xref: /openbmc/linux/drivers/gpu/drm/tegra/dc.c (revision 2ef5a7f1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Avionic Design GmbH
4  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/debugfs.h>
9 #include <linux/iommu.h>
10 #include <linux/of_device.h>
11 #include <linux/pm_runtime.h>
12 #include <linux/reset.h>
13 
14 #include <soc/tegra/pmc.h>
15 
16 #include "dc.h"
17 #include "drm.h"
18 #include "gem.h"
19 #include "hub.h"
20 #include "plane.h"
21 
22 #include <drm/drm_atomic.h>
23 #include <drm/drm_atomic_helper.h>
24 #include <drm/drm_plane_helper.h>
25 
26 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
27 					    struct drm_crtc_state *state);
28 
29 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
30 {
31 	stats->frames = 0;
32 	stats->vblank = 0;
33 	stats->underflow = 0;
34 	stats->overflow = 0;
35 }
36 
37 /* Reads the active copy of a register. */
38 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
39 {
40 	u32 value;
41 
42 	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
43 	value = tegra_dc_readl(dc, offset);
44 	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
45 
46 	return value;
47 }
48 
49 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
50 					      unsigned int offset)
51 {
52 	if (offset >= 0x500 && offset <= 0x638) {
53 		offset = 0x000 + (offset - 0x500);
54 		return plane->offset + offset;
55 	}
56 
57 	if (offset >= 0x700 && offset <= 0x719) {
58 		offset = 0x180 + (offset - 0x700);
59 		return plane->offset + offset;
60 	}
61 
62 	if (offset >= 0x800 && offset <= 0x839) {
63 		offset = 0x1c0 + (offset - 0x800);
64 		return plane->offset + offset;
65 	}
66 
67 	dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
68 
69 	return plane->offset + offset;
70 }
71 
72 static inline u32 tegra_plane_readl(struct tegra_plane *plane,
73 				    unsigned int offset)
74 {
75 	return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
76 }
77 
78 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
79 				      unsigned int offset)
80 {
81 	tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
82 }
83 
84 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
85 {
86 	struct device_node *np = dc->dev->of_node;
87 	struct of_phandle_iterator it;
88 	int err;
89 
90 	of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
91 		if (it.node == dev->of_node)
92 			return true;
93 
94 	return false;
95 }
96 
97 /*
98  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
99  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
100  * Latching happens mmediately if the display controller is in STOP mode or
101  * on the next frame boundary otherwise.
102  *
103  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
104  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
105  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
106  * into the ACTIVE copy, either immediately if the display controller is in
107  * STOP mode, or at the next frame boundary otherwise.
108  */
109 void tegra_dc_commit(struct tegra_dc *dc)
110 {
111 	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
112 	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
113 }
114 
115 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
116 				  unsigned int bpp)
117 {
118 	fixed20_12 outf = dfixed_init(out);
119 	fixed20_12 inf = dfixed_init(in);
120 	u32 dda_inc;
121 	int max;
122 
123 	if (v)
124 		max = 15;
125 	else {
126 		switch (bpp) {
127 		case 2:
128 			max = 8;
129 			break;
130 
131 		default:
132 			WARN_ON_ONCE(1);
133 			/* fallthrough */
134 		case 4:
135 			max = 4;
136 			break;
137 		}
138 	}
139 
140 	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
141 	inf.full -= dfixed_const(1);
142 
143 	dda_inc = dfixed_div(inf, outf);
144 	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
145 
146 	return dda_inc;
147 }
148 
149 static inline u32 compute_initial_dda(unsigned int in)
150 {
151 	fixed20_12 inf = dfixed_init(in);
152 	return dfixed_frac(inf);
153 }
154 
155 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
156 {
157 	u32 background[3] = {
158 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
159 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
160 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
161 	};
162 	u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
163 			 BLEND_COLOR_KEY_NONE;
164 	u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
165 	struct tegra_plane_state *state;
166 	u32 blending[2];
167 	unsigned int i;
168 
169 	/* disable blending for non-overlapping case */
170 	tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
171 	tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
172 
173 	state = to_tegra_plane_state(plane->base.state);
174 
175 	if (state->opaque) {
176 		/*
177 		 * Since custom fix-weight blending isn't utilized and weight
178 		 * of top window is set to max, we can enforce dependent
179 		 * blending which in this case results in transparent bottom
180 		 * window if top window is opaque and if top window enables
181 		 * alpha blending, then bottom window is getting alpha value
182 		 * of 1 minus the sum of alpha components of the overlapping
183 		 * plane.
184 		 */
185 		background[0] |= BLEND_CONTROL_DEPENDENT;
186 		background[1] |= BLEND_CONTROL_DEPENDENT;
187 
188 		/*
189 		 * The region where three windows overlap is the intersection
190 		 * of the two regions where two windows overlap. It contributes
191 		 * to the area if all of the windows on top of it have an alpha
192 		 * component.
193 		 */
194 		switch (state->base.normalized_zpos) {
195 		case 0:
196 			if (state->blending[0].alpha &&
197 			    state->blending[1].alpha)
198 				background[2] |= BLEND_CONTROL_DEPENDENT;
199 			break;
200 
201 		case 1:
202 			background[2] |= BLEND_CONTROL_DEPENDENT;
203 			break;
204 		}
205 	} else {
206 		/*
207 		 * Enable alpha blending if pixel format has an alpha
208 		 * component.
209 		 */
210 		foreground |= BLEND_CONTROL_ALPHA;
211 
212 		/*
213 		 * If any of the windows on top of this window is opaque, it
214 		 * will completely conceal this window within that area. If
215 		 * top window has an alpha component, it is blended over the
216 		 * bottom window.
217 		 */
218 		for (i = 0; i < 2; i++) {
219 			if (state->blending[i].alpha &&
220 			    state->blending[i].top)
221 				background[i] |= BLEND_CONTROL_DEPENDENT;
222 		}
223 
224 		switch (state->base.normalized_zpos) {
225 		case 0:
226 			if (state->blending[0].alpha &&
227 			    state->blending[1].alpha)
228 				background[2] |= BLEND_CONTROL_DEPENDENT;
229 			break;
230 
231 		case 1:
232 			/*
233 			 * When both middle and topmost windows have an alpha,
234 			 * these windows a mixed together and then the result
235 			 * is blended over the bottom window.
236 			 */
237 			if (state->blending[0].alpha &&
238 			    state->blending[0].top)
239 				background[2] |= BLEND_CONTROL_ALPHA;
240 
241 			if (state->blending[1].alpha &&
242 			    state->blending[1].top)
243 				background[2] |= BLEND_CONTROL_ALPHA;
244 			break;
245 		}
246 	}
247 
248 	switch (state->base.normalized_zpos) {
249 	case 0:
250 		tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
251 		tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
252 		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
253 		break;
254 
255 	case 1:
256 		/*
257 		 * If window B / C is topmost, then X / Y registers are
258 		 * matching the order of blending[...] state indices,
259 		 * otherwise a swap is required.
260 		 */
261 		if (!state->blending[0].top && state->blending[1].top) {
262 			blending[0] = foreground;
263 			blending[1] = background[1];
264 		} else {
265 			blending[0] = background[0];
266 			blending[1] = foreground;
267 		}
268 
269 		tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
270 		tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
271 		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
272 		break;
273 
274 	case 2:
275 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
276 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
277 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
278 		break;
279 	}
280 }
281 
282 static void tegra_plane_setup_blending(struct tegra_plane *plane,
283 				       const struct tegra_dc_window *window)
284 {
285 	u32 value;
286 
287 	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
288 		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
289 		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
290 	tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
291 
292 	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
293 		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
294 		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
295 	tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
296 
297 	value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
298 	tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
299 }
300 
301 static bool
302 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
303 				     const struct tegra_dc_window *window)
304 {
305 	struct tegra_dc *dc = plane->dc;
306 
307 	if (window->src.w == window->dst.w)
308 		return false;
309 
310 	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
311 		return false;
312 
313 	return true;
314 }
315 
316 static bool
317 tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
318 				   const struct tegra_dc_window *window)
319 {
320 	struct tegra_dc *dc = plane->dc;
321 
322 	if (window->src.h == window->dst.h)
323 		return false;
324 
325 	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
326 		return false;
327 
328 	if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
329 		return false;
330 
331 	return true;
332 }
333 
334 static void tegra_dc_setup_window(struct tegra_plane *plane,
335 				  const struct tegra_dc_window *window)
336 {
337 	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
338 	struct tegra_dc *dc = plane->dc;
339 	bool yuv, planar;
340 	u32 value;
341 
342 	/*
343 	 * For YUV planar modes, the number of bytes per pixel takes into
344 	 * account only the luma component and therefore is 1.
345 	 */
346 	yuv = tegra_plane_format_is_yuv(window->format, &planar);
347 	if (!yuv)
348 		bpp = window->bits_per_pixel / 8;
349 	else
350 		bpp = planar ? 1 : 2;
351 
352 	tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
353 	tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
354 
355 	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
356 	tegra_plane_writel(plane, value, DC_WIN_POSITION);
357 
358 	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
359 	tegra_plane_writel(plane, value, DC_WIN_SIZE);
360 
361 	h_offset = window->src.x * bpp;
362 	v_offset = window->src.y;
363 	h_size = window->src.w * bpp;
364 	v_size = window->src.h;
365 
366 	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
367 	tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
368 
369 	/*
370 	 * For DDA computations the number of bytes per pixel for YUV planar
371 	 * modes needs to take into account all Y, U and V components.
