xref: /openbmc/linux/drivers/gpu/drm/tegra/dc.c (revision 25b892b5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Avionic Design GmbH
4  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/debugfs.h>
9 #include <linux/delay.h>
10 #include <linux/iommu.h>
11 #include <linux/interconnect.h>
12 #include <linux/module.h>
13 #include <linux/of_device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/reset.h>
16 
17 #include <soc/tegra/pmc.h>
18 
19 #include <drm/drm_atomic.h>
20 #include <drm/drm_atomic_helper.h>
21 #include <drm/drm_debugfs.h>
22 #include <drm/drm_fourcc.h>
23 #include <drm/drm_plane_helper.h>
24 #include <drm/drm_vblank.h>
25 
26 #include "dc.h"
27 #include "drm.h"
28 #include "gem.h"
29 #include "hub.h"
30 #include "plane.h"
31 
32 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
33 					    struct drm_crtc_state *state);
34 
35 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
36 {
37 	stats->frames = 0;
38 	stats->vblank = 0;
39 	stats->underflow = 0;
40 	stats->overflow = 0;
41 }
42 
43 /* Reads the active copy of a register. */
44 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
45 {
46 	u32 value;
47 
48 	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
49 	value = tegra_dc_readl(dc, offset);
50 	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
51 
52 	return value;
53 }
54 
55 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
56 					      unsigned int offset)
57 {
58 	if (offset >= 0x500 && offset <= 0x638) {
59 		offset = 0x000 + (offset - 0x500);
60 		return plane->offset + offset;
61 	}
62 
63 	if (offset >= 0x700 && offset <= 0x719) {
64 		offset = 0x180 + (offset - 0x700);
65 		return plane->offset + offset;
66 	}
67 
68 	if (offset >= 0x800 && offset <= 0x839) {
69 		offset = 0x1c0 + (offset - 0x800);
70 		return plane->offset + offset;
71 	}
72 
73 	dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
74 
75 	return plane->offset + offset;
76 }
77 
78 static inline u32 tegra_plane_readl(struct tegra_plane *plane,
79 				    unsigned int offset)
80 {
81 	return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
82 }
83 
84 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
85 				      unsigned int offset)
86 {
87 	tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
88 }
89 
90 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
91 {
92 	struct device_node *np = dc->dev->of_node;
93 	struct of_phandle_iterator it;
94 	int err;
95 
96 	of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
97 		if (it.node == dev->of_node)
98 			return true;
99 
100 	return false;
101 }
102 
103 /*
104  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
105  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
106  * Latching happens mmediately if the display controller is in STOP mode or
107  * on the next frame boundary otherwise.
108  *
109  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
110  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
111  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
112  * into the ACTIVE copy, either immediately if the display controller is in
113  * STOP mode, or at the next frame boundary otherwise.
114  */
115 void tegra_dc_commit(struct tegra_dc *dc)
116 {
117 	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
118 	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
119 }
120 
121 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
122 				  unsigned int bpp)
123 {
124 	fixed20_12 outf = dfixed_init(out);
125 	fixed20_12 inf = dfixed_init(in);
126 	u32 dda_inc;
127 	int max;
128 
129 	if (v)
130 		max = 15;
131 	else {
132 		switch (bpp) {
133 		case 2:
134 			max = 8;
135 			break;
136 
137 		default:
138 			WARN_ON_ONCE(1);
139 			fallthrough;
140 		case 4:
141 			max = 4;
142 			break;
143 		}
144 	}
145 
146 	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
147 	inf.full -= dfixed_const(1);
148 
149 	dda_inc = dfixed_div(inf, outf);
150 	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
151 
152 	return dda_inc;
153 }
154 
155 static inline u32 compute_initial_dda(unsigned int in)
156 {
157 	fixed20_12 inf = dfixed_init(in);
158 	return dfixed_frac(inf);
159 }
160 
161 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
162 {
163 	u32 background[3] = {
164 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
165 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
166 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
167 	};
168 	u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
169 			 BLEND_COLOR_KEY_NONE;
170 	u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
171 	struct tegra_plane_state *state;
172 	u32 blending[2];
173 	unsigned int i;
174 
175 	/* disable blending for non-overlapping case */
176 	tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
177 	tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
178 
179 	state = to_tegra_plane_state(plane->base.state);
180 
181 	if (state->opaque) {
182 		/*
183 		 * Since custom fix-weight blending isn't utilized and weight
184 		 * of top window is set to max, we can enforce dependent
185 		 * blending which in this case results in transparent bottom
186 		 * window if top window is opaque and if top window enables
187 		 * alpha blending, then bottom window is getting alpha value
188 		 * of 1 minus the sum of alpha components of the overlapping
189 		 * plane.
190 		 */
191 		background[0] |= BLEND_CONTROL_DEPENDENT;
192 		background[1] |= BLEND_CONTROL_DEPENDENT;
193 
194 		/*
195 		 * The region where three windows overlap is the intersection
196 		 * of the two regions where two windows overlap. It contributes
197 		 * to the area if all of the windows on top of it have an alpha
198 		 * component.
199 		 */
200 		switch (state->base.normalized_zpos) {
201 		case 0:
202 			if (state->blending[0].alpha &&
203 			    state->blending[1].alpha)
204 				background[2] |= BLEND_CONTROL_DEPENDENT;
205 			break;
206 
207 		case 1:
208 			background[2] |= BLEND_CONTROL_DEPENDENT;
209 			break;
210 		}
211 	} else {
212 		/*
213 		 * Enable alpha blending if pixel format has an alpha
214 		 * component.
215 		 */
216 		foreground |= BLEND_CONTROL_ALPHA;
217 
218 		/*
219 		 * If any of the windows on top of this window is opaque, it
220 		 * will completely conceal this window within that area. If
221 		 * top window has an alpha component, it is blended over the
222 		 * bottom window.
223 		 */
224 		for (i = 0; i < 2; i++) {
225 			if (state->blending[i].alpha &&
226 			    state->blending[i].top)
227 				background[i] |= BLEND_CONTROL_DEPENDENT;
228 		}
229 
230 		switch (state->base.normalized_zpos) {
231 		case 0:
232 			if (state->blending[0].alpha &&
233 			    state->blending[1].alpha)
234 				background[2] |= BLEND_CONTROL_DEPENDENT;
235 			break;
236 
237 		case 1:
238 			/*
239 			 * When both middle and topmost windows have an alpha,
240 			 * these windows a mixed together and then the result
241 			 * is blended over the bottom window.
242 			 */
243 			if (state->blending[0].alpha &&
244 			    state->blending[0].top)
245 				background[2] |= BLEND_CONTROL_ALPHA;
246 
247 			if (state->blending[1].alpha &&
248 			    state->blending[1].top)
249 				background[2] |= BLEND_CONTROL_ALPHA;
250 			break;
251 		}
252 	}
253 
254 	switch (state->base.normalized_zpos) {
255 	case 0:
256 		tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
257 		tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
258 		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
259 		break;
260 
261 	case 1:
262 		/*
263 		 * If window B / C is topmost, then X / Y registers are
264 		 * matching the order of blending[...] state indices,
265 		 * otherwise a swap is required.
266 		 */
267 		if (!state->blending[0].top && state->blending[1].top) {
268 			blending[0] = foreground;
269 			blending[1] = background[1];
270 		} else {
271 			blending[0] = background[0];
272 			blending[1] = foreground;
273 		}
274 
275 		tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
276 		tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
277 		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
278 		break;
279 
280 	case 2:
281 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
282 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
283 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
284 		break;
285 	}
286 }
287 
288 static void tegra_plane_setup_blending(struct tegra_plane *plane,
289 				       const struct tegra_dc_window *window)
290 {
291 	u32 value;
292 
293 	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
294 		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
295 		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
296 	tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
297 
298 	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
299 		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
300 		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
301 	tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
302 
303 	value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
304 	tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
305 }
306 
307 static bool
308 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
309 				     const struct tegra_dc_window *window)
310 {
311 	struct tegra_dc *dc = plane->dc;
312 
313 	if (window->src.w == window->dst.w)
314 		return false;
315 
316 	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
317 		return false;
318 
319 	return true;
320 }
321 
322 static bool
323 tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
324 				   const struct tegra_dc_window *window)
325 {
326 	struct tegra_dc *dc = plane->dc;
327 
328 	if (window->src.h == window->dst.h)
329 		return false;
330 
331 	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
332 		return false;
333 
334 	if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
335 		return false;
336 
337 	return true;
338 }
339 
340 static void tegra_dc_setup_window(struct tegra_plane *plane,
341 				  const struct tegra_dc_window *window)
342 {
343 	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
344 	struct tegra_dc *dc = plane->dc;
345 	bool yuv, planar;
346 	u32 value;
347 
348 	/*
349 	 * For YUV planar modes, the number of bytes per pixel takes into
350 	 * account only the luma component and therefore is 1.
351 	 */
352 	yuv = tegra_plane_format_is_yuv(window->format, &planar, NULL);
353 	if (!yuv)
354 		bpp = window->bits_per_pixel / 8;
355 	else
356 		bpp = planar ? 1 : 2;
357 
358 	tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
359 	tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
360 
361 	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
362 	tegra_plane_writel(plane, value, DC_WIN_POSITION);
363 
364 	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
365 	tegra_plane_writel(plane, value, DC_WIN_SIZE);
366 
367 	h_offset = window->src.x * bpp;
368 	v_offset = window->src.y;
369 	h_size = window->src.w * bpp;
370 	v_size = window->src.h;
371 
372 	if (window->reflect_x)
373 		h_offset += (window->src.w - 1) * bpp;
374 
375 	if (window->reflect_y)
376 		v_offset += window->src.h - 1;
377 
378 	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
379 	tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
380 
381 	/*
382 	 * For DDA computations the number of bytes per pixel for YUV planar
383 	 * modes needs to take into account all Y, U and V components.
384 	 */
385 	if (yuv && planar)
386 		bpp = 2;
387 
388 	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
389 	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
390 
391 	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
392 	tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
393 
394 	h_dda = compute_initial_dda(window->src.x);
395 	v_dda = compute_initial_dda(window->src.y);
396 
397 	tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
398 	tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
399 
400 	tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
401 	tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
402 
403 	tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
404 
405 	if (yuv && planar) {
406 		tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
407 		tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
408 		value = window->stride[1] << 16 | window->stride[0];
409 		tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
410 	} else {
411 		tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
412 	}
413 
414 	tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
415 	tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
416 
417 	if (dc->soc->supports_block_linear) {
418 		unsigned long height = window->tiling.value;
419 
420 		switch (window->tiling.mode) {
421 		case TEGRA_BO_TILING_MODE_PITCH:
422 			value = DC_WINBUF_SURFACE_KIND_PITCH;
423 			break;
424 
425 		case TEGRA_BO_TILING_MODE_TILED:
426 			value = DC_WINBUF_SURFACE_KIND_TILED;
427 			break;
428 
429 		case TEGRA_BO_TILING_MODE_BLOCK:
430 			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
431 				DC_WINBUF_SURFACE_KIND_BLOCK;
432 			break;
433 		}
434 
435 		tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
436 	} else {
437 		switch (window->tiling.mode) {
438 		case TEGRA_BO_TILING_MODE_PITCH:
439 			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
440 				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
441 			break;
442 
443 		case TEGRA_BO_TILING_MODE_TILED:
444 			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
445 				DC_WIN_BUFFER_ADDR_MODE_TILE;
446 			break;
447 
448 		case TEGRA_BO_TILING_MODE_BLOCK:
449 			/*
450 			 * No need to handle this here because ->atomic_check
451 			 * will already have filtered it out.
452 			 */
453 			break;
454 		}
455 
456 		tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
457 	}
458 
459 	value = WIN_ENABLE;
460 
461 	if (yuv) {
462 		/* setup default colorspace conversion coefficients */
463 		tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
464 		tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
465 		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
466 		tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
467 		tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
468 		tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
469 		tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
470 		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
471 
472 		value |= CSC_ENABLE;
473 	} else if (window->bits_per_pixel < 24) {
474 		value |= COLOR_EXPAND;
475 	}
476 
477 	if (window->reflect_x)
478 		value |= H_DIRECTION;
479 
480 	if (window->reflect_y)
481 		value |= V_DIRECTION;
482 
483 	if (tegra_plane_use_horizontal_filtering(plane, window)) {
484 		/*
485 		 * Enable horizontal 6-tap filter and set filtering
486 		 * coefficients to the default values defined in TRM.
