xref: /openbmc/linux/drivers/gpu/drm/tegra/dc.c (revision 28efb0046512e8a13ed9f9bdf0d68d10bbfbe9cf)
1 /*
2  * Copyright (C) 2012 Avionic Design GmbH
3  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/debugfs.h>
12 #include <linux/iommu.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/reset.h>
15 
16 #include <soc/tegra/pmc.h>
17 
18 #include "dc.h"
19 #include "drm.h"
20 #include "gem.h"
21 
22 #include <drm/drm_atomic.h>
23 #include <drm/drm_atomic_helper.h>
24 #include <drm/drm_plane_helper.h>
25 
26 struct tegra_dc_soc_info {
27 	bool supports_border_color;
28 	bool supports_interlacing;
29 	bool supports_cursor;
30 	bool supports_block_linear;
31 	unsigned int pitch_align;
32 	bool has_powergate;
33 	bool broken_reset;
34 };
35 
36 struct tegra_plane {
37 	struct drm_plane base;
38 	unsigned int index;
39 };
40 
41 static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
42 {
43 	return container_of(plane, struct tegra_plane, base);
44 }
45 
46 struct tegra_dc_state {
47 	struct drm_crtc_state base;
48 
49 	struct clk *clk;
50 	unsigned long pclk;
51 	unsigned int div;
52 
53 	u32 planes;
54 };
55 
56 static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
57 {
58 	if (state)
59 		return container_of(state, struct tegra_dc_state, base);
60 
61 	return NULL;
62 }
63 
64 struct tegra_plane_state {
65 	struct drm_plane_state base;
66 
67 	struct tegra_bo_tiling tiling;
68 	u32 format;
69 	u32 swap;
70 };
71 
72 static inline struct tegra_plane_state *
73 to_tegra_plane_state(struct drm_plane_state *state)
74 {
75 	if (state)
76 		return container_of(state, struct tegra_plane_state, base);
77 
78 	return NULL;
79 }
80 
81 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
82 {
83 	stats->frames = 0;
84 	stats->vblank = 0;
85 	stats->underflow = 0;
86 	stats->overflow = 0;
87 }
88 
89 /*
90  * Reads the active copy of a register. This takes the dc->lock spinlock to
91  * prevent races with the VBLANK processing which also needs access to the
92  * active copy of some registers.
93  */
94 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
95 {
96 	unsigned long flags;
97 	u32 value;
98 
99 	spin_lock_irqsave(&dc->lock, flags);
100 
101 	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
102 	value = tegra_dc_readl(dc, offset);
103 	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
104 
105 	spin_unlock_irqrestore(&dc->lock, flags);
106 	return value;
107 }
108 
109 /*
110  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
111  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
112  * Latching happens mmediately if the display controller is in STOP mode or
113  * on the next frame boundary otherwise.
114  *
115  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
116  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
117  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
118  * into the ACTIVE copy, either immediately if the display controller is in
119  * STOP mode, or at the next frame boundary otherwise.
120  */
121 void tegra_dc_commit(struct tegra_dc *dc)
122 {
123 	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
124 	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
125 }
126 
127 static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
128 {
129 	/* assume no swapping of fetched data */
130 	if (swap)
131 		*swap = BYTE_SWAP_NOSWAP;
132 
133 	switch (fourcc) {
134 	case DRM_FORMAT_XBGR8888:
135 		*format = WIN_COLOR_DEPTH_R8G8B8A8;
136 		break;
137 
138 	case DRM_FORMAT_XRGB8888:
139 		*format = WIN_COLOR_DEPTH_B8G8R8A8;
140 		break;
141 
142 	case DRM_FORMAT_RGB565:
143 		*format = WIN_COLOR_DEPTH_B5G6R5;
144 		break;
145 
146 	case DRM_FORMAT_UYVY:
147 		*format = WIN_COLOR_DEPTH_YCbCr422;
148 		break;
149 
150 	case DRM_FORMAT_YUYV:
151 		if (swap)
152 			*swap = BYTE_SWAP_SWAP2;
153 
154 		*format = WIN_COLOR_DEPTH_YCbCr422;
155 		break;
156 
157 	case DRM_FORMAT_YUV420:
158 		*format = WIN_COLOR_DEPTH_YCbCr420P;
159 		break;
160 
161 	case DRM_FORMAT_YUV422:
162 		*format = WIN_COLOR_DEPTH_YCbCr422P;
163 		break;
164 
165 	default:
166 		return -EINVAL;
167 	}
168 
169 	return 0;
170 }
171 
172 static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
173 {
174 	switch (format) {
175 	case WIN_COLOR_DEPTH_YCbCr422:
176 	case WIN_COLOR_DEPTH_YUV422:
177 		if (planar)
178 			*planar = false;
179 
180 		return true;
181 
182 	case WIN_COLOR_DEPTH_YCbCr420P:
183 	case WIN_COLOR_DEPTH_YUV420P:
184 	case WIN_COLOR_DEPTH_YCbCr422P:
185 	case WIN_COLOR_DEPTH_YUV422P:
186 	case WIN_COLOR_DEPTH_YCbCr422R:
187 	case WIN_COLOR_DEPTH_YUV422R:
188 	case WIN_COLOR_DEPTH_YCbCr422RA:
189 	case WIN_COLOR_DEPTH_YUV422RA:
190 		if (planar)
191 			*planar = true;
192 
193 		return true;
194 	}
195 
196 	if (planar)
197 		*planar = false;
198 
199 	return false;
200 }
201 
202 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
203 				  unsigned int bpp)
204 {
205 	fixed20_12 outf = dfixed_init(out);
206 	fixed20_12 inf = dfixed_init(in);
207 	u32 dda_inc;
208 	int max;
209 
210 	if (v)
211 		max = 15;
212 	else {
213 		switch (bpp) {
214 		case 2:
215 			max = 8;
216 			break;
217 
218 		default:
219 			WARN_ON_ONCE(1);
220 			/* fallthrough */
221 		case 4:
222 			max = 4;
223 			break;
224 		}
225 	}
226 
227 	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
228 	inf.full -= dfixed_const(1);
229 
230 	dda_inc = dfixed_div(inf, outf);
231 	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
232 
233 	return dda_inc;
234 }
235 
236 static inline u32 compute_initial_dda(unsigned int in)
237 {
238 	fixed20_12 inf = dfixed_init(in);
239 	return dfixed_frac(inf);
240 }
241 
242 static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
243 				  const struct tegra_dc_window *window)
244 {
245 	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
246 	unsigned long value, flags;
247 	bool yuv, planar;
248 
249 	/*
250 	 * For YUV planar modes, the number of bytes per pixel takes into
251 	 * account only the luma component and therefore is 1.
252 	 */
253 	yuv = tegra_dc_format_is_yuv(window->format, &planar);
254 	if (!yuv)
255 		bpp = window->bits_per_pixel / 8;
256 	else
257 		bpp = planar ? 1 : 2;
258 
259 	spin_lock_irqsave(&dc->lock, flags);
260 
261 	value = WINDOW_A_SELECT << index;
262 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
263 
264 	tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
265 	tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
266 
267 	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
268 	tegra_dc_writel(dc, value, DC_WIN_POSITION);
269 
270 	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
271 	tegra_dc_writel(dc, value, DC_WIN_SIZE);
272 
273 	h_offset = window->src.x * bpp;
274 	v_offset = window->src.y;
275 	h_size = window->src.w * bpp;
276 	v_size = window->src.h;
277 
278 	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
279 	tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
280 
281 	/*
282 	 * For DDA computations the number of bytes per pixel for YUV planar
283 	 * modes needs to take into account all Y, U and V components.