372 	 */
373 	if (yuv && planar)
374 		bpp = 2;
375 
376 	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
377 	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
378 
379 	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
380 	tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
381 
382 	h_dda = compute_initial_dda(window->src.x);
383 	v_dda = compute_initial_dda(window->src.y);
384 
385 	tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
386 	tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
387 
388 	tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
389 	tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
390 
391 	tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
392 
393 	if (yuv && planar) {
394 		tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
395 		tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
396 		value = window->stride[1] << 16 | window->stride[0];
397 		tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
398 	} else {
399 		tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
400 	}
401 
402 	if (window->bottom_up)
403 		v_offset += window->src.h - 1;
404 
405 	tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
406 	tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
407 
408 	if (dc->soc->supports_block_linear) {
409 		unsigned long height = window->tiling.value;
410 
411 		switch (window->tiling.mode) {
412 		case TEGRA_BO_TILING_MODE_PITCH:
413 			value = DC_WINBUF_SURFACE_KIND_PITCH;
414 			break;
415 
416 		case TEGRA_BO_TILING_MODE_TILED:
417 			value = DC_WINBUF_SURFACE_KIND_TILED;
418 			break;
419 
420 		case TEGRA_BO_TILING_MODE_BLOCK:
421 			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
422 				DC_WINBUF_SURFACE_KIND_BLOCK;
423 			break;
424 		}
425 
426 		tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
427 	} else {
428 		switch (window->tiling.mode) {
429 		case TEGRA_BO_TILING_MODE_PITCH:
430 			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
431 				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
432 			break;
433 
434 		case TEGRA_BO_TILING_MODE_TILED:
435 			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
436 				DC_WIN_BUFFER_ADDR_MODE_TILE;
437 			break;
438 
439 		case TEGRA_BO_TILING_MODE_BLOCK:
440 			/*
441 			 * No need to handle this here because ->atomic_check
442 			 * will already have filtered it out.
443 			 */
444 			break;
445 		}
446 
447 		tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
448 	}
449 
450 	value = WIN_ENABLE;
451 
452 	if (yuv) {
453 		/* setup default colorspace conversion coefficients */
454 		tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
455 		tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
456 		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
457 		tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
458 		tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
459 		tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
460 		tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
461 		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
462 
463 		value |= CSC_ENABLE;
464 	} else if (window->bits_per_pixel < 24) {
465 		value |= COLOR_EXPAND;
466 	}
467 
468 	if (window->bottom_up)
469 		value |= V_DIRECTION;
470 
471 	if (tegra_plane_use_horizontal_filtering(plane, window)) {
472 		/*
473 		 * Enable horizontal 6-tap filter and set filtering
474 		 * coefficients to the default values defined in TRM.
475 		 */
476 		tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
477 		tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
478 		tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
479 		tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
480 		tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
481 		tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
482 		tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
483 		tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
484 		tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
485 		tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
486 		tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
487 		tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
488 		tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
489 		tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
490 		tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
491 		tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
492 
493 		value |= H_FILTER;
494 	}
495 
496 	if (tegra_plane_use_vertical_filtering(plane, window)) {
497 		unsigned int i, k;
498 
499 		/*
500 		 * Enable vertical 2-tap filter and set filtering
501 		 * coefficients to the default values defined in TRM.
502 		 */
503 		for (i = 0, k = 128; i < 16; i++, k -= 8)
504 			tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
505 
506 		value |= V_FILTER;
507 	}
508 
509 	tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
510 
511 	if (dc->soc->has_legacy_blending)
512 		tegra_plane_setup_blending_legacy(plane);
513 	else
514 		tegra_plane_setup_blending(plane, window);
515 }
516 
517 static const u32 tegra20_primary_formats[] = {
518 	DRM_FORMAT_ARGB4444,
519 	DRM_FORMAT_ARGB1555,
520 	DRM_FORMAT_RGB565,
521 	DRM_FORMAT_RGBA5551,
522 	DRM_FORMAT_ABGR8888,
523 	DRM_FORMAT_ARGB8888,
524 	/* non-native formats */
525 	DRM_FORMAT_XRGB1555,
526 	DRM_FORMAT_RGBX5551,
527 	DRM_FORMAT_XBGR8888,
528 	DRM_FORMAT_XRGB8888,
529 };
530 
531 static const u64 tegra20_modifiers[] = {
532 	DRM_FORMAT_MOD_LINEAR,
533 	DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
534 	DRM_FORMAT_MOD_INVALID
535 };
536 
537 static const u32 tegra114_primary_formats[] = {
538 	DRM_FORMAT_ARGB4444,
539 	DRM_FORMAT_ARGB1555,
540 	DRM_FORMAT_RGB565,
541 	DRM_FORMAT_RGBA5551,
542 	DRM_FORMAT_ABGR8888,
543 	DRM_FORMAT_ARGB8888,
544 	/* new on Tegra114 */
545 	DRM_FORMAT_ABGR4444,
546 	DRM_FORMAT_ABGR1555,
547 	DRM_FORMAT_BGRA5551,
548 	DRM_FORMAT_XRGB1555,
549 	DRM_FORMAT_RGBX5551,
550 	DRM_FORMAT_XBGR1555,
551 	DRM_FORMAT_BGRX5551,
552 	DRM_FORMAT_BGR565,
553 	DRM_FORMAT_BGRA8888,
554 	DRM_FORMAT_RGBA8888,
555 	DRM_FORMAT_XRGB8888,
556 	DRM_FORMAT_XBGR8888,
557 };
558 
559 static const u32 tegra124_primary_formats[] = {
560 	DRM_FORMAT_ARGB4444,
561 	DRM_FORMAT_ARGB1555,
562 	DRM_FORMAT_RGB565,
563 	DRM_FORMAT_RGBA5551,
564 	DRM_FORMAT_ABGR8888,
565 	DRM_FORMAT_ARGB8888,
566 	/* new on Tegra114 */
567 	DRM_FORMAT_ABGR4444,
568 	DRM_FORMAT_ABGR1555,
569 	DRM_FORMAT_BGRA5551,
570 	DRM_FORMAT_XRGB1555,
571 	DRM_FORMAT_RGBX5551,
572 	DRM_FORMAT_XBGR1555,
573 	DRM_FORMAT_BGRX5551,
574 	DRM_FORMAT_BGR565,
575 	DRM_FORMAT_BGRA8888,
576 	DRM_FORMAT_RGBA8888,
577 	DRM_FORMAT_XRGB8888,
578 	DRM_FORMAT_XBGR8888,
579 	/* new on Tegra124 */
580 	DRM_FORMAT_RGBX8888,
581 	DRM_FORMAT_BGRX8888,
582 };
583 
584 static const u64 tegra124_modifiers[] = {
585 	DRM_FORMAT_MOD_LINEAR,
586 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
587 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
588 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
589 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
590 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
591 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
592 	DRM_FORMAT_MOD_INVALID
593 };
594 
595 static int tegra_plane_atomic_check(struct drm_plane *plane,
596 				    struct drm_plane_state *state)
597 {
598 	struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
599 	unsigned int rotation = DRM_MODE_ROTATE_0 | DRM_MODE_REFLECT_Y;
600 	struct tegra_bo_tiling *tiling = &plane_state->tiling;
601 	struct tegra_plane *tegra = to_tegra_plane(plane);
602 	struct tegra_dc *dc = to_tegra_dc(state->crtc);
603 	int err;
604 
605 	/* no need for further checks if the plane is being disabled */
606 	if (!state->crtc)
607 		return 0;
608 
609 	err = tegra_plane_format(state->fb->format->format,
610 				 &plane_state->format,
611 				 &plane_state->swap);
612 	if (err < 0)
613 		return err;
614 
615 	/*
616 	 * Tegra20 and Tegra30 are special cases here because they support
617 	 * only variants of specific formats with an alpha component, but not
618 	 * the corresponding opaque formats. However, the opaque formats can
619 	 * be emulated by disabling alpha blending for the plane.
620 	 */
621 	if (dc->soc->has_legacy_blending) {
622 		err = tegra_plane_setup_legacy_state(tegra, plane_state);
623 		if (err < 0)
624 			return err;
625 	}
626 
627 	err = tegra_fb_get_tiling(state->fb, tiling);
628 	if (err < 0)
629 		return err;
630 
631 	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
632 	    !dc->soc->supports_block_linear) {
633 		DRM_ERROR("hardware doesn't support block linear mode\n");
634 		return -EINVAL;
635 	}
636 
637 	rotation = drm_rotation_simplify(state->rotation, rotation);
638 
639 	if (rotation & DRM_MODE_REFLECT_Y)
640 		plane_state->bottom_up = true;
641 	else
642 		plane_state->bottom_up = false;
643 
644 	/*
645 	 * Tegra doesn't support different strides for U and V planes so we
646 	 * error out if the user tries to display a framebuffer with such a
647 	 * configuration.