487 		 */
488 		tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
489 		tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
490 		tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
491 		tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
492 		tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
493 		tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
494 		tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
495 		tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
496 		tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
497 		tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
498 		tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
499 		tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
500 		tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
501 		tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
502 		tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
503 		tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
504 
505 		value |= H_FILTER;
506 	}
507 
508 	if (tegra_plane_use_vertical_filtering(plane, window)) {
509 		unsigned int i, k;
510 
511 		/*
512 		 * Enable vertical 2-tap filter and set filtering
513 		 * coefficients to the default values defined in TRM.
514 		 */
515 		for (i = 0, k = 128; i < 16; i++, k -= 8)
516 			tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
517 
518 		value |= V_FILTER;
519 	}
520 
521 	tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
522 
523 	if (dc->soc->has_legacy_blending)
524 		tegra_plane_setup_blending_legacy(plane);
525 	else
526 		tegra_plane_setup_blending(plane, window);
527 }
528 
529 static const u32 tegra20_primary_formats[] = {
530 	DRM_FORMAT_ARGB4444,
531 	DRM_FORMAT_ARGB1555,
532 	DRM_FORMAT_RGB565,
533 	DRM_FORMAT_RGBA5551,
534 	DRM_FORMAT_ABGR8888,
535 	DRM_FORMAT_ARGB8888,
536 	/* non-native formats */
537 	DRM_FORMAT_XRGB1555,
538 	DRM_FORMAT_RGBX5551,
539 	DRM_FORMAT_XBGR8888,
540 	DRM_FORMAT_XRGB8888,
541 };
542 
543 static const u64 tegra20_modifiers[] = {
544 	DRM_FORMAT_MOD_LINEAR,
545 	DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
546 	DRM_FORMAT_MOD_INVALID
547 };
548 
549 static const u32 tegra114_primary_formats[] = {
550 	DRM_FORMAT_ARGB4444,
551 	DRM_FORMAT_ARGB1555,
552 	DRM_FORMAT_RGB565,
553 	DRM_FORMAT_RGBA5551,
554 	DRM_FORMAT_ABGR8888,
555 	DRM_FORMAT_ARGB8888,
556 	/* new on Tegra114 */
557 	DRM_FORMAT_ABGR4444,
558 	DRM_FORMAT_ABGR1555,
559 	DRM_FORMAT_BGRA5551,
560 	DRM_FORMAT_XRGB1555,
561 	DRM_FORMAT_RGBX5551,
562 	DRM_FORMAT_XBGR1555,
563 	DRM_FORMAT_BGRX5551,
564 	DRM_FORMAT_BGR565,
565 	DRM_FORMAT_BGRA8888,
566 	DRM_FORMAT_RGBA8888,
567 	DRM_FORMAT_XRGB8888,
568 	DRM_FORMAT_XBGR8888,
569 };
570 
571 static const u32 tegra124_primary_formats[] = {
572 	DRM_FORMAT_ARGB4444,
573 	DRM_FORMAT_ARGB1555,
574 	DRM_FORMAT_RGB565,
575 	DRM_FORMAT_RGBA5551,
576 	DRM_FORMAT_ABGR8888,
577 	DRM_FORMAT_ARGB8888,
578 	/* new on Tegra114 */
579 	DRM_FORMAT_ABGR4444,
580 	DRM_FORMAT_ABGR1555,
581 	DRM_FORMAT_BGRA5551,
582 	DRM_FORMAT_XRGB1555,
583 	DRM_FORMAT_RGBX5551,
584 	DRM_FORMAT_XBGR1555,
585 	DRM_FORMAT_BGRX5551,
586 	DRM_FORMAT_BGR565,
587 	DRM_FORMAT_BGRA8888,
588 	DRM_FORMAT_RGBA8888,
589 	DRM_FORMAT_XRGB8888,
590 	DRM_FORMAT_XBGR8888,
591 	/* new on Tegra124 */
592 	DRM_FORMAT_RGBX8888,
593 	DRM_FORMAT_BGRX8888,
594 };
595 
596 static const u64 tegra124_modifiers[] = {
597 	DRM_FORMAT_MOD_LINEAR,
598 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
599 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
600 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
601 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
602 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
603 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
604 	DRM_FORMAT_MOD_INVALID
605 };
606 
607 static int tegra_plane_atomic_check(struct drm_plane *plane,
608 				    struct drm_atomic_state *state)
609 {
610 	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
611 										 plane);
612 	struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
613 	unsigned int supported_rotation = DRM_MODE_ROTATE_0 |
614 					  DRM_MODE_REFLECT_X |
615 					  DRM_MODE_REFLECT_Y;
616 	unsigned int rotation = new_plane_state->rotation;
617 	struct tegra_bo_tiling *tiling = &plane_state->tiling;
618 	struct tegra_plane *tegra = to_tegra_plane(plane);
619 	struct tegra_dc *dc = to_tegra_dc(new_plane_state->crtc);
620 	int err;
621 
622 	plane_state->peak_memory_bandwidth = 0;
623 	plane_state->avg_memory_bandwidth = 0;
624 
625 	/* no need for further checks if the plane is being disabled */
626 	if (!new_plane_state->crtc) {
627 		plane_state->total_peak_memory_bandwidth = 0;
628 		return 0;
629 	}
630 
631 	err = tegra_plane_format(new_plane_state->fb->format->format,
632 				 &plane_state->format,
633 				 &plane_state->swap);
634 	if (err < 0)
635 		return err;
636 
637 	/*
638 	 * Tegra20 and Tegra30 are special cases here because they support
639 	 * only variants of specific formats with an alpha component, but not
640 	 * the corresponding opaque formats. However, the opaque formats can
641 	 * be emulated by disabling alpha blending for the plane.
642 	 */
643 	if (dc->soc->has_legacy_blending) {
644 		err = tegra_plane_setup_legacy_state(tegra, plane_state);
645 		if (err < 0)
646 			return err;
647 	}
648 
649 	err = tegra_fb_get_tiling(new_plane_state->fb, tiling);
650 	if (err < 0)
651 		return err;
652 
653 	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
654 	    !dc->soc->supports_block_linear) {
655 		DRM_ERROR("hardware doesn't support block linear mode\n");
656 		return -EINVAL;
657 	}
658 
659 	/*
660 	 * Older userspace used custom BO flag in order to specify the Y
661 	 * reflection, while modern userspace uses the generic DRM rotation
662 	 * property in order to achieve the same result.  The legacy BO flag
663 	 * duplicates the DRM rotation property when both are set.
664 	 */
665 	if (tegra_fb_is_bottom_up(new_plane_state->fb))
666 		rotation |= DRM_MODE_REFLECT_Y;
667 
668 	rotation = drm_rotation_simplify(rotation, supported_rotation);
669 
670 	if (rotation & DRM_MODE_REFLECT_X)
671 		plane_state->reflect_x = true;
672 	else
673 		plane_state->reflect_x = false;
674 
675 	if (rotation & DRM_MODE_REFLECT_Y)
676 		plane_state->reflect_y = true;
677 	else
678 		plane_state->reflect_y = false;
679 
680 	/*
681 	 * Tegra doesn't support different strides for U and V planes so we
682 	 * error out if the user tries to display a framebuffer with such a
683 	 * configuration.
684 	 */
685 	if (new_plane_state->fb->format->num_planes > 2) {
686 		if (new_plane_state->fb->pitches[2] != new_plane_state->fb->pitches[1]) {
687 			DRM_ERROR("unsupported UV-plane configuration\n");
688 			return -EINVAL;
689 		}
690 	}
691 
692 	err = tegra_plane_state_add(tegra, new_plane_state);
693 	if (err < 0)
694 		return err;
695 
696 	return 0;
697 }
698 
699 static void tegra_plane_atomic_disable(struct drm_plane *plane,
700 				       struct drm_atomic_state *state)
701 {
702 	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
703 									   plane);
704 	struct tegra_plane *p = to_tegra_plane(plane);
705 	u32 value;
706 
707 	/* rien ne va plus */
708 	if (!old_state || !old_state->crtc)
709 		return;
710 
711 	value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
712 	value &= ~WIN_ENABLE;
713 	tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
714 }
715 
716 static void tegra_plane_atomic_update(struct drm_plane *plane,
717 				      struct drm_atomic_state *state)
718 {
719 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
720 									   plane);
721 	struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
722 	struct drm_framebuffer *fb = new_state->fb;
723 	struct tegra_plane *p = to_tegra_plane(plane);
724 	struct tegra_dc_window window;
725 	unsigned int i;
726 
727 	/* rien ne va plus */
728 	if (!new_state->crtc || !new_state->fb)
729 		return;
730 
731 	if (!new_state->visible)
732 		return tegra_plane_atomic_disable(plane, state);
733 
734 	memset(&window, 0, sizeof(window));
735 	window.src.x = new_state->src.x1 >> 16;
736 	window.src.y = new_state->src.y1 >> 16;
737 	window.src.w = drm_rect_width(&new_state->src) >> 16;
738 	window.src.h = drm_rect_height(&new_state->src) >> 16;
739 	window.dst.x = new_state->dst.x1;
740 	window.dst.y = new_state->dst.y1;
741 	window.dst.w = drm_rect_width(&new_state->dst);
742 	window.dst.h = drm_rect_height(&new_state->dst);
743 	window.bits_per_pixel = fb->format->cpp[0] * 8;
744 	window.reflect_x = tegra_plane_state->reflect_x;
745 	window.reflect_y = tegra_plane_state->reflect_y;
746 
747 	/* copy from state */
748 	window.zpos = new_state->normalized_zpos;
749 	window.tiling = tegra_plane_state->tiling;
750 	window.format = tegra_plane_state->format;
751 	window.swap = tegra_plane_state->swap;
752 
753 	for (i = 0; i < fb->format->num_planes; i++) {
754 		window.base[i] = tegra_plane_state->iova[i] + fb->offsets[i];
755 
756 		/*
757 		 * Tegra uses a shared stride for UV planes. Framebuffers are
758 		 * already checked for this in the tegra_plane_atomic_check()
759 		 * function, so it's safe to ignore the V-plane pitch here.
760 		 */
761 		if (i < 2)
762 			window.stride[i] = fb->pitches[i];
763 	}
764 
765 	tegra_dc_setup_window(p, &window);
766 }
767 
768 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
769 	.prepare_fb = tegra_plane_prepare_fb,
770 	.cleanup_fb = tegra_plane_cleanup_fb,
771 	.atomic_check = tegra_plane_atomic_check,
772 	.atomic_disable = tegra_plane_atomic_disable,
773 	.atomic_update = tegra_plane_atomic_update,
774 };
775 
776 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
777 {
778 	/*
779 	 * Ideally this would use drm_crtc_mask(), but that would require the
780 	 * CRTC to already be in the mode_config's list of CRTCs. However, it
781 	 * will only be added to that list in the drm_crtc_init_with_planes()
782 	 * (in tegra_dc_init()), which in turn requires registration of these
783 	 * planes. So we have ourselves a nice little chicken and egg problem
784 	 * here.
785 	 *
786 	 * We work around this by manually creating the mask from the number
787 	 * of CRTCs that have been registered, and should therefore always be
788 	 * the same as drm_crtc_index() after registration.