284 	 */
285 	if (yuv && planar)
286 		bpp = 2;
287 
288 	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
289 	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
290 
291 	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
292 	tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
293 
294 	h_dda = compute_initial_dda(window->src.x);
295 	v_dda = compute_initial_dda(window->src.y);
296 
297 	tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
298 	tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
299 
300 	tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
301 	tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
302 
303 	tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
304 
305 	if (yuv && planar) {
306 		tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
307 		tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
308 		value = window->stride[1] << 16 | window->stride[0];
309 		tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
310 	} else {
311 		tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
312 	}
313 
314 	if (window->bottom_up)
315 		v_offset += window->src.h - 1;
316 
317 	tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
318 	tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
319 
320 	if (dc->soc->supports_block_linear) {
321 		unsigned long height = window->tiling.value;
322 
323 		switch (window->tiling.mode) {
324 		case TEGRA_BO_TILING_MODE_PITCH:
325 			value = DC_WINBUF_SURFACE_KIND_PITCH;
326 			break;
327 
328 		case TEGRA_BO_TILING_MODE_TILED:
329 			value = DC_WINBUF_SURFACE_KIND_TILED;
330 			break;
331 
332 		case TEGRA_BO_TILING_MODE_BLOCK:
333 			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
334 				DC_WINBUF_SURFACE_KIND_BLOCK;
335 			break;
336 		}
337 
338 		tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
339 	} else {
340 		switch (window->tiling.mode) {
341 		case TEGRA_BO_TILING_MODE_PITCH:
342 			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
343 				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
344 			break;
345 
346 		case TEGRA_BO_TILING_MODE_TILED:
347 			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
348 				DC_WIN_BUFFER_ADDR_MODE_TILE;
349 			break;
350 
351 		case TEGRA_BO_TILING_MODE_BLOCK:
352 			/*
353 			 * No need to handle this here because ->atomic_check
354 			 * will already have filtered it out.
355 			 */
356 			break;
357 		}
358 
359 		tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
360 	}
361 
362 	value = WIN_ENABLE;
363 
364 	if (yuv) {
365 		/* setup default colorspace conversion coefficients */
366 		tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
367 		tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
368 		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
369 		tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
370 		tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
371 		tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
372 		tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
373 		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
374 
375 		value |= CSC_ENABLE;
376 	} else if (window->bits_per_pixel < 24) {
377 		value |= COLOR_EXPAND;
378 	}
379 
380 	if (window->bottom_up)
381 		value |= V_DIRECTION;
382 
383 	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
384 
385 	/*
386 	 * Disable blending and assume Window A is the bottom-most window,
387 	 * Window C is the top-most window and Window B is in the middle.
388 	 */
389 	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
390 	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
391 
392 	switch (index) {
393 	case 0:
394 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
395 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
396 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
397 		break;
398 
399 	case 1:
400 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
401 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
402 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
403 		break;
404 
405 	case 2:
406 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
407 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
408 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
409 		break;
410 	}
411 
412 	spin_unlock_irqrestore(&dc->lock, flags);
413 }
414 
415 static void tegra_plane_destroy(struct drm_plane *plane)
416 {
417 	struct tegra_plane *p = to_tegra_plane(plane);
418 
419 	drm_plane_cleanup(plane);
420 	kfree(p);
421 }
422 
423 static const u32 tegra_primary_plane_formats[] = {
424 	DRM_FORMAT_XBGR8888,
425 	DRM_FORMAT_XRGB8888,
426 	DRM_FORMAT_RGB565,
427 };
428 
429 static void tegra_primary_plane_destroy(struct drm_plane *plane)
430 {
431 	tegra_plane_destroy(plane);
432 }
433 
434 static void tegra_plane_reset(struct drm_plane *plane)
435 {
436 	struct tegra_plane_state *state;
437 
438 	if (plane->state)
439 		__drm_atomic_helper_plane_destroy_state(plane->state);
440 
441 	kfree(plane->state);
442 	plane->state = NULL;
443 
444 	state = kzalloc(sizeof(*state), GFP_KERNEL);
445 	if (state) {
446 		plane->state = &state->base;
447 		plane->state->plane = plane;
448 	}
449 }
450 
451 static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
452 {
453 	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
454 	struct tegra_plane_state *copy;
455 
456 	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
457 	if (!copy)
458 		return NULL;
459 
460 	__drm_atomic_helper_plane_duplicate_state(plane, &copy->base);
461 	copy->tiling = state->tiling;
462 	copy->format = state->format;
463 	copy->swap = state->swap;
464 
465 	return &copy->base;
466 }
467 
468 static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
469 					     struct drm_plane_state *state)
470 {
471 	__drm_atomic_helper_plane_destroy_state(state);
472 	kfree(state);
473 }
474 
475 static const struct drm_plane_funcs tegra_primary_plane_funcs = {
476 	.update_plane = drm_atomic_helper_update_plane,
477 	.disable_plane = drm_atomic_helper_disable_plane,
478 	.destroy = tegra_primary_plane_destroy,
479 	.reset = tegra_plane_reset,
480 	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
481 	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
482 };
483 
484 static int tegra_plane_state_add(struct tegra_plane *plane,
485 				 struct drm_plane_state *state)
486 {
487 	struct drm_crtc_state *crtc_state;
488 	struct tegra_dc_state *tegra;
489 	struct drm_rect clip;
490 	int err;
491 
492 	/* Propagate errors from allocation or locking failures. */
493 	crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
494 	if (IS_ERR(crtc_state))
495 		return PTR_ERR(crtc_state);
496 
497 	clip.x1 = 0;
498 	clip.y1 = 0;
499 	clip.x2 = crtc_state->mode.hdisplay;
500 	clip.y2 = crtc_state->mode.vdisplay;
501 
502 	/* Check plane state for visibility and calculate clipping bounds */
503 	err = drm_plane_helper_check_state(state, &clip, 0, INT_MAX,
504 					   true, true);
505 	if (err < 0)
506 		return err;
507 
508 	tegra = to_dc_state(crtc_state);
509 
510 	tegra->planes |= WIN_A_ACT_REQ << plane->index;
511 
512 	return 0;
513 }
514 
515 static int tegra_plane_atomic_check(struct drm_plane *plane,
516 				    struct drm_plane_state *state)
517 {
518 	struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
519 	struct tegra_bo_tiling *tiling = &plane_state->tiling;
520 	struct tegra_plane *tegra = to_tegra_plane(plane);
521 	struct tegra_dc *dc = to_tegra_dc(state->crtc);
522 	int err;
523 
524 	/* no need for further checks if the plane is being disabled */
525 	if (!state->crtc)
526 		return 0;
527 
528 	err = tegra_dc_format(state->fb->format->format, &plane_state->format,
529 			      &plane_state->swap);
530 	if (err < 0)
531 		return err;
532 
533 	err = tegra_fb_get_tiling(state->fb, tiling);
534 	if (err < 0)
535 		return err;
536 
537 	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
538 	    !dc->soc->supports_block_linear) {
539 		DRM_ERROR("hardware doesn't support block linear mode\n");
540 		return -EINVAL;
541 	}
542 
543 	/*
544 	 * Tegra doesn't support different strides for U and V planes so we
545 	 * error out if the user tries to display a framebuffer with such a
546 	 * configuration.