648 	 */
649 	if (state->fb->format->num_planes > 2) {
650 		if (state->fb->pitches[2] != state->fb->pitches[1]) {
651 			DRM_ERROR("unsupported UV-plane configuration\n");
652 			return -EINVAL;
653 		}
654 	}
655 
656 	err = tegra_plane_state_add(tegra, state);
657 	if (err < 0)
658 		return err;
659 
660 	return 0;
661 }
662 
663 static void tegra_plane_atomic_disable(struct drm_plane *plane,
664 				       struct drm_plane_state *old_state)
665 {
666 	struct tegra_plane *p = to_tegra_plane(plane);
667 	u32 value;
668 
669 	/* rien ne va plus */
670 	if (!old_state || !old_state->crtc)
671 		return;
672 
673 	value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
674 	value &= ~WIN_ENABLE;
675 	tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
676 }
677 
678 static void tegra_plane_atomic_update(struct drm_plane *plane,
679 				      struct drm_plane_state *old_state)
680 {
681 	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
682 	struct drm_framebuffer *fb = plane->state->fb;
683 	struct tegra_plane *p = to_tegra_plane(plane);
684 	struct tegra_dc_window window;
685 	unsigned int i;
686 
687 	/* rien ne va plus */
688 	if (!plane->state->crtc || !plane->state->fb)
689 		return;
690 
691 	if (!plane->state->visible)
692 		return tegra_plane_atomic_disable(plane, old_state);
693 
694 	memset(&window, 0, sizeof(window));
695 	window.src.x = plane->state->src.x1 >> 16;
696 	window.src.y = plane->state->src.y1 >> 16;
697 	window.src.w = drm_rect_width(&plane->state->src) >> 16;
698 	window.src.h = drm_rect_height(&plane->state->src) >> 16;
699 	window.dst.x = plane->state->dst.x1;
700 	window.dst.y = plane->state->dst.y1;
701 	window.dst.w = drm_rect_width(&plane->state->dst);
702 	window.dst.h = drm_rect_height(&plane->state->dst);
703 	window.bits_per_pixel = fb->format->cpp[0] * 8;
704 	window.bottom_up = tegra_fb_is_bottom_up(fb) || state->bottom_up;
705 
706 	/* copy from state */
707 	window.zpos = plane->state->normalized_zpos;
708 	window.tiling = state->tiling;
709 	window.format = state->format;
710 	window.swap = state->swap;
711 
712 	for (i = 0; i < fb->format->num_planes; i++) {
713 		struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
714 
715 		window.base[i] = bo->paddr + fb->offsets[i];
716 
717 		/*
718 		 * Tegra uses a shared stride for UV planes. Framebuffers are
719 		 * already checked for this in the tegra_plane_atomic_check()
720 		 * function, so it's safe to ignore the V-plane pitch here.
721 		 */
722 		if (i < 2)
723 			window.stride[i] = fb->pitches[i];
724 	}
725 
726 	tegra_dc_setup_window(p, &window);
727 }
728 
729 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
730 	.atomic_check = tegra_plane_atomic_check,
731 	.atomic_disable = tegra_plane_atomic_disable,
732 	.atomic_update = tegra_plane_atomic_update,
733 };
734 
735 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
736 {
737 	/*
738 	 * Ideally this would use drm_crtc_mask(), but that would require the
739 	 * CRTC to already be in the mode_config's list of CRTCs. However, it
740 	 * will only be added to that list in the drm_crtc_init_with_planes()
741 	 * (in tegra_dc_init()), which in turn requires registration of these
742 	 * planes. So we have ourselves a nice little chicken and egg problem
743 	 * here.
744 	 *
745 	 * We work around this by manually creating the mask from the number
746 	 * of CRTCs that have been registered, and should therefore always be
747 	 * the same as drm_crtc_index() after registration.
748 	 */
749 	return 1 << drm->mode_config.num_crtc;
750 }
751 
752 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
753 						    struct tegra_dc *dc)
754 {
755 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
756 	enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
757 	struct tegra_plane *plane;
758 	unsigned int num_formats;
759 	const u64 *modifiers;
760 	const u32 *formats;
761 	int err;
762 
763 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
764 	if (!plane)
765 		return ERR_PTR(-ENOMEM);
766 
767 	/* Always use window A as primary window */
768 	plane->offset = 0xa00;
769 	plane->index = 0;
770 	plane->dc = dc;
771 
772 	num_formats = dc->soc->num_primary_formats;
773 	formats = dc->soc->primary_formats;
774 	modifiers = dc->soc->modifiers;
775 
776 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
777 				       &tegra_plane_funcs, formats,
778 				       num_formats, modifiers, type, NULL);
779 	if (err < 0) {
780 		kfree(plane);
781 		return ERR_PTR(err);
782 	}
783 
784 	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
785 	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
786 
787 	err = drm_plane_create_rotation_property(&plane->base,
788 						 DRM_MODE_ROTATE_0,
789 						 DRM_MODE_ROTATE_0 |
790 						 DRM_MODE_REFLECT_Y);
791 	if (err < 0)
792 		dev_err(dc->dev, "failed to create rotation property: %d\n",
793 			err);
794 
795 	return &plane->base;
796 }
797 
798 static const u32 tegra_cursor_plane_formats[] = {
799 	DRM_FORMAT_RGBA8888,
800 };
801 
802 static int tegra_cursor_atomic_check(struct drm_plane *plane,
803 				     struct drm_plane_state *state)
804 {
805 	struct tegra_plane *tegra = to_tegra_plane(plane);
806 	int err;
807 
808 	/* no need for further checks if the plane is being disabled */
809 	if (!state->crtc)
810 		return 0;
811 
812 	/* scaling not supported for cursor */
813 	if ((state->src_w >> 16 != state->crtc_w) ||
814 	    (state->src_h >> 16 != state->crtc_h))
815 		return -EINVAL;
816 
817 	/* only square cursors supported */
818 	if (state->src_w != state->src_h)
819 		return -EINVAL;
820 
821 	if (state->crtc_w != 32 && state->crtc_w != 64 &&
822 	    state->crtc_w != 128 && state->crtc_w != 256)
823 		return -EINVAL;
824 
825 	err = tegra_plane_state_add(tegra, state);
826 	if (err < 0)
827 		return err;
828 
829 	return 0;
830 }
831 
832 static void tegra_cursor_atomic_update(struct drm_plane *plane,
833 				       struct drm_plane_state *old_state)
834 {
835 	struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
836 	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
837 	struct drm_plane_state *state = plane->state;
838 	u32 value = CURSOR_CLIP_DISPLAY;
839 
840 	/* rien ne va plus */
841 	if (!plane->state->crtc || !plane->state->fb)
842 		return;
843 
844 	switch (state->crtc_w) {
845 	case 32:
846 		value |= CURSOR_SIZE_32x32;
847 		break;
848 
849 	case 64:
850 		value |= CURSOR_SIZE_64x64;
851 		break;
852 
853 	case 128:
854 		value |= CURSOR_SIZE_128x128;
855 		break;
856 
857 	case 256:
858 		value |= CURSOR_SIZE_256x256;
859 		break;
860 
861 	default:
862 		WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
863 		     state->crtc_h);
864 		return;
865 	}
866 
867 	value |= (bo->paddr >> 10) & 0x3fffff;
868 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
869 
870 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
871 	value = (bo->paddr >> 32) & 0x3;
872 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
873 #endif
874 
875 	/* enable cursor and set blend mode */
876 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
877 	value |= CURSOR_ENABLE;
878 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
879 
880 	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
881 	value &= ~CURSOR_DST_BLEND_MASK;
882 	value &= ~CURSOR_SRC_BLEND_MASK;
883 	value |= CURSOR_MODE_NORMAL;
884 	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
885 	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
886 	value |= CURSOR_ALPHA;
887 	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
888 
889 	/* position the cursor */
890 	value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
891 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
892 }
893 
894 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
895 					struct drm_plane_state *old_state)
896 {
897 	struct tegra_dc *dc;
898 	u32 value;
899 
900 	/* rien ne va plus */
901 	if (!old_state || !old_state->crtc)
902 		return;
903 
904 	dc = to_tegra_dc(old_state->crtc);
905 
906 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
907 	value &= ~CURSOR_ENABLE;
908 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
909 }
910 
911 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
912 	.atomic_check = tegra_cursor_atomic_check,
913 	.atomic_update = tegra_cursor_atomic_update,
914 	.atomic_disable = tegra_cursor_atomic_disable,
915 };
916 
917 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
918 						      struct tegra_dc *dc)
919 {
920 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
921 	struct tegra_plane *plane;
922 	unsigned int num_formats;
923 	const u32 *formats;
924 	int err;
925 
926 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
927 	if (!plane)
928 		return ERR_PTR(-ENOMEM);
929 
930 	/*
931 	 * This index is kind of fake. The cursor isn't a regular plane, but
932 	 * its update and activation request bits in DC_CMD_STATE_CONTROL do
933 	 * use the same programming. Setting this fake index here allows the
934 	 * code in tegra_add_plane_state() to do the right thing without the
935 	 * need to special-casing the cursor plane.
