xref: /openbmc/linux/drivers/gpu/drm/tegra/dc.c (revision 23c2b932)
1 /*
2  * Copyright (C) 2012 Avionic Design GmbH
3  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/debugfs.h>
12 #include <linux/iommu.h>
13 #include <linux/reset.h>
14 
15 #include <soc/tegra/pmc.h>
16 
17 #include "dc.h"
18 #include "drm.h"
19 #include "gem.h"
20 
21 #include <drm/drm_atomic.h>
22 #include <drm/drm_atomic_helper.h>
23 #include <drm/drm_plane_helper.h>
24 
25 struct tegra_dc_soc_info {
26 	bool supports_border_color;
27 	bool supports_interlacing;
28 	bool supports_cursor;
29 	bool supports_block_linear;
30 	unsigned int pitch_align;
31 	bool has_powergate;
32 };
33 
34 struct tegra_plane {
35 	struct drm_plane base;
36 	unsigned int index;
37 };
38 
39 static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
40 {
41 	return container_of(plane, struct tegra_plane, base);
42 }
43 
44 struct tegra_dc_state {
45 	struct drm_crtc_state base;
46 
47 	struct clk *clk;
48 	unsigned long pclk;
49 	unsigned int div;
50 
51 	u32 planes;
52 };
53 
54 static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
55 {
56 	if (state)
57 		return container_of(state, struct tegra_dc_state, base);
58 
59 	return NULL;
60 }
61 
62 struct tegra_plane_state {
63 	struct drm_plane_state base;
64 
65 	struct tegra_bo_tiling tiling;
66 	u32 format;
67 	u32 swap;
68 };
69 
70 static inline struct tegra_plane_state *
71 to_tegra_plane_state(struct drm_plane_state *state)
72 {
73 	if (state)
74 		return container_of(state, struct tegra_plane_state, base);
75 
76 	return NULL;
77 }
78 
79 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
80 {
81 	stats->frames = 0;
82 	stats->vblank = 0;
83 	stats->underflow = 0;
84 	stats->overflow = 0;
85 }
86 
87 /*
88  * Reads the active copy of a register. This takes the dc->lock spinlock to
89  * prevent races with the VBLANK processing which also needs access to the
90  * active copy of some registers.
91  */
92 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
93 {
94 	unsigned long flags;
95 	u32 value;
96 
97 	spin_lock_irqsave(&dc->lock, flags);
98 
99 	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
100 	value = tegra_dc_readl(dc, offset);
101 	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
102 
103 	spin_unlock_irqrestore(&dc->lock, flags);
104 	return value;
105 }
106 
107 /*
108  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
109  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
110  * Latching happens mmediately if the display controller is in STOP mode or
111  * on the next frame boundary otherwise.
112  *
113  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
114  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
115  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
116  * into the ACTIVE copy, either immediately if the display controller is in
117  * STOP mode, or at the next frame boundary otherwise.
118  */
119 void tegra_dc_commit(struct tegra_dc *dc)
120 {
121 	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
122 	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
123 }
124 
125 static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
126 {
127 	/* assume no swapping of fetched data */
128 	if (swap)
129 		*swap = BYTE_SWAP_NOSWAP;
130 
131 	switch (fourcc) {
132 	case DRM_FORMAT_XBGR8888:
133 		*format = WIN_COLOR_DEPTH_R8G8B8A8;
134 		break;
135 
136 	case DRM_FORMAT_XRGB8888:
137 		*format = WIN_COLOR_DEPTH_B8G8R8A8;
138 		break;
139 
140 	case DRM_FORMAT_RGB565:
141 		*format = WIN_COLOR_DEPTH_B5G6R5;
142 		break;
143 
144 	case DRM_FORMAT_UYVY:
145 		*format = WIN_COLOR_DEPTH_YCbCr422;
146 		break;
147 
148 	case DRM_FORMAT_YUYV:
149 		if (swap)
150 			*swap = BYTE_SWAP_SWAP2;
151 
152 		*format = WIN_COLOR_DEPTH_YCbCr422;
153 		break;
154 
155 	case DRM_FORMAT_YUV420:
156 		*format = WIN_COLOR_DEPTH_YCbCr420P;
157 		break;
158 
159 	case DRM_FORMAT_YUV422:
160 		*format = WIN_COLOR_DEPTH_YCbCr422P;
161 		break;
162 
163 	default:
164 		return -EINVAL;
165 	}
166 
167 	return 0;
168 }
169 
170 static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
171 {
172 	switch (format) {
173 	case WIN_COLOR_DEPTH_YCbCr422:
174 	case WIN_COLOR_DEPTH_YUV422:
175 		if (planar)
176 			*planar = false;
177 
178 		return true;
179 
180 	case WIN_COLOR_DEPTH_YCbCr420P:
181 	case WIN_COLOR_DEPTH_YUV420P:
182 	case WIN_COLOR_DEPTH_YCbCr422P:
183 	case WIN_COLOR_DEPTH_YUV422P:
184 	case WIN_COLOR_DEPTH_YCbCr422R:
185 	