547 	 */
548 	if (state->fb->format->num_planes > 2) {
549 		if (state->fb->pitches[2] != state->fb->pitches[1]) {
550 			DRM_ERROR("unsupported UV-plane configuration\n");
551 			return -EINVAL;
552 		}
553 	}
554 
555 	err = tegra_plane_state_add(tegra, state);
556 	if (err < 0)
557 		return err;
558 
559 	return 0;
560 }
561 
562 static void tegra_dc_disable_window(struct tegra_dc *dc, int index)
563 {
564 	unsigned long flags;
565 	u32 value;
566 
567 	spin_lock_irqsave(&dc->lock, flags);
568 
569 	value = WINDOW_A_SELECT << index;
570 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
571 
572 	value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
573 	value &= ~WIN_ENABLE;
574 	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
575 
576 	spin_unlock_irqrestore(&dc->lock, flags);
577 }
578 
579 static void tegra_plane_atomic_update(struct drm_plane *plane,
580 				      struct drm_plane_state *old_state)
581 {
582 	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
583 	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
584 	struct drm_framebuffer *fb = plane->state->fb;
585 	struct tegra_plane *p = to_tegra_plane(plane);
586 	struct tegra_dc_window window;
587 	unsigned int i;
588 
589 	/* rien ne va plus */
590 	if (!plane->state->crtc || !plane->state->fb)
591 		return;
592 
593 	if (!plane->state->visible)
594 		return tegra_dc_disable_window(dc, p->index);
595 
596 	memset(&window, 0, sizeof(window));
597 	window.src.x = plane->state->src.x1 >> 16;
598 	window.src.y = plane->state->src.y1 >> 16;
599 	window.src.w = drm_rect_width(&plane->state->src) >> 16;
600 	window.src.h = drm_rect_height(&plane->state->src) >> 16;
601 	window.dst.x = plane->state->dst.x1;
602 	window.dst.y = plane->state->dst.y1;
603 	window.dst.w = drm_rect_width(&plane->state->dst);
604 	window.dst.h = drm_rect_height(&plane->state->dst);
605 	window.bits_per_pixel = fb->format->cpp[0] * 8;
606 	window.bottom_up = tegra_fb_is_bottom_up(fb);
607 
608 	/* copy from state */
609 	window.tiling = state->tiling;
610 	window.format = state->format;
611 	window.swap = state->swap;
612 
613 	for (i = 0; i < fb->format->num_planes; i++) {
614 		struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
615 
616 		window.base[i] = bo->paddr + fb->offsets[i];
617 
618 		/*
619 		 * Tegra uses a shared stride for UV planes. Framebuffers are
620 		 * already checked for this in the tegra_plane_atomic_check()
621 		 * function, so it's safe to ignore the V-plane pitch here.
622 		 */
623 		if (i < 2)
624 			window.stride[i] = fb->pitches[i];
625 	}
626 
627 	tegra_dc_setup_window(dc, p->index, &window);
628 }
629 
630 static void tegra_plane_atomic_disable(struct drm_plane *plane,
631 				       struct drm_plane_state *old_state)
632 {
633 	struct tegra_plane *p = to_tegra_plane(plane);
634 	struct tegra_dc *dc;
635 
636 	/* rien ne va plus */
637 	if (!old_state || !old_state->crtc)
638 		return;
639 
640 	dc = to_tegra_dc(old_state->crtc);
641 
642 	tegra_dc_disable_window(dc, p->index);
643 }
644 
645 static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = {
646 	.atomic_check = tegra_plane_atomic_check,
647 	.atomic_update = tegra_plane_atomic_update,
648 	.atomic_disable = tegra_plane_atomic_disable,
649 };
650 
651 static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
652 						       struct tegra_dc *dc)
653 {
654 	/*
655 	 * Ideally this would use drm_crtc_mask(), but that would require the
656 	 * CRTC to already be in the mode_config's list of CRTCs. However, it
657 	 * will only be added to that list in the drm_crtc_init_with_planes()
658 	 * (in tegra_dc_init()), which in turn requires registration of these
659 	 * planes. So we have ourselves a nice little chicken and egg problem
660 	 * here.
661 	 *
662 	 * We work around this by manually creating the mask from the number
663 	 * of CRTCs that have been registered, and should therefore always be
664 	 * the same as drm_crtc_index() after registration.
665 	 */
666 	unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
667 	struct tegra_plane *plane;
668 	unsigned int num_formats;
669 	const u32 *formats;
670 	int err;
671 
672 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
673 	if (!plane)
674 		return ERR_PTR(-ENOMEM);
675 
676 	num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
677 	formats = tegra_primary_plane_formats;
678 
679 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
680 				       &tegra_primary_plane_funcs, formats,
681 				       num_formats, NULL,
682 				       DRM_PLANE_TYPE_PRIMARY, NULL);
683 	if (err < 0) {
684 		kfree(plane);
685 		return ERR_PTR(err);
686 	}
687 
688 	drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs);
689 
690 	return &plane->base;
691 }
692 
693 static const u32 tegra_cursor_plane_formats[] = {
694 	DRM_FORMAT_RGBA8888,
695 };
696 
697 static int tegra_cursor_atomic_check(struct drm_plane *plane,
698 				     struct drm_plane_state *state)
699 {
700 	struct tegra_plane *tegra = to_tegra_plane(plane);
701 	int err;
702 
703 	/* no need for further checks if the plane is being disabled */
704 	if (!state->crtc)
705 		return 0;
706 
707 	/* scaling not supported for cursor */
708 	if ((state->src_w >> 16 != state->crtc_w) ||
709 	    (state->src_h >> 16 != state->crtc_h))
710 		return -EINVAL;
711 
712 	/* only square cursors supported */
713 	if (state->src_w != state->src_h)
714 		return -EINVAL;
715 
716 	if (state->crtc_w != 32 && state->crtc_w != 64 &&
717 	    state->crtc_w != 128 && state->crtc_w != 256)
718 		return -EINVAL;
719 
720 	err = tegra_plane_state_add(tegra, state);
721 	if (err < 0)
722 		return err;
723 
724 	return 0;
725 }
726 
727 static void tegra_cursor_atomic_update(struct drm_plane *plane,
728 				       struct drm_plane_state *old_state)
729 {
730 	struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
731 	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
732 	struct drm_plane_state *state = plane->state;
733 	u32 value = CURSOR_CLIP_DISPLAY;
734 
735 	/* rien ne va plus */
736 	if (!plane->state->crtc || !plane->state->fb)
737 		return;
738 
739 	switch (state->crtc_w) {
740 	case 32:
741 		value |= CURSOR_SIZE_32x32;
742 		break;
743 
744 	case 64:
745 		value |= CURSOR_SIZE_64x64;
746 		break;
747 
748 	case 128:
749 		value |= CURSOR_SIZE_128x128;
750 		break;
751 
752 	case 256:
753 		value |= CURSOR_SIZE_256x256;
754 		break;
755 
756 	default:
757 		WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
758 		     state->crtc_h);
759 		return;
760 	}
761 
762 	value |= (bo->paddr >> 10) & 0x3fffff;
763 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
764 
765 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
766 	value = (bo->paddr >> 32) & 0x3;
767 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
768 #endif
769 
770 	/* enable cursor and set blend mode */
771 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
772 	value |= CURSOR_ENABLE;
773 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
774 
775 	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
776 	value &= ~CURSOR_DST_BLEND_MASK;
777 	value &= ~CURSOR_SRC_BLEND_MASK;
778 	value |= CURSOR_MODE_NORMAL;
779 	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
780 	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
781 	value |= CURSOR_ALPHA;
782 	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
783 
784 	/* position the cursor */
785 	value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
786 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
787 }
788 
789 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
790 					struct drm_plane_state *old_state)
791 {
792 	struct tegra_dc *dc;
793 	u32 value;
794 
795 	/* rien ne va plus */
796 	if (!old_state || !old_state->crtc)
797 		return;
798 
799 	dc = to_tegra_dc(old_state->crtc);
800 
801 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
802 	value &= ~CURSOR_ENABLE;
803 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
804 }
805 
806 static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
807 	.update_plane = drm_atomic_helper_update_plane,
808 	.disable_plane = drm_atomic_helper_disable_plane,
809 	.destroy = tegra_plane_destroy,
810 	.reset = tegra_plane_reset,
811 	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
812 	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
813 };
814 
815 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
816 	.atomic_check = tegra_cursor_atomic_check,
817 	.atomic_update = tegra_cursor_atomic_update,
818 	.atomic_disable = tegra_cursor_atomic_disable,
819 };
820 
821 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
822 						      struct tegra_dc *dc)
823 {
824 	struct tegra_plane *plane;
825 	unsigned int num_formats;
826 	const u32 *formats;
827 	int err;
828 
829 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
830 	if (!plane)
831 		return ERR_PTR(-ENOMEM);
832 
833 	/*
834 	 * This index is kind of fake. The cursor isn't a regular plane, but
835 	 * its update and activation request bits in DC_CMD_STATE_CONTROL do
836 	 * use the same programming. Setting this fake index here allows the
837 	 * code in tegra_add_plane_state() to do the right thing without the
838 	 * need to special-casing the cursor plane.