936 	 */
937 	plane->index = 6;
938 	plane->dc = dc;
939 
940 	num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
941 	formats = tegra_cursor_plane_formats;
942 
943 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
944 				       &tegra_plane_funcs, formats,
945 				       num_formats, NULL,
946 				       DRM_PLANE_TYPE_CURSOR, NULL);
947 	if (err < 0) {
948 		kfree(plane);
949 		return ERR_PTR(err);
950 	}
951 
952 	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
953 
954 	return &plane->base;
955 }
956 
957 static const u32 tegra20_overlay_formats[] = {
958 	DRM_FORMAT_ARGB4444,
959 	DRM_FORMAT_ARGB1555,
960 	DRM_FORMAT_RGB565,
961 	DRM_FORMAT_RGBA5551,
962 	DRM_FORMAT_ABGR8888,
963 	DRM_FORMAT_ARGB8888,
964 	/* non-native formats */
965 	DRM_FORMAT_XRGB1555,
966 	DRM_FORMAT_RGBX5551,
967 	DRM_FORMAT_XBGR8888,
968 	DRM_FORMAT_XRGB8888,
969 	/* planar formats */
970 	DRM_FORMAT_UYVY,
971 	DRM_FORMAT_YUYV,
972 	DRM_FORMAT_YUV420,
973 	DRM_FORMAT_YUV422,
974 };
975 
976 static const u32 tegra114_overlay_formats[] = {
977 	DRM_FORMAT_ARGB4444,
978 	DRM_FORMAT_ARGB1555,
979 	DRM_FORMAT_RGB565,
980 	DRM_FORMAT_RGBA5551,
981 	DRM_FORMAT_ABGR8888,
982 	DRM_FORMAT_ARGB8888,
983 	/* new on Tegra114 */
984 	DRM_FORMAT_ABGR4444,
985 	DRM_FORMAT_ABGR1555,
986 	DRM_FORMAT_BGRA5551,
987 	DRM_FORMAT_XRGB1555,
988 	DRM_FORMAT_RGBX5551,
989 	DRM_FORMAT_XBGR1555,
990 	DRM_FORMAT_BGRX5551,
991 	DRM_FORMAT_BGR565,
992 	DRM_FORMAT_BGRA8888,
993 	DRM_FORMAT_RGBA8888,
994 	DRM_FORMAT_XRGB8888,
995 	DRM_FORMAT_XBGR8888,
996 	/* planar formats */
997 	DRM_FORMAT_UYVY,
998 	DRM_FORMAT_YUYV,
999 	DRM_FORMAT_YUV420,
1000 	DRM_FORMAT_YUV422,
1001 };
1002 
1003 static const u32 tegra124_overlay_formats[] = {
1004 	DRM_FORMAT_ARGB4444,
1005 	DRM_FORMAT_ARGB1555,
1006 	DRM_FORMAT_RGB565,
1007 	DRM_FORMAT_RGBA5551,
1008 	DRM_FORMAT_ABGR8888,
1009 	DRM_FORMAT_ARGB8888,
1010 	/* new on Tegra114 */
1011 	DRM_FORMAT_ABGR4444,
1012 	DRM_FORMAT_ABGR1555,
1013 	DRM_FORMAT_BGRA5551,
1014 	DRM_FORMAT_XRGB1555,
1015 	DRM_FORMAT_RGBX5551,
1016 	DRM_FORMAT_XBGR1555,
1017 	DRM_FORMAT_BGRX5551,
1018 	DRM_FORMAT_BGR565,
1019 	DRM_FORMAT_BGRA8888,
1020 	DRM_FORMAT_RGBA8888,
1021 	DRM_FORMAT_XRGB8888,
1022 	DRM_FORMAT_XBGR8888,
1023 	/* new on Tegra124 */
1024 	DRM_FORMAT_RGBX8888,
1025 	DRM_FORMAT_BGRX8888,
1026 	/* planar formats */
1027 	DRM_FORMAT_UYVY,
1028 	DRM_FORMAT_YUYV,
1029 	DRM_FORMAT_YUV420,
1030 	DRM_FORMAT_YUV422,
1031 };
1032 
1033 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1034 						       struct tegra_dc *dc,
1035 						       unsigned int index,
1036 						       bool cursor)
1037 {
1038 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1039 	struct tegra_plane *plane;
1040 	unsigned int num_formats;
1041 	enum drm_plane_type type;
1042 	const u32 *formats;
1043 	int err;
1044 
1045 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1046 	if (!plane)
1047 		return ERR_PTR(-ENOMEM);
1048 
1049 	plane->offset = 0xa00 + 0x200 * index;
1050 	plane->index = index;
1051 	plane->dc = dc;
1052 
1053 	num_formats = dc->soc->num_overlay_formats;
1054 	formats = dc->soc->overlay_formats;
1055 
1056 	if (!cursor)
1057 		type = DRM_PLANE_TYPE_OVERLAY;
1058 	else
1059 		type = DRM_PLANE_TYPE_CURSOR;
1060 
1061 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1062 				       &tegra_plane_funcs, formats,
1063 				       num_formats, NULL, type, NULL);
1064 	if (err < 0) {
1065 		kfree(plane);
1066 		return ERR_PTR(err);
1067 	}
1068 
1069 	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1070 	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1071 
1072 	err = drm_plane_create_rotation_property(&plane->base,
1073 						 DRM_MODE_ROTATE_0,
1074 						 DRM_MODE_ROTATE_0 |
1075 						 DRM_MODE_REFLECT_Y);
1076 	if (err < 0)
1077 		dev_err(dc->dev, "failed to create rotation property: %d\n",
1078 			err);
1079 
1080 	return &plane->base;
1081 }
1082 
1083 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1084 						    struct tegra_dc *dc)
1085 {
1086 	struct drm_plane *plane, *primary = NULL;
1087 	unsigned int i, j;
1088 
1089 	for (i = 0; i < dc->soc->num_wgrps; i++) {
1090 		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1091 
1092 		if (wgrp->dc == dc->pipe) {
1093 			for (j = 0; j < wgrp->num_windows; j++) {
1094 				unsigned int index = wgrp->windows[j];
1095 
1096 				plane = tegra_shared_plane_create(drm, dc,
1097 								  wgrp->index,
1098 								  index);
1099 				if (IS_ERR(plane))
1100 					return plane;
1101 
1102 				/*
1103 				 * Choose the first shared plane owned by this
1104 				 * head as the primary plane.
1105 				 */
1106 				if (!primary) {
1107 					plane->type = DRM_PLANE_TYPE_PRIMARY;
1108 					primary = plane;
1109 				}
1110 			}
1111 		}
1112 	}
1113 
1114 	return primary;
1115 }
1116 
1117 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1118 					     struct tegra_dc *dc)
1119 {
1120 	struct drm_plane *planes[2], *primary;
1121 	unsigned int planes_num;
1122 	unsigned int i;
1123 	int err;
1124 
1125 	primary = tegra_primary_plane_create(drm, dc);
1126 	if (IS_ERR(primary))
1127 		return primary;
1128 
1129 	if (dc->soc->supports_cursor)
1130 		planes_num = 2;
1131 	else
1132 		planes_num = 1;
1133 
1134 	for (i = 0; i < planes_num; i++) {
1135 		planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1136 							  false);
1137 		if (IS_ERR(planes[i])) {
1138 			err = PTR_ERR(planes[i]);
1139 
1140 			while (i--)
1141 				tegra_plane_funcs.destroy(planes[i]);
1142 
1143 			tegra_plane_funcs.destroy(primary);
1144 			return ERR_PTR(err);
1145 		}
1146 	}
1147 
1148 	return primary;
1149 }
1150 
1151 static void tegra_dc_destroy(struct drm_crtc *crtc)
1152 {
1153 	drm_crtc_cleanup(crtc);
1154 }
1155 
1156 static void tegra_crtc_reset(struct drm_crtc *crtc)
1157 {
1158 	struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1159 
1160 	if (crtc->state)
1161 		tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1162 
1163 	__drm_atomic_helper_crtc_reset(crtc, &state->base);
1164 	drm_crtc_vblank_reset(crtc);
1165 }
1166 
1167 static struct drm_crtc_state *
1168 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1169 {
1170 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1171 	struct tegra_dc_state *copy;
1172 
1173 	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1174 	if (!copy)
1175 		return NULL;
1176 
1177 	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1178 	copy->clk = state->clk;
1179 	copy->pclk = state->pclk;
1180 	copy->div = state->div;
1181 	copy->planes = state->planes;
1182 
1183 	return &copy->base;
1184 }
1185 
1186 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1187 					    struct drm_crtc_state *state)
1188 {
1189 	__drm_atomic_helper_crtc_destroy_state(state);
1190 	kfree(state);
1191 }
1192 
1193 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1194 
1195 static const struct debugfs_reg32 tegra_dc_regs[] = {
1196 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1197 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1198 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1199 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1200 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1201 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1202 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1203 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1204 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1205 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1206 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1207 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1208 	DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1209 	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1210 	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1211 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1212 	DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1213 	DEBUGFS_REG32(DC_CMD_INT_STATUS),
1214 	DEBUGFS_REG32(DC_CMD_INT_MASK),
1215 	DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1216 	DEBUGFS_REG32(DC_CMD_INT_TYPE),
1217 	DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1218 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1219 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1220 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1221 	DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1222 	DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1223 	DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1224 	DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1225 	DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1226 	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1227 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1228 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1229 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1230 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1231 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1232 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1233 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1234 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1235 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1236 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1237 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1238 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1239 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1240 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1241 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1242 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1243 	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1244 	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1245 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1246 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1247 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1248 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1249 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1250 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1251 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1252 	DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1253 	DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1254 	DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1255 	DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1256 	DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1257 	DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1258 	DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1259 	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1260 	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1261 	DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1262 	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1263 	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1264 	DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1265 	DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1266 	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1267 	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1268 	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1269 	DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1270 	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1271 	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1272 	DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1273 	DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1274 	DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1275 	DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1276 	DEBUGFS_REG32(DC_DISP_ACTIVE),