789 	 */
790 	return 1 << drm->mode_config.num_crtc;
791 }
792 
793 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
794 						    struct tegra_dc *dc)
795 {
796 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
797 	enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
798 	struct tegra_plane *plane;
799 	unsigned int num_formats;
800 	const u64 *modifiers;
801 	const u32 *formats;
802 	int err;
803 
804 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
805 	if (!plane)
806 		return ERR_PTR(-ENOMEM);
807 
808 	/* Always use window A as primary window */
809 	plane->offset = 0xa00;
810 	plane->index = 0;
811 	plane->dc = dc;
812 
813 	num_formats = dc->soc->num_primary_formats;
814 	formats = dc->soc->primary_formats;
815 	modifiers = dc->soc->modifiers;
816 
817 	err = tegra_plane_interconnect_init(plane);
818 	if (err) {
819 		kfree(plane);
820 		return ERR_PTR(err);
821 	}
822 
823 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
824 				       &tegra_plane_funcs, formats,
825 				       num_formats, modifiers, type, NULL);
826 	if (err < 0) {
827 		kfree(plane);
828 		return ERR_PTR(err);
829 	}
830 
831 	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
832 	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
833 
834 	err = drm_plane_create_rotation_property(&plane->base,
835 						 DRM_MODE_ROTATE_0,
836 						 DRM_MODE_ROTATE_0 |
837 						 DRM_MODE_ROTATE_180 |
838 						 DRM_MODE_REFLECT_X |
839 						 DRM_MODE_REFLECT_Y);
840 	if (err < 0)
841 		dev_err(dc->dev, "failed to create rotation property: %d\n",
842 			err);
843 
844 	return &plane->base;
845 }
846 
847 static const u32 tegra_legacy_cursor_plane_formats[] = {
848 	DRM_FORMAT_RGBA8888,
849 };
850 
851 static const u32 tegra_cursor_plane_formats[] = {
852 	DRM_FORMAT_ARGB8888,
853 };
854 
855 static int tegra_cursor_atomic_check(struct drm_plane *plane,
856 				     struct drm_atomic_state *state)
857 {
858 	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
859 										 plane);
860 	struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
861 	struct tegra_plane *tegra = to_tegra_plane(plane);
862 	int err;
863 
864 	plane_state->peak_memory_bandwidth = 0;
865 	plane_state->avg_memory_bandwidth = 0;
866 
867 	/* no need for further checks if the plane is being disabled */
868 	if (!new_plane_state->crtc) {
869 		plane_state->total_peak_memory_bandwidth = 0;
870 		return 0;
871 	}
872 
873 	/* scaling not supported for cursor */
874 	if ((new_plane_state->src_w >> 16 != new_plane_state->crtc_w) ||
875 	    (new_plane_state->src_h >> 16 != new_plane_state->crtc_h))
876 		return -EINVAL;
877 
878 	/* only square cursors supported */
879 	if (new_plane_state->src_w != new_plane_state->src_h)
880 		return -EINVAL;
881 
882 	if (new_plane_state->crtc_w != 32 && new_plane_state->crtc_w != 64 &&
883 	    new_plane_state->crtc_w != 128 && new_plane_state->crtc_w != 256)
884 		return -EINVAL;
885 
886 	err = tegra_plane_state_add(tegra, new_plane_state);
887 	if (err < 0)
888 		return err;
889 
890 	return 0;
891 }
892 
893 static void tegra_cursor_atomic_update(struct drm_plane *plane,
894 				       struct drm_atomic_state *state)
895 {
896 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
897 									   plane);
898 	struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
899 	struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
900 	struct tegra_drm *tegra = plane->dev->dev_private;
901 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
902 	u64 dma_mask = *dc->dev->dma_mask;
903 #endif
904 	unsigned int x, y;
905 	u32 value = 0;
906 
907 	/* rien ne va plus */
908 	if (!new_state->crtc || !new_state->fb)
909 		return;
910 
911 	/*
912 	 * Legacy display supports hardware clipping of the cursor, but
913 	 * nvdisplay relies on software to clip the cursor to the screen.
914 	 */
915 	if (!dc->soc->has_nvdisplay)
916 		value |= CURSOR_CLIP_DISPLAY;
917 
918 	switch (new_state->crtc_w) {
919 	case 32:
920 		value |= CURSOR_SIZE_32x32;
921 		break;
922 
923 	case 64:
924 		value |= CURSOR_SIZE_64x64;
925 		break;
926 
927 	case 128:
928 		value |= CURSOR_SIZE_128x128;
929 		break;
930 
931 	case 256:
932 		value |= CURSOR_SIZE_256x256;
933 		break;
934 
935 	default:
936 		WARN(1, "cursor size %ux%u not supported\n",
937 		     new_state->crtc_w, new_state->crtc_h);
938 		return;
939 	}
940 
941 	value |= (tegra_plane_state->iova[0] >> 10) & 0x3fffff;
942 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
943 
944 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
945 	value = (tegra_plane_state->iova[0] >> 32) & (dma_mask >> 32);
946 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
947 #endif
948 
949 	/* enable cursor and set blend mode */
950 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
951 	value |= CURSOR_ENABLE;
952 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
953 
954 	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
955 	value &= ~CURSOR_DST_BLEND_MASK;
956 	value &= ~CURSOR_SRC_BLEND_MASK;
957 
958 	if (dc->soc->has_nvdisplay)
959 		value &= ~CURSOR_COMPOSITION_MODE_XOR;
960 	else
961 		value |= CURSOR_MODE_NORMAL;
962 
963 	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
964 	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
965 	value |= CURSOR_ALPHA;
966 	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
967 
968 	/* nvdisplay relies on software for clipping */
969 	if (dc->soc->has_nvdisplay) {
970 		struct drm_rect src;
971 
972 		x = new_state->dst.x1;
973 		y = new_state->dst.y1;
974 
975 		drm_rect_fp_to_int(&src, &new_state->src);
976 
977 		value = (src.y1 & tegra->vmask) << 16 | (src.x1 & tegra->hmask);
978 		tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_POINT_IN_CURSOR);
979 
980 		value = (drm_rect_height(&src) & tegra->vmask) << 16 |
981 			(drm_rect_width(&src) & tegra->hmask);
982 		tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_SIZE_IN_CURSOR);
983 	} else {
984 		x = new_state->crtc_x;
985 		y = new_state->crtc_y;
986 	}
987 
988 	/* position the cursor */
989 	value = ((y & tegra->vmask) << 16) | (x & tegra->hmask);
990 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
991 }
992 
993 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
994 					struct drm_atomic_state *state)
995 {
996 	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
997 									   plane);
998 	struct tegra_dc *dc;
999 	u32 value;
1000 
1001 	/* rien ne va plus */
1002 	if (!old_state || !old_state->crtc)
1003 		return;
1004 
1005 	dc = to_tegra_dc(old_state->crtc);
1006 
1007 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
1008 	value &= ~CURSOR_ENABLE;
1009 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
1010 }
1011 
1012 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
1013 	.prepare_fb = tegra_plane_prepare_fb,
1014 	.cleanup_fb = tegra_plane_cleanup_fb,
1015 	.atomic_check = tegra_cursor_atomic_check,
1016 	.atomic_update = tegra_cursor_atomic_update,
1017 	.atomic_disable = tegra_cursor_atomic_disable,
1018 };
1019 
1020 static const uint64_t linear_modifiers[] = {
1021 	DRM_FORMAT_MOD_LINEAR,
1022 	DRM_FORMAT_MOD_INVALID
1023 };
1024 
1025 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
1026 						      struct tegra_dc *dc)
1027 {
1028 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1029 	struct tegra_plane *plane;
1030 	unsigned int num_formats;
1031 	const u32 *formats;
1032 	int err;
1033 
1034 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1035 	if (!plane)
1036 		return ERR_PTR(-ENOMEM);
1037 
1038 	/*
1039 	 * This index is kind of fake. The cursor isn't a regular plane, but
1040 	 * its update and activation request bits in DC_CMD_STATE_CONTROL do
1041 	 * use the same programming. Setting this fake index here allows the
1042 	 * code in tegra_add_plane_state() to do the right thing without the
1043 	 * need to special-casing the cursor plane.
1044 	 */
1045 	plane->index = 6;
1046 	plane->dc = dc;
1047 
1048 	if (!dc->soc->has_nvdisplay) {
1049 		num_formats = ARRAY_SIZE(tegra_legacy_cursor_plane_formats);
1050 		formats = tegra_legacy_cursor_plane_formats;
1051 
1052 		err = tegra_plane_interconnect_init(plane);
1053 		if (err) {
1054 			kfree(plane);
1055 			return ERR_PTR(err);
1056 		}
1057 	} else {
1058 		num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
1059 		formats = tegra_cursor_plane_formats;
1060 	}
1061 
1062 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1063 				       &tegra_plane_funcs, formats,
1064 				       num_formats, linear_modifiers,
1065 				       DRM_PLANE_TYPE_CURSOR, NULL);
1066 	if (err < 0) {
1067 		kfree(plane);
1068 		return ERR_PTR(err);
1069 	}
1070 
1071 	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
1072 	drm_plane_create_zpos_immutable_property(&plane->base, 255);
1073 
1074 	return &plane->base;
1075 }
1076 
1077 static const u32 tegra20_overlay_formats[] = {
1078 	DRM_FORMAT_ARGB4444,
1079 	DRM_FORMAT_ARGB1555,
1080 	DRM_FORMAT_RGB565,
1081 	DRM_FORMAT_RGBA5551,
1082 	DRM_FORMAT_ABGR8888,
1083 	DRM_FORMAT_ARGB8888,
1084 	/* non-native formats */
1085 	DRM_FORMAT_XRGB1555,
1086 	DRM_FORMAT_RGBX5551,
1087 	DRM_FORMAT_XBGR8888,
1088 	DRM_FORMAT_XRGB8888,
1089 	/* planar formats */
1090 	DRM_FORMAT_UYVY,
1091 	DRM_FORMAT_YUYV,
1092 	DRM_FORMAT_YUV420,
1093 	DRM_FORMAT_YUV422,
1094 };
1095 
1096 static const u32 tegra114_overlay_formats[] = {
1097 	DRM_FORMAT_ARGB4444,
1098 	DRM_FORMAT_ARGB1555,
1099 	DRM_FORMAT_RGB565,
1100 	DRM_FORMAT_RGBA5551,
1101 	DRM_FORMAT_ABGR8888,
1102 	DRM_FORMAT_ARGB8888,
1103 	/* new on Tegra114 */
1104 	DRM_FORMAT_ABGR4444,
1105 	DRM_FORMAT_ABGR1555,
1106 	DRM_FORMAT_BGRA5551,
1107 	DRM_FORMAT_XRGB1555,
1108 	DRM_FORMAT_RGBX5551,
1109 	DRM_FORMAT_XBGR1555,
1110 	DRM_FORMAT_BGRX5551,
1111 	DRM_FORMAT_BGR565,
1112 	DRM_FORMAT_BGRA8888,
1113 	DRM_FORMAT_RGBA8888,
1114 	DRM_FORMAT_XRGB8888,
1115 	DRM_FORMAT_XBGR8888,
1116 	/* planar formats */
1117 	DRM_FORMAT_UYVY,
1118 	DRM_FORMAT_YUYV,
1119 	DRM_FORMAT_YUV420,
1120 	DRM_FORMAT_YUV422,
1121 };
1122 
1123 static const u32 tegra124_overlay_formats[] = {
1124 	DRM_FORMAT_ARGB4444,
1125 	DRM_FORMAT_ARGB1555,
1126 	DRM_FORMAT_RGB565,
1127 	DRM_FORMAT_RGBA5551,
1128 	DRM_FORMAT_ABGR8888,
1129 	DRM_FORMAT_ARGB8888,
1130 	/* new on Tegra114 */
1131 	DRM_FORMAT_ABGR4444,
1132 	DRM_FORMAT_ABGR1555,
1133 	DRM_FORMAT_BGRA5551,
1134 	DRM_FORMAT_XRGB1555,
1135 	DRM_FORMAT_RGBX5551,
1136 	DRM_FORMAT_XBGR1555,
1137 	DRM_FORMAT_BGRX5551,
1138 	DRM_FORMAT_BGR565,
1139 	DRM_FORMAT_BGRA8888,
1140 	DRM_FORMAT_RGBA8888,
1141 	DRM_FORMAT_XRGB8888,
1142 	DRM_FORMAT_XBGR8888,
1143 	/* new on Tegra124 */
1144 	DRM_FORMAT_RGBX8888,
1145 	DRM_FORMAT_BGRX8888,
1146 	/* planar formats */
1147 	DRM_FORMAT_UYVY,
1148 	DRM_FORMAT_YUYV,
1149 	DRM_FORMAT_YUV420,
1150 	DRM_FORMAT_YUV422,
1151 };
1152 
1153 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1154 						       struct tegra_dc *dc,
1155 						       unsigned int index,
1156 						       bool cursor)
1157 {
1158 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1159 	struct tegra_plane *plane;
1160 	unsigned int num_formats;
1161 	enum drm_plane_type type;
1162 	const u32 *formats;
1163 	int err;
1164 
1165 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1166 	if (!plane)
1167 		return ERR_PTR(-ENOMEM);
1168 
1169 	plane->offset = 0xa00 + 0x200 * index;
1170 	plane->index = index;
1171 	plane->dc = dc;
1172 
1173 	num_formats = dc->soc->num_overlay_formats;
1174 	formats = dc->soc->overlay_formats;
1175 
1176 	err = tegra_plane_interconnect_init(plane);
1177 	if (err) {
1178 		kfree(plane);
1179 		return ERR_PTR(err);
1180 	}
1181 
1182 	if (!cursor)
1183 		type = DRM_PLANE_TYPE_OVERLAY;
1184 	else
1185 		type = DRM_PLANE_TYPE_CURSOR;
1186 
1187 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1188 				       &tegra_plane_funcs, formats,
1189 				       num_formats, linear_modifiers,
1190 				       type, NULL);
1191 	if (err < 0) {
1192 		kfree(plane);
1193 		return ERR_PTR(err);
1194 	}
1195 
1196 	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1197 	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1198 
1199 	err = drm_plane_create_rotation_property(&plane->base,
1200 						 DRM_MODE_ROTATE_0,
1201 						 DRM_MODE_ROTATE_0 |
1202 						 DRM_MODE_ROTATE_180 |
1203 						 DRM_MODE_REFLECT_X |
1204 						 DRM_MODE_REFLECT_Y);
1205 	if (err < 0)
1206 		dev_err(dc->dev, "failed to create rotation property: %d\n",
1207 			err);
1208 
1209 	return &plane->base;
1210 }
1211 
1212 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1213 						    struct tegra_dc *dc)
1214 {
1215 	struct drm_plane *plane, *primary = NULL;
1216 	unsigned int i, j;
1217 
1218 	for (i = 0; i < dc->soc->num_wgrps; i++) {
1219 		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1220 
1221 		if (wgrp->dc == dc->pipe) {
1222 			for (j = 0; j < wgrp->num_windows; j++) {
1223 				unsigned int index = wgrp->windows[j];
1224 
1225 				plane = tegra_shared_plane_create(drm, dc,
1226 								  wgrp->index,
1227 								  index);
1228 				if (IS_ERR(plane))
1229 					return plane;
1230 
1231 				/*
1232 				 * Choose the first shared plane owned by this
1233 				 * head as the primary plane.