839 	 */
840 	plane->index = 6;
841 
842 	num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
843 	formats = tegra_cursor_plane_formats;
844 
845 	err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
846 				       &tegra_cursor_plane_funcs, formats,
847 				       num_formats, NULL,
848 				       DRM_PLANE_TYPE_CURSOR, NULL);
849 	if (err < 0) {
850 		kfree(plane);
851 		return ERR_PTR(err);
852 	}
853 
854 	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
855 
856 	return &plane->base;
857 }
858 
859 static void tegra_overlay_plane_destroy(struct drm_plane *plane)
860 {
861 	tegra_plane_destroy(plane);
862 }
863 
864 static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
865 	.update_plane = drm_atomic_helper_update_plane,
866 	.disable_plane = drm_atomic_helper_disable_plane,
867 	.destroy = tegra_overlay_plane_destroy,
868 	.reset = tegra_plane_reset,
869 	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
870 	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
871 };
872 
873 static const uint32_t tegra_overlay_plane_formats[] = {
874 	DRM_FORMAT_XBGR8888,
875 	DRM_FORMAT_XRGB8888,
876 	DRM_FORMAT_RGB565,
877 	DRM_FORMAT_UYVY,
878 	DRM_FORMAT_YUYV,
879 	DRM_FORMAT_YUV420,
880 	DRM_FORMAT_YUV422,
881 };
882 
883 static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = {
884 	.atomic_check = tegra_plane_atomic_check,
885 	.atomic_update = tegra_plane_atomic_update,
886 	.atomic_disable = tegra_plane_atomic_disable,
887 };
888 
889 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
890 						       struct tegra_dc *dc,
891 						       unsigned int index)
892 {
893 	struct tegra_plane *plane;
894 	unsigned int num_formats;
895 	const u32 *formats;
896 	int err;
897 
898 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
899 	if (!plane)
900 		return ERR_PTR(-ENOMEM);
901 
902 	plane->index = index;
903 
904 	num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
905 	formats = tegra_overlay_plane_formats;
906 
907 	err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
908 				       &tegra_overlay_plane_funcs, formats,
909 				       num_formats, NULL,
910 				       DRM_PLANE_TYPE_OVERLAY, NULL);
911 	if (err < 0) {
912 		kfree(plane);
913 		return ERR_PTR(err);
914 	}
915 
916 	drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs);
917 
918 	return &plane->base;
919 }
920 
921 static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
922 {
923 	struct drm_plane *plane;
924 	unsigned int i;
925 
926 	for (i = 0; i < 2; i++) {
927 		plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
928 		if (IS_ERR(plane))
929 			return PTR_ERR(plane);
930 	}
931 
932 	return 0;
933 }
934 
935 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
936 {
937 	struct tegra_dc *dc = to_tegra_dc(crtc);
938 
939 	if (dc->syncpt)
940 		return host1x_syncpt_read(dc->syncpt);
941 
942 	/* fallback to software emulated VBLANK counter */
943 	return drm_crtc_vblank_count(&dc->base);
944 }
945 
946 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
947 {
948 	struct tegra_dc *dc = to_tegra_dc(crtc);
949 	unsigned long value, flags;
950 
951 	spin_lock_irqsave(&dc->lock, flags);
952 
953 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
954 	value |= VBLANK_INT;
955 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
956 
957 	spin_unlock_irqrestore(&dc->lock, flags);
958 
959 	return 0;
960 }
961 
962 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
963 {
964 	struct tegra_dc *dc = to_tegra_dc(crtc);
965 	unsigned long value, flags;
966 
967 	spin_lock_irqsave(&dc->lock, flags);
968 
969 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
970 	value &= ~VBLANK_INT;
971 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
972 
973 	spin_unlock_irqrestore(&dc->lock, flags);
974 }
975 
976 static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
977 {
978 	struct drm_device *drm = dc->base.dev;
979 	struct drm_crtc *crtc = &dc->base;
980 	unsigned long flags, base;
981 	struct tegra_bo *bo;
982 
983 	spin_lock_irqsave(&drm->event_lock, flags);
984 
985 	if (!dc->event) {
986 		spin_unlock_irqrestore(&drm->event_lock, flags);
987 		return;
988 	}
989 
990 	bo = tegra_fb_get_plane(crtc->primary->fb, 0);
991 
992 	spin_lock(&dc->lock);
993 
994 	/* check if new start address has been latched */
995 	tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
996 	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
997 	base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
998 	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
999 
1000 	spin_unlock(&dc->lock);
1001 
1002 	if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
1003 		drm_crtc_send_vblank_event(crtc, dc->event);
1004 		drm_crtc_vblank_put(crtc);
1005 		dc->event = NULL;
1006 	}
1007 
1008 	spin_unlock_irqrestore(&drm->event_lock, flags);
1009 }
1010 
1011 static void tegra_dc_destroy(struct drm_crtc *crtc)
1012 {
1013 	drm_crtc_cleanup(crtc);
1014 }
1015 
1016 static void tegra_crtc_reset(struct drm_crtc *crtc)
1017 {
1018 	struct tegra_dc_state *state;
1019 
1020 	if (crtc->state)
1021 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
1022 
1023 	kfree(crtc->state);
1024 	crtc->state = NULL;
1025 
1026 	state = kzalloc(sizeof(*state), GFP_KERNEL);
1027 	if (state) {
1028 		crtc->state = &state->base;
1029 		crtc->state->crtc = crtc;
1030 	}
1031 
1032 	drm_crtc_vblank_reset(crtc);
1033 }
1034 
1035 static struct drm_crtc_state *
1036 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1037 {
1038 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1039 	struct tegra_dc_state *copy;
1040 
1041 	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1042 	if (!copy)
1043 		return NULL;
1044 
1045 	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1046 	copy->clk = state->clk;
1047 	copy->pclk = state->pclk;
1048 	copy->div = state->div;
1049 	copy->planes = state->planes;
1050 
1051 	return &copy->base;
1052 }
1053 
1054 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1055 					    struct drm_crtc_state *state)
1056 {
1057 	__drm_atomic_helper_crtc_destroy_state(state);
1058 	kfree(state);
1059 }
1060 
1061 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1062 	.page_flip = drm_atomic_helper_page_flip,
1063 	.set_config = drm_atomic_helper_set_config,
1064 	.destroy = tegra_dc_destroy,
1065 	.reset = tegra_crtc_reset,
1066 	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1067 	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1068 	.get_vblank_counter = tegra_dc_get_vblank_counter,
1069 	.enable_vblank = tegra_dc_enable_vblank,
1070 	.disable_vblank = tegra_dc_disable_vblank,
1071 };
1072 
1073 static int tegra_dc_set_timings(struct tegra_dc *dc,
1074 				struct drm_display_mode *mode)
1075 {
1076 	unsigned int h_ref_to_sync = 1;
1077 	unsigned int v_ref_to_sync = 1;
1078 	unsigned long value;
1079 
1080 	tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1081 
1082 	value = (v_ref_to_sync << 16) | h_ref_to_sync;
1083 	tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1084 
1085 	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1086 		((mode->hsync_end - mode->hsync_start) <<  0);
1087 	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1088 
1089 	value = ((mode->vtotal - mode->vsync_end) << 16) |
1090 		((mode->htotal - mode->hsync_end) <<  0);
1091 	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1092 
1093 	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1094 		((mode->hsync_start - mode->hdisplay) <<  0);
1095 	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1096 
1097 	value = (mode->vdisplay << 16) | mode->hdisplay;
1098 	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1099 
1100 	return 0;
1101 }
1102 
1103 /**
1104  * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1105  *     state
1106  * @dc: display controller
1107  * @crtc_state: CRTC atomic state
1108  * @clk: parent clock for display controller
1109  * @pclk: pixel clock
1110  * @div: shift clock divider
1111  *
1112  * Returns:
1113  * 0 on success or a negative error-code on failure.