1277 	DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1278 	DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1279 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1280 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1281 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1282 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1283 	DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1284 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1285 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1286 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1287 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1288 	DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1289 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1290 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1291 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1292 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1293 	DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1294 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1295 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1296 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1297 	DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1298 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1299 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1300 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1301 	DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1302 	DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1303 	DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1304 	DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1305 	DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1306 	DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1307 	DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1308 	DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1309 	DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1310 	DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1311 	DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1312 	DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1313 	DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1314 	DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1315 	DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1316 	DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1317 	DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1318 	DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1319 	DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1320 	DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1321 	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1322 	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1323 	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1324 	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1325 	DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1326 	DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1327 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1328 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1329 	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1330 	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1331 	DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1332 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1333 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1334 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1335 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1336 	DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1337 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1338 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1339 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1340 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1341 	DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1342 	DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1343 	DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1344 	DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1345 	DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1346 	DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1347 	DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1348 	DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1349 	DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1350 	DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1351 	DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1352 	DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1353 	DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1354 	DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1355 	DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1356 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1357 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1358 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1359 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1360 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1361 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1362 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1363 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1364 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1365 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1366 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1367 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1368 	DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1369 	DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1370 	DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1371 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1372 	DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1373 	DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1374 	DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1375 	DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1376 	DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1377 	DEBUGFS_REG32(DC_WIN_POSITION),
1378 	DEBUGFS_REG32(DC_WIN_SIZE),
1379 	DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1380 	DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1381 	DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1382 	DEBUGFS_REG32(DC_WIN_DDA_INC),
1383 	DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1384 	DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1385 	DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1386 	DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1387 	DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1388 	DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1389 	DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1390 	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1391 	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1392 	DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1393 	DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1394 	DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1395 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1396 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1397 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1398 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1399 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1400 	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1401 	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1402 	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1403 	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1404 	DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1405 	DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1406 	DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1407 	DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1408 };
1409 
1410 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1411 {
1412 	struct drm_info_node *node = s->private;
1413 	struct tegra_dc *dc = node->info_ent->data;
1414 	unsigned int i;
1415 	int err = 0;
1416 
1417 	drm_modeset_lock(&dc->base.mutex, NULL);
1418 
1419 	if (!dc->base.state->active) {
1420 		err = -EBUSY;
1421 		goto unlock;
1422 	}
1423 
1424 	for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1425 		unsigned int offset = tegra_dc_regs[i].offset;
1426 
1427 		seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1428 			   offset, tegra_dc_readl(dc, offset));
1429 	}
1430 
1431 unlock:
1432 	drm_modeset_unlock(&dc->base.mutex);
1433 	return err;
1434 }
1435 
1436 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1437 {
1438 	struct drm_info_node *node = s->private;
1439 	struct tegra_dc *dc = node->info_ent->data;
1440 	int err = 0;
1441 	u32 value;
1442 
1443 	drm_modeset_lock(&dc->base.mutex, NULL);
1444 
1445 	if (!dc->base.state->active) {
1446 		err = -EBUSY;
1447 		goto unlock;
1448 	}
1449 
1450 	value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1451 	tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1452 	tegra_dc_commit(dc);
1453 
1454 	drm_crtc_wait_one_vblank(&dc->base);
1455 	drm_crtc_wait_one_vblank(&dc->base);
1456 
1457 	value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1458 	seq_printf(s, "%08x\n", value);
1459 
1460 	tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1461 
1462 unlock:
1463 	drm_modeset_unlock(&dc->base.mutex);
1464 	return err;
1465 }
1466 
1467 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1468 {
1469 	struct drm_info_node *node = s->private;
1470 	struct tegra_dc *dc = node->info_ent->data;
1471 
1472 	seq_printf(s, "frames: %lu\n", dc->stats.frames);
1473 	seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1474 	seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1475 	seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1476 
1477 	return 0;
1478 }
1479 
1480 static struct drm_info_list debugfs_files[] = {
1481 	{ "regs", tegra_dc_show_regs, 0, NULL },
1482 	{ "crc", tegra_dc_show_crc, 0, NULL },
1483 	{ "stats", tegra_dc_show_stats, 0, NULL },
1484 };
1485 
1486 static int tegra_dc_late_register(struct drm_crtc *crtc)
1487 {
1488 	unsigned int i, count = ARRAY_SIZE(debugfs_files);
1489 	struct drm_minor *minor = crtc->dev->primary;
1490 	struct dentry *root;
1491 	struct tegra_dc *dc = to_tegra_dc(crtc);
1492 	int err;
1493 
1494 #ifdef CONFIG_DEBUG_FS
1495 	root = crtc->debugfs_entry;
1496 #else
1497 	root = NULL;
1498 #endif
1499 
1500 	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1501 				    GFP_KERNEL);
1502 	if (!dc->debugfs_files)
1503 		return -ENOMEM;
1504 
1505 	for (i = 0; i < count; i++)
1506 		dc->debugfs_files[i].data = dc;
1507 
1508 	err = drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1509 	if (err < 0)
1510 		goto free;
1511 
1512 	return 0;
1513 
1514 free:
1515 	kfree(dc->debugfs_files);
1516 	dc->debugfs_files = NULL;
1517 
1518 	return err;
1519 }
1520 
1521 static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1522 {
1523 	unsigned int count = ARRAY_SIZE(debugfs_files);
1524 	struct drm_minor *minor = crtc->dev->primary;
1525 	struct tegra_dc *dc = to_tegra_dc(crtc);
1526 
1527 	drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1528 	kfree(dc->debugfs_files);
1529 	dc->debugfs_files = NULL;
1530 }
1531 
1532 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1533 {
1534 	struct tegra_dc *dc = to_tegra_dc(crtc);
1535 
1536 	/* XXX vblank syncpoints don't work with nvdisplay yet */
1537 	if (dc->syncpt && !dc->soc->has_nvdisplay)
1538 		return host1x_syncpt_read(dc->syncpt);
1539 
1540 	/* fallback to software emulated VBLANK counter */
1541 	return (u32)drm_crtc_vblank_count(&dc->base);
1542 }
1543 
1544 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1545 {
1546 	struct tegra_dc *dc = to_tegra_dc(crtc);
1547 	u32 value;
1548 
1549 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1550 	value |= VBLANK_INT;
1551 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1552 
1553 	return 0;
1554 }
1555 
1556 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1557 {
1558 	struct tegra_dc *dc = to_tegra_dc(crtc);
1559 	u32 value;
1560 
1561 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1562 	value &= ~VBLANK_INT;
1563 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1564 }
1565 
1566 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1567 	.page_flip = drm_atomic_helper_page_flip,
1568 	.set_config = drm_atomic_helper_set_config,
1569 	.destroy = tegra_dc_destroy,
1570 	.reset = tegra_crtc_reset,
1571 	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1572 	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1573 	.late_register = tegra_dc_late_register,
1574 	.early_unregister = tegra_dc_early_unregister,
1575 	.get_vblank_counter = tegra_dc_get_vblank_counter,
1576 	.enable_vblank = tegra_dc_enable_vblank,
1577 	.disable_vblank = tegra_dc_disable_vblank,
1578 };
1579 
1580 static int tegra_dc_set_timings(struct tegra_dc *dc,
1581 				struct drm_display_mode *mode)
1582 {
1583 	unsigned int h_ref_to_sync = 1;
1584 	unsigned int v_ref_to_sync = 1;
1585 	unsigned long value;
1586 
1587 	if (!dc->soc->has_nvdisplay) {
1588 		tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1589 
1590 		value = (v_ref_to_sync << 16) | h_ref_to_sync;
1591 		tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1592 	}
1593 
1594 	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1595 		((mode->hsync_end - mode->hsync_start) <<  0);
1596 	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1597 
1598 	value = ((mode->vtotal - mode->vsync_end) << 16) |
1599 		((mode->htotal - mode->hsync_end) <<  0);
1600 	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1601 
1602 	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1603 		((mode->hsync_start - mode->hdisplay) <<  0);
1604 	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1605 
1606 	value = (mode->vdisplay << 16) | mode->hdisplay;
1607 	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1608 
1609 	return 0;
1610 }
1611 
1612 /**
1613  * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1614  *     state
1615  * @dc: display controller
1616  * @crtc_state: CRTC atomic state
1617  * @clk: parent clock for display controller
1618  * @pclk: pixel clock
1619  * @div: shift clock divider
1620  *
1621  * Returns:
1622  * 0 on success or a negative error-code on failure.
1623  */
1624 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1625 			       struct drm_crtc_state *crtc_state,
1626 			       struct clk *clk, unsigned long pclk,
1627 			       unsigned int div)
1628 {
1629 	struct tegra_dc_state *state = to_dc_state(crtc_state);
1630 
1631 	if (!clk_has_parent(dc->clk, clk))
1632 		return -EINVAL;
1633 
1634 	state->clk = clk;
1635 	state->pclk = pclk;
1636 	state->div = div;
1637 
1638 	return 0;
1639 }
1640 
1641 static void tegra_dc_commit_state(struct tegra_dc *dc,
1642 				  struct tegra_dc_state *state)
1643 {
1644 	u32 value;
1645 	int err;
1646 
1647 	err = clk_set_parent(dc->clk, state->clk);
1648 	if (err < 0)
1649 		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1650 
1651 	/*
1652 	 * Outputs may not want to change the parent clock rate. This is only
1653 	 * relevant to Tegra20 where only a single display PLL is available.
1654 	 * Since that PLL would typically be used for HDMI, an internal LVDS
1655 	 * panel would need to be driven by some other clock such as PLL_P
1656 	 * which is shared with other peripherals. Changing the clock rate
1657 	 * should therefore be avoided.