1234 				 */
1235 				if (!primary) {
1236 					plane->type = DRM_PLANE_TYPE_PRIMARY;
1237 					primary = plane;
1238 				}
1239 			}
1240 		}
1241 	}
1242 
1243 	return primary;
1244 }
1245 
1246 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1247 					     struct tegra_dc *dc)
1248 {
1249 	struct drm_plane *planes[2], *primary;
1250 	unsigned int planes_num;
1251 	unsigned int i;
1252 	int err;
1253 
1254 	primary = tegra_primary_plane_create(drm, dc);
1255 	if (IS_ERR(primary))
1256 		return primary;
1257 
1258 	if (dc->soc->supports_cursor)
1259 		planes_num = 2;
1260 	else
1261 		planes_num = 1;
1262 
1263 	for (i = 0; i < planes_num; i++) {
1264 		planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1265 							  false);
1266 		if (IS_ERR(planes[i])) {
1267 			err = PTR_ERR(planes[i]);
1268 
1269 			while (i--)
1270 				tegra_plane_funcs.destroy(planes[i]);
1271 
1272 			tegra_plane_funcs.destroy(primary);
1273 			return ERR_PTR(err);
1274 		}
1275 	}
1276 
1277 	return primary;
1278 }
1279 
1280 static void tegra_dc_destroy(struct drm_crtc *crtc)
1281 {
1282 	drm_crtc_cleanup(crtc);
1283 }
1284 
1285 static void tegra_crtc_reset(struct drm_crtc *crtc)
1286 {
1287 	struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1288 
1289 	if (crtc->state)
1290 		tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1291 
1292 	__drm_atomic_helper_crtc_reset(crtc, &state->base);
1293 }
1294 
1295 static struct drm_crtc_state *
1296 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1297 {
1298 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1299 	struct tegra_dc_state *copy;
1300 
1301 	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1302 	if (!copy)
1303 		return NULL;
1304 
1305 	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1306 	copy->clk = state->clk;
1307 	copy->pclk = state->pclk;
1308 	copy->div = state->div;
1309 	copy->planes = state->planes;
1310 
1311 	return &copy->base;
1312 }
1313 
1314 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1315 					    struct drm_crtc_state *state)
1316 {
1317 	__drm_atomic_helper_crtc_destroy_state(state);
1318 	kfree(state);
1319 }
1320 
1321 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1322 
1323 static const struct debugfs_reg32 tegra_dc_regs[] = {
1324 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1325 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1326 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1327 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1328 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1329 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1330 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1331 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1332 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1333 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1334 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1335 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1336 	DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1337 	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1338 	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1339 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1340 	DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1341 	DEBUGFS_REG32(DC_CMD_INT_STATUS),
1342 	DEBUGFS_REG32(DC_CMD_INT_MASK),
1343 	DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1344 	DEBUGFS_REG32(DC_CMD_INT_TYPE),
1345 	DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1346 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1347 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1348 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1349 	DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1350 	DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1351 	DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1352 	DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1353 	DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1354 	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1355 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1356 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1357 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1358 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1359 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1360 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1361 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1362 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1363 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1364 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1365 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1366 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1367 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1368 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1369 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1370 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1371 	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1372 	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1373 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1374 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1375 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1376 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1377 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1378 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1379 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1380 	DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1381 	DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1382 	DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1383 	DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1384 	DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1385 	DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1386 	DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1387 	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1388 	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1389 	DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1390 	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1391 	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1392 	DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1393 	DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1394 	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1395 	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1396 	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1397 	DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1398 	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1399 	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1400 	DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1401 	DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1402 	DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1403 	DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1404 	DEBUGFS_REG32(DC_DISP_ACTIVE),
1405 	DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1406 	DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1407 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1408 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1409 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1410 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1411 	DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1412 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1413 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1414 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1415 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1416 	DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1417 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1418 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1419 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1420 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1421 	DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1422 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1423 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1424 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1425 	DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1426 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1427 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1428 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1429 	DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1430 	DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1431 	DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1432 	DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1433 	DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1434 	DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1435 	DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1436 	DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1437 	DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1438 	DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1439 	DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1440 	DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1441 	DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1442 	DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1443 	DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1444 	DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1445 	DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1446 	DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1447 	DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1448 	DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1449 	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1450 	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1451 	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1452 	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1453 	DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1454 	DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1455 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1456 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1457 	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1458 	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1459 	DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1460 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1461 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1462 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1463 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1464 	DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1465 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1466 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1467 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1468 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1469 	DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1470 	DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1471 	DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1472 	DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1473 	DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1474 	DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1475 	DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1476 	DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1477 	DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1478 	DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1479 	DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1480 	DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1481 	DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1482 	DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1483 	DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1484 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1485 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1486 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1487 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1488 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1489 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1490 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1491 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1492 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1493 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1494 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1495 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1496 	DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1497 	DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1498 	DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1499 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1500 	DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1501 	DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1502 	DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1503 	DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1504 	DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1505 	DEBUGFS_REG32(DC_WIN_POSITION),
1506 	DEBUGFS_REG32(DC_WIN_SIZE),
1507 	DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1508 	DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1509 	DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1510 	DEBUGFS_REG32(DC_WIN_DDA_INC),
1511 	DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1512 	DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1513 	DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1514 	DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1515 	DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1516 	DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1517 	DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1518 	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1519 	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1520 	DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1521 	DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1522 	DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1523 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1524 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1525 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1526 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1527 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1528 	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1529 	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1530 	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1531 	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1532 	DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1533 	DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1534 	DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1535 	DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1536 };
1537 
1538 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1539 {
1540 	struct drm_info_node *node = s->private;
1541 	struct tegra_dc *dc = node->info_ent->data;
1542 	unsigned int i;
1543 	int err = 0;
1544 
1545 	drm_modeset_lock(&dc->base.mutex, NULL);
1546 
1547 	if (!dc->base.state->active) {
1548 		err = -EBUSY;
1549 		goto unlock;
1550 	}
1551 
1552 	for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1553 		unsigned int offset = tegra_dc_regs[i].offset;
1554 
1555 		seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1556 			   offset, tegra_dc_readl(dc, offset));
1557 	}
1558 
1559 unlock:
1560 	drm_modeset_unlock(&dc->base.mutex);
1561 	return err;
1562 }
1563 
1564 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1565 {
1566 	struct drm_info_node *node = s->private;
1567 	struct tegra_dc *dc = node->info_ent->data;
1568 	int err = 0;
1569 	u32 value;
1570 
1571 	drm_modeset_lock(&dc->base.mutex, NULL);
1572 
1573 	if (!dc->base.state->active) {
1574 		err = -EBUSY;
1575 		goto unlock;
1576 	}
1577 
1578 	value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1579 	tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1580 	tegra_dc_commit(dc);
1581 
1582 	drm_crtc_wait_one_vblank(&dc->base);
1583 	drm_crtc_wait_one_vblank(&dc->base);
1584 
1585 	value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1586 	seq_printf(s, "%08x\n", value);
1587 
1588 	tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1589 
1590 unlock:
1591 	drm_modeset_unlock(&dc->base.mutex);
1592 	return err;
1593 }
1594 
1595 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1596 {
1597 	struct drm_info_node *node = s->private;
1598 	struct tegra_dc *dc = node->info_ent->data;
1599 
1600 	seq_printf(s, "frames: %lu\n", dc->stats.frames);
1601 	seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1602 	seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1603 	seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1604 
1605 	seq_printf(s, "frames total: %lu\n", dc->stats.frames_total);
1606 	seq_printf(s, "vblank total: %lu\n", dc->stats.vblank_total);
1607 	seq_printf(s, "underflow total: %lu\n", dc->stats.underflow_total);
1608 	seq_printf(s, "overflow total: %lu\n", dc->stats.overflow_total);
1609 
1610 	return 0;
1611 }
1612 
1613 static struct drm_info_list debugfs_files[] = {
1614 	{ "regs", tegra_dc_show_regs, 0, NULL },
1615 	{ "crc", tegra_dc_show_crc, 0, NULL },
1616 	{ "stats", tegra_dc_show_stats, 0, NULL },
1617 };
1618 
1619 static int tegra_dc_late_register(struct drm_crtc *crtc)
1620 {
1621 	unsigned int i, count = ARRAY_SIZE(debugfs_files);
1622 	struct drm_minor *minor = crtc->dev->primary;
1623 	struct dentry *root;
1624 	struct tegra_dc *dc = to_tegra_dc(crtc);
1625 
1626 #ifdef CONFIG_DEBUG_FS
1627 	root = crtc->debugfs_entry;
1628 #else
1629 	root = NULL;
1630 #endif
1631 
1632 	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1633 				    GFP_KERNEL);
1634 	if (!dc->debugfs_files)
1635 		return -ENOMEM;
1636 
1637 	for (i = 0; i < count; i++)
1638 		dc->debugfs_files[i].data = dc;
1639 
1640 	drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1641 
1642 	return 0;
1643 }
1644 
1645 static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1646 {
1647 	unsigned int count = ARRAY_SIZE(debugfs_files);
1648 	struct drm_minor *minor = crtc->dev->primary;
1649 	struct tegra_dc *dc = to_tegra_dc(crtc);
1650 
1651 	drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1652 	kfree(dc->debugfs_files);
1653 	dc->debugfs_files = NULL;
1654 }
1655 
1656 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1657 {
1658 	struct tegra_dc *dc = to_tegra_dc(crtc);
1659 
1660 	/* XXX vblank syncpoints don't work with nvdisplay yet */
1661 	if (dc->syncpt && !dc->soc->has_nvdisplay)
1662 		return host1x_syncpt_read(dc->syncpt);
1663 
1664 	/* fallback to software emulated VBLANK counter */
1665 	return (u32)drm_crtc_vblank_count(&dc->base);
1666 }
1667 
1668 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1669 {
1670 	struct tegra_dc *dc = to_tegra_dc(crtc);
1671 	u32 value;
1672 
1673 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1674 	value |= VBLANK_INT;
1675 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1676 
1677 	return 0;
1678 }
1679 
1680 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1681 {
1682 	struct tegra_dc *dc = to_tegra_dc(crtc);
1683 	u32 value;
1684 
1685 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1686 	value &= ~VBLANK_INT;
1687 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1688 }
1689 
1690 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1691 	.page_flip = drm_atomic_helper_page_flip,
1692 	.set_config = drm_atomic_helper_set_config,
1693 	.destroy = tegra_dc_destroy,
1694 	.reset = tegra_crtc_reset,
1695 	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1696 	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1697 	.late_register = tegra_dc_late_register,
1698 	.early_unregister = tegra_dc_early_unregister,
1699 	.get_vblank_counter = tegra_dc_get_vblank_counter,
1700 	.enable_vblank = tegra_dc_enable_vblank,
1701 	.disable_vblank = tegra_dc_disable_vblank,
1702 };
1703 
1704 static int tegra_dc_set_timings(struct tegra_dc *dc,
1705 				struct drm_display_mode *mode)
1706 {
1707 	unsigned int h_ref_to_sync = 1;
1708 	unsigned int v_ref_to_sync = 1;
1709 	unsigned long value;
1710 
1711 	if (!dc->soc->has_nvdisplay) {
1712 		tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1713 
1714 		value = (v_ref_to_sync << 16) | h_ref_to_sync;
1715 		tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1716 	}
1717 
1718 	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1719 		((mode->hsync_end - mode->hsync_start) <<  0);
1720 	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1721 
1722 	value = ((mode->vtotal - mode->vsync_end) << 16) |
1723 		((mode->htotal - mode->hsync_end) <<  0);
1724 	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1725 
1726 	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1727 		((mode->hsync_start - mode->hdisplay) <<  0);
1728 	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1729 
1730 	value = (mode->vdisplay << 16) | mode->hdisplay;
1731 	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1732 
1733 	return 0;
1734 }
1735 
1736 /**
1737  * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1738  *     state
1739  * @dc: display controller
1740  * @crtc_state: CRTC atomic state
1741  * @clk: parent clock for display controller
1742  * @pclk: pixel clock
1743  * @div: shift clock divider
1744  *
1745  * Returns:
1746  * 0 on success or a negative error-code on failure.