1114  */
1115 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1116 			       struct drm_crtc_state *crtc_state,
1117 			       struct clk *clk, unsigned long pclk,
1118 			       unsigned int div)
1119 {
1120 	struct tegra_dc_state *state = to_dc_state(crtc_state);
1121 
1122 	if (!clk_has_parent(dc->clk, clk))
1123 		return -EINVAL;
1124 
1125 	state->clk = clk;
1126 	state->pclk = pclk;
1127 	state->div = div;
1128 
1129 	return 0;
1130 }
1131 
1132 static void tegra_dc_commit_state(struct tegra_dc *dc,
1133 				  struct tegra_dc_state *state)
1134 {
1135 	u32 value;
1136 	int err;
1137 
1138 	err = clk_set_parent(dc->clk, state->clk);
1139 	if (err < 0)
1140 		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1141 
1142 	/*
1143 	 * Outputs may not want to change the parent clock rate. This is only
1144 	 * relevant to Tegra20 where only a single display PLL is available.
1145 	 * Since that PLL would typically be used for HDMI, an internal LVDS
1146 	 * panel would need to be driven by some other clock such as PLL_P
1147 	 * which is shared with other peripherals. Changing the clock rate
1148 	 * should therefore be avoided.
1149 	 */
1150 	if (state->pclk > 0) {
1151 		err = clk_set_rate(state->clk, state->pclk);
1152 		if (err < 0)
1153 			dev_err(dc->dev,
1154 				"failed to set clock rate to %lu Hz\n",
1155 				state->pclk);
1156 	}
1157 
1158 	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1159 		      state->div);
1160 	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1161 
1162 	value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1163 	tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1164 }
1165 
1166 static void tegra_dc_stop(struct tegra_dc *dc)
1167 {
1168 	u32 value;
1169 
1170 	/* stop the display controller */
1171 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1172 	value &= ~DISP_CTRL_MODE_MASK;
1173 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1174 
1175 	tegra_dc_commit(dc);
1176 }
1177 
1178 static bool tegra_dc_idle(struct tegra_dc *dc)
1179 {
1180 	u32 value;
1181 
1182 	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1183 
1184 	return (value & DISP_CTRL_MODE_MASK) == 0;
1185 }
1186 
1187 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1188 {
1189 	timeout = jiffies + msecs_to_jiffies(timeout);
1190 
1191 	while (time_before(jiffies, timeout)) {
1192 		if (tegra_dc_idle(dc))
1193 			return 0;
1194 
1195 		usleep_range(1000, 2000);
1196 	}
1197 
1198 	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1199 	return -ETIMEDOUT;
1200 }
1201 
1202 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1203 				      struct drm_crtc_state *old_state)
1204 {
1205 	struct tegra_dc *dc = to_tegra_dc(crtc);
1206 	u32 value;
1207 
1208 	if (!tegra_dc_idle(dc)) {
1209 		tegra_dc_stop(dc);
1210 
1211 		/*
1212 		 * Ignore the return value, there isn't anything useful to do
1213 		 * in case this fails.
1214 		 */
1215 		tegra_dc_wait_idle(dc, 100);
1216 	}
1217 
1218 	/*
1219 	 * This should really be part of the RGB encoder driver, but clearing
1220 	 * these bits has the side-effect of stopping the display controller.
1221 	 * When that happens no VBLANK interrupts will be raised. At the same
1222 	 * time the encoder is disabled before the display controller, so the
1223 	 * above code is always going to timeout waiting for the controller
1224 	 * to go idle.
1225 	 *
1226 	 * Given the close coupling between the RGB encoder and the display
1227 	 * controller doing it here is still kind of okay. None of the other
1228 	 * encoder drivers require these bits to be cleared.
1229 	 *
1230 	 * XXX: Perhaps given that the display controller is switched off at
1231 	 * this point anyway maybe clearing these bits isn't even useful for
1232 	 * the RGB encoder?
1233 	 */
1234 	if (dc->rgb) {
1235 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1236 		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1237 			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1238 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1239 	}
1240 
1241 	tegra_dc_stats_reset(&dc->stats);
1242 	drm_crtc_vblank_off(crtc);
1243 
1244 	pm_runtime_put_sync(dc->dev);
1245 }
1246 
1247 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
1248 				     struct drm_crtc_state *old_state)
1249 {
1250 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1251 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1252 	struct tegra_dc *dc = to_tegra_dc(crtc);
1253 	u32 value;
1254 
1255 	pm_runtime_get_sync(dc->dev);
1256 
1257 	/* initialize display controller */
1258 	if (dc->syncpt) {
1259 		u32 syncpt = host1x_syncpt_id(dc->syncpt);
1260 
1261 		value = SYNCPT_CNTRL_NO_STALL;
1262 		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1263 
1264 		value = SYNCPT_VSYNC_ENABLE | syncpt;
1265 		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1266 	}
1267 
1268 	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1269 		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1270 	tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1271 
1272 	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1273 		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1274 	tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1275 
1276 	/* initialize timer */
1277 	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1278 		WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1279 	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1280 
1281 	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1282 		WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1283 	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1284 
1285 	value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1286 		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1287 	tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1288 
1289 	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1290 		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1291 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1292 
1293 	if (dc->soc->supports_border_color)
1294 		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1295 
1296 	/* apply PLL and pixel clock changes */
1297 	tegra_dc_commit_state(dc, state);
1298 
1299 	/* program display mode */
1300 	tegra_dc_set_timings(dc, mode);
1301 
1302 	/* interlacing isn't supported yet, so disable it */
1303 	if (dc->soc->supports_interlacing) {
1304 		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1305 		value &= ~INTERLACE_ENABLE;
1306 		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1307 	}
1308 
1309 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1310 	value &= ~DISP_CTRL_MODE_MASK;
1311 	value |= DISP_CTRL_MODE_C_DISPLAY;
1312 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1313 
1314 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1315 	value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1316 		 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1317 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1318 
1319 	tegra_dc_commit(dc);
1320 
1321 	drm_crtc_vblank_on(crtc);
1322 }
1323 
1324 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
1325 				   struct drm_crtc_state *state)
1326 {
1327 	return 0;
1328 }
1329 
1330 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1331 				    struct drm_crtc_state *old_crtc_state)
1332 {
1333 	struct tegra_dc *dc = to_tegra_dc(crtc);
1334 
1335 	if (crtc->state->event) {
1336 		crtc->state->event->pipe = drm_crtc_index(crtc);
1337 
1338 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1339 
1340 		dc->event = crtc->state->event;
1341 		crtc->state->event = NULL;
1342 	}
1343 }
1344 
1345 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1346 				    struct drm_crtc_state *old_crtc_state)
1347 {
1348 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1349 	struct tegra_dc *dc = to_tegra_dc(crtc);
1350 
1351 	tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
1352 	tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
1353 }
1354 
1355 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1356 	.atomic_check = tegra_crtc_atomic_check,
1357 	.atomic_begin = tegra_crtc_atomic_begin,
1358 	.atomic_flush = tegra_crtc_atomic_flush,
1359 	.atomic_enable = tegra_crtc_atomic_enable,
1360 	.atomic_disable = tegra_crtc_atomic_disable,
1361 };
1362 
1363 static irqreturn_t tegra_dc_irq(int irq, void *data)
1364 {
1365 	struct tegra_dc *dc = data;
1366 	unsigned long status;
1367 
1368 	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1369 	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1370 
1371 	if (status & FRAME_END_INT) {
1372 		/*
1373 		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1374 		*/
1375 		dc->stats.frames++;
1376 	}
1377 
1378 	if (status & VBLANK_INT) {
1379 		/*
1380 		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1381 		*/
1382 		drm_crtc_handle_vblank(&dc->base);
1383 		tegra_dc_finish_page_flip(dc);
1384 		dc->stats.vblank++;
1385 	}
1386 
1387 	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1388 		/*
1389 		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1390 		*/
1391 		dc->stats.underflow++;
1392 	}
1393 
1394 	if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1395 		/*
1396 		dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1397 		*/
1398 		dc->stats.overflow++;
1399 	}
1400 
1401 	return IRQ_HANDLED;
1402 }
1403 
1404 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1405 {
1406 	struct drm_info_node *node = s->private;
1407 	struct tegra_dc *dc = node->info_ent->data;
1408 	int err = 0;
1409 
1410 	drm_modeset_lock(&dc->base.mutex, NULL);
1411 
1412 	if (!dc->base.state->active) {
1413 		err = -EBUSY;
1414 		goto unlock;
1415 	}
1416 
1417 #define DUMP_REG(name)						\
1418 	seq_printf(s, "%-40s %#05x %08x\n", #name, name,	\
1419 		   tegra_dc_readl(dc, name))
1420 
1421 	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
1422 	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1423 	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