1658 	 */
1659 	if (state->pclk > 0) {
1660 		err = clk_set_rate(state->clk, state->pclk);
1661 		if (err < 0)
1662 			dev_err(dc->dev,
1663 				"failed to set clock rate to %lu Hz\n",
1664 				state->pclk);
1665 	}
1666 
1667 	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1668 		      state->div);
1669 	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1670 
1671 	if (!dc->soc->has_nvdisplay) {
1672 		value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1673 		tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1674 	}
1675 
1676 	err = clk_set_rate(dc->clk, state->pclk);
1677 	if (err < 0)
1678 		dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1679 			dc->clk, state->pclk, err);
1680 }
1681 
1682 static void tegra_dc_stop(struct tegra_dc *dc)
1683 {
1684 	u32 value;
1685 
1686 	/* stop the display controller */
1687 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1688 	value &= ~DISP_CTRL_MODE_MASK;
1689 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1690 
1691 	tegra_dc_commit(dc);
1692 }
1693 
1694 static bool tegra_dc_idle(struct tegra_dc *dc)
1695 {
1696 	u32 value;
1697 
1698 	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1699 
1700 	return (value & DISP_CTRL_MODE_MASK) == 0;
1701 }
1702 
1703 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1704 {
1705 	timeout = jiffies + msecs_to_jiffies(timeout);
1706 
1707 	while (time_before(jiffies, timeout)) {
1708 		if (tegra_dc_idle(dc))
1709 			return 0;
1710 
1711 		usleep_range(1000, 2000);
1712 	}
1713 
1714 	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1715 	return -ETIMEDOUT;
1716 }
1717 
1718 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1719 				      struct drm_crtc_state *old_state)
1720 {
1721 	struct tegra_dc *dc = to_tegra_dc(crtc);
1722 	u32 value;
1723 
1724 	if (!tegra_dc_idle(dc)) {
1725 		tegra_dc_stop(dc);
1726 
1727 		/*
1728 		 * Ignore the return value, there isn't anything useful to do
1729 		 * in case this fails.
1730 		 */
1731 		tegra_dc_wait_idle(dc, 100);
1732 	}
1733 
1734 	/*
1735 	 * This should really be part of the RGB encoder driver, but clearing
1736 	 * these bits has the side-effect of stopping the display controller.
1737 	 * When that happens no VBLANK interrupts will be raised. At the same
1738 	 * time the encoder is disabled before the display controller, so the
1739 	 * above code is always going to timeout waiting for the controller
1740 	 * to go idle.
1741 	 *
1742 	 * Given the close coupling between the RGB encoder and the display
1743 	 * controller doing it here is still kind of okay. None of the other
1744 	 * encoder drivers require these bits to be cleared.
1745 	 *
1746 	 * XXX: Perhaps given that the display controller is switched off at
1747 	 * this point anyway maybe clearing these bits isn't even useful for
1748 	 * the RGB encoder?
1749 	 */
1750 	if (dc->rgb) {
1751 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1752 		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1753 			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1754 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1755 	}
1756 
1757 	tegra_dc_stats_reset(&dc->stats);
1758 	drm_crtc_vblank_off(crtc);
1759 
1760 	spin_lock_irq(&crtc->dev->event_lock);
1761 
1762 	if (crtc->state->event) {
1763 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
1764 		crtc->state->event = NULL;
1765 	}
1766 
1767 	spin_unlock_irq(&crtc->dev->event_lock);
1768 
1769 	pm_runtime_put_sync(dc->dev);
1770 }
1771 
1772 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
1773 				     struct drm_crtc_state *old_state)
1774 {
1775 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1776 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1777 	struct tegra_dc *dc = to_tegra_dc(crtc);
1778 	u32 value;
1779 
1780 	pm_runtime_get_sync(dc->dev);
1781 
1782 	/* initialize display controller */
1783 	if (dc->syncpt) {
1784 		u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
1785 
1786 		if (dc->soc->has_nvdisplay)
1787 			enable = 1 << 31;
1788 		else
1789 			enable = 1 << 8;
1790 
1791 		value = SYNCPT_CNTRL_NO_STALL;
1792 		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1793 
1794 		value = enable | syncpt;
1795 		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1796 	}
1797 
1798 	if (dc->soc->has_nvdisplay) {
1799 		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1800 			DSC_OBUF_UF_INT;
1801 		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1802 
1803 		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1804 			DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
1805 			HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
1806 			REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
1807 			VBLANK_INT | FRAME_END_INT;
1808 		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1809 
1810 		value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
1811 			FRAME_END_INT;
1812 		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1813 
1814 		value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
1815 		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1816 
1817 		tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
1818 	} else {
1819 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1820 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1821 		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1822 
1823 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1824 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1825 		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1826 
1827 		/* initialize timer */
1828 		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1829 			WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1830 		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1831 
1832 		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1833 			WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1834 		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1835 
1836 		value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1837 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1838 		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1839 
1840 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1841 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1842 		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1843 	}
1844 
1845 	if (dc->soc->supports_background_color)
1846 		tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
1847 	else
1848 		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1849 
1850 	/* apply PLL and pixel clock changes */
1851 	tegra_dc_commit_state(dc, state);
1852 
1853 	/* program display mode */
1854 	tegra_dc_set_timings(dc, mode);
1855 
1856 	/* interlacing isn't supported yet, so disable it */
1857 	if (dc->soc->supports_interlacing) {
1858 		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1859 		value &= ~INTERLACE_ENABLE;
1860 		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1861 	}
1862 
1863 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1864 	value &= ~DISP_CTRL_MODE_MASK;
1865 	value |= DISP_CTRL_MODE_C_DISPLAY;
1866 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1867 
1868 	if (!dc->soc->has_nvdisplay) {
1869 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1870 		value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1871 			 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1872 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1873 	}
1874 
1875 	/* enable underflow reporting and display red for missing pixels */
1876 	if (dc->soc->has_nvdisplay) {
1877 		value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
1878 		tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
1879 	}
1880 
1881 	tegra_dc_commit(dc);
1882 
1883 	drm_crtc_vblank_on(crtc);
1884 }
1885 
1886 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1887 				    struct drm_crtc_state *old_crtc_state)
1888 {
1889 	unsigned long flags;
1890 
1891 	if (crtc->state->event) {
1892 		spin_lock_irqsave(&crtc->dev->event_lock, flags);
1893 
1894 		if (drm_crtc_vblank_get(crtc) != 0)
1895 			drm_crtc_send_vblank_event(crtc, crtc->state->event);
1896 		else
1897 			drm_crtc_arm_vblank_event(crtc, crtc->state->event);
1898 
1899 		spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1900 
1901 		crtc->state->event = NULL;
1902 	}
1903 }
1904 
1905 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1906 				    struct drm_crtc_state *old_crtc_state)
1907 {
1908 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1909 	struct tegra_dc *dc = to_tegra_dc(crtc);
1910 	u32 value;
1911 
1912 	value = state->planes << 8 | GENERAL_UPDATE;
1913 	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1914 	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1915 
1916 	value = state->planes | GENERAL_ACT_REQ;
1917 	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1918 	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1919 }
1920 
1921 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1922 	.atomic_begin = tegra_crtc_atomic_begin,
1923 	.atomic_flush = tegra_crtc_atomic_flush,
1924 	.atomic_enable = tegra_crtc_atomic_enable,
1925 	.atomic_disable = tegra_crtc_atomic_disable,
1926 };
1927 
1928 static irqreturn_t tegra_dc_irq(int irq, void *data)
1929 {
1930 	struct tegra_dc *dc = data;
1931 	unsigned long status;
1932 
1933 	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1934 	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1935 
1936 	if (status & FRAME_END_INT) {
1937 		/*
1938 		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1939 		*/
1940 		dc->stats.frames++;
1941 	}
1942 
1943 	if (status & VBLANK_INT) {
1944 		/*
1945 		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1946 		*/
1947 		drm_crtc_handle_vblank(&dc->base);
1948 		dc->stats.vblank++;
1949 	}
1950 
1951 	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1952 		/*
1953 		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1954 		*/
1955 		dc->stats.underflow++;
1956 	}
1957 
1958 	if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1959 		/*
1960 		dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1961 		*/
1962 		dc->stats.overflow++;
1963 	}
1964 
1965 	if (status & HEAD_UF_INT) {
1966 		dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
1967 		dc->stats.underflow++;
1968 	}
1969 
1970 	return IRQ_HANDLED;
1971 }
1972 
1973 static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
1974 {
1975 	unsigned int i;
1976 
1977 	if (!dc->soc->wgrps)
1978 		return true;
1979 
1980 	for (i = 0; i < dc->soc->num_wgrps; i++) {
1981 		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1982 
1983 		if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
1984 			return true;
1985 	}
1986 
1987 	return false;
1988 }
1989 
1990 static int tegra_dc_init(struct host1x_client *client)
1991 {
1992 	struct drm_device *drm = dev_get_drvdata(client->parent);
1993 	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1994 	struct tegra_dc *dc = host1x_client_to_dc(client);
1995 	struct tegra_drm *tegra = drm->dev_private;
1996 	struct drm_plane *primary = NULL;
1997 	struct drm_plane *cursor = NULL;
1998 	int err;
1999 
2000 	/*
2001 	 * XXX do not register DCs with no window groups because we cannot
2002 	 * assign a primary plane to them, which in turn will cause KMS to
2003 	 * crash.