1747  */
1748 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1749 			       struct drm_crtc_state *crtc_state,
1750 			       struct clk *clk, unsigned long pclk,
1751 			       unsigned int div)
1752 {
1753 	struct tegra_dc_state *state = to_dc_state(crtc_state);
1754 
1755 	if (!clk_has_parent(dc->clk, clk))
1756 		return -EINVAL;
1757 
1758 	state->clk = clk;
1759 	state->pclk = pclk;
1760 	state->div = div;
1761 
1762 	return 0;
1763 }
1764 
1765 static void tegra_dc_commit_state(struct tegra_dc *dc,
1766 				  struct tegra_dc_state *state)
1767 {
1768 	u32 value;
1769 	int err;
1770 
1771 	err = clk_set_parent(dc->clk, state->clk);
1772 	if (err < 0)
1773 		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1774 
1775 	/*
1776 	 * Outputs may not want to change the parent clock rate. This is only
1777 	 * relevant to Tegra20 where only a single display PLL is available.
1778 	 * Since that PLL would typically be used for HDMI, an internal LVDS
1779 	 * panel would need to be driven by some other clock such as PLL_P
1780 	 * which is shared with other peripherals. Changing the clock rate
1781 	 * should therefore be avoided.
1782 	 */
1783 	if (state->pclk > 0) {
1784 		err = clk_set_rate(state->clk, state->pclk);
1785 		if (err < 0)
1786 			dev_err(dc->dev,
1787 				"failed to set clock rate to %lu Hz\n",
1788 				state->pclk);
1789 
1790 		err = clk_set_rate(dc->clk, state->pclk);
1791 		if (err < 0)
1792 			dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1793 				dc->clk, state->pclk, err);
1794 	}
1795 
1796 	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1797 		      state->div);
1798 	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1799 
1800 	if (!dc->soc->has_nvdisplay) {
1801 		value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1802 		tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1803 	}
1804 }
1805 
1806 static void tegra_dc_stop(struct tegra_dc *dc)
1807 {
1808 	u32 value;
1809 
1810 	/* stop the display controller */
1811 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1812 	value &= ~DISP_CTRL_MODE_MASK;
1813 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1814 
1815 	tegra_dc_commit(dc);
1816 }
1817 
1818 static bool tegra_dc_idle(struct tegra_dc *dc)
1819 {
1820 	u32 value;
1821 
1822 	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1823 
1824 	return (value & DISP_CTRL_MODE_MASK) == 0;
1825 }
1826 
1827 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1828 {
1829 	timeout = jiffies + msecs_to_jiffies(timeout);
1830 
1831 	while (time_before(jiffies, timeout)) {
1832 		if (tegra_dc_idle(dc))
1833 			return 0;
1834 
1835 		usleep_range(1000, 2000);
1836 	}
1837 
1838 	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1839 	return -ETIMEDOUT;
1840 }
1841 
1842 static void
1843 tegra_crtc_update_memory_bandwidth(struct drm_crtc *crtc,
1844 				   struct drm_atomic_state *state,
1845 				   bool prepare_bandwidth_transition)
1846 {
1847 	const struct tegra_plane_state *old_tegra_state, *new_tegra_state;
1848 	const struct tegra_dc_state *old_dc_state, *new_dc_state;
1849 	u32 i, new_avg_bw, old_avg_bw, new_peak_bw, old_peak_bw;
1850 	const struct drm_plane_state *old_plane_state;
1851 	const struct drm_crtc_state *old_crtc_state;
1852 	struct tegra_dc_window window, old_window;
1853 	struct tegra_dc *dc = to_tegra_dc(crtc);
1854 	struct tegra_plane *tegra;
1855 	struct drm_plane *plane;
1856 
1857 	if (dc->soc->has_nvdisplay)
1858 		return;
1859 
1860 	old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
1861 	old_dc_state = to_const_dc_state(old_crtc_state);
1862 	new_dc_state = to_const_dc_state(crtc->state);
1863 
1864 	if (!crtc->state->active) {
1865 		if (!old_crtc_state->active)
1866 			return;
1867 
1868 		/*
1869 		 * When CRTC is disabled on DPMS, the state of attached planes
1870 		 * is kept unchanged. Hence we need to enforce removal of the
1871 		 * bandwidths from the ICC paths.
1872 		 */
1873 		drm_atomic_crtc_for_each_plane(plane, crtc) {
1874 			tegra = to_tegra_plane(plane);
1875 
1876 			icc_set_bw(tegra->icc_mem, 0, 0);
1877 			icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
1878 		}
1879 
1880 		return;
1881 	}
1882 
1883 	for_each_old_plane_in_state(old_crtc_state->state, plane,
1884 				    old_plane_state, i) {
1885 		old_tegra_state = to_const_tegra_plane_state(old_plane_state);
1886 		new_tegra_state = to_const_tegra_plane_state(plane->state);
1887 		tegra = to_tegra_plane(plane);
1888 
1889 		/*
1890 		 * We're iterating over the global atomic state and it contains
1891 		 * planes from another CRTC, hence we need to filter out the
1892 		 * planes unrelated to this CRTC.
1893 		 */
1894 		if (tegra->dc != dc)
1895 			continue;
1896 
1897 		new_avg_bw = new_tegra_state->avg_memory_bandwidth;
1898 		old_avg_bw = old_tegra_state->avg_memory_bandwidth;
1899 
1900 		new_peak_bw = new_tegra_state->total_peak_memory_bandwidth;
1901 		old_peak_bw = old_tegra_state->total_peak_memory_bandwidth;
1902 
1903 		/*
1904 		 * See the comment related to !crtc->state->active above,
1905 		 * which explains why bandwidths need to be updated when
1906 		 * CRTC is turning ON.
1907 		 */
1908 		if (new_avg_bw == old_avg_bw && new_peak_bw == old_peak_bw &&
1909 		    old_crtc_state->active)
1910 			continue;
1911 
1912 		window.src.h = drm_rect_height(&plane->state->src) >> 16;
1913 		window.dst.h = drm_rect_height(&plane->state->dst);
1914 
1915 		old_window.src.h = drm_rect_height(&old_plane_state->src) >> 16;
1916 		old_window.dst.h = drm_rect_height(&old_plane_state->dst);
1917 
1918 		/*
1919 		 * During the preparation phase (atomic_begin), the memory
1920 		 * freq should go high before the DC changes are committed
1921 		 * if bandwidth requirement goes up, otherwise memory freq
1922 		 * should to stay high if BW requirement goes down.  The
1923 		 * opposite applies to the completion phase (post_commit).
1924 		 */
1925 		if (prepare_bandwidth_transition) {
1926 			new_avg_bw = max(old_avg_bw, new_avg_bw);
1927 			new_peak_bw = max(old_peak_bw, new_peak_bw);
1928 
1929 			if (tegra_plane_use_vertical_filtering(tegra, &old_window))
1930 				window = old_window;
1931 		}
1932 
1933 		icc_set_bw(tegra->icc_mem, new_avg_bw, new_peak_bw);
1934 
1935 		if (tegra_plane_use_vertical_filtering(tegra, &window))
1936 			icc_set_bw(tegra->icc_mem_vfilter, new_avg_bw, new_peak_bw);
1937 		else
1938 			icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
1939 	}
1940 }
1941 
1942 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1943 				      struct drm_atomic_state *state)
1944 {
1945 	struct tegra_dc *dc = to_tegra_dc(crtc);
1946 	u32 value;
1947 	int err;
1948 
1949 	if (!tegra_dc_idle(dc)) {
1950 		tegra_dc_stop(dc);
1951 
1952 		/*
1953 		 * Ignore the return value, there isn't anything useful to do
1954 		 * in case this fails.
1955 		 */
1956 		tegra_dc_wait_idle(dc, 100);
1957 	}
1958 
1959 	/*
1960 	 * This should really be part of the RGB encoder driver, but clearing
1961 	 * these bits has the side-effect of stopping the display controller.
1962 	 * When that happens no VBLANK interrupts will be raised. At the same
1963 	 * time the encoder is disabled before the display controller, so the
1964 	 * above code is always going to timeout waiting for the controller
1965 	 * to go idle.
1966 	 *
1967 	 * Given the close coupling between the RGB encoder and the display
1968 	 * controller doing it here is still kind of okay. None of the other
1969 	 * encoder drivers require these bits to be cleared.
1970 	 *
1971 	 * XXX: Perhaps given that the display controller is switched off at
1972 	 * this point anyway maybe clearing these bits isn't even useful for
1973 	 * the RGB encoder?