1424 	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
1425 	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
1426 	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
1427 	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
1428 	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
1429 	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
1430 	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
1431 	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
1432 	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
1433 	DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
1434 	DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
1435 	DUMP_REG(DC_CMD_DISPLAY_COMMAND);
1436 	DUMP_REG(DC_CMD_SIGNAL_RAISE);
1437 	DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
1438 	DUMP_REG(DC_CMD_INT_STATUS);
1439 	DUMP_REG(DC_CMD_INT_MASK);
1440 	DUMP_REG(DC_CMD_INT_ENABLE);
1441 	DUMP_REG(DC_CMD_INT_TYPE);
1442 	DUMP_REG(DC_CMD_INT_POLARITY);
1443 	DUMP_REG(DC_CMD_SIGNAL_RAISE1);
1444 	DUMP_REG(DC_CMD_SIGNAL_RAISE2);
1445 	DUMP_REG(DC_CMD_SIGNAL_RAISE3);
1446 	DUMP_REG(DC_CMD_STATE_ACCESS);
1447 	DUMP_REG(DC_CMD_STATE_CONTROL);
1448 	DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
1449 	DUMP_REG(DC_CMD_REG_ACT_CONTROL);
1450 	DUMP_REG(DC_COM_CRC_CONTROL);
1451 	DUMP_REG(DC_COM_CRC_CHECKSUM);
1452 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
1453 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
1454 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
1455 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
1456 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
1457 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
1458 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
1459 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
1460 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
1461 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
1462 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
1463 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
1464 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
1465 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
1466 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
1467 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
1468 	DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
1469 	DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
1470 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
1471 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
1472 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
1473 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
1474 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
1475 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
1476 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
1477 	DUMP_REG(DC_COM_PIN_MISC_CONTROL);
1478 	DUMP_REG(DC_COM_PIN_PM0_CONTROL);
1479 	DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
1480 	DUMP_REG(DC_COM_PIN_PM1_CONTROL);
1481 	DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
1482 	DUMP_REG(DC_COM_SPI_CONTROL);
1483 	DUMP_REG(DC_COM_SPI_START_BYTE);
1484 	DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
1485 	DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
1486 	DUMP_REG(DC_COM_HSPI_CS_DC);
1487 	DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
1488 	DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
1489 	DUMP_REG(DC_COM_GPIO_CTRL);
1490 	DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
1491 	DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
1492 	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
1493 	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
1494 	DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
1495 	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
1496 	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1497 	DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
1498 	DUMP_REG(DC_DISP_REF_TO_SYNC);
1499 	DUMP_REG(DC_DISP_SYNC_WIDTH);
1500 	DUMP_REG(DC_DISP_BACK_PORCH);
1501 	DUMP_REG(DC_DISP_ACTIVE);
1502 	DUMP_REG(DC_DISP_FRONT_PORCH);
1503 	DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
1504 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
1505 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
1506 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
1507 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
1508 	DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
1509 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
1510 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
1511 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
1512 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
1513 	DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
1514 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
1515 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
1516 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
1517 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
1518 	DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
1519 	DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
1520 	DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
1521 	DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
1522 	DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
1523 	DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
1524 	DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
1525 	DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
1526 	DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
1527 	DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
1528 	DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
1529 	DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
1530 	DUMP_REG(DC_DISP_M0_CONTROL);
1531 	DUMP_REG(DC_DISP_M1_CONTROL);
1532 	DUMP_REG(DC_DISP_DI_CONTROL);
1533 	DUMP_REG(DC_DISP_PP_CONTROL);
1534 	DUMP_REG(DC_DISP_PP_SELECT_A);
1535 	DUMP_REG(DC_DISP_PP_SELECT_B);
1536 	DUMP_REG(DC_DISP_PP_SELECT_C);
1537 	DUMP_REG(DC_DISP_PP_SELECT_D);
1538 	DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
1539 	DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
1540 	DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
1541 	DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
1542 	DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
1543 	DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
1544 	DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
1545 	DUMP_REG(DC_DISP_BORDER_COLOR);
1546 	DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
1547 	DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
1548 	DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
1549 	DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
1550 	DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
1551 	DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
1552 	DUMP_REG(DC_DISP_CURSOR_START_ADDR);
1553 	DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
1554 	DUMP_REG(DC_DISP_CURSOR_POSITION);
1555 	DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
1556 	DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
1557 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
1558 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
1559 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
1560 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
1561 	DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
1562 	DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
1563 	DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
1564 	DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
1565 	DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
1566 	DUMP_REG(DC_DISP_DAC_CRT_CTRL);
1567 	DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
1568 	DUMP_REG(DC_DISP_SD_CONTROL);
1569 	DUMP_REG(DC_DISP_SD_CSC_COEFF);
1570 	DUMP_REG(DC_DISP_SD_LUT(0));
1571 	DUMP_REG(DC_DISP_SD_LUT(1));
1572 	DUMP_REG(DC_DISP_SD_LUT(2));
1573 	DUMP_REG(DC_DISP_SD_LUT(3));
1574 	DUMP_REG(DC_DISP_SD_LUT(4));
1575 	DUMP_REG(DC_DISP_SD_LUT(5));
1576 	DUMP_REG(DC_DISP_SD_LUT(6));
1577 	DUMP_REG(DC_DISP_SD_LUT(7));
1578 	DUMP_REG(DC_DISP_SD_LUT(8));
1579 	DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
1580 	DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
1581 	DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
1582 	DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
1583 	DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
1584 	DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
1585 	DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
1586 	DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
1587 	DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
1588 	DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
1589 	DUMP_REG(DC_DISP_SD_BL_TF(0));
1590 	DUMP_REG(DC_DISP_SD_BL_TF(1));
1591 	DUMP_REG(DC_DISP_SD_BL_TF(2));
1592 	DUMP_REG(DC_DISP_SD_BL_TF(3));
1593 	DUMP_REG(DC_DISP_SD_BL_CONTROL);
1594 	DUMP_REG(DC_DISP_SD_HW_K_VALUES);
1595 	DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
1596 	DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
1597 	DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
1598 	DUMP_REG(DC_WIN_WIN_OPTIONS);
1599 	DUMP_REG(DC_WIN_BYTE_SWAP);
1600 	DUMP_REG(DC_WIN_BUFFER_CONTROL);
1601 	DUMP_REG(DC_WIN_COLOR_DEPTH);
1602 	DUMP_REG(DC_WIN_POSITION);
1603 	DUMP_REG(DC_WIN_SIZE);
1604 	DUMP_REG(DC_WIN_PRESCALED_SIZE);
1605 	DUMP_REG(DC_WIN_H_INITIAL_DDA);
1606 	DUMP_REG(DC_WIN_V_INITIAL_DDA);
1607 	DUMP_REG(DC_WIN_DDA_INC);
1608 	DUMP_REG(DC_WIN_LINE_STRIDE);
1609 	DUMP_REG(DC_WIN_BUF_STRIDE);
1610 	DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1611 	DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1612 	DUMP_REG(DC_WIN_DV_CONTROL);
1613 	DUMP_REG(DC_WIN_BLEND_NOKEY);
1614 	DUMP_REG(DC_WIN_BLEND_1WIN);
1615 	DUMP_REG(DC_WIN_BLEND_2WIN_X);
1616 	DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1617 	DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1618 	DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1619 	DUMP_REG(DC_WINBUF_START_ADDR);