2004 	 */
2005 	if (!tegra_dc_has_window_groups(dc))
2006 		return 0;
2007 
2008 	dc->syncpt = host1x_syncpt_request(client, flags);
2009 	if (!dc->syncpt)
2010 		dev_warn(dc->dev, "failed to allocate syncpoint\n");
2011 
2012 	dc->group = host1x_client_iommu_attach(client, true);
2013 	if (IS_ERR(dc->group)) {
2014 		err = PTR_ERR(dc->group);
2015 		dev_err(client->dev, "failed to attach to domain: %d\n", err);
2016 		return err;
2017 	}
2018 
2019 	if (dc->soc->wgrps)
2020 		primary = tegra_dc_add_shared_planes(drm, dc);
2021 	else
2022 		primary = tegra_dc_add_planes(drm, dc);
2023 
2024 	if (IS_ERR(primary)) {
2025 		err = PTR_ERR(primary);
2026 		goto cleanup;
2027 	}
2028 
2029 	if (dc->soc->supports_cursor) {
2030 		cursor = tegra_dc_cursor_plane_create(drm, dc);
2031 		if (IS_ERR(cursor)) {
2032 			err = PTR_ERR(cursor);
2033 			goto cleanup;
2034 		}
2035 	} else {
2036 		/* dedicate one overlay to mouse cursor */
2037 		cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2038 		if (IS_ERR(cursor)) {
2039 			err = PTR_ERR(cursor);
2040 			goto cleanup;
2041 		}
2042 	}
2043 
2044 	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2045 					&tegra_crtc_funcs, NULL);
2046 	if (err < 0)
2047 		goto cleanup;
2048 
2049 	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2050 
2051 	/*
2052 	 * Keep track of the minimum pitch alignment across all display
2053 	 * controllers.
2054 	 */
2055 	if (dc->soc->pitch_align > tegra->pitch_align)
2056 		tegra->pitch_align = dc->soc->pitch_align;
2057 
2058 	err = tegra_dc_rgb_init(drm, dc);
2059 	if (err < 0 && err != -ENODEV) {
2060 		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2061 		goto cleanup;
2062 	}
2063 
2064 	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2065 			       dev_name(dc->dev), dc);
2066 	if (err < 0) {
2067 		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2068 			err);
2069 		goto cleanup;
2070 	}
2071 
2072 	return 0;
2073 
2074 cleanup:
2075 	if (!IS_ERR_OR_NULL(cursor))
2076 		drm_plane_cleanup(cursor);
2077 
2078 	if (!IS_ERR(primary))
2079 		drm_plane_cleanup(primary);
2080 
2081 	host1x_client_iommu_detach(client, dc->group);
2082 	host1x_syncpt_free(dc->syncpt);
2083 
2084 	return err;
2085 }
2086 
2087 static int tegra_dc_exit(struct host1x_client *client)
2088 {
2089 	struct tegra_dc *dc = host1x_client_to_dc(client);
2090 	int err;
2091 
2092 	if (!tegra_dc_has_window_groups(dc))
2093 		return 0;
2094 
2095 	devm_free_irq(dc->dev, dc->irq, dc);
2096 
2097 	err = tegra_dc_rgb_exit(dc);
2098 	if (err) {
2099 		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2100 		return err;
2101 	}
2102 
2103 	host1x_client_iommu_detach(client, dc->group);
2104 	host1x_syncpt_free(dc->syncpt);
2105 
2106 	return 0;
2107 }
2108 
2109 static const struct host1x_client_ops dc_client_ops = {
2110 	.init = tegra_dc_init,
2111 	.exit = tegra_dc_exit,
2112 };
2113 
2114 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2115 	.supports_background_color = false,
2116 	.supports_interlacing = false,
2117 	.supports_cursor = false,
2118 	.supports_block_linear = false,
2119 	.has_legacy_blending = true,
2120 	.pitch_align = 8,
2121 	.has_powergate = false,
2122 	.coupled_pm = true,
2123 	.has_nvdisplay = false,
2124 	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2125 	.primary_formats = tegra20_primary_formats,
2126 	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2127 	.overlay_formats = tegra20_overlay_formats,
2128 	.modifiers = tegra20_modifiers,
2129 	.has_win_a_without_filters = true,
2130 	.has_win_c_without_vert_filter = true,
2131 };
2132 
2133 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2134 	.supports_background_color = false,
2135 	.supports_interlacing = false,
2136 	.supports_cursor = false,
2137 	.supports_block_linear = false,
2138 	.has_legacy_blending = true,
2139 	.pitch_align = 8,
2140 	.has_powergate = false,
2141 	.coupled_pm = false,
2142 	.has_nvdisplay = false,
2143 	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2144 	.primary_formats = tegra20_primary_formats,
2145 	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2146 	.overlay_formats = tegra20_overlay_formats,
2147 	.modifiers = tegra20_modifiers,
2148 	.has_win_a_without_filters = false,
2149 	.has_win_c_without_vert_filter = false,
2150 };
2151 
2152 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2153 	.supports_background_color = false,
2154 	.supports_interlacing = false,
2155 	.supports_cursor = false,
2156 	.supports_block_linear = false,
2157 	.has_legacy_blending = true,
2158 	.pitch_align = 64,
2159 	.has_powergate = true,
2160 	.coupled_pm = false,
2161 	.has_nvdisplay = false,
2162 	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2163 	.primary_formats = tegra114_primary_formats,
2164 	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2165 	.overlay_formats = tegra114_overlay_formats,
2166 	.modifiers = tegra20_modifiers,
2167 	.has_win_a_without_filters = false,
2168 	.has_win_c_without_vert_filter = false,
2169 };
2170 
2171 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2172 	.supports_background_color = true,
2173 	.supports_interlacing = true,
2174 	.supports_cursor = true,
2175 	.supports_block_linear = true,
2176 	.has_legacy_blending = false,
2177 	.pitch_align = 64,
2178 	.has_powergate = true,
2179 	.coupled_pm = false,
2180 	.has_nvdisplay = false,
2181 	.num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2182 	.primary_formats = tegra124_primary_formats,
2183 	.num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2184 	.overlay_formats = tegra124_overlay_formats,
2185 	.modifiers = tegra124_modifiers,
2186 	.has_win_a_without_filters = false,
2187 	.has_win_c_without_vert_filter = false,
2188 };
2189 
2190 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2191 	.supports_background_color = true,
2192 	.supports_interlacing = true,
2193 	.supports_cursor = true,
2194 	.supports_block_linear = true,
2195 	.has_legacy_blending = false,
2196 	.pitch_align = 64,
2197 	.has_powergate = true,
2198 	.coupled_pm = false,
2199 	.has_nvdisplay = false,
2200 	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2201 	.primary_formats = tegra114_primary_formats,
2202 	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2203 	.overlay_formats = tegra114_overlay_formats,
2204 	.modifiers = tegra124_modifiers,
2205 	.has_win_a_without_filters = false,
2206 	.has_win_c_without_vert_filter = false,
2207 };
2208 
2209 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2210 	{
2211 		.index = 0,
2212 		.dc = 0,
2213 		.windows = (const unsigned int[]) { 0 },
2214 		.num_windows = 1,
2215 	}, {
2216 		.index = 1,
2217 		.dc = 1,
2218 		.windows = (const unsigned int[]) { 1 },
2219 		.num_windows = 1,
2220 	}, {
2221 		.index = 2,
2222 		.dc = 1,
2223 		.windows = (const unsigned int[]) { 2 },
2224 		.num_windows = 1,
2225 	}, {
2226 		.index = 3,
2227 		.dc = 2,
2228 		.windows = (const unsigned int[]) { 3 },
2229 		.num_windows = 1,
2230 	}, {
2231 		.index = 4,
2232 		.dc = 2,
2233 		.windows = (const unsigned int[]) { 4 },
2234 		.num_windows = 1,
2235 	}, {
2236 		.index = 5,
2237 		.dc = 2,
2238 		.windows = (const unsigned int[]) { 5 },
2239 		.num_windows = 1,
2240 	},
2241 };
2242 
2243 static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2244 	.supports_background_color = true,
2245 	.supports_interlacing = true,
2246 	.supports_cursor = true,
2247 	.supports_block_linear = true,
2248 	.has_legacy_blending = false,
2249 	.pitch_align = 64,
2250 	.has_powergate = false,
2251 	.coupled_pm = false,
2252 	.has_nvdisplay = true,
2253 	.wgrps = tegra186_dc_wgrps,
2254 	.num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2255 };
2256 
2257 static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2258 	{
2259 		.index = 0,
2260 		.dc = 0,
2261 		.windows = (const unsigned int[]) { 0 },
2262 		.num_windows = 1,
2263 	}, {
2264 		.index = 1,
2265 		.dc = 1,
2266 		.windows = (const unsigned int[]) { 1 },
2267 		.num_windows = 1,
2268 	}, {
2269 		.index = 2,
2270 		.dc = 1,
2271 		.windows = (const unsigned int[]) { 2 },
2272 		.num_windows = 1,
2273 	}, {
2274 		.index = 3,
2275 		.dc = 2,
2276 		.windows = (const unsigned int[]) { 3 },
2277 		.num_windows = 1,
2278 	}, {
2279 		.index = 4,
2280 		.dc = 2,
2281 		.windows = (const unsigned int[]) { 4 },
2282 		.num_windows = 1,
2283 	}, {
2284 		.index = 5,
2285 		.dc = 2,
2286 		.windows = (const unsigned int[]) { 5 },
2287 		.num_windows = 1,
2288 	},
2289 };
2290 
2291 static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
2292 	.supports_background_color = true,
2293 	.supports_interlacing = true,
2294 	.supports_cursor = true,
2295 	.supports_block_linear = true,
2296 	.has_legacy_blending = false,
2297 	.pitch_align = 64,
2298 	.has_powergate = false,
2299 	.coupled_pm = false,
2300 	.has_nvdisplay = true,
2301 	.wgrps = tegra194_dc_wgrps,
2302 	.num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
2303 };
2304 
2305 static const struct of_device_id tegra_dc_of_match[] = {
2306 	{
2307 		.compatible = "nvidia,tegra194-dc",
2308 		.data = &tegra194_dc_soc_info,
2309 	}, {
2310 		.compatible = "nvidia,tegra186-dc",
2311 		.data = &tegra186_dc_soc_info,
2312 	}, {
2313 		.compatible = "nvidia,tegra210-dc",
2314 		.data = &tegra210_dc_soc_info,
2315 	}, {
2316 		.compatible = "nvidia,tegra124-dc",
2317 		.data = &tegra124_dc_soc_info,
2318 	}, {
2319 		.compatible = "nvidia,tegra114-dc",
2320 		.data = &tegra114_dc_soc_info,
2321 	}, {
2322 		.compatible = "nvidia,tegra30-dc",
2323 		.data = &tegra30_dc_soc_info,
2324 	}, {
2325 		.compatible = "nvidia,tegra20-dc",
2326 		.data = &tegra20_dc_soc_info,
2327 	}, {
2328 		/* sentinel */
2329 	}
2330 };
2331 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
2332 
2333 static int tegra_dc_parse_dt(struct tegra_dc *dc)
2334 {
2335 	struct device_node *np;
2336 	u32 value = 0;
2337 	int err;
2338 
2339 	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
2340 	if (err < 0) {
2341 		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
2342 
2343 		/*
2344 		 * If the nvidia,head property isn't present, try to find the
2345 		 * correct head number by looking up the position of this
2346 		 * display controller's node within the device tree. Assuming
2347 		 * that the nodes are ordered properly in the DTS file and
2348 		 * that the translation into a flattened device tree blob
2349 		 * preserves that ordering this will actually yield the right
2350 		 * head number.