1974 	 */
1975 	if (dc->rgb) {
1976 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1977 		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1978 			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1979 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1980 	}
1981 
1982 	tegra_dc_stats_reset(&dc->stats);
1983 	drm_crtc_vblank_off(crtc);
1984 
1985 	spin_lock_irq(&crtc->dev->event_lock);
1986 
1987 	if (crtc->state->event) {
1988 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
1989 		crtc->state->event = NULL;
1990 	}
1991 
1992 	spin_unlock_irq(&crtc->dev->event_lock);
1993 
1994 	err = host1x_client_suspend(&dc->client);
1995 	if (err < 0)
1996 		dev_err(dc->dev, "failed to suspend: %d\n", err);
1997 }
1998 
1999 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
2000 				     struct drm_atomic_state *state)
2001 {
2002 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
2003 	struct tegra_dc_state *crtc_state = to_dc_state(crtc->state);
2004 	struct tegra_dc *dc = to_tegra_dc(crtc);
2005 	u32 value;
2006 	int err;
2007 
2008 	err = host1x_client_resume(&dc->client);
2009 	if (err < 0) {
2010 		dev_err(dc->dev, "failed to resume: %d\n", err);
2011 		return;
2012 	}
2013 
2014 	/* initialize display controller */
2015 	if (dc->syncpt) {
2016 		u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
2017 
2018 		if (dc->soc->has_nvdisplay)
2019 			enable = 1 << 31;
2020 		else
2021 			enable = 1 << 8;
2022 
2023 		value = SYNCPT_CNTRL_NO_STALL;
2024 		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
2025 
2026 		value = enable | syncpt;
2027 		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
2028 	}
2029 
2030 	if (dc->soc->has_nvdisplay) {
2031 		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2032 			DSC_OBUF_UF_INT;
2033 		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2034 
2035 		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2036 			DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
2037 			HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
2038 			REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
2039 			VBLANK_INT | FRAME_END_INT;
2040 		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2041 
2042 		value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
2043 			FRAME_END_INT;
2044 		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2045 
2046 		value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
2047 		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2048 
2049 		tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
2050 	} else {
2051 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2052 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2053 		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2054 
2055 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2056 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2057 		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2058 
2059 		/* initialize timer */
2060 		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
2061 			WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
2062 		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
2063 
2064 		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
2065 			WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
2066 		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
2067 
2068 		value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2069 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2070 		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2071 
2072 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2073 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2074 		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2075 	}
2076 
2077 	if (dc->soc->supports_background_color)
2078 		tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
2079 	else
2080 		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
2081 
2082 	/* apply PLL and pixel clock changes */
2083 	tegra_dc_commit_state(dc, crtc_state);
2084 
2085 	/* program display mode */
2086 	tegra_dc_set_timings(dc, mode);
2087 
2088 	/* interlacing isn't supported yet, so disable it */
2089 	if (dc->soc->supports_interlacing) {
2090 		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
2091 		value &= ~INTERLACE_ENABLE;
2092 		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
2093 	}
2094 
2095 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
2096 	value &= ~DISP_CTRL_MODE_MASK;
2097 	value |= DISP_CTRL_MODE_C_DISPLAY;
2098 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
2099 
2100 	if (!dc->soc->has_nvdisplay) {
2101 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2102 		value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2103 			 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
2104 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2105 	}
2106 
2107 	/* enable underflow reporting and display red for missing pixels */
2108 	if (dc->soc->has_nvdisplay) {
2109 		value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
2110 		tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
2111 	}
2112 
2113 	tegra_dc_commit(dc);
2114 
2115 	drm_crtc_vblank_on(crtc);
2116 }
2117 
2118 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
2119 				    struct drm_atomic_state *state)
2120 {
2121 	unsigned long flags;
2122 
2123 	tegra_crtc_update_memory_bandwidth(crtc, state, true);
2124 
2125 	if (crtc->state->event) {
2126 		spin_lock_irqsave(&crtc->dev->event_lock, flags);
2127 
2128 		if (drm_crtc_vblank_get(crtc) != 0)
2129 			drm_crtc_send_vblank_event(crtc, crtc->state->event);
2130 		else
2131 			drm_crtc_arm_vblank_event(crtc, crtc->state->event);
2132 
2133 		spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2134 
2135 		crtc->state->event = NULL;
2136 	}
2137 }
2138 
2139 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
2140 				    struct drm_atomic_state *state)
2141 {
2142 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
2143 									  crtc);
2144 	struct tegra_dc_state *dc_state = to_dc_state(crtc_state);
2145 	struct tegra_dc *dc = to_tegra_dc(crtc);
2146 	u32 value;
2147 
2148 	value = dc_state->planes << 8 | GENERAL_UPDATE;
2149 	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2150 	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2151 
2152 	value = dc_state->planes | GENERAL_ACT_REQ;
2153 	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2154 	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2155 }
2156 
2157 static bool tegra_plane_is_cursor(const struct drm_plane_state *state)
2158 {
2159 	const struct tegra_dc_soc_info *soc = to_tegra_dc(state->crtc)->soc;
2160 	const struct drm_format_info *fmt = state->fb->format;
2161 	unsigned int src_w = drm_rect_width(&state->src) >> 16;
2162 	unsigned int dst_w = drm_rect_width(&state->dst);
2163 
2164 	if (state->plane->type != DRM_PLANE_TYPE_CURSOR)
2165 		return false;
2166 
2167 	if (soc->supports_cursor)
2168 		return true;
2169 
2170 	if (src_w != dst_w || fmt->num_planes != 1 || src_w * fmt->cpp[0] > 256)
2171 		return false;
2172 
2173 	return true;
2174 }
2175 
2176 static unsigned long
2177 tegra_plane_overlap_mask(struct drm_crtc_state *state,
2178 			 const struct drm_plane_state *plane_state)
2179 {
2180 	const struct drm_plane_state *other_state;
2181 	const struct tegra_plane *tegra;
2182 	unsigned long overlap_mask = 0;
2183 	struct drm_plane *plane;
2184 	struct drm_rect rect;
2185 
2186 	if (!plane_state->visible || !plane_state->fb)
2187 		return 0;
2188 
2189 	/*
2190 	 * Data-prefetch FIFO will easily help to overcome temporal memory
2191 	 * pressure if other plane overlaps with the cursor plane.
2192 	 */
2193 	if (tegra_plane_is_cursor(plane_state))
2194 		return 0;
2195 
2196 	drm_atomic_crtc_state_for_each_plane_state(plane, other_state, state) {
2197 		rect = plane_state->dst;
2198 
2199 		tegra = to_tegra_plane(other_state->plane);
2200 
2201 		if (!other_state->visible || !other_state->fb)
2202 			continue;
2203 
2204 		/*
2205 		 * Ignore cursor plane overlaps because it's not practical to
2206 		 * assume that it contributes to the bandwidth in overlapping
2207 		 * area if window width is small.
2208 		 */
2209 		if (tegra_plane_is_cursor(other_state))
2210 			continue;
2211 
2212 		if (drm_rect_intersect(&rect, &other_state->dst))
2213 			overlap_mask |= BIT(tegra->index);
2214 	}
2215 
2216 	return overlap_mask;
2217 }
2218 
2219 static int tegra_crtc_calculate_memory_bandwidth(struct drm_crtc *crtc,
2220 						 struct drm_atomic_state *state)
2221 {
2222 	ulong overlap_mask[TEGRA_DC_LEGACY_PLANES_NUM] = {}, mask;
2223 	u32 plane_peak_bw[TEGRA_DC_LEGACY_PLANES_NUM] = {};
2224 	bool all_planes_overlap_simultaneously = true;
2225 	const struct tegra_plane_state *tegra_state;
2226 	const struct drm_plane_state *plane_state;
2227 	struct tegra_dc *dc = to_tegra_dc(crtc);
2228 	const struct drm_crtc_state *old_state;
2229 	struct drm_crtc_state *new_state;
2230 	struct tegra_plane *tegra;
2231 	struct drm_plane *plane;
2232 
2233 	/*
2234 	 * The nv-display uses shared planes.  The algorithm below assumes
2235 	 * maximum 3 planes per-CRTC, this assumption isn't applicable to
2236 	 * the nv-display.  Note that T124 support has additional windows,
2237 	 * but currently they aren't supported by the driver.
2238 	 */
2239 	if (dc->soc->has_nvdisplay)
2240 		return 0;
2241 
2242 	new_state = drm_atomic_get_new_crtc_state(state, crtc);
2243 	old_state = drm_atomic_get_old_crtc_state(state, crtc);
2244 
2245 	/*
2246 	 * For overlapping planes pixel's data is fetched for each plane at
2247 	 * the same time, hence bandwidths are accumulated in this case.
2248 	 * This needs to be taken into account for calculating total bandwidth
2249 	 * consumed by all planes.
2250 	 *
2251 	 * Here we get the overlapping state of each plane, which is a
2252 	 * bitmask of plane indices telling with what planes there is an
2253 	 * overlap. Note that bitmask[plane] includes BIT(plane) in order
2254 	 * to make further code nicer and simpler.
2255 	 */
2256 	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2257 		tegra_state = to_const_tegra_plane_state(plane_state);
2258 		tegra = to_tegra_plane(plane);
2259 
2260 		if (WARN_ON_ONCE(tegra->index >= TEGRA_DC_LEGACY_PLANES_NUM))
2261 			return -EINVAL;
2262 
2263 		plane_peak_bw[tegra->index] = tegra_state->peak_memory_bandwidth;
2264 		mask = tegra_plane_overlap_mask(new_state, plane_state);
2265 		overlap_mask[tegra->index] = mask;
2266 
2267 		if (hweight_long(mask) != 3)
2268 			all_planes_overlap_simultaneously = false;
2269 	}
2270 
2271 	/*
2272 	 * Then we calculate maximum bandwidth of each plane state.
2273 	 * The bandwidth includes the plane BW + BW of the "simultaneously"
2274 	 * overlapping planes, where "simultaneously" means areas where DC
2275 	 * fetches from the planes simultaneously during of scan-out process.
2276 	 *
2277 	 * For example, if plane A overlaps with planes B and C, but B and C
2278 	 * don't overlap, then the peak bandwidth will be either in area where
2279 	 * A-and-B or A-and-C planes overlap.
2280 	 *
2281 	 * The plane_peak_bw[] contains peak memory bandwidth values of
2282 	 * each plane, this information is needed by interconnect provider
2283 	 * in order to set up latency allowance based on the peak BW, see
2284 	 * tegra_crtc_update_memory_bandwidth().
2285 	 */
2286 	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2287 		u32 i, old_peak_bw, new_peak_bw, overlap_bw = 0;
2288 
2289 		/*
2290 		 * Note that plane's atomic check doesn't touch the
2291 		 * total_peak_memory_bandwidth of enabled plane, hence the
2292 		 * current state contains the old bandwidth state from the
2293 		 * previous CRTC commit.
2294 		 */
2295 		tegra_state = to_const_tegra_plane_state(plane_state);
2296 		tegra = to_tegra_plane(plane);
2297 
2298 		for_each_set_bit(i, &overlap_mask[tegra->index], 3) {
2299 			if (i == tegra->index)
2300 				continue;
2301 
2302 			if (all_planes_overlap_simultaneously)
2303 				overlap_bw += plane_peak_bw[i];
2304 			else
2305 				overlap_bw = max(overlap_bw, plane_peak_bw[i]);
2306 		}
2307 
2308 		new_peak_bw = plane_peak_bw[tegra->index] + overlap_bw;
2309 		old_peak_bw = tegra_state->total_peak_memory_bandwidth;
2310 
2311 		/*
2312 		 * If plane's peak bandwidth changed (for example plane isn't
2313 		 * overlapped anymore) and plane isn't in the atomic state,
2314 		 * then add plane to the state in order to have the bandwidth
2315 		 * updated.
2316 		 */
2317 		if (old_peak_bw != new_peak_bw) {
2318 			struct tegra_plane_state *new_tegra_state;
2319 			struct drm_plane_state *new_plane_state;
2320 
2321 			new_plane_state = drm_atomic_get_plane_state(state, plane);
2322 			if (IS_ERR(new_plane_state))
2323 				return PTR_ERR(new_plane_state);
2324 
2325 			new_tegra_state = to_tegra_plane_state(new_plane_state);
2326 			new_tegra_state->total_peak_memory_bandwidth = new_peak_bw;
2327 		}
2328 	}
2329 
2330 	return 0;
2331 }
2332 
2333 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
2334 				   struct drm_atomic_state *state)
2335 {
2336 	int err;
2337 
2338 	err = tegra_crtc_calculate_memory_bandwidth(crtc, state);
2339 	if (err)
2340 		return err;
2341 
2342 	return 0;
2343 }
2344 
2345 void tegra_crtc_atomic_post_commit(struct drm_crtc *crtc,
2346 				   struct drm_atomic_state *state)
2347 {
2348 	/*
2349 	 * Display bandwidth is allowed to go down only once hardware state
2350 	 * is known to be armed, i.e. state was committed and VBLANK event
2351 	 * received.
