tegra_plane_readl(struct tegra_plane *plane, 70 unsigned int offset) 71 { 72 return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset)); 73 } 74 75 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value, 76 unsigned int offset) 77 { 78 tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset)); 79 } 80 81 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev) 82 { 83 struct device_node *np = dc->dev->of_node; 84 struct of_phandle_iterator it; 85 int err; 86 87 of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0) 88 if (it.node == dev->of_node) 89 return true; 90 91 return false; 92 } 93 94 /* 95 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the 96 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy. 97 * Latching happens mmediately if the display controller is in STOP mode or 98 * on the next frame boundary otherwise. 99 * 100 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The 101 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits 102 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched 103 * into the ACTIVE copy, either immediately if the display controller is in 104 * STOP mode, or at the next frame boundary otherwise. 105 */ 106 void tegra_dc_commit(struct tegra_dc *dc) 107 { 108 tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL); 109 tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL); 110 } 111 112 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v, 113 unsigned int bpp) 114 { 115 fixed20_12 outf = dfixed_init(out); 116 fixed20_12 inf = dfixed_init(in); 117 u32 dda_inc; 118 int max; 119 120 if (v) 121 max = 15; 122 else { 123 switch (bpp) { 124 case 2: 125 max = 8; 126 break; 127 128 default: 129 WARN_ON_ONCE(1); 130 /* fallthrough */ 131 case 4: 132 max = 4; 133 break; 134 } 135 } 136 137 outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1)); 138 inf.full -= dfixed_const(1); 139 140 dda_inc = dfixed_div(inf, outf); 141 dda_inc = min_t(u32, dda_inc, dfixed_const(max)); 142 143 return dda_inc; 144 } 145 146 static inline u32 compute_initial_dda(unsigned int in) 147 { 148 fixed20_12 inf = dfixed_init(in); 149 return dfixed_frac(inf); 150 } 151 152 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane) 153 { 154 u32 background[3] = { 155 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE, 156 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE, 157 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE, 158 }; 159 u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) | 160 BLEND_COLOR_KEY_NONE; 161 u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255); 162 struct tegra_plane_state *state; 163 u32 blending[2]; 164 unsigned int i; 165 166 /* disable blending for non-overlapping case */ 167 tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY); 168 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN); 169 170 state = to_tegra_plane_state(plane->base.state); 171 172 if (state->opaque) { 173 /* 174 * Since custom fix-weight blending isn't utilized and weight 175 * of top window is set to max, we can enforce dependent 176 * blending which in this case results in transparent bottom 177 * window if top window is opaque and if top window enables 178 * alpha blending, then bottom window is getting alpha value 179 * of 1 minus the sum of alpha components of the overlapping 180 * plane. 181 */ 182 background[0] |= BLEND_CONTROL_DEPENDENT; 183 background[1] |= BLEND_CONTROL_DEPENDENT; 184 185 /* 186 * The region where three windows overlap is the intersection 187 * of the two regions where two windows overlap. It contributes 188 * to the area if all of the windows on top of it have an alpha 189 * component. 190 */ 191 switch (state->base.normalized_zpos) { 192 case 0: 193 if (state->blending[0].alpha && 194 state->blending[1].alpha) 195 background[2] |= BLEND_CONTROL_DEPENDENT; 196 break; 197 198 case 1: 199 background[2] |= BLEND_CONTROL_DEPENDENT; 200 break; 201 } 202 } else { 203 /* 204 * Enable alpha blending if pixel format has an alpha 205 * component. 206 */ 207 foreground |= BLEND_CONTROL_ALPHA; 208 209 /* 210 * If any of the windows on top of this window is opaque, it 211 * will completely conceal this window within that area. If 212 * top window has an alpha component, it is blended over the 213 * bottom window. 214 */ 215 for (i = 0; i < 2; i++) { 216 if (state->blending[i].alpha && 217 state->blending[i].top) 218 background[i] |= BLEND_CONTROL_DEPENDENT; 219 } 220 221 switch (state->base.normalized_zpos) { 222 case 0: 223 if (state->blending[0].alpha && 224 state->blending[1].alpha) 225 background[2] |= BLEND_CONTROL_DEPENDENT; 226 break; 227 228 case 1: 229 /* 230 * When both middle and topmost windows have an alpha, 231 * these windows a mixed together and then the result 232 * is blended over the bottom window. 233 */ 234 if (state->blending[0].alpha && 235 state->blending[0].top) 236 background[2] |= BLEND_CONTROL_ALPHA; 237 238 if (state->blending[1].alpha && 239 state->blending[1].top) 240 background[2] |= BLEND_CONTROL_ALPHA; 241 break; 242 } 243 } 244 245 switch (state->base.normalized_zpos) { 246 case 0: 247 tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X); 248 tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y); 249 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY); 250 break; 251 252 case 1: 253 /* 254 * If window B / C is topmost, then X / Y registers are 255 * matching the order of blending[...] state indices, 256 * otherwise a swap is required. 257 */ 258 if (!state->blending[0].top && state->blending[1].top) { 259 blending[0] = foreground; 260 blending[1] = background[1]; 261 } else { 262 blending[0] = background[0]; 263 blending[1] = foreground; 264 } 265 266 tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X); 267 tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y); 268 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY); 269 break; 270 271 case 2: 272 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X); 273 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y); 274 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY); 275 break; 276 } 277 } 278 279 static void tegra_plane_setup_blending(struct tegra_plane *plane, 280 const struct tegra_dc_window *window) 281 { 282 u32 value; 283 284 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 | 285 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC | 286 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC; 287 tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT); 288 289 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 | 290 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC | 291 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC; 292 tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT); 293 294 value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos); 295 tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL); 296 } 297 298 static bool 299 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane, 300 const struct tegra_dc_window *window) 301 { 302 struct tegra_dc *dc = plane->dc; 303 304 if (window->src.w == window->dst.w) 305 return false; 306 307 if (plane->index == 0 && dc->soc->has_win_a_without_filters) 308 return false; 309 310 return true; 311 } 312 313 static bool 314 tegra_plane_use_vertical_filtering(struct tegra_plane *plane, 315 const struct tegra_dc_window *window) 316 { 317 struct tegra_dc *dc = plane->dc; 318 319 if (window->src.h == window->dst.h) 320 return false; 321 322 if (plane->index == 0 && dc->soc->has_win_a_without_filters) 323 return false; 324 325 if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter) 326 return false; 327 328 return true; 329 } 330 331 static void tegra_dc_setup_window(struct tegra_plane *plane, 332 const struct tegra_dc_window *window) 333 { 334 unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp; 335 struct tegra_dc *dc = plane->dc; 336 bool yuv, planar; 337 u32 value; 338 339 /* 340 * For YUV planar modes, the number of bytes per pixel takes into 341 * account only the luma component and therefore is 1. 342 */ 343 yuv = tegra_plane_format_is_yuv(window->format, &planar); 344 if (!yuv) 345 bpp = window->bits_per_pixel / 8; 346 else 347 bpp = planar ? 1 : 2; 348 349 tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH); 350 tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP); 351 352 value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x); 353 tegra_plane_writel(plane, value, DC_WIN_POSITION); 354 355 value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w); 356 tegra_plane_writel(plane, value, DC_WIN_SIZE); 357 358 h_offset = window->src.x * bpp; 359 v_offset = window->src.y; 360 h_size = window->src.w * bpp; 361 v_size = window->src.h; 362 363 value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size); 364 tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE); 365 366 /* 367 * For DDA computations the number of bytes per pixel for YUV planar 368 * modes needs to take into account all Y, U and V components. 