1620 	DUMP_REG(DC_WINBUF_START_ADDR_NS);
1621 	DUMP_REG(DC_WINBUF_START_ADDR_U);
1622 	DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1623 	DUMP_REG(DC_WINBUF_START_ADDR_V);
1624 	DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1625 	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1626 	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1627 	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1628 	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1629 	DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1630 	DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1631 	DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1632 	DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1633 
1634 #undef DUMP_REG
1635 
1636 unlock:
1637 	drm_modeset_unlock(&dc->base.mutex);
1638 	return err;
1639 }
1640 
1641 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1642 {
1643 	struct drm_info_node *node = s->private;
1644 	struct tegra_dc *dc = node->info_ent->data;
1645 	int err = 0;
1646 	u32 value;
1647 
1648 	drm_modeset_lock(&dc->base.mutex, NULL);
1649 
1650 	if (!dc->base.state->active) {
1651 		err = -EBUSY;
1652 		goto unlock;
1653 	}
1654 
1655 	value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1656 	tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1657 	tegra_dc_commit(dc);
1658 
1659 	drm_crtc_wait_one_vblank(&dc->base);
1660 	drm_crtc_wait_one_vblank(&dc->base);
1661 
1662 	value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1663 	seq_printf(s, "%08x\n", value);
1664 
1665 	tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1666 
1667 unlock:
1668 	drm_modeset_unlock(&dc->base.mutex);
1669 	return err;
1670 }
1671 
1672 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1673 {
1674 	struct drm_info_node *node = s->private;
1675 	struct tegra_dc *dc = node->info_ent->data;
1676 
1677 	seq_printf(s, "frames: %lu\n", dc->stats.frames);
1678 	seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1679 	seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1680 	seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1681 
1682 	return 0;
1683 }
1684 
1685 static struct drm_info_list debugfs_files[] = {
1686 	{ "regs", tegra_dc_show_regs, 0, NULL },
1687 	{ "crc", tegra_dc_show_crc, 0, NULL },
1688 	{ "stats", tegra_dc_show_stats, 0, NULL },
1689 };
1690 
1691 static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1692 {
1693 	unsigned int i;
1694 	char *name;
1695 	int err;
1696 
1697 	name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1698 	dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1699 	kfree(name);
1700 
1701 	if (!dc->debugfs)
1702 		return -ENOMEM;
1703 
1704 	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1705 				    GFP_KERNEL);
1706 	if (!dc->debugfs_files) {
1707 		err = -ENOMEM;
1708 		goto remove;
1709 	}
1710 
1711 	for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1712 		dc->debugfs_files[i].data = dc;
1713 
1714 	err = drm_debugfs_create_files(dc->debugfs_files,
1715 				       ARRAY_SIZE(debugfs_files),
1716 				       dc->debugfs, minor);
1717 	if (err < 0)
1718 		goto free;
1719 
1720 	dc->minor = minor;
1721 
1722 	return 0;
1723 
1724 free:
1725 	kfree(dc->debugfs_files);
1726 	dc->debugfs_files = NULL;
1727 remove:
1728 	debugfs_remove(dc->debugfs);
1729 	dc->debugfs = NULL;
1730 
1731 	return err;
1732 }
1733 
1734 static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1735 {
1736 	drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1737 				 dc->minor);
1738 	dc->minor = NULL;
1739 
1740 	kfree(dc->debugfs_files);
1741 	dc->debugfs_files = NULL;
1742 
1743 	debugfs_remove(dc->debugfs);
1744 	dc->debugfs = NULL;
1745 
1746 	return 0;
1747 }
1748 
1749 static int tegra_dc_init(struct host1x_client *client)
1750 {
1751 	struct drm_device *drm = dev_get_drvdata(client->parent);
1752 	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1753 	struct tegra_dc *dc = host1x_client_to_dc(client);
1754 	struct tegra_drm *tegra = drm->dev_private;
1755 	struct drm_plane *primary = NULL;
1756 	struct drm_plane *cursor = NULL;
1757 	int err;
1758 
1759 	dc->syncpt = host1x_syncpt_request(dc->dev, flags);
1760 	if (!dc->syncpt)
1761 		dev_warn(dc->dev, "failed to allocate syncpoint\n");
1762 
1763 	if (tegra->domain) {
1764 		err = iommu_attach_device(tegra->domain, dc->dev);
1765 		if (err < 0) {
1766 			dev_err(dc->dev, "failed to attach to domain: %d\n",
1767 				err);
1768 			return err;
1769 		}
1770 
1771 		dc->domain = tegra->domain;
1772 	}
1773 
1774 	primary = tegra_dc_primary_plane_create(drm, dc);
1775 	if (IS_ERR(primary)) {
1776 		err = PTR_ERR(primary);
1777 		goto cleanup;
1778 	}
1779 
1780 	if (dc->soc->supports_cursor) {
1781 		cursor = tegra_dc_cursor_plane_create(drm, dc);
1782 		if (IS_ERR(cursor)) {
1783 			err = PTR_ERR(cursor);
1784 			goto cleanup;
1785 		}
1786 	}
1787 
1788 	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1789 					&tegra_crtc_funcs, NULL);
1790 	if (err < 0)
1791 		goto cleanup;
1792 
1793 	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1794 
1795 	/*
1796 	 * Keep track of the minimum pitch alignment across all display
1797 	 * controllers.
1798 	 */
1799 	if (dc->soc->pitch_align > tegra->pitch_align)
1800 		tegra->pitch_align = dc->soc->pitch_align;
1801 
1802 	err = tegra_dc_rgb_init(drm, dc);
1803 	if (err < 0 && err != -ENODEV) {
1804 		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1805 		goto cleanup;
1806 	}
1807 
1808 	err = tegra_dc_add_planes(drm, dc);
1809 	if (err < 0)
1810 		goto cleanup;
1811 
1812 	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1813 		err = tegra_dc_debugfs_init(dc, drm->primary);
1814 		if (err < 0)
1815 			dev_err(dc->dev, "debugfs setup failed: %d\n", err);
1816 	}
1817 
1818 	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1819 			       dev_name(dc->dev), dc);
1820 	if (err < 0) {
1821 		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1822 			err);
1823 		goto cleanup;
1824 	}
1825 
1826 	return 0;
1827 
1828 cleanup:
1829 	if (cursor)
1830 		drm_plane_cleanup(cursor);
1831 
1832 	if (primary)
1833 		drm_plane_cleanup(primary);
1834 
1835 	if (tegra->domain) {
1836 		iommu_detach_device(tegra->domain, dc->dev);
1837 		dc->domain = NULL;
1838 	}
1839 
1840 	return err;
1841 }
1842 
1843 static int tegra_dc_exit(struct host1x_client *client)
1844 {
1845 	struct tegra_dc *dc = host1x_client_to_dc(client);
1846 	int err;
1847 
1848 	devm_free_irq(dc->dev, dc->irq, dc);
1849 
1850 	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1851 		err = tegra_dc_debugfs_exit(dc);
1852 		if (err < 0)
1853 			dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1854 	}
1855 
1856 	err = tegra_dc_rgb_exit(dc);
1857 	if (err) {
1858 		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1859 		return err;
1860 	}
1861 
1862 	if (dc->domain) {
1863 		iommu_detach_device(dc->domain, dc->dev);
1864 		dc->domain = NULL;
1865 	}
1866 
1867 	host1x_syncpt_free(dc->syncpt);
1868 
1869 	return 0;
1870 }
1871 
1872 static const struct host1x_client_ops dc_client_ops = {
1873 	.init = tegra_dc_init,
1874 	.exit = tegra_dc_exit,
1875 };
1876 
1877 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1878 	.supports_border_color = true,
1879 	.supports_interlacing = false,
1880 	.supports_cursor = false,
1881 	.supports_block_linear = false,
1882 	.pitch_align = 8,
1883 	.has_powergate = false,
1884 	.broken_reset = true,
1885 };
1886 
1887 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1888 	.supports_border_color = true,
1889 	.supports_interlacing = false,
1890 	.supports_cursor = false,
1891 	.supports_block_linear = false,
1892 	.pitch_align = 8,
1893 	.has_powergate = false,
1894 	.broken_reset = false,
1895 };
1896 
1897 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1898 	.supports_border_color = true,
1899 	.supports_interlacing = false,
1900 	.supports_cursor = false,
1901 	.supports_block_linear = false,
1902 	.pitch_align = 64,
1903 	.has_powergate = true,
1904 	.broken_reset = false,
1905 };
1906 
1907 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1908 	.supports_border_color = false,
1909 	.supports_interlacing = true,
1910 	.supports_cursor = true,
1911 	.supports_block_linear = true,
1912 	.pitch_align = 64,
1913 	.has_powergate = true,
1914 	.broken_reset = false,
1915 };
1916 
1917 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
1918 	.supports_border_color = false,
1919 	.supports_interlacing = true,
1920 	.supports_cursor = true,
1921 	.supports_block_linear = true,
1922 	.pitch_align = 64,
1923 	.has_powergate = true,
1924 	.broken_reset = false,
1925 };
1926 
1927 static const struct of_device_id tegra_dc_of_match[] = {
1928 	{
1929 		.compatible = "nvidia,tegra210-dc",
1930 		.data = &tegra210_dc_soc_info,
1931 	}, {
1932 		.compatible = "nvidia,tegra124-dc",
1933 		.data = &tegra124_dc_soc_info,
1934 	}, {
1935 		.compatible = "nvidia,tegra114-dc",
1936 		.data = &tegra114_dc_soc_info,
1937 	}, {
1938 		.compatible = "nvidia,tegra30-dc",
1939 		.data = &tegra30_dc_soc_info,
1940 	}, {
1941 		.compatible = "nvidia,tegra20-dc",
1942 		.data = &tegra20_dc_soc_info,
1943 	}, {
1944 		/* sentinel */
1945 	}
1946 };
1947 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
1948 
1949 static int tegra_dc_parse_dt(struct tegra_dc *dc)
1950 {
1951 	struct device_node *np;
1952 	u32 value = 0;
1953 	int err;
1954 
1955 	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1956 	if (err < 0) {
1957 		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1958 
1959 		/*
1960 		 * If the nvidia,head property isn't present, try to find the
1961 		 * correct head number by looking up the position of this
1962 		 * display controller's node within the device tree. Assuming
1963 		 * that the nodes are ordered properly in the DTS file and
1964 		 * that the translation into a flattened device tree blob
1965 		 * preserves that ordering this will actually yield the right
1966 		 * head number.