2352 	 */
2353 	tegra_crtc_update_memory_bandwidth(crtc, state, false);
2354 }
2355 
2356 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
2357 	.atomic_check = tegra_crtc_atomic_check,
2358 	.atomic_begin = tegra_crtc_atomic_begin,
2359 	.atomic_flush = tegra_crtc_atomic_flush,
2360 	.atomic_enable = tegra_crtc_atomic_enable,
2361 	.atomic_disable = tegra_crtc_atomic_disable,
2362 };
2363 
2364 static irqreturn_t tegra_dc_irq(int irq, void *data)
2365 {
2366 	struct tegra_dc *dc = data;
2367 	unsigned long status;
2368 
2369 	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
2370 	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
2371 
2372 	if (status & FRAME_END_INT) {
2373 		/*
2374 		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
2375 		*/
2376 		dc->stats.frames_total++;
2377 		dc->stats.frames++;
2378 	}
2379 
2380 	if (status & VBLANK_INT) {
2381 		/*
2382 		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
2383 		*/
2384 		drm_crtc_handle_vblank(&dc->base);
2385 		dc->stats.vblank_total++;
2386 		dc->stats.vblank++;
2387 	}
2388 
2389 	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
2390 		/*
2391 		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
2392 		*/
2393 		dc->stats.underflow_total++;
2394 		dc->stats.underflow++;
2395 	}
2396 
2397 	if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
2398 		/*
2399 		dev_dbg(dc->dev, "%s(): overflow\n", __func__);
2400 		*/
2401 		dc->stats.overflow_total++;
2402 		dc->stats.overflow++;
2403 	}
2404 
2405 	if (status & HEAD_UF_INT) {
2406 		dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
2407 		dc->stats.underflow_total++;
2408 		dc->stats.underflow++;
2409 	}
2410 
2411 	return IRQ_HANDLED;
2412 }
2413 
2414 static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
2415 {
2416 	unsigned int i;
2417 
2418 	if (!dc->soc->wgrps)
2419 		return true;
2420 
2421 	for (i = 0; i < dc->soc->num_wgrps; i++) {
2422 		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
2423 
2424 		if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
2425 			return true;
2426 	}
2427 
2428 	return false;
2429 }
2430 
2431 static int tegra_dc_early_init(struct host1x_client *client)
2432 {
2433 	struct drm_device *drm = dev_get_drvdata(client->host);
2434 	struct tegra_drm *tegra = drm->dev_private;
2435 
2436 	tegra->num_crtcs++;
2437 
2438 	return 0;
2439 }
2440 
2441 static int tegra_dc_init(struct host1x_client *client)
2442 {
2443 	struct drm_device *drm = dev_get_drvdata(client->host);
2444 	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2445 	struct tegra_dc *dc = host1x_client_to_dc(client);
2446 	struct tegra_drm *tegra = drm->dev_private;
2447 	struct drm_plane *primary = NULL;
2448 	struct drm_plane *cursor = NULL;
2449 	int err;
2450 
2451 	/*
2452 	 * DC has been reset by now, so VBLANK syncpoint can be released
2453 	 * for general use.
2454 	 */
2455 	host1x_syncpt_release_vblank_reservation(client, 26 + dc->pipe);
2456 
2457 	/*
2458 	 * XXX do not register DCs with no window groups because we cannot
2459 	 * assign a primary plane to them, which in turn will cause KMS to
2460 	 * crash.
2461 	 */
2462 	if (!tegra_dc_has_window_groups(dc))
2463 		return 0;
2464 
2465 	/*
2466 	 * Set the display hub as the host1x client parent for the display
2467 	 * controller. This is needed for the runtime reference counting that
2468 	 * ensures the display hub is always powered when any of the display
2469 	 * controllers are.
2470 	 */
2471 	if (dc->soc->has_nvdisplay)
2472 		client->parent = &tegra->hub->client;
2473 
2474 	dc->syncpt = host1x_syncpt_request(client, flags);
2475 	if (!dc->syncpt)
2476 		dev_warn(dc->dev, "failed to allocate syncpoint\n");
2477 
2478 	err = host1x_client_iommu_attach(client);
2479 	if (err < 0 && err != -ENODEV) {
2480 		dev_err(client->dev, "failed to attach to domain: %d\n", err);
2481 		return err;
2482 	}
2483 
2484 	if (dc->soc->wgrps)
2485 		primary = tegra_dc_add_shared_planes(drm, dc);
2486 	else
2487 		primary = tegra_dc_add_planes(drm, dc);
2488 
2489 	if (IS_ERR(primary)) {
2490 		err = PTR_ERR(primary);
2491 		goto cleanup;
2492 	}
2493 
2494 	if (dc->soc->supports_cursor) {
2495 		cursor = tegra_dc_cursor_plane_create(drm, dc);
2496 		if (IS_ERR(cursor)) {
2497 			err = PTR_ERR(cursor);
2498 			goto cleanup;
2499 		}
2500 	} else {
2501 		/* dedicate one overlay to mouse cursor */
2502 		cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2503 		if (IS_ERR(cursor)) {
2504 			err = PTR_ERR(cursor);
2505 			goto cleanup;
2506 		}
2507 	}
2508 
2509 	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2510 					&tegra_crtc_funcs, NULL);
2511 	if (err < 0)
2512 		goto cleanup;
2513 
2514 	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2515 
2516 	/*
2517 	 * Keep track of the minimum pitch alignment across all display
2518 	 * controllers.
2519 	 */
2520 	if (dc->soc->pitch_align > tegra->pitch_align)
2521 		tegra->pitch_align = dc->soc->pitch_align;
2522 
2523 	/* track maximum resolution */
2524 	if (dc->soc->has_nvdisplay)
2525 		drm->mode_config.max_width = drm->mode_config.max_height = 16384;
2526 	else
2527 		drm->mode_config.max_width = drm->mode_config.max_height = 4096;
2528 
2529 	err = tegra_dc_rgb_init(drm, dc);
2530 	if (err < 0 && err != -ENODEV) {
2531 		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2532 		goto cleanup;
2533 	}
2534 
2535 	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2536 			       dev_name(dc->dev), dc);
2537 	if (err < 0) {
2538 		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2539 			err);
2540 		goto cleanup;
2541 	}
2542 
2543 	/*
2544 	 * Inherit the DMA parameters (such as maximum segment size) from the
2545 	 * parent host1x device.
2546 	 */
2547 	client->dev->dma_parms = client->host->dma_parms;
2548 
2549 	return 0;
2550 
2551 cleanup:
2552 	if (!IS_ERR_OR_NULL(cursor))
2553 		drm_plane_cleanup(cursor);
2554 
2555 	if (!IS_ERR(primary))
2556 		drm_plane_cleanup(primary);
2557 
2558 	host1x_client_iommu_detach(client);
2559 	host1x_syncpt_put(dc->syncpt);
2560 
2561 	return err;
2562 }
2563 
2564 static int tegra_dc_exit(struct host1x_client *client)
2565 {
2566 	struct tegra_dc *dc = host1x_client_to_dc(client);
2567 	int err;
2568 
2569 	if (!tegra_dc_has_window_groups(dc))
2570 		return 0;
2571 
2572 	/* avoid a dangling pointer just in case this disappears */
2573 	client->dev->dma_parms = NULL;
2574 
2575 	devm_free_irq(dc->dev, dc->irq, dc);
2576 
2577 	err = tegra_dc_rgb_exit(dc);
2578 	if (err) {
2579 		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2580 		return err;
2581 	}
2582 
2583 	host1x_client_iommu_detach(client);
2584 	host1x_syncpt_put(dc->syncpt);
2585 
2586 	return 0;
2587 }
2588 
2589 static int tegra_dc_late_exit(struct host1x_client *client)
2590 {
2591 	struct drm_device *drm = dev_get_drvdata(client->host);
2592 	struct tegra_drm *tegra = drm->dev_private;
2593 
2594 	tegra->num_crtcs--;
2595 
2596 	return 0;
2597 }
2598 
2599 static int tegra_dc_runtime_suspend(struct host1x_client *client)
2600 {
2601 	struct tegra_dc *dc = host1x_client_to_dc(client);
2602 	struct device *dev = client->dev;
2603 	int err;
2604 
2605 	err = reset_control_assert(dc->rst);
2606 	if (err < 0) {
2607 		dev_err(dev, "failed to assert reset: %d\n", err);
2608 		return err;
2609 	}
2610 
2611 	if (dc->soc->has_powergate)
2612 		tegra_powergate_power_off(dc->powergate);
2613 
2614 	clk_disable_unprepare(dc->clk);
2615 	pm_runtime_put_sync(dev);
2616 
2617 	return 0;
2618 }
2619 
2620 static int tegra_dc_runtime_resume(struct host1x_client *client)
2621 {
2622 	struct tegra_dc *dc = host1x_client_to_dc(client);
2623 	struct device *dev = client->dev;
2624 	int err;
2625 
2626 	err = pm_runtime_resume_and_get(dev);
2627 	if (err < 0) {
2628 		dev_err(dev, "failed to get runtime PM: %d\n", err);
2629 		return err;
2630 	}
2631 
2632 	if (dc->soc->has_powergate) {
2633 		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2634 							dc->rst);
2635 		if (err < 0) {
2636 			dev_err(dev, "failed to power partition: %d\n", err);
2637 			goto put_rpm;
2638 		}
2639 	} else {
2640 		err = clk_prepare_enable(dc->clk);
2641 		if (err < 0) {
2642 			dev_err(dev, "failed to enable clock: %d\n", err);
2643 			goto put_rpm;
2644 		}
2645 
2646 		err = reset_control_deassert(dc->rst);
2647 		if (err < 0) {
2648 			dev_err(dev, "failed to deassert reset: %d\n", err);
2649 			goto disable_clk;
2650 		}
2651 	}
2652 
2653 	return 0;
2654 
2655 disable_clk:
2656 	clk_disable_unprepare(dc->clk);
2657 put_rpm:
2658 	pm_runtime_put_sync(dev);
2659 	return err;
2660 }
2661 
2662 static const struct host1x_client_ops dc_client_ops = {
2663 	.early_init = tegra_dc_early_init,
2664 	.init = tegra_dc_init,
2665 	.exit = tegra_dc_exit,
2666 	.late_exit = tegra_dc_late_exit,
2667 	.suspend = tegra_dc_runtime_suspend,
2668 	.resume = tegra_dc_runtime_resume,
2669 };
2670 
2671 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2672 	.supports_background_color = false,
2673 	.supports_interlacing = false,
2674 	.supports_cursor = false,
2675 	.supports_block_linear = false,
2676 	.supports_sector_layout = false,
2677 	.has_legacy_blending = true,
2678 	.pitch_align = 8,
2679 	.has_powergate = false,
2680 	.coupled_pm = true,
2681 	.has_nvdisplay = false,
2682 	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2683 	.primary_formats = tegra20_primary_formats,
2684 	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2685 	.overlay_formats = tegra20_overlay_formats,
2686 	.modifiers = tegra20_modifiers,
2687 	.has_win_a_without_filters = true,
2688 	.has_win_b_vfilter_mem_client = true,
2689 	.has_win_c_without_vert_filter = true,
2690 	.plane_tiled_memory_bandwidth_x2 = false,
2691 };
2692 
2693 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2694 	.supports_background_color = false,
2695 	.supports_interlacing = false,
2696 	.supports_cursor = false,
2697 	.supports_block_linear = false,
2698 	.supports_sector_layout = false,
2699 	.has_legacy_blending = true,
2700 	.pitch_align = 8,
2701 	.has_powergate = false,
2702 	.coupled_pm = false,
2703 	.has_nvdisplay = false,
2704 	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2705 	.primary_formats = tegra20_primary_formats,
2706 	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2707 	.overlay_formats = tegra20_overlay_formats,
2708 	.modifiers = tegra20_modifiers,
2709 	.has_win_a_without_filters = false,
2710 	.has_win_b_vfilter_mem_client = true,
2711 	.has_win_c_without_vert_filter = false,
2712 	.plane_tiled_memory_bandwidth_x2 = true,
2713 };
2714 
2715 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2716 	.supports_background_color = false,
2717 	.supports_interlacing = false,
2718 	.supports_cursor = false,
2719 	.supports_block_linear = false,
2720 	.supports_sector_layout = false,
2721 	.has_legacy_blending = true,
2722 	.pitch_align = 64,
2723 	.has_powergate = true,
2724 	.coupled_pm = false,
2725 	.has_nvdisplay = false,
2726 	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2727 	.primary_formats = tegra114_primary_formats,