369 */ 370 if (yuv && planar) 371 bpp = 2; 372 373 h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp); 374 v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp); 375 376 value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda); 377 tegra_plane_writel(plane, value, DC_WIN_DDA_INC); 378 379 h_dda = compute_initial_dda(window->src.x); 380 v_dda = compute_initial_dda(window->src.y); 381 382 tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA); 383 tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA); 384 385 tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE); 386 tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE); 387 388 tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR); 389 390 if (yuv && planar) { 391 tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U); 392 tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V); 393 value = window->stride[1] << 16 | window->stride[0]; 394 tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE); 395 } else { 396 tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE); 397 } 398 399 if (window->bottom_up) 400 v_offset += window->src.h - 1; 401 402 tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET); 403 tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET); 404 405 if (dc->soc->supports_block_linear) { 406 unsigned long height = window->tiling.value; 407 408 switch (window->tiling.mode) { 409 case TEGRA_BO_TILING_MODE_PITCH: 410 value = DC_WINBUF_SURFACE_KIND_PITCH; 411 break; 412 413 case TEGRA_BO_TILING_MODE_TILED: 414 value = DC_WINBUF_SURFACE_KIND_TILED; 415 break; 416 417 case TEGRA_BO_TILING_MODE_BLOCK: 418 value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) | 419 DC_WINBUF_SURFACE_KIND_BLOCK; 420 break; 421 } 422 423 tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND); 424 } else { 425 switch (window->tiling.mode) { 426 case TEGRA_BO_TILING_MODE_PITCH: 427 value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV | 428 DC_WIN_BUFFER_ADDR_MODE_LINEAR; 429 break; 430 431 case TEGRA_BO_TILING_MODE_TILED: 432 value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV | 433 DC_WIN_BUFFER_ADDR_MODE_TILE; 434 break; 435 436 case TEGRA_BO_TILING_MODE_BLOCK: 437 /* 438 * No need to handle this here because ->atomic_check 439 * will already have filtered it out. 440 */ 441 break; 442 } 443 444 tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE); 445 } 446 447 value = WIN_ENABLE; 448 449 if (yuv) { 450 /* setup default colorspace conversion coefficients */ 451 tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF); 452 tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB); 453 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR); 454 tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR); 455 tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG); 456 tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG); 457 tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB); 458 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB); 459 460 value |= CSC_ENABLE; 461 } else if (window->bits_per_pixel < 24) { 462 value |= COLOR_EXPAND; 463 } 464 465 if (window->bottom_up) 466 value |= V_DIRECTION; 467 468 if (tegra_plane_use_horizontal_filtering(plane, window)) { 469 /* 470 * Enable horizontal 6-tap filter and set filtering 471 * coefficients to the default values defined in TRM. 472 */ 473 tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0)); 474 tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1)); 475 tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2)); 476 tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3)); 477 tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4)); 478 tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5)); 479 tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6)); 480 tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7)); 481 tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8)); 482 tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9)); 483 tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10)); 484 tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11)); 485 tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12)); 486 tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13)); 487 tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14)); 488 tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15)); 489 490 value |= H_FILTER; 491 } 492 493 if (tegra_plane_use_vertical_filtering(plane, window)) { 494 unsigned int i, k; 495 496 /* 497 * Enable vertical 2-tap filter and set filtering 498 * coefficients to the default values defined in TRM. 499 */ 500 for (i = 0, k = 128; i < 16; i++, k -= 8) 501 tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i)); 502 503 value |= V_FILTER; 504 } 505 506 tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS); 507 508 if (dc->soc->has_legacy_blending) 509 tegra_plane_setup_blending_legacy(plane); 510 else 511 tegra_plane_setup_blending(plane, window); 512 } 513 514 static const u32 tegra20_primary_formats[] = { 515 DRM_FORMAT_ARGB4444, 516 DRM_FORMAT_ARGB1555, 517 DRM_FORMAT_RGB565, 518 DRM_FORMAT_RGBA5551, 519 DRM_FORMAT_ABGR8888, 520 DRM_FORMAT_ARGB8888, 521 /* non-native formats */ 522 DRM_FORMAT_XRGB1555, 523 DRM_FORMAT_RGBX5551, 524 DRM_FORMAT_XBGR8888, 525 DRM_FORMAT_XRGB8888, 526 }; 527 528 static const u64 tegra20_modifiers[] = { 529 DRM_FORMAT_MOD_LINEAR, 530 DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED, 531 DRM_FORMAT_MOD_INVALID 532 }; 533 534 static const u32 tegra114_primary_formats[] = { 535 DRM_FORMAT_ARGB4444, 536 DRM_FORMAT_ARGB1555, 537 DRM_FORMAT_RGB565, 538 DRM_FORMAT_RGBA5551, 539 DRM_FORMAT_ABGR8888, 540 DRM_FORMAT_ARGB8888, 541 /* new on Tegra114 */ 542 DRM_FORMAT_ABGR4444, 543 DRM_FORMAT_ABGR1555, 544 DRM_FORMAT_BGRA5551, 545 DRM_FORMAT_XRGB1555, 546 DRM_FORMAT_RGBX5551, 547 DRM_FORMAT_XBGR1555, 548 DRM_FORMAT_BGRX5551, 549 DRM_FORMAT_BGR565, 550 DRM_FORMAT_BGRA8888, 551 DRM_FORMAT_RGBA8888, 552 DRM_FORMAT_XRGB8888, 553 DRM_FORMAT_XBGR8888, 554 }; 555 556 static const u32 tegra124_primary_formats[] = { 557 DRM_FORMAT_ARGB4444, 558 DRM_FORMAT_ARGB1555, 559 DRM_FORMAT_RGB565, 560 DRM_FORMAT_RGBA5551, 561 DRM_FORMAT_ABGR8888, 562 DRM_FORMAT_ARGB8888, 563 /* new on Tegra114 */ 564 DRM_FORMAT_ABGR4444, 565 DRM_FORMAT_ABGR1555, 566 DRM_FORMAT_BGRA5551, 567 DRM_FORMAT_XRGB1555, 568 DRM_FORMAT_RGBX5551, 569 DRM_FORMAT_XBGR1555, 570 DRM_FORMAT_BGRX5551, 571 DRM_FORMAT_BGR565, 572 DRM_FORMAT_BGRA8888, 573 DRM_FORMAT_RGBA8888, 574 DRM_FORMAT_XRGB8888, 575 DRM_FORMAT_XBGR8888, 576 /* new on Tegra124 */ 577 DRM_FORMAT_RGBX8888, 578 DRM_FORMAT_BGRX8888, 579 }; 580 581 static const u64 tegra124_modifiers[] = { 582 DRM_FORMAT_MOD_LINEAR, 583 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0), 584 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1), 585 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2), 586 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3), 587 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4), 588 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5), 589 DRM_FORMAT_MOD_INVALID 590 }; 591 592 static int tegra_plane_atomic_check(struct drm_plane *plane, 593 struct drm_plane_state *state) 594 { 595 struct tegra_plane_state *plane_state = to_tegra_plane_state(state); 596 unsigned int rotation = DRM_MODE_ROTATE_0 | DRM_MODE_REFLECT_Y; 597 struct tegra_bo_tiling *tiling = &plane_state->tiling; 598 struct tegra_plane *tegra = to_tegra_plane(plane); 599 struct tegra_dc *dc = to_tegra_dc(state->crtc); 600 int err; 601 602 /* no need for further checks if the plane is being disabled */ 603 if (!state->crtc) 604 return 0; 605 606 err = tegra_plane_format(state->fb->format->format, 607 &plane_state->format, 608 &plane_state->swap); 609 if (err < 0) 610 return err; 611 612 /* 613 * Tegra20 and Tegra30 are special cases here because they support 614 * only variants of specific formats with an alpha component, but not 615 * the corresponding opaque formats. However, the opaque formats can 616 * be emulated by disabling alpha blending for the plane. 617 */ 618 if (dc->soc->has_legacy_blending) { 619 err = tegra_plane_setup_legacy_state(tegra, plane_state); 620 if (err < 0) 621 return err; 622 } 623 624 err = tegra_fb_get_tiling(state->fb, tiling); 625 if (err < 0) 626 return err; 627 628 if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK && 629 !dc->soc->supports_block_linear) { 630 DRM_ERROR("hardware doesn't support block linear mode\n"); 631 return -EINVAL; 632 } 633 634 rotation = drm_rotation_simplify(state->rotation, rotation); 635 636 if (rotation & DRM_MODE_REFLECT_Y) 637 plane_state->bottom_up = true; 638 else 639 plane_state->bottom_up = false; 640 641 /* 642 * Tegra doesn't support different strides for U and V planes so we 643 * error out if the user tries to display a framebuffer with such a 644 * configuration. 645 */ 646 if (state->fb->format->num_planes > 2) { 647 if (state->fb->pitches[2] != state->fb->pitches[1]) { 648 DRM_ERROR("unsupported UV-plane configuration\n"); 649 return -EINVAL; 650 } 651 } 652 653 err = tegra_plane_state_add(tegra, state); 654 if (err < 0) 655 return err; 656 657 return 0; 658 } 659 660 static void tegra_plane_atomic_disable(struct drm_plane *plane, 661 struct drm_plane_state *old_state) 662 { 663 struct tegra_plane *p = to_tegra_plane(plane); 664 u32 value; 665 666 /* rien ne va plus */ 667 if (!old_state || !old_state->crtc) 668 return; 669 670 value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS); 671 value &= ~WIN_ENABLE; 672 tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS); 673 } 674 675 static void tegra_plane_atomic_update(struct drm_plane *plane, 676 struct drm_plane_state *old_state) 677 { 678 struct tegra_plane_state *state = to_tegra_plane_state(plane->state); 679 struct drm_framebuffer *fb = plane->state->fb; 680 struct tegra_plane *p = to_tegra_plane(plane); 681 struct tegra_dc_window window; 682 unsigned int i; 683 684 /* rien ne va plus */ 685 if (!plane->state->crtc || !plane->state->fb) 686 return; 687 688 if (!plane->state->visible) 689 return tegra_plane_atomic_disable(plane, old_state); 690 691 memset(&window, 0, sizeof(window)); 692 window.src.x = plane->state->src.x1 >> 16; 693 window.src.y = plane->state->src.y1 >> 16; 694 window.src.w = drm_rect_width(&plane->state->src) >> 16; 695 window.src.h = drm_rect_height(&plane->state->src) >> 16; 696 window.dst.x = plane->state->dst.x1; 697 window.dst.y = plane->state->dst.y1; 698 window.dst.w = drm_rect_width(&plane->state->dst); 699 window.dst.h = drm_rect_height(&plane->state->dst); 700 window.bits_per_pixel = fb->format->cpp[0] * 8; 701 window.bottom_up = tegra_fb_is_bottom_up(fb) || state->bottom_up; 702 703 /* copy from state */ 704 window.zpos = plane->state->normalized_zpos; 705 window.tiling = state->tiling; 706 window.format = state->format; 707 window.swap = state->swap; 708 709 for (i = 0; i < fb->format->num_planes; i++) { 710 struct tegra_bo *bo = tegra_fb_get_plane(fb, i); 711 712 window.base[i] = bo->paddr + fb->offsets[i]; 713 714 /* 715 * Tegra uses a shared stride for UV planes. Framebuffers are 716 * already checked for this in the tegra_plane_atomic_check() 717 * function, so it's safe to ignore the V-plane pitch here. 718 */ 719 if (i < 2) 720 window.stride[i] = fb->pitches[i]; 721 } 722 723 tegra_dc_setup_window(p, &window); 724 } 725 726 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = { 727 .atomic_check = tegra_plane_atomic_check, 728 .atomic_disable = tegra_plane_atomic_disable, 729 .atomic_update = tegra_plane_atomic_update, 730 }; 731 732 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm) 733 { 734 /* 735 * Ideally this would use drm_crtc_mask(), but that would require the 736 * CRTC to already be in the mode_config's list of CRTCs. However, it 737 * will only be added to that list in the drm_crtc_init_with_planes() 738 * (in tegra_dc_init()), which in turn requires registration of these 739 * planes. So we have ourselves a nice little chicken and egg problem 740 * here. 741 * 742 * We work around this by manually creating the mask from the number 743 * of CRTCs that have been registered, and should therefore always be 744 * the same as drm_crtc_index() after registration. 