1967 		 *
1968 		 * If those assumptions don't hold, this will still work for
1969 		 * cases where only a single display controller is used.
1970 		 */
1971 		for_each_matching_node(np, tegra_dc_of_match) {
1972 			if (np == dc->dev->of_node) {
1973 				of_node_put(np);
1974 				break;
1975 			}
1976 
1977 			value++;
1978 		}
1979 	}
1980 
1981 	dc->pipe = value;
1982 
1983 	return 0;
1984 }
1985 
1986 static int tegra_dc_probe(struct platform_device *pdev)
1987 {
1988 	const struct of_device_id *id;
1989 	struct resource *regs;
1990 	struct tegra_dc *dc;
1991 	int err;
1992 
1993 	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1994 	if (!dc)
1995 		return -ENOMEM;
1996 
1997 	id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
1998 	if (!id)
1999 		return -ENODEV;
2000 
2001 	spin_lock_init(&dc->lock);
2002 	INIT_LIST_HEAD(&dc->list);
2003 	dc->dev = &pdev->dev;
2004 	dc->soc = id->data;
2005 
2006 	err = tegra_dc_parse_dt(dc);
2007 	if (err < 0)
2008 		return err;
2009 
2010 	dc->clk = devm_clk_get(&pdev->dev, NULL);
2011 	if (IS_ERR(dc->clk)) {
2012 		dev_err(&pdev->dev, "failed to get clock\n");
2013 		return PTR_ERR(dc->clk);
2014 	}
2015 
2016 	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
2017 	if (IS_ERR(dc->rst)) {
2018 		dev_err(&pdev->dev, "failed to get reset\n");
2019 		return PTR_ERR(dc->rst);
2020 	}
2021 
2022 	if (!dc->soc->broken_reset)
2023 		reset_control_assert(dc->rst);
2024 
2025 	if (dc->soc->has_powergate) {
2026 		if (dc->pipe == 0)
2027 			dc->powergate = TEGRA_POWERGATE_DIS;
2028 		else
2029 			dc->powergate = TEGRA_POWERGATE_DISB;
2030 
2031 		tegra_powergate_power_off(dc->powergate);
2032 	}
2033 
2034 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2035 	dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2036 	if (IS_ERR(dc->regs))
2037 		return PTR_ERR(dc->regs);
2038 
2039 	dc->irq = platform_get_irq(pdev, 0);
2040 	if (dc->irq < 0) {
2041 		dev_err(&pdev->dev, "failed to get IRQ\n");
2042 		return -ENXIO;
2043 	}
2044 
2045 	err = tegra_dc_rgb_probe(dc);
2046 	if (err < 0 && err != -ENODEV) {
2047 		dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2048 		return err;
2049 	}
2050 
2051 	platform_set_drvdata(pdev, dc);
2052 	pm_runtime_enable(&pdev->dev);
2053 
2054 	INIT_LIST_HEAD(&dc->client.list);
2055 	dc->client.ops = &dc_client_ops;
2056 	dc->client.dev = &pdev->dev;
2057 
2058 	err = host1x_client_register(&dc->client);
2059 	if (err < 0) {
2060 		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2061 			err);
2062 		return err;
2063 	}
2064 
2065 	return 0;
2066 }
2067 
2068 static int tegra_dc_remove(struct platform_device *pdev)
2069 {
2070 	struct tegra_dc *dc = platform_get_drvdata(pdev);
2071 	int err;
2072 
2073 	err = host1x_client_unregister(&dc->client);
2074 	if (err < 0) {
2075 		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2076 			err);
2077 		return err;
2078 	}
2079 
2080 	err = tegra_dc_rgb_remove(dc);
2081 	if (err < 0) {
2082 		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2083 		return err;
2084 	}
2085 
2086 	pm_runtime_disable(&pdev->dev);
2087 
2088 	return 0;
2089 }
2090 
2091 #ifdef CONFIG_PM
2092 static int tegra_dc_suspend(struct device *dev)
2093 {
2094 	struct tegra_dc *dc = dev_get_drvdata(dev);
2095 	int err;
2096 
2097 	if (!dc->soc->broken_reset) {
2098 		err = reset_control_assert(dc->rst);
2099 		if (err < 0) {
2100 			dev_err(dev, "failed to assert reset: %d\n", err);
2101 			return err;
2102 		}
2103 	}
2104 
2105 	if (dc->soc->has_powergate)
2106 		tegra_powergate_power_off(dc->powergate);
2107 
2108 	clk_disable_unprepare(dc->clk);
2109 
2110 	return 0;
2111 }
2112 
2113 static int tegra_dc_resume(struct device *dev)
2114 {
2115 	struct tegra_dc *dc = dev_get_drvdata(dev);
2116 	int err;
2117 
2118 	if (dc->soc->has_powergate) {
2119 		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2120 							dc->rst);
2121 		if (err < 0) {
2122 			dev_err(dev, "failed to power partition: %d\n", err);
2123 			return err;
2124 		}
2125 	} else {
2126 		err = clk_prepare_enable(dc->clk);
2127 		if (err < 0) {
2128 			dev_err(dev, "failed to enable clock: %d\n", err);
2129 			return err;
2130 		}
2131 
2132 		if (!dc->soc->broken_reset) {
2133 			err = reset_control_deassert(dc->rst);
2134 			if (err < 0) {
2135 				dev_err(dev,
2136 					"failed to deassert reset: %d\n", err);
2137 				return err;
2138 			}
2139 		}
2140 	}
2141 
2142 	return 0;
2143 }
2144 #endif
2145 
2146 static const struct dev_pm_ops tegra_dc_pm_ops = {
2147 	SET_RUNTIME_PM_OPS(tegra_dc_suspend, tegra_dc_resume, NULL)
2148 };
2149 
2150 struct platform_driver tegra_dc_driver = {
2151 	.driver = {
2152 		.name = "tegra-dc",
2153 		.of_match_table = tegra_dc_of_match,
2154 		.pm = &tegra_dc_pm_ops,
2155 	},
2156 	.probe = tegra_dc_probe,
2157 	.remove = tegra_dc_remove,
2158 };
2159