2351 		 *
2352 		 * If those assumptions don't hold, this will still work for
2353 		 * cases where only a single display controller is used.
2354 		 */
2355 		for_each_matching_node(np, tegra_dc_of_match) {
2356 			if (np == dc->dev->of_node) {
2357 				of_node_put(np);
2358 				break;
2359 			}
2360 
2361 			value++;
2362 		}
2363 	}
2364 
2365 	dc->pipe = value;
2366 
2367 	return 0;
2368 }
2369 
2370 static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
2371 {
2372 	struct tegra_dc *dc = dev_get_drvdata(dev);
2373 	unsigned int pipe = (unsigned long)(void *)data;
2374 
2375 	return dc->pipe == pipe;
2376 }
2377 
2378 static int tegra_dc_couple(struct tegra_dc *dc)
2379 {
2380 	/*
2381 	 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
2382 	 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
2383 	 * POWER_CONTROL registers during CRTC enabling.
2384 	 */
2385 	if (dc->soc->coupled_pm && dc->pipe == 1) {
2386 		u32 flags = DL_FLAG_PM_RUNTIME | DL_FLAG_AUTOREMOVE_CONSUMER;
2387 		struct device_link *link;
2388 		struct device *partner;
2389 
2390 		partner = driver_find_device(dc->dev->driver, NULL, NULL,
2391 					     tegra_dc_match_by_pipe);
2392 		if (!partner)
2393 			return -EPROBE_DEFER;
2394 
2395 		link = device_link_add(dc->dev, partner, flags);
2396 		if (!link) {
2397 			dev_err(dc->dev, "failed to link controllers\n");
2398 			return -EINVAL;
2399 		}
2400 
2401 		dev_dbg(dc->dev, "coupled to %s\n", dev_name(partner));
2402 	}
2403 
2404 	return 0;
2405 }
2406 
2407 static int tegra_dc_probe(struct platform_device *pdev)
2408 {
2409 	struct resource *regs;
2410 	struct tegra_dc *dc;
2411 	int err;
2412 
2413 	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
2414 	if (!dc)
2415 		return -ENOMEM;
2416 
2417 	dc->soc = of_device_get_match_data(&pdev->dev);
2418 
2419 	INIT_LIST_HEAD(&dc->list);
2420 	dc->dev = &pdev->dev;
2421 
2422 	err = tegra_dc_parse_dt(dc);
2423 	if (err < 0)
2424 		return err;
2425 
2426 	err = tegra_dc_couple(dc);
2427 	if (err < 0)
2428 		return err;
2429 
2430 	dc->clk = devm_clk_get(&pdev->dev, NULL);
2431 	if (IS_ERR(dc->clk)) {
2432 		dev_err(&pdev->dev, "failed to get clock\n");
2433 		return PTR_ERR(dc->clk);
2434 	}
2435 
2436 	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
2437 	if (IS_ERR(dc->rst)) {
2438 		dev_err(&pdev->dev, "failed to get reset\n");
2439 		return PTR_ERR(dc->rst);
2440 	}
2441 
2442 	/* assert reset and disable clock */
2443 	err = clk_prepare_enable(dc->clk);
2444 	if (err < 0)
2445 		return err;
2446 
2447 	usleep_range(2000, 4000);
2448 
2449 	err = reset_control_assert(dc->rst);
2450 	if (err < 0)
2451 		return err;
2452 
2453 	usleep_range(2000, 4000);
2454 
2455 	clk_disable_unprepare(dc->clk);
2456 
2457 	if (dc->soc->has_powergate) {
2458 		if (dc->pipe == 0)
2459 			dc->powergate = TEGRA_POWERGATE_DIS;
2460 		else
2461 			dc->powergate = TEGRA_POWERGATE_DISB;
2462 
2463 		tegra_powergate_power_off(dc->powergate);
2464 	}
2465 
2466 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2467 	dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2468 	if (IS_ERR(dc->regs))
2469 		return PTR_ERR(dc->regs);
2470 
2471 	dc->irq = platform_get_irq(pdev, 0);
2472 	if (dc->irq < 0) {
2473 		dev_err(&pdev->dev, "failed to get IRQ\n");
2474 		return -ENXIO;
2475 	}
2476 
2477 	err = tegra_dc_rgb_probe(dc);
2478 	if (err < 0 && err != -ENODEV) {
2479 		dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2480 		return err;
2481 	}
2482 
2483 	platform_set_drvdata(pdev, dc);
2484 	pm_runtime_enable(&pdev->dev);
2485 
2486 	INIT_LIST_HEAD(&dc->client.list);
2487 	dc->client.ops = &dc_client_ops;
2488 	dc->client.dev = &pdev->dev;
2489 
2490 	err = host1x_client_register(&dc->client);
2491 	if (err < 0) {
2492 		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2493 			err);
2494 		return err;
2495 	}
2496 
2497 	return 0;
2498 }
2499 
2500 static int tegra_dc_remove(struct platform_device *pdev)
2501 {
2502 	struct tegra_dc *dc = platform_get_drvdata(pdev);
2503 	int err;
2504 
2505 	err = host1x_client_unregister(&dc->client);
2506 	if (err < 0) {
2507 		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2508 			err);
2509 		return err;
2510 	}
2511 
2512 	err = tegra_dc_rgb_remove(dc);
2513 	if (err < 0) {
2514 		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2515 		return err;
2516 	}
2517 
2518 	pm_runtime_disable(&pdev->dev);
2519 
2520 	return 0;
2521 }
2522 
2523 #ifdef CONFIG_PM
2524 static int tegra_dc_suspend(struct device *dev)
2525 {
2526 	struct tegra_dc *dc = dev_get_drvdata(dev);
2527 	int err;
2528 
2529 	err = reset_control_assert(dc->rst);
2530 	if (err < 0) {
2531 		dev_err(dev, "failed to assert reset: %d\n", err);
2532 		return err;
2533 	}
2534 
2535 	if (dc->soc->has_powergate)
2536 		tegra_powergate_power_off(dc->powergate);
2537 
2538 	clk_disable_unprepare(dc->clk);
2539 
2540 	return 0;
2541 }
2542 
2543 static int tegra_dc_resume(struct device *dev)
2544 {
2545 	struct tegra_dc *dc = dev_get_drvdata(dev);
2546 	int err;
2547 
2548 	if (dc->soc->has_powergate) {
2549 		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2550 							dc->rst);
2551 		if (err < 0) {
2552 			dev_err(dev, "failed to power partition: %d\n", err);
2553 			return err;
2554 		}
2555 	} else {
2556 		err = clk_prepare_enable(dc->clk);
2557 		if (err < 0) {
2558 			dev_err(dev, "failed to enable clock: %d\n", err);
2559 			return err;
2560 		}
2561 
2562 		err = reset_control_deassert(dc->rst);
2563 		if (err < 0) {
2564 			dev_err(dev, "failed to deassert reset: %d\n", err);
2565 			return err;
2566 		}
2567 	}
2568 
2569 	return 0;
2570 }
2571 #endif
2572 
2573 static const struct dev_pm_ops tegra_dc_pm_ops = {
2574 	SET_RUNTIME_PM_OPS(tegra_dc_suspend, tegra_dc_resume, NULL)
2575 };
2576 
2577 struct platform_driver tegra_dc_driver = {
2578 	.driver = {
2579 		.name = "tegra-dc",
2580 		.of_match_table = tegra_dc_of_match,
2581 		.pm = &tegra_dc_pm_ops,
2582 	},
2583 	.probe = tegra_dc_probe,
2584 	.remove = tegra_dc_remove,
2585 };
2586