745 */ 746 return 1 << drm->mode_config.num_crtc; 747 } 748 749 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm, 750 struct tegra_dc *dc) 751 { 752 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm); 753 enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY; 754 struct tegra_plane *plane; 755 unsigned int num_formats; 756 const u64 *modifiers; 757 const u32 *formats; 758 int err; 759 760 plane = kzalloc(sizeof(*plane), GFP_KERNEL); 761 if (!plane) 762 return ERR_PTR(-ENOMEM); 763 764 /* Always use window A as primary window */ 765 plane->offset = 0xa00; 766 plane->index = 0; 767 plane->dc = dc; 768 769 num_formats = dc->soc->num_primary_formats; 770 formats = dc->soc->primary_formats; 771 modifiers = dc->soc->modifiers; 772 773 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs, 774 &tegra_plane_funcs, formats, 775 num_formats, modifiers, type, NULL); 776 if (err < 0) { 777 kfree(plane); 778 return ERR_PTR(err); 779 } 780 781 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs); 782 drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255); 783 784 err = drm_plane_create_rotation_property(&plane->base, 785 DRM_MODE_ROTATE_0, 786 DRM_MODE_ROTATE_0 | 787 DRM_MODE_REFLECT_Y); 788 if (err < 0) 789 dev_err(dc->dev, "failed to create rotation property: %d\n", 790 err); 791 792 return &plane->base; 793 } 794 795 static const u32 tegra_cursor_plane_formats[] = { 796 DRM_FORMAT_RGBA8888, 797 }; 798 799 static int tegra_cursor_atomic_check(struct drm_plane *plane, 800 struct drm_plane_state *state) 801 { 802 struct tegra_plane *tegra = to_tegra_plane(plane); 803 int err; 804 805 /* no need for further checks if the plane is being disabled */ 806 if (!state->crtc) 807 return 0; 808 809 /* scaling not supported for cursor */ 810 if ((state->src_w >> 16 != state->crtc_w) || 811 (state->src_h >> 16 != state->crtc_h)) 812 return -EINVAL; 813 814 /* only square cursors supported */ 815 if (state->src_w != state->src_h) 816 return -EINVAL; 817 818 if (state->crtc_w != 32 && state->crtc_w != 64 && 819 state->crtc_w != 128 && state->crtc_w != 256) 820 return -EINVAL; 821 822 err = tegra_plane_state_add(tegra, state); 823 if (err < 0) 824 return err; 825 826 return 0; 827 } 828 829 static void tegra_cursor_atomic_update(struct drm_plane *plane, 830 struct drm_plane_state *old_state) 831 { 832 struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0); 833 struct tegra_dc *dc = to_tegra_dc(plane->state->crtc); 834 struct drm_plane_state *state = plane->state; 835 u32 value = CURSOR_CLIP_DISPLAY; 836 837 /* rien ne va plus */ 838 if (!plane->state->crtc || !plane->state->fb) 839 return; 840 841 switch (state->crtc_w) { 842 case 32: 843 value |= CURSOR_SIZE_32x32; 844 break; 845 846 case 64: 847 value |= CURSOR_SIZE_64x64; 848 break; 849 850 case 128: 851 value |= CURSOR_SIZE_128x128; 852 break; 853 854 case 256: 855 value |= CURSOR_SIZE_256x256; 856 break; 857 858 default: 859 WARN(1, "cursor size %ux%u not supported\n", state->crtc_w, 860 state->crtc_h); 861 return; 862 } 863 864 value |= (bo->paddr >> 10) & 0x3fffff; 865 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR); 866 867 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 868 value = (bo->paddr >> 32) & 0x3; 869 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI); 870 #endif 871 872 /* enable cursor and set blend mode */ 873 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS); 874 value |= CURSOR_ENABLE; 875 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS); 876 877 value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL); 878 value &= ~CURSOR_DST_BLEND_MASK; 879 value &= ~CURSOR_SRC_BLEND_MASK; 880 value |= CURSOR_MODE_NORMAL; 881 value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC; 882 value |= CURSOR_SRC_BLEND_K1_TIMES_SRC; 883 value |= CURSOR_ALPHA; 884 tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL); 885 886 /* position the cursor */ 887 value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff); 888 tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION); 889 } 890 891 static void tegra_cursor_atomic_disable(struct drm_plane *plane, 892 struct drm_plane_state *old_state) 893 { 894 struct tegra_dc *dc; 895 u32 value; 896 897 /* rien ne va plus */ 898 if (!old_state || !old_state->crtc) 899 return; 900 901 dc = to_tegra_dc(old_state->crtc); 902 903 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS); 904 value &= ~CURSOR_ENABLE; 905 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS); 906 } 907 908 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = { 909 .atomic_check = tegra_cursor_atomic_check, 910 .atomic_update = tegra_cursor_atomic_update, 911 .atomic_disable = tegra_cursor_atomic_disable, 912 }; 913 914 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm, 915 struct tegra_dc *dc) 916 { 917 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm); 918 struct tegra_plane *plane; 919 unsigned int num_formats; 920 const u32 *formats; 921 int err; 922 923 plane = kzalloc(sizeof(*plane), GFP_KERNEL); 924 if (!plane) 925 return ERR_PTR(-ENOMEM); 926 927 /* 928 * This index is kind of fake. The cursor isn't a regular plane, but 929 * its update and activation request bits in DC_CMD_STATE_CONTROL do 930 * use the same programming. Setting this fake index here allows the 931 * code in tegra_add_plane_state() to do the right thing without the 932 * need to special-casing the cursor plane. 933 */ 934 plane->index = 6; 935 plane->dc = dc; 936 937 num_formats = ARRAY_SIZE(tegra_cursor_plane_formats); 938 formats = tegra_cursor_plane_formats; 939 940 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs, 941 &tegra_plane_funcs, formats, 942 num_formats, NULL, 943 DRM_PLANE_TYPE_CURSOR, NULL); 944 if (err < 0) { 945 kfree(plane); 946 return ERR_PTR(err); 947 } 948 949 drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs); 950 951 return &plane->base; 952 } 953 954 static const u32 tegra20_overlay_formats[] = { 955 DRM_FORMAT_ARGB4444, 956 DRM_FORMAT_ARGB1555, 957 DRM_FORMAT_RGB565, 958 DRM_FORMAT_RGBA5551, 959 DRM_FORMAT_ABGR8888, 960 DRM_FORMAT_ARGB8888, 961 /* non-native formats */ 962 DRM_FORMAT_XRGB1555, 963 DRM_FORMAT_RGBX5551, 964 DRM_FORMAT_XBGR8888, 965 DRM_FORMAT_XRGB8888, 966 /* planar formats */ 967 DRM_FORMAT_UYVY, 968 DRM_FORMAT_YUYV, 969 DRM_FORMAT_YUV420, 970 DRM_FORMAT_YUV422, 971 }; 972 973 static const u32 tegra114_overlay_formats[] = { 974 DRM_FORMAT_ARGB4444, 975 DRM_FORMAT_ARGB1555, 976 DRM_FORMAT_RGB565, 977 DRM_FORMAT_RGBA5551, 978 DRM_FORMAT_ABGR8888, 979 DRM_FORMAT_ARGB8888, 980 /* new on Tegra114 */ 981 DRM_FORMAT_ABGR4444, 982 DRM_FORMAT_ABGR1555, 983 DRM_FORMAT_BGRA5551, 984 DRM_FORMAT_XRGB1555, 985 DRM_FORMAT_RGBX5551, 986 DRM_FORMAT_XBGR1555, 987 DRM_FORMAT_BGRX5551, 988 DRM_FORMAT_BGR565, 989 DRM_FORMAT_BGRA8888, 990 DRM_FORMAT_RGBA8888, 991 DRM_FORMAT_XRGB8888, 992 DRM_FORMAT_XBGR8888, 993 /* planar formats */ 994 DRM_FORMAT_UYVY, 995 DRM_FORMAT_YUYV, 996 DRM_FORMAT_YUV420, 997 DRM_FORMAT_YUV422, 998 }; 999 1000 static const u32 tegra124_overlay_formats[] = { 1001 DRM_FORMAT_ARGB4444, 1002 DRM_FORMAT_ARGB1555, 1003 DRM_FORMAT_RGB565, 1004 DRM_FORMAT_RGBA5551, 1005 DRM_FORMAT_ABGR8888, 1006 DRM_FORMAT_ARGB8888, 1007 /* new on Tegra114 */ 1008 DRM_FORMAT_ABGR4444, 1009 DRM_FORMAT_ABGR1555, 1010 DRM_FORMAT_BGRA5551, 1011 DRM_FORMAT_XRGB1555, 1012 DRM_FORMAT_RGBX5551, 1013 DRM_FORMAT_XBGR1555, 1014 DRM_FORMAT_BGRX5551, 1015 DRM_FORMAT_BGR565, 1016 DRM_FORMAT_BGRA8888, 1017 DRM_FORMAT_RGBA8888, 1018 DRM_FORMAT_XRGB8888, 1019 DRM_FORMAT_XBGR8888, 1020 /* new on Tegra124 */ 1021 DRM_FORMAT_RGBX8888, 1022 DRM_FORMAT_BGRX8888, 1023 /* planar formats */ 1024 DRM_FORMAT_UYVY, 1025 DRM_FORMAT_YUYV, 1026 DRM_FORMAT_YUV420, 1027 DRM_FORMAT_YUV422, 1028 }; 1029 1030 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm, 1031 struct tegra_dc *dc, 1032 unsigned int index, 1033 bool cursor) 1034 { 1035 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm); 1036 struct tegra_plane *plane; 1037 unsigned int num_formats; 1038 enum drm_plane_type type; 1039 const u32 *formats; 1040 int err; 1041 1042 plane = kzalloc(sizeof(*plane), GFP_KERNEL); 1043 if (!plane) 1044 return ERR_PTR(-ENOMEM); 1045 1046 plane->offset = 0xa00 + 0x200 * index; 1047 plane->index = index; 1048 plane->dc = dc; 1049 1050 num_formats = dc->soc->num_overlay_formats; 1051 formats = dc->soc->overlay_formats; 1052 1053 if (!cursor) 1054 type = DRM_PLANE_TYPE_OVERLAY; 1055 else 1056 type = DRM_PLANE_TYPE_CURSOR; 1057 1058 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs, 1059 &tegra_plane_funcs, formats, 1060 num_formats, NULL, type, NULL); 1061 if (err < 0) { 1062 kfree(plane); 1063 return ERR_PTR(err); 1064 } 1065 1066 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs); 1067 drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255); 1068 1069 err = drm_plane_create_rotation_property(&plane->base, 1070 DRM_MODE_ROTATE_0, 1071 DRM_MODE_ROTATE_0 | 1072 DRM_MODE_REFLECT_Y); 1073 if (err < 0) 1074 dev_err(dc->dev, "failed to create rotation property: %d\n", 1075 err); 1076 1077 return &plane->base; 1078 } 1079 1080 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm, 1081 struct tegra_dc *dc) 1082 { 1083 struct drm_plane *plane, *primary = NULL; 1084 unsigned int i, j; 1085 1086 for (i = 0; i < dc->soc->num_wgrps; i++) { 1087 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i]; 1088 1089 if (wgrp->dc == dc->pipe) { 1090 for (j = 0; j < wgrp->num_windows; j++) { 1091 unsigned int index = wgrp->windows[j]; 1092 1093 plane = tegra_shared_plane_create(drm, dc, 1094 wgrp->index, 1095 index); 1096 if (IS_ERR(plane)) 1097 return plane; 1098 1099 /* 1100 * Choose the first shared plane owned by this 1101 * head as the primary plane. 