2728 	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2729 	.overlay_formats = tegra114_overlay_formats,
2730 	.modifiers = tegra20_modifiers,
2731 	.has_win_a_without_filters = false,
2732 	.has_win_b_vfilter_mem_client = false,
2733 	.has_win_c_without_vert_filter = false,
2734 	.plane_tiled_memory_bandwidth_x2 = true,
2735 };
2736 
2737 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2738 	.supports_background_color = true,
2739 	.supports_interlacing = true,
2740 	.supports_cursor = true,
2741 	.supports_block_linear = true,
2742 	.supports_sector_layout = false,
2743 	.has_legacy_blending = false,
2744 	.pitch_align = 64,
2745 	.has_powergate = true,
2746 	.coupled_pm = false,
2747 	.has_nvdisplay = false,
2748 	.num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2749 	.primary_formats = tegra124_primary_formats,
2750 	.num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2751 	.overlay_formats = tegra124_overlay_formats,
2752 	.modifiers = tegra124_modifiers,
2753 	.has_win_a_without_filters = false,
2754 	.has_win_b_vfilter_mem_client = false,
2755 	.has_win_c_without_vert_filter = false,
2756 	.plane_tiled_memory_bandwidth_x2 = false,
2757 };
2758 
2759 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2760 	.supports_background_color = true,
2761 	.supports_interlacing = true,
2762 	.supports_cursor = true,
2763 	.supports_block_linear = true,
2764 	.supports_sector_layout = false,
2765 	.has_legacy_blending = false,
2766 	.pitch_align = 64,
2767 	.has_powergate = true,
2768 	.coupled_pm = false,
2769 	.has_nvdisplay = false,
2770 	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2771 	.primary_formats = tegra114_primary_formats,
2772 	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2773 	.overlay_formats = tegra114_overlay_formats,
2774 	.modifiers = tegra124_modifiers,
2775 	.has_win_a_without_filters = false,
2776 	.has_win_b_vfilter_mem_client = false,
2777 	.has_win_c_without_vert_filter = false,
2778 	.plane_tiled_memory_bandwidth_x2 = false,
2779 };
2780 
2781 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2782 	{
2783 		.index = 0,
2784 		.dc = 0,
2785 		.windows = (const unsigned int[]) { 0 },
2786 		.num_windows = 1,
2787 	}, {
2788 		.index = 1,
2789 		.dc = 1,
2790 		.windows = (const unsigned int[]) { 1 },
2791 		.num_windows = 1,
2792 	}, {
2793 		.index = 2,
2794 		.dc = 1,
2795 		.windows = (const unsigned int[]) { 2 },
2796 		.num_windows = 1,
2797 	}, {
2798 		.index = 3,
2799 		.dc = 2,
2800 		.windows = (const unsigned int[]) { 3 },
2801 		.num_windows = 1,
2802 	}, {
2803 		.index = 4,
2804 		.dc = 2,
2805 		.windows = (const unsigned int[]) { 4 },
2806 		.num_windows = 1,
2807 	}, {
2808 		.index = 5,
2809 		.dc = 2,
2810 		.windows = (const unsigned int[]) { 5 },
2811 		.num_windows = 1,
2812 	},
2813 };
2814 
2815 static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2816 	.supports_background_color = true,
2817 	.supports_interlacing = true,
2818 	.supports_cursor = true,
2819 	.supports_block_linear = true,
2820 	.supports_sector_layout = false,
2821 	.has_legacy_blending = false,
2822 	.pitch_align = 64,
2823 	.has_powergate = false,
2824 	.coupled_pm = false,
2825 	.has_nvdisplay = true,
2826 	.wgrps = tegra186_dc_wgrps,
2827 	.num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2828 	.plane_tiled_memory_bandwidth_x2 = false,
2829 };
2830 
2831 static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2832 	{
2833 		.index = 0,
2834 		.dc = 0,
2835 		.windows = (const unsigned int[]) { 0 },
2836 		.num_windows = 1,
2837 	}, {
2838 		.index = 1,
2839 		.dc = 1,
2840 		.windows = (const unsigned int[]) { 1 },
2841 		.num_windows = 1,
2842 	}, {
2843 		.index = 2,
2844 		.dc = 1,
2845 		.windows = (const unsigned int[]) { 2 },
2846 		.num_windows = 1,
2847 	}, {
2848 		.index = 3,
2849 		.dc = 2,
2850 		.windows = (const unsigned int[]) { 3 },
2851 		.num_windows = 1,
2852 	}, {
2853 		.index = 4,
2854 		.dc = 2,
2855 		.windows = (const unsigned int[]) { 4 },
2856 		.num_windows = 1,
2857 	}, {
2858 		.index = 5,
2859 		.dc = 2,
2860 		.windows = (const unsigned int[]) { 5 },
2861 		.num_windows = 1,
2862 	},
2863 };
2864 
2865 static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
2866 	.supports_background_color = true,
2867 	.supports_interlacing = true,
2868 	.supports_cursor = true,
2869 	.supports_block_linear = true,
2870 	.supports_sector_layout = true,
2871 	.has_legacy_blending = false,
2872 	.pitch_align = 64,
2873 	.has_powergate = false,
2874 	.coupled_pm = false,
2875 	.has_nvdisplay = true,
2876 	.wgrps = tegra194_dc_wgrps,
2877 	.num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
2878 	.plane_tiled_memory_bandwidth_x2 = false,
2879 };
2880 
2881 static const struct of_device_id tegra_dc_of_match[] = {
2882 	{
2883 		.compatible = "nvidia,tegra194-dc",
2884 		.data = &tegra194_dc_soc_info,
2885 	}, {
2886 		.compatible = "nvidia,tegra186-dc",
2887 		.data = &tegra186_dc_soc_info,
2888 	}, {
2889 		.compatible = "nvidia,tegra210-dc",
2890 		.data = &tegra210_dc_soc_info,
2891 	}, {
2892 		.compatible = "nvidia,tegra124-dc",
2893 		.data = &tegra124_dc_soc_info,
2894 	}, {
2895 		.compatible = "nvidia,tegra114-dc",
2896 		.data = &tegra114_dc_soc_info,
2897 	}, {
2898 		.compatible = "nvidia,tegra30-dc",
2899 		.data = &tegra30_dc_soc_info,
2900 	}, {
2901 		.compatible = "nvidia,tegra20-dc",
2902 		.data = &tegra20_dc_soc_info,
2903 	}, {
2904 		/* sentinel */
2905 	}
2906 };
2907 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
2908 
2909 static int tegra_dc_parse_dt(struct tegra_dc *dc)
2910 {
2911 	struct device_node *np;
2912 	u32 value = 0;
2913 	int err;
2914 
2915 	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
2916 	if (err < 0) {
2917 		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
2918 
2919 		/*
2920 		 * If the nvidia,head property isn't present, try to find the
2921 		 * correct head number by looking up the position of this
2922 		 * display controller's node within the device tree. Assuming
2923 		 * that the nodes are ordered properly in the DTS file and
2924 		 * that the translation into a flattened device tree blob
2925 		 * preserves that ordering this will actually yield the right
2926 		 * head number.
2927 		 *
2928 		 * If those assumptions don't hold, this will still work for
2929 		 * cases where only a single display controller is used.
2930 		 */
2931 		for_each_matching_node(np, tegra_dc_of_match) {
2932 			if (np == dc->dev->of_node) {
2933 				of_node_put(np);
2934 				break;
2935 			}
2936 
2937 			value++;
2938 		}
2939 	}
2940 
2941 	dc->pipe = value;
2942 
2943 	return 0;
2944 }
2945 
2946 static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
2947 {
2948 	struct tegra_dc *dc = dev_get_drvdata(dev);
2949 	unsigned int pipe = (unsigned long)(void *)data;
2950 
2951 	return dc->pipe == pipe;
2952 }
2953 
2954 static int tegra_dc_couple(struct tegra_dc *dc)
2955 {
2956 	/*
2957 	 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
2958 	 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
2959 	 * POWER_CONTROL registers during CRTC enabling.
2960 	 */
2961 	if (dc->soc->coupled_pm && dc->pipe == 1) {
2962 		struct device *companion;
2963 		struct tegra_dc *parent;
2964 
2965 		companion = driver_find_device(dc->dev->driver, NULL, (const void *)0,
2966 					       tegra_dc_match_by_pipe);
2967 		if (!companion)
2968 			return -EPROBE_DEFER;
2969 
2970 		parent = dev_get_drvdata(companion);
2971 		dc->client.parent = &parent->client;
2972 
2973 		dev_dbg(dc->dev, "coupled to %s\n", dev_name(companion));
2974 	}
2975 
2976 	return 0;
2977 }
2978 
2979 static int tegra_dc_probe(struct platform_device *pdev)
2980 {
2981 	u64 dma_mask = dma_get_mask(pdev->dev.parent);
2982 	struct tegra_dc *dc;
2983 	int err;
2984 
2985 	err = dma_coerce_mask_and_coherent(&pdev->dev, dma_mask);
2986 	if (err < 0) {
2987 		dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
2988 		return err;
2989 	}
2990 
2991 	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
2992 	if (!dc)
2993 		return -ENOMEM;
2994 
2995 	dc->soc = of_device_get_match_data(&pdev->dev);
2996 
2997 	INIT_LIST_HEAD(&dc->list);
2998 	dc->dev = &pdev->dev;
2999 
3000 	err = tegra_dc_parse_dt(dc);
3001 	if (err < 0)
3002 		return err;
3003 
3004 	err = tegra_dc_couple(dc);
3005 	if (err < 0)
3006 		return err;
3007 
3008 	dc->clk = devm_clk_get(&pdev->dev, NULL);
3009 	if (IS_ERR(dc->clk)) {
3010 		dev_err(&pdev->dev, "failed to get clock\n");
3011 		return PTR_ERR(dc->clk);
3012 	}
3013 
3014 	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
3015 	if (IS_ERR(dc->rst)) {
3016 		dev_err(&pdev->dev, "failed to get reset\n");
3017 		return PTR_ERR(dc->rst);
3018 	}
3019 
3020 	/* assert reset and disable clock */
3021 	err = clk_prepare_enable(dc->clk);
3022 	if (err < 0)
3023 		return err;
3024 
3025 	usleep_range(2000, 4000);
3026 
3027 	err = reset_control_assert(dc->rst);
3028 	if (err < 0)
3029 		return err;
3030 
3031 	usleep_range(2000, 4000);
3032 
3033 	clk_disable_unprepare(dc->clk);
3034 
3035 	if (dc->soc->has_powergate) {
3036 		if (dc->pipe == 0)
3037 			dc->powergate = TEGRA_POWERGATE_DIS;
3038 		else
3039 			dc->powergate = TEGRA_POWERGATE_DISB;
3040 
3041 		tegra_powergate_power_off(dc->powergate);
3042 	}
3043 
3044 	dc->regs = devm_platform_ioremap_resource(pdev, 0);
3045 	if (IS_ERR(dc->regs))
3046 		return PTR_ERR(dc->regs);
3047 
3048 	dc->irq = platform_get_irq(pdev, 0);
3049 	if (dc->irq < 0)
3050 		return -ENXIO;
3051 
3052 	err = tegra_dc_rgb_probe(dc);
3053 	if (err < 0 && err != -ENODEV) {
3054 		const char *level = KERN_ERR;
3055 
3056 		if (err == -EPROBE_DEFER)
3057 			level = KERN_DEBUG;
3058 
3059 		dev_printk(level, dc->dev, "failed to probe RGB output: %d\n",
3060 			   err);
3061 		return err;
3062 	}
3063 
3064 	platform_set_drvdata(pdev, dc);
3065 	pm_runtime_enable(&pdev->dev);
3066 
3067 	INIT_LIST_HEAD(&dc->client.list);
3068 	dc->client.ops = &dc_client_ops;
3069 	dc->client.dev = &pdev->dev;
3070 
3071 	err = host1x_client_register(&dc->client);
3072 	if (err < 0) {
3073 		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
3074 			err);
3075 		goto disable_pm;
3076 	}
3077 
3078 	return 0;
3079 
3080 disable_pm:
3081 	pm_runtime_disable(&pdev->dev);
3082 	tegra_dc_rgb_remove(dc);
3083 
3084 	return err;
3085 }
3086 
3087 static int tegra_dc_remove(struct platform_device *pdev)
3088 {
3089 	struct tegra_dc *dc = platform_get_drvdata(pdev);
3090 	int err;
3091 
3092 	err = host1x_client_unregister(&dc->client);
3093 	if (err < 0) {
3094 		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
3095 			err);
3096 		return err;
3097 	}
3098 
3099 	err = tegra_dc_rgb_remove(dc);
3100 	if (err < 0) {
3101 		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
3102 		return err;
3103 	}
3104 
3105 	pm_runtime_disable(&pdev->dev);
3106 
3107 	return 0;
3108 }
3109 
3110 struct platform_driver tegra_dc_driver = {
3111 	.driver = {
3112 		.name = "tegra-dc",
3113 		.of_match_table = tegra_dc_of_match,
3114 	},
3115 	.probe = tegra_dc_probe,
3116 	.remove = tegra_dc_remove,
3117 };
3118