1102 */ 1103 if (!primary) { 1104 plane->type = DRM_PLANE_TYPE_PRIMARY; 1105 primary = plane; 1106 } 1107 } 1108 } 1109 } 1110 1111 return primary; 1112 } 1113 1114 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm, 1115 struct tegra_dc *dc) 1116 { 1117 struct drm_plane *planes[2], *primary; 1118 unsigned int planes_num; 1119 unsigned int i; 1120 int err; 1121 1122 primary = tegra_primary_plane_create(drm, dc); 1123 if (IS_ERR(primary)) 1124 return primary; 1125 1126 if (dc->soc->supports_cursor) 1127 planes_num = 2; 1128 else 1129 planes_num = 1; 1130 1131 for (i = 0; i < planes_num; i++) { 1132 planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i, 1133 false); 1134 if (IS_ERR(planes[i])) { 1135 err = PTR_ERR(planes[i]); 1136 1137 while (i--) 1138 tegra_plane_funcs.destroy(planes[i]); 1139 1140 tegra_plane_funcs.destroy(primary); 1141 return ERR_PTR(err); 1142 } 1143 } 1144 1145 return primary; 1146 } 1147 1148 static void tegra_dc_destroy(struct drm_crtc *crtc) 1149 { 1150 drm_crtc_cleanup(crtc); 1151 } 1152 1153 static void tegra_crtc_reset(struct drm_crtc *crtc) 1154 { 1155 struct tegra_dc_state *state; 1156 1157 if (crtc->state) 1158 __drm_atomic_helper_crtc_destroy_state(crtc->state); 1159 1160 kfree(crtc->state); 1161 crtc->state = NULL; 1162 1163 state = kzalloc(sizeof(*state), GFP_KERNEL); 1164 if (state) { 1165 crtc->state = &state->base; 1166 crtc->state->crtc = crtc; 1167 } 1168 1169 drm_crtc_vblank_reset(crtc); 1170 } 1171 1172 static struct drm_crtc_state * 1173 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc) 1174 { 1175 struct tegra_dc_state *state = to_dc_state(crtc->state); 1176 struct tegra_dc_state *copy; 1177 1178 copy = kmalloc(sizeof(*copy), GFP_KERNEL); 1179 if (!copy) 1180 return NULL; 1181 1182 __drm_atomic_helper_crtc_duplicate_state(crtc, ©->base); 1183 copy->clk = state->clk; 1184 copy->pclk = state->pclk; 1185 copy->div = state->div; 1186 copy->planes = state->planes; 1187 1188 return ©->base; 1189 } 1190 1191 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc, 1192 struct drm_crtc_state *state) 1193 { 1194 __drm_atomic_helper_crtc_destroy_state(state); 1195 kfree(state); 1196 } 1197 1198 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name } 1199 1200 static const struct debugfs_reg32 tegra_dc_regs[] = { 1201 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT), 1202 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL), 1203 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR), 1204 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT), 1205 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL), 1206 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR), 1207 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT), 1208 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL), 1209 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR), 1210 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT), 1211 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL), 1212 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR), 1213 DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC), 1214 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0), 1215 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND), 1216 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE), 1217 DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL), 1218 DEBUGFS_REG32(DC_CMD_INT_STATUS), 1219 DEBUGFS_REG32(DC_CMD_INT_MASK), 1220 DEBUGFS_REG32(DC_CMD_INT_ENABLE), 1221 DEBUGFS_REG32(DC_CMD_INT_TYPE), 1222 DEBUGFS_REG32(DC_CMD_INT_POLARITY), 1223 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1), 1224 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2), 1225 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3), 1226 DEBUGFS_REG32(DC_CMD_STATE_ACCESS), 1227 DEBUGFS_REG32(DC_CMD_STATE_CONTROL), 1228 DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER), 1229 DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL), 1230 DEBUGFS_REG32(DC_COM_CRC_CONTROL), 1231 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM), 1232 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)), 1233 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)), 1234 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)), 1235 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)), 1236 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)), 1237 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)), 1238 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)), 1239 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)), 1240 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)), 1241 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)), 1242 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)), 1243 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)), 1244 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)), 1245 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)), 1246 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)), 1247 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)), 1248 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)), 1249 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)), 1250 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)), 1251 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)), 1252 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)), 1253 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)), 1254 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)), 1255 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)), 1256 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)), 1257 DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL), 1258 DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL), 1259 DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE), 1260 DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL), 1261 DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE), 1262 DEBUGFS_REG32(DC_COM_SPI_CONTROL), 1263 DEBUGFS_REG32(DC_COM_SPI_START_BYTE), 1264 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB), 1265 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD), 1266 DEBUGFS_REG32(DC_COM_HSPI_CS_DC), 1267 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A), 1268 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B), 1269 DEBUGFS_REG32(DC_COM_GPIO_CTRL), 1270 DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER), 1271 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED), 1272 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0), 1273 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1), 1274 DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS), 1275 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY), 1276 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER), 1277 DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS), 1278 DEBUGFS_REG32(DC_DISP_REF_TO_SYNC), 1279 DEBUGFS_REG32(DC_DISP_SYNC_WIDTH), 1280 DEBUGFS_REG32(DC_DISP_BACK_PORCH), 1281 DEBUGFS_REG32(DC_DISP_ACTIVE), 1282 DEBUGFS_REG32(DC_DISP_FRONT_PORCH), 1283 DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL), 1284 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A), 1285 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B), 1286 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C), 1287 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D), 1288 DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL), 1289 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A), 1290 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B), 1291 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C), 1292 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D), 1293 DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL), 1294 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A), 1295 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B), 1296 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C), 1297 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D), 1298 DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL), 1299 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A), 1300 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B), 1301 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C), 1302 DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL), 1303 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A), 1304 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B), 1305 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C), 1306 DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL), 1307 DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A), 1308 DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL), 1309 DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A), 1310 DEBUGFS_REG32(DC_DISP_M0_CONTROL), 1311 DEBUGFS_REG32(DC_DISP_M1_CONTROL), 1312 DEBUGFS_REG32(DC_DISP_DI_CONTROL), 1313 DEBUGFS_REG32(DC_DISP_PP_CONTROL), 1314 DEBUGFS_REG32(DC_DISP_PP_SELECT_A), 1315 DEBUGFS_REG32(DC_DISP_PP_SELECT_B), 1316 DEBUGFS_REG32(DC_DISP_PP_SELECT_C), 1317 DEBUGFS_REG32(DC_DISP_PP_SELECT_D), 1318 DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL), 1319 DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL), 1320 DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL), 1321 DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS), 1322 DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS), 1323 DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS), 1324 DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS), 1325 DEBUGFS_REG32(DC_DISP_BORDER_COLOR), 1326 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER), 1327 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER), 1328 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER), 1329 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER), 1330 DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND), 1331 DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND), 1332 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR), 1333 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS), 1334 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION), 1335 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS), 1336 DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL), 1337 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A), 1338 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B), 1339 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C), 1340 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D), 1341 DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL), 1342 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST), 1343 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST), 1344 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST), 1345 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST), 1346 DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL), 1347 DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL), 1348 DEBUGFS_REG32(DC_DISP_SD_CONTROL), 1349 DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF), 1350 DEBUGFS_REG32(DC_DISP_SD_LUT(0)), 1351 DEBUGFS_REG32(DC_DISP_SD_LUT(1)), 1352 DEBUGFS_REG32(DC_DISP_SD_LUT(2)), 1353 DEBUGFS_REG32(DC_DISP_SD_LUT(3)), 1354 DEBUGFS_REG32(DC_DISP_SD_LUT(4)), 1355 DEBUGFS_REG32(DC_DISP_SD_LUT(5)), 1356 DEBUGFS_REG32(DC_DISP_SD_LUT(6)), 1357 DEBUGFS_REG32(DC_DISP_SD_LUT(7)), 1358 DEBUGFS_REG32(DC_DISP_SD_LUT(8)), 1359 DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL), 1360 DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT), 1361 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)), 1362 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)), 1363 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)), 1364 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)), 1365 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)), 1366 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)), 1367 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)), 1368 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)), 1369 DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)), 1370 DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)), 1371 DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)), 1372 DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)), 1373 DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL), 1374 DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES), 1375 DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES), 1376 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI), 1377 DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL), 1378 DEBUGFS_REG32(DC_WIN_WIN_OPTIONS), 1379 DEBUGFS_REG32(DC_WIN_BYTE_SWAP), 1380 DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL), 1381 DEBUGFS_REG32(DC_WIN_COLOR_DEPTH), 1382 DEBUGFS_REG32(DC_WIN_POSITION), 1383 DEBUGFS_REG32(DC_WIN_SIZE), 1384 DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE), 1385 DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA), 1386 DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA), 1387 DEBUGFS_REG32(DC_WIN_DDA_INC), 1388 DEBUGFS_REG32(DC_WIN_LINE_STRIDE), 1389 DEBUGFS_REG32(DC_WIN_BUF_STRIDE), 1390 DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE), 1391 DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE), 1392 DEBUGFS_REG32(DC_WIN_DV_CONTROL), 1393 DEBUGFS_REG32(DC_WIN_BLEND_NOKEY), 1394 DEBUGFS_REG32(DC_WIN_BLEND_1WIN), 1395 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X), 1396 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y), 1397 DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY), 1398 DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL), 1399 DEBUGFS_REG32(DC_WINBUF_START_ADDR), 1400 DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS), 1401 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U), 1402 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS), 1403 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V), 1404 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS), 1405 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET), 1406 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS), 1407 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET), 1408 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS), 1409 DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS), 1410 DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS), 1411 DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS), 1412 DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS), 1413 }; 1414 1415 static int tegra_dc_show_regs(struct seq_file *s, void *data) 1416 { 1417 struct drm_info_node *node = s->private; 1418 struct tegra_dc *dc = node->info_ent->data; 1419 unsigned int i; 1420 int err = 0; 1421 1422 drm_modeset_lock(&dc->base.mutex, NULL); 1423 1424 if (!dc->base.state->active) { 1425 err = -EBUSY; 1426 goto unlock; 1427 } 1428 1429 for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) { 1430 unsigned int offset = tegra_dc_regs[i].offset; 1431 1432 seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name, 1433 offset, tegra_dc_readl(dc, offset)); 1434 } 1435 1436 unlock: 1437 drm_modeset_unlock(&dc->base.mutex); 1438 return err; 1439 } 1440 1441 static int tegra_dc_show_crc(struct seq_file *s, void *data) 1442 { 1443 struct drm_info_node *node = s->private; 1444 struct tegra_dc *dc = node->info_ent->data; 1445 int err = 0; 1446 u32 value; 1447 1448 drm_modeset_lock(&dc->base.mutex, NULL); 1449 1450 if (!dc->base.state->active) { 1451 err = -EBUSY; 1452 goto unlock; 1453 } 1454 1455 value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE; 1456 tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL); 1457 tegra_dc_commit(dc); 1458 1459 drm_crtc_wait_one_vblank(&dc->base); 1460 drm_crtc_wait_one_vblank(&dc->base); 1461 1462 value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM); 1463 seq_printf(s, "%08x\n", value); 1464 1465 tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL); 1466 1467 unlock: 1468 drm_modeset_unlock(&dc->base.mutex); 1469 return err; 1470 } 1471 1472 static int tegra_dc_show_stats(struct seq_file *s, void *data) 1473 { 1474 struct drm_info_node *node = s->private; 1475 struct tegra_dc *dc = node->info_ent->data; 1476 1477 seq_printf(s, "frames: %lu\n", dc->stats.frames); 1478 seq_printf(s, "vblank: %lu\n", dc->stats.vblank); 1479 seq_printf(s, "underflow: %lu\n", dc->stats.underflow); 1480 seq_printf(s, "overflow: %lu\n", dc->stats.overflow); 1481 1482 return 0; 1483 } 1484 1485 static struct drm_info_list debugfs_files[] = { 1486 { "regs", tegra_dc_show_regs, 0, NULL }, 1487 { "crc", tegra_dc_show_crc, 0, NULL }, 1488 { "stats", tegra_dc_show_stats, 0, NULL }, 1489 }; 1490 1491 static int tegra_dc_late_register(struct drm_crtc *crtc) 1492 { 1493 unsigned int i, count = ARRAY_SIZE(debugfs_files); 1494 struct drm_minor *minor = crtc->dev->primary; 1495 struct dentry *root; 1496 struct tegra_dc *dc = to_tegra_dc(crtc); 1497 int err; 1498 1499 #ifdef CONFIG_DEBUG_FS 1500 root = crtc->debugfs_entry; 1501 #else 1502 root = NULL; 1503 #endif 1504 1505 dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files), 1506 GFP_KERNEL); 1507 if (!dc->debugfs_files) 1508 return -ENOMEM; 1509 1510 for (i = 0; i < count; i++) 1511 dc->debugfs_files[i].data = dc; 1512 1513 err = drm_debugfs_create_files(dc->debugfs_files, count, root, minor); 1514 if (err < 0) 1515 goto free; 1516 1517 return 0; 1518 1519 free: 1520 kfree(dc->debugfs_files); 1521 dc->debugfs_files = NULL; 1522 1523 return err; 1524 } 1525 1526 static void tegra_dc_early_unregister(struct drm_crtc *crtc) 1527 { 1528 unsigned int count = ARRAY_SIZE(debugfs_files); 1529 struct drm_minor *minor = crtc->dev->primary; 1530 struct tegra_dc *dc = to_tegra_dc(crtc); 1531 1532 drm_debugfs_remove_files(dc->debugfs_files, count, minor); 1533 kfree(dc->debugfs_files); 1534 dc->debugfs_files = NULL; 1535 } 1536 1537 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc) 1538 { 1539 struct tegra_dc *dc = to_tegra_dc(crtc); 1540 1541 /* XXX vblank syncpoints don't work with nvdisplay yet */ 1542 if (dc->syncpt && !dc->soc->has_nvdisplay) 1543 return host1x_syncpt_read(dc->syncpt); 1544 1545 /* fallback to software emulated VBLANK counter */ 1546 return (u32)drm_crtc_vblank_count(&dc->base); 1547 } 1548 1549 static int tegra_dc_enable_vblank(struct drm_crtc *crtc) 1550 { 1551 struct tegra_dc *dc = to_tegra_dc(crtc); 1552 u32 value; 1553 1554 value = tegra_dc_readl(dc, DC_CMD_INT_MASK); 1555 value |= VBLANK_INT; 1556 tegra_dc_writel(dc, value, DC_CMD_INT_MASK); 1557 1558 return 0; 1559 } 1560 1561 static void tegra_dc_disable_vblank(struct drm_crtc *crtc) 1562 { 1563 struct tegra_dc *dc = to_tegra_dc(crtc); 1564 u32 value; 1565 1566 value = tegra_dc_readl(dc, DC_CMD_INT_MASK); 1567 value &= ~VBLANK_INT; 1568 tegra_dc_writel(dc, value, DC_CMD_INT_MASK); 1569 } 1570 1571 static const struct drm_crtc_funcs tegra_crtc_funcs = { 1572 .page_flip = drm_atomic_helper_page_flip, 1573 .set_config = drm_atomic_helper_set_config, 1574 .destroy = tegra_dc_destroy, 1575 .reset = tegra_crtc_reset, 1576 .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state, 1577 .atomic_destroy_state = tegra_crtc_atomic_destroy_state, 1578 .late_register = tegra_dc_late_register, 1579 .early_unregister = tegra_dc_early_unregister, 1580 .get_vblank_counter = tegra_dc_get_vblank_counter, 1581 .enable_vblank = tegra_dc_enable_vblank, 1582 .disable_vblank = tegra_dc_disable_vblank, 1583 }; 1584 1585 static int tegra_dc_set_timings(struct tegra_dc *dc, 1586 struct drm_display_mode *mode) 1587 { 1588 unsigned int h_ref_to_sync = 1; 1589 unsigned int v_ref_to_sync = 1; 1590 unsigned long value; 1591 1592 if (!dc->soc->has_nvdisplay) { 1593 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS); 1594 1595 value = (v_ref_to_sync << 16) | h_ref_to_sync; 1596 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC); 1597 } 1598 1599 value = ((mode->vsync_end - mode->vsync_start) << 16) | 1600 ((mode->hsync_end - mode->hsync_start) << 0); 1601 tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH); 1602 1603 value = ((mode->vtotal - mode->vsync_end) << 16) | 1604 ((mode->htotal - mode->hsync_end) << 0); 1605 tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH); 1606 1607 value = ((mode->vsync_start - mode->vdisplay) << 16) | 1608 ((mode->hsync_start - mode->hdisplay) << 0); 1609 tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH); 1610 1611 value = (mode->vdisplay << 16) | mode->hdisplay; 1612 tegra_dc_writel(dc, value, DC_DISP_ACTIVE); 1613 1614 return 0; 1615 } 1616 1617 /** 1618 * tegra_dc_state_setup_clock - check clock settings and store them in atomic 1619 * state 1620 * @dc: display controller 1621 * @crtc_state: CRTC atomic state 1622 * @clk: parent clock for display controller 1623 * @pclk: pixel clock 1624 * @div: shift clock divider 1625 * 1626 * Returns: 1627 * 0 on success or a negative error-code on failure. 1628 */ 1629 int tegra_dc_state_setup_clock(struct tegra_dc *dc, 1630 struct drm_crtc_state *crtc_state, 1631 struct clk *clk, unsigned long pclk, 1632 unsigned int div) 1633 { 1634 struct tegra_dc_state *state = to_dc_state(crtc_state); 1635 1636 if (!clk_has_parent(dc->clk, clk)) 1637 return -EINVAL; 1638 1639 state->clk = clk; 1640 state->pclk = pclk; 1641 state->div = div; 1642 1643 return 0; 1644 } 1645 1646 static void tegra_dc_commit_state(struct tegra_dc *dc, 1647 struct tegra_dc_state *state) 1648 { 1649 u32 value; 1650 int err; 1651 1652 err = clk_set_parent(dc->clk, state->clk); 1653 if (err < 0) 1654 dev_err(dc->dev, "failed to set parent clock: %d\n", err); 1655 1656 /* 1657 * Outputs may not want to change the parent clock rate. This is only 1658 * relevant to Tegra20 where only a single display PLL is available. 1659 * Since that PLL would typically be used for HDMI, an internal LVDS 1660 * panel would need to be driven by some other clock such as PLL_P 1661 * which is shared with other peripherals. Changing the clock rate 1662 * should therefore be avoided. 1663 */ 1664 if (state->pclk > 0) { 1665 err = clk_set_rate(state->clk, state->pclk); 1666 if (err < 0) 1667 dev_err(dc->dev, 1668 "failed to set clock rate to %lu Hz\n", 1669 state->pclk); 1670 } 1671 1672 DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk), 1673 state->div); 1674 DRM_DEBUG_KMS("pclk: %lu\n", state->pclk); 1675 1676 if (!dc->soc->has_nvdisplay) { 1677 value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1; 1678 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL); 1679 } 1680 1681 err = clk_set_rate(dc->clk, state->pclk); 1682 if (err < 0) 1683 dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n", 1684 dc->clk, state->pclk, err); 1685 } 1686 1687 static void tegra_dc_stop(struct tegra_dc *dc) 1688 { 1689 u32 value; 1690 1691 /* stop the display controller */ 1692 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND); 1693 value &= ~DISP_CTRL_MODE_MASK; 1694 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND); 1695 1696 tegra_dc_commit(dc); 1697 } 1698 1699 static bool tegra_dc_idle(struct tegra_dc *dc) 1700 { 1701 u32 value; 1702 1703 value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND); 1704 1705 return (value & DISP_CTRL_MODE_MASK) == 0; 1706 } 1707 1708 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout) 1709 { 1710 timeout = jiffies + msecs_to_jiffies(timeout); 1711 1712 while (time_before(jiffies, timeout)) { 1713 if (tegra_dc_idle(dc)) 1714 return 0; 1715 1716 usleep_range(1000, 2000); 1717 } 1718 1719 dev_dbg(dc->dev, "timeout waiting for DC to become idle\n"); 1720 return -ETIMEDOUT; 1721 } 1722 1723 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc, 1724 struct drm_crtc_state *old_state) 1725 { 1726 struct tegra_dc *dc = to_tegra_dc(crtc); 1727 u32 value; 1728 1729 if (!tegra_dc_idle(dc)) { 1730 tegra_dc_stop(dc); 1731 1732 /* 1733 * Ignore the return value, there isn't anything useful to do 1734 * in case this fails. 1735 */ 1736 tegra_dc_wait_idle(dc, 100); 1737 } 1738 1739 /* 1740 * This should really be part of the RGB encoder driver, but clearing 1741 * these bits has the side-effect of stopping the display controller. 1742 * When that happens no VBLANK interrupts will be raised. At the same 1743 * time the encoder is disabled before the display controller, so the 1744 * above code is always going to timeout waiting for the controller 1745 * to go idle. 1746 * 1747 * Given the close coupling between the RGB encoder and the display 1748 * controller doing it here is still kind of okay. None of the other 1749 * encoder drivers require these bits to be cleared. 1750 * 1751 * XXX: Perhaps given that the display controller is switched off at 1752 * this point anyway maybe clearing these bits isn't even useful for 1753 * the RGB encoder? 1754 */ 1755 if (dc->rgb) { 1756 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL); 1757 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE | 1758 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE); 1759 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL); 1760 } 1761 1762 tegra_dc_stats_reset(&dc->stats); 1763 drm_crtc_vblank_off(crtc); 1764 1765 spin_lock_irq(&crtc->dev->event_lock); 1766 1767 if (crtc->state->event) { 1768 drm_crtc_send_vblank_event(crtc, crtc->state->event); 1769 crtc->state->event = NULL; 1770 } 1771 1772 spin_unlock_irq(&crtc->dev->event_lock); 1773 1774 pm_runtime_put_sync(dc->dev); 1775 } 1776 1777 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc, 1778 struct drm_crtc_state *old_state) 1779 { 1780 struct drm_display_mode *mode = &crtc->state->adjusted_mode; 1781 struct tegra_dc_state *state = to_dc_state(crtc->state); 1782 struct tegra_dc *dc = to_tegra_dc(crtc); 1783 u32 value; 1784 1785 pm_runtime_get_sync(dc->dev); 1786 1787 /* initialize display controller */ 1788 if (dc->syncpt) { 1789 u32 syncpt = host1x_syncpt_id(dc->syncpt), enable; 1790 1791 if (dc->soc->has_nvdisplay) 1792 enable = 1 << 31; 1793 else 1794 enable = 1 << 8; 1795 1796 value = SYNCPT_CNTRL_NO_STALL; 1797 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL); 1798 1799 value = enable | syncpt; 1800 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC); 1801 } 1802 1803 if (dc->soc->has_nvdisplay) { 1804 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT | 1805 DSC_OBUF_UF_INT; 1806 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE); 1807 1808 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT | 1809 DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT | 1810 HEAD_UF_INT | MSF_INT | REG_TMOUT_INT | 1811 REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT | 1812 VBLANK_INT | FRAME_END_INT; 1813 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY); 1814 1815 value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT | 1816 FRAME_END_INT; 1817 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE); 1818 1819 value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT; 1820 tegra_dc_writel(dc, value, DC_CMD_INT_MASK); 1821 1822 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS); 1823 } else { 1824 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | 1825 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; 1826 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE); 1827 1828 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | 1829 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; 1830 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY); 1831 1832 /* initialize timer */ 1833 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) | 1834 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20); 1835 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY); 1836 1837 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) | 1838 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1); 1839 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER); 1840 1841 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | 1842 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; 1843 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE); 1844 1845 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | 1846 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; 1847 tegra_dc_writel(dc, value, DC_CMD_INT_MASK); 1848 } 1849 1850 if (dc->soc->supports_background_color) 1851 tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR); 1852 else 1853 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR); 1854 1855 /* apply PLL and pixel clock changes */ 1856 tegra_dc_commit_state(dc, state); 1857 1858 /* program display mode */ 1859 tegra_dc_set_timings(dc, mode); 1860 1861 /* interlacing isn't supported yet, so disable it */ 1862 if (dc->soc->supports_interlacing) { 1863 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL); 1864 value &= ~INTERLACE_ENABLE; 1865 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL); 1866 } 1867 1868 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND); 1869 value &= ~DISP_CTRL_MODE_MASK; 1870 value |= DISP_CTRL_MODE_C_DISPLAY; 1871 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND); 1872 1873 if (!dc->soc->has_nvdisplay) { 1874 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL); 1875 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE | 1876 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE; 1877 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL); 1878 } 1879 1880 /* enable underflow reporting and display red for missing pixels */ 1881 if (dc->soc->has_nvdisplay) { 1882 value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE; 1883 tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW); 1884 } 1885 1886 tegra_dc_commit(dc); 1887 1888 drm_crtc_vblank_on(crtc); 1889 } 1890 1891 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc, 1892 struct drm_crtc_state *old_crtc_state) 1893 { 1894 unsigned long flags; 1895 1896 if (crtc->state->event) { 1897 spin_lock_irqsave(&crtc->dev->event_lock, flags); 1898 1899 if (drm_crtc_vblank_get(crtc) != 0) 1900 drm_crtc_send_vblank_event(crtc, crtc->state->event); 1901 else 1902 drm_crtc_arm_vblank_event(crtc, crtc->state->event); 1903 1904 spin_unlock_irqrestore(&crtc->dev->event_lock, flags); 1905 1906 crtc->state->event = NULL; 1907 } 1908 } 1909 1910 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc, 1911 struct drm_crtc_state *old_crtc_state) 1912 { 1913 struct tegra_dc_state *state = to_dc_state(crtc->state); 1914 struct tegra_dc *dc = to_tegra_dc(crtc); 1915 u32 value; 1916 1917 value = state->planes << 8 | GENERAL_UPDATE; 1918 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL); 1919 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL); 1920 1921 value = state->planes | GENERAL_ACT_REQ; 1922 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL); 1923 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL); 1924 } 1925 1926 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = { 1927 .atomic_begin = tegra_crtc_atomic_begin, 1928 .atomic_flush = tegra_crtc_atomic_flush, 1929 .atomic_enable = tegra_crtc_atomic_enable, 1930 .atomic_disable = tegra_crtc_atomic_disable, 1931 }; 1932 1933 static irqreturn_t tegra_dc_irq(int irq, void *data) 1934 { 1935 struct tegra_dc *dc = data; 1936 unsigned long status; 1937 1938 status = tegra_dc_readl(dc, DC_CMD_INT_STATUS); 1939 tegra_dc_writel(dc, status, DC_CMD_INT_STATUS); 1940 1941 if (status & FRAME_END_INT) { 1942 /* 1943 dev_dbg(dc->dev, "%s(): frame end\n", __func__); 1944 */ 1945 dc->stats.frames++; 1946 } 1947 1948 if (status & VBLANK_INT) { 1949 /* 1950 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__); 1951 */ 1952 drm_crtc_handle_vblank(&dc->base); 1953 dc->stats.vblank++; 1954 } 1955 1956 if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) { 1957 /* 1958 dev_dbg(dc->dev, "%s(): underflow\n", __func__); 1959 */ 1960 dc->stats.underflow++; 1961 } 1962 1963 if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) { 1964 /* 1965 dev_dbg(dc->dev, "%s(): overflow\n", __func__); 1966 */ 1967 dc->stats.overflow++; 1968 } 1969 1970 if (status & HEAD_UF_INT) { 1971 dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__); 1972 dc->stats.underflow++; 1973 } 1974 1975 return IRQ_HANDLED; 1976 } 1977 1978 static bool tegra_dc_has_window_groups(struct tegra_dc *dc) 1979 { 1980 unsigned int i; 1981 1982 if (!dc->soc->wgrps) 1983 return true; 1984 1985 for (i = 0; i < dc->soc->num_wgrps; i++) { 1986 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i]; 1987 1988 if (wgrp->dc == dc->pipe && wgrp->num_windows > 0) 1989 return true; 1990 } 1991 1992 return false; 1993 } 1994 1995 static int tegra_dc_init(struct host1x_client *client) 1996 { 1997 struct drm_device *drm = dev_get_drvdata(client->parent); 1998 unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED; 1999 struct tegra_dc *dc = host1x_client_to_dc(client); 2000 struct tegra_drm *tegra = drm->dev_private; 2001 struct drm_plane *primary = NULL; 2002 struct drm_plane *cursor = NULL; 2003 int err; 2004 2005 /* 2006 * XXX do not register DCs with no window groups because we cannot 2007 * assign a primary plane to them, which in turn will cause KMS to 2008 * crash. 2009 */ 2010 if (!tegra_dc_has_window_groups(dc)) 2011 return 0; 2012 2013 dc->syncpt = host1x_syncpt_request(client, flags); 2014 if (!dc->syncpt) 2015 dev_warn(dc->dev, "failed to allocate syncpoint\n"); 2016 2017 dc->group = host1x_client_iommu_attach(client, true); 2018 if (IS_ERR(dc->group)) { 2019 err = PTR_ERR(dc->group); 2020 dev_err(client->dev, "failed to attach to domain: %d\n", err); 2021 return err; 2022 } 2023 2024 if (dc->soc->wgrps) 2025 primary = tegra_dc_add_shared_planes(drm, dc); 2026 else 2027 primary = tegra_dc_add_planes(drm, dc); 2028 2029 if (IS_ERR(primary)) { 2030 err = PTR_ERR(primary); 2031 goto cleanup; 2032 } 2033 2034 if (dc->soc->supports_cursor) { 2035 cursor = tegra_dc_cursor_plane_create(drm, dc); 2036 if (IS_ERR(cursor)) { 2037 err = PTR_ERR(cursor); 2038 goto cleanup; 2039 } 2040 } else { 2041 /* dedicate one overlay to mouse cursor */ 2042 cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true); 2043 if (IS_ERR(cursor)) { 2044 err = PTR_ERR(cursor); 2045 goto cleanup; 2046 } 2047 } 2048 2049 err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor, 2050 &tegra_crtc_funcs, NULL); 2051 if (err < 0) 2052 goto cleanup; 2053 2054 drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs); 2055 2056 /* 2057 * Keep track of the minimum pitch alignment across all display 2058 * controllers. 2059 */ 2060 if (dc->soc->pitch_align > tegra->pitch_align) 2061 tegra->pitch_align = dc->soc->pitch_align; 2062 2063 err = tegra_dc_rgb_init(drm, dc); 2064 if (err < 0 && err != -ENODEV) { 2065 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err); 2066 goto cleanup; 2067 } 2068 2069 err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0, 2070 dev_name(dc->dev), dc); 2071 if (err < 0) { 2072 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq, 2073 err); 2074 goto cleanup; 2075 } 2076 2077 return 0; 2078 2079 cleanup: 2080 if (!IS_ERR_OR_NULL(cursor)) 2081 drm_plane_cleanup(cursor); 2082 2083 if (!IS_ERR(primary)) 2084 drm_plane_cleanup(primary); 2085 2086 host1x_client_iommu_detach(client, dc->group); 2087 host1x_syncpt_free(dc->syncpt); 2088 2089 return err; 2090 } 2091 2092 static int tegra_dc_exit(struct host1x_client *client) 2093 { 2094 struct tegra_dc *dc = host1x_client_to_dc(client); 2095 int err; 2096 2097 if (!tegra_dc_has_window_groups(dc)) 2098 return 0; 2099 2100 devm_free_irq(dc->dev, dc->irq, dc); 2101 2102 err = tegra_dc_rgb_exit(dc); 2103 if (err) { 2104 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err); 2105 return err; 2106 } 2107 2108 host1x_client_iommu_detach(client, dc->group); 2109 host1x_syncpt_free(dc->syncpt); 2110 2111 return 0; 2112 } 2113 2114 static const struct host1x_client_ops dc_client_ops = { 2115 .init = tegra_dc_init, 2116 .exit = tegra_dc_exit, 2117 }; 2118 2119 static const struct tegra_dc_soc_info tegra20_dc_soc_info = { 2120 .supports_background_color = false, 2121 .supports_interlacing = false, 2122 .supports_cursor = false, 2123 .supports_block_linear = false, 2124 .has_legacy_blending = true, 2125 .pitch_align = 8, 2126 .has_powergate = false, 2127 .coupled_pm = true, 2128 .has_nvdisplay = false, 2129 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats), 2130 .primary_formats = tegra20_primary_formats, 2131 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats), 2132 .overlay_formats = tegra20_overlay_formats, 2133 .modifiers = tegra20_modifiers, 2134 .has_win_a_without_filters = true, 2135 .has_win_c_without_vert_filter = true, 2136 }; 2137 2138 static const struct tegra_dc_soc_info tegra30_dc_soc_info = { 2139 .supports_background_color = false, 2140 .supports_interlacing = false, 2141 .supports_cursor = false, 2142 .supports_block_linear = false, 2143 .has_legacy_blending = true, 2144 .pitch_align = 8, 2145 .has_powergate = false, 2146 .coupled_pm = false, 2147 .has_nvdisplay = false, 2148 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats), 2149 .primary_formats = tegra20_primary_formats, 2150 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats), 2151 .overlay_formats = tegra20_overlay_formats, 2152 .modifiers = tegra20_modifiers, 2153 .has_win_a_without_filters = false, 2154 .has_win_c_without_vert_filter = false, 2155 }; 2156 2157 static const struct tegra_dc_soc_info tegra114_dc_soc_info = { 2158 .supports_background_color = false, 2159 .supports_interlacing = false, 2160 .supports_cursor = false, 2161 .supports_block_linear = false, 2162 .has_legacy_blending = true, 2163 .pitch_align = 64, 2164 .has_powergate = true, 2165 .coupled_pm = false, 2166 .has_nvdisplay = false, 2167 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats), 2168 .primary_formats = tegra114_primary_formats, 2169 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats), 2170 .overlay_formats = tegra114_overlay_formats, 2171 .modifiers = tegra20_modifiers, 2172 .has_win_a_without_filters = false, 2173 .has_win_c_without_vert_filter = false, 2174 }; 2175 2176 static const struct tegra_dc_soc_info tegra124_dc_soc_info = { 2177 .supports_background_color = true, 2178 .supports_interlacing = true, 2179 .supports_cursor = true, 2180 .supports_block_linear = true, 2181 .has_legacy_blending = false, 2182 .pitch_align = 64, 2183 .has_powergate = true, 2184 .coupled_pm = false, 2185 .has_nvdisplay = false, 2186 .num_primary_formats = ARRAY_SIZE(tegra124_primary_formats), 2187 .primary_formats = tegra124_primary_formats, 2188 .num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats), 2189 .overlay_formats = tegra124_overlay_formats, 2190 .modifiers = tegra124_modifiers, 2191 .has_win_a_without_filters = false, 2192 .has_win_c_without_vert_filter = false, 2193 }; 2194 2195 static const struct tegra_dc_soc_info tegra210_dc_soc_info = { 2196 .supports_background_color = true, 2197 .supports_interlacing = true, 2198 .supports_cursor = true, 2199 .supports_block_linear = true, 2200 .has_legacy_blending = false, 2201 .pitch_align = 64, 2202 .has_powergate = true, 2203 .coupled_pm = false, 2204 .has_nvdisplay = false, 2205 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats), 2206 .primary_formats = tegra114_primary_formats, 2207 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats), 2208 .overlay_formats = tegra114_overlay_formats, 2209 .modifiers = tegra124_modifiers, 2210 .has_win_a_without_filters = false, 2211 .has_win_c_without_vert_filter = false, 2212 }; 2213 2214 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = { 2215 { 2216 .index = 0, 2217 .dc = 0, 2218 .windows = (const unsigned int[]) { 0 }, 2219 .num_windows = 1, 2220 }, { 2221 .index = 1, 2222 .dc = 1, 2223 .windows = (const unsigned int[]) { 1 }, 2224 .num_windows = 1, 2225 }, { 2226 .index = 2, 2227 .dc = 1, 2228 .windows = (const unsigned int[]) { 2 }, 2229 .num_windows = 1, 2230 }, { 2231 .index = 3, 2232 .dc = 2, 2233 .windows = (const unsigned int[]) { 3 }, 2234 .num_windows = 1, 2235 }, { 2236 .index = 4, 2237 .dc = 2, 2238 .windows = (const unsigned int[]) { 4 }, 2239 .num_windows = 1, 2240 }, { 2241 .index = 5, 2242 .dc = 2, 2243 .windows = (const unsigned int[]) { 5 }, 2244 .num_windows = 1, 2245 }, 2246 }; 2247 2248 static const struct tegra_dc_soc_info tegra186_dc_soc_info = { 2249 .supports_background_color = true, 2250 .supports_interlacing = true, 2251 .supports_cursor = true, 2252 .supports_block_linear = true, 2253 .has_legacy_blending = false, 2254 .pitch_align = 64, 2255 .has_powergate = false, 2256 .coupled_pm = false, 2257 .has_nvdisplay = true, 2258 .wgrps = tegra186_dc_wgrps, 2259 .num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps), 2260 }; 2261 2262 static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = { 2263 { 2264 .index = 0, 2265 .dc = 0, 2266 .windows = (const unsigned int[]) { 0 }, 2267 .num_windows = 1, 2268 }, { 2269 .index = 1, 2270 .dc = 1, 2271 .windows = (const unsigned int[]) { 1 }, 2272 .num_windows = 1, 2273 }, { 2274 .index = 2, 2275 .dc = 1, 2276 .windows = (const unsigned int[]) { 2 }, 2277 .num_windows = 1, 2278 }, { 2279 .index = 3, 2280 .dc = 2, 2281 .windows = (const unsigned int[]) { 3 }, 2282 .num_windows = 1, 2283 }, { 2284 .index = 4, 2285 .dc = 2, 2286 .windows = (const unsigned int[]) { 4 }, 2287 .num_windows = 1, 2288 }, { 2289 .index = 5, 2290 .dc = 2, 2291 .windows = (const unsigned int[]) { 5 }, 2292 .num_windows = 1, 2293 }, 2294 }; 2295 2296 static const struct tegra_dc_soc_info tegra194_dc_soc_info = { 2297 .supports_background_color = true, 2298 .supports_interlacing = true, 2299 .supports_cursor = true, 2300 .supports_block_linear = true, 2301 .has_legacy_blending = false, 2302 .pitch_align = 64, 2303 .has_powergate = false, 2304 .coupled_pm = false, 2305 .has_nvdisplay = true, 2306 .wgrps = tegra194_dc_wgrps, 2307 .num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps), 2308 }; 2309 2310 static const struct of_device_id tegra_dc_of_match[] = { 2311 { 2312 .compatible = "nvidia,tegra194-dc", 2313 .data = &tegra194_dc_soc_info, 2314 }, { 2315 .compatible = "nvidia,tegra186-dc", 2316 .data = &tegra186_dc_soc_info, 2317 }, { 2318 .compatible = "nvidia,tegra210-dc", 2319 .data = &tegra210_dc_soc_info, 2320 }, { 2321 .compatible = "nvidia,tegra124-dc", 2322 .data = &tegra124_dc_soc_info, 2323 }, { 2324 .compatible = "nvidia,tegra114-dc", 2325 .data = &tegra114_dc_soc_info, 2326 }, { 2327 .compatible = "nvidia,tegra30-dc", 2328 .data = &tegra30_dc_soc_info, 2329 }, { 2330 .compatible = "nvidia,tegra20-dc", 2331 .data = &tegra20_dc_soc_info, 2332 }, { 2333 /* sentinel */ 2334 } 2335 }; 2336 MODULE_DEVICE_TABLE(of, tegra_dc_of_match); 2337 2338 static int tegra_dc_parse_dt(struct tegra_dc *dc) 2339 { 2340 struct device_node *np; 2341 u32 value = 0; 2342 int err; 2343 2344 err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value); 2345 if (err < 0) { 2346 dev_err(dc->dev, "missing \"nvidia,head\" property\n"); 2347 2348 /* 2349 * If the nvidia,head property isn't present, try to find the 2350 * correct head number by looking up the position of this 2351 * display controller's node within the device tree. Assuming 2352 * that the nodes are ordered properly in the DTS file and 2353 * that the translation into a flattened device tree blob 2354 * preserves that ordering this will actually yield the right 2355 * head number. 2356 * 2357 * If those assumptions don't hold, this will still work for 2358 * cases where only a single display controller is used. 2359 */ 2360 for_each_matching_node(np, tegra_dc_of_match) { 2361 if (np == dc->dev->of_node) { 2362 of_node_put(np); 2363 break; 2364 } 2365 2366 value++; 2367 } 2368 } 2369 2370 dc->pipe = value; 2371 2372 return 0; 2373 } 2374 2375 static int tegra_dc_match_by_pipe(struct device *dev, void *data) 2376 { 2377 struct tegra_dc *dc = dev_get_drvdata(dev); 2378 unsigned int pipe = (unsigned long)data; 2379 2380 return dc->pipe == pipe; 2381 } 2382 2383 static int tegra_dc_couple(struct tegra_dc *dc) 2384 { 2385 /* 2386 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to 2387 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND / 2388 * POWER_CONTROL registers during CRTC enabling. 2389 */ 2390 if (dc->soc->coupled_pm && dc->pipe == 1) { 2391 u32 flags = DL_FLAG_PM_RUNTIME | DL_FLAG_AUTOREMOVE_CONSUMER; 2392 struct device_link *link; 2393 struct device *partner; 2394 2395 partner = driver_find_device(dc->dev->driver, NULL, NULL, 2396 tegra_dc_match_by_pipe); 2397 if (!partner) 2398 return -EPROBE_DEFER; 2399 2400 link = device_link_add(dc->dev, partner, flags); 2401 if (!link) { 2402 dev_err(dc->dev, "failed to link controllers\n"); 2403 return -EINVAL; 2404 } 2405 2406 dev_dbg(dc->dev, "coupled to %s\n", dev_name(partner)); 2407 } 2408 2409 return 0; 2410 } 2411 2412 static int tegra_dc_probe(struct platform_device *pdev) 2413 { 2414 struct resource *regs; 2415 struct tegra_dc *dc; 2416 int err; 2417 2418 dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL); 2419 if (!dc) 2420 return -ENOMEM; 2421 2422 dc->soc = of_device_get_match_data(&pdev->dev); 2423 2424 INIT_LIST_HEAD(&dc->list); 2425 dc->dev = &pdev->dev; 2426 2427 err = tegra_dc_parse_dt(dc); 2428 if (err < 0) 2429 return err; 2430 2431 err = tegra_dc_couple(dc); 2432 if (err < 0) 2433 return err; 2434 2435 dc->clk = devm_clk_get(&pdev->dev, NULL); 2436 if (IS_ERR(dc->clk)) { 2437 dev_err(&pdev->dev, "failed to get clock\n"); 2438 return PTR_ERR(dc->clk); 2439 } 2440 2441 dc->rst = devm_reset_control_get(&pdev->dev, "dc"); 2442 if (IS_ERR(dc->rst)) { 2443 dev_err(&pdev->dev, "failed to get reset\n"); 2444 return PTR_ERR(dc->rst); 2445 } 2446 2447 /* assert reset and disable clock */ 2448 err = clk_prepare_enable(dc->clk); 2449 if (err < 0) 2450 return err; 2451 2452 usleep_range(2000, 4000); 2453 2454 err = reset_control_assert(dc->rst); 2455 if (err < 0) 2456 return err; 2457 2458 usleep_range(2000, 4000); 2459 2460 clk_disable_unprepare(dc->clk); 2461 2462 if (dc->soc->has_powergate) { 2463 if (dc->pipe == 0) 2464 dc->powergate = TEGRA_POWERGATE_DIS; 2465 else 2466 dc->powergate = TEGRA_POWERGATE_DISB; 2467 2468 tegra_powergate_power_off(dc->powergate); 2469 } 2470 2471 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2472 dc->regs = devm_ioremap_resource(&pdev->dev, regs); 2473 if (IS_ERR(dc->regs)) 2474 return PTR_ERR(dc->regs); 2475 2476 dc->irq = platform_get_irq(pdev, 0); 2477 if (dc->irq < 0) { 2478 dev_err(&pdev->dev, "failed to get IRQ\n"); 2479 return -ENXIO; 2480 } 2481 2482 err = tegra_dc_rgb_probe(dc); 2483 if (err < 0 && err != -ENODEV) { 2484 dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err); 2485 return err; 2486 } 2487 2488 platform_set_drvdata(pdev, dc); 2489 pm_runtime_enable(&pdev->dev); 2490 2491 INIT_LIST_HEAD(&dc->client.list); 2492 dc->client.ops = &dc_client_ops; 2493 dc->client.dev = &pdev->dev; 2494 2495 err = host1x_client_register(&dc->client); 2496 if (err < 0) { 2497 dev_err(&pdev->dev, "failed to register host1x client: %d\n", 2498 err); 2499 return err; 2500 } 2501 2502 return 0; 2503 } 2504 2505 static int tegra_dc_remove(struct platform_device *pdev) 2506 { 2507 struct tegra_dc *dc = platform_get_drvdata(pdev); 2508 int err; 2509 2510 err = host1x_client_unregister(&dc->client); 2511 if (err < 0) { 2512 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n", 2513 err); 2514 return err; 2515 } 2516 2517 err = tegra_dc_rgb_remove(dc); 2518 if (err < 0) { 2519 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err); 2520 return err; 2521 } 2522 2523 pm_runtime_disable(&pdev->dev); 2524 2525 return 0; 2526 } 2527 2528 #ifdef CONFIG_PM 2529 static int tegra_dc_suspend(struct device *dev) 2530 { 2531 struct tegra_dc *dc = dev_get_drvdata(dev); 2532 int err; 2533 2534 err = reset_control_assert(dc->rst); 2535 if (err < 0) { 2536 dev_err(dev, "failed to assert reset: %d\n", err); 2537 return err; 2538 } 2539 2540 if (dc->soc->has_powergate) 2541 tegra_powergate_power_off(dc->powergate); 2542 2543 clk_disable_unprepare(dc->clk); 2544 2545 return 0; 2546 } 2547 2548 static int tegra_dc_resume(struct device *dev) 2549 { 2550 struct tegra_dc *dc = dev_get_drvdata(dev); 2551 int err; 2552 2553 if (dc->soc->has_powergate) { 2554 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk, 2555 dc->rst); 2556 if (err < 0) { 2557 dev_err(dev, "failed to power partition: %d\n", err); 2558 return err; 2559 } 2560 } else { 2561 err = clk_prepare_enable(dc->clk); 2562 if (err < 0) { 2563 dev_err(dev, "failed to enable clock: %d\n", err); 2564 return err; 2565 } 2566 2567 err = reset_control_deassert(dc->rst); 2568 if (err < 0) { 2569 dev_err(dev, "failed to deassert reset: %d\n", err); 2570 return err; 2571 } 2572 } 2573 2574 return 0; 2575 } 2576 #endif 2577 2578 static const struct dev_pm_ops tegra_dc_pm_ops = { 2579 SET_RUNTIME_PM_OPS(tegra_dc_suspend, tegra_dc_resume, NULL) 2580 }; 2581 2582 struct platform_driver tegra_dc_driver = { 2583 .driver = { 2584 .name = "tegra-dc", 2585 .of_match_table = tegra_dc_of_match, 2586 .pm = &tegra_dc_pm_ops, 2587 }, 2588 .probe = tegra_dc_probe, 2589 .remove = tegra_dc_remove, 2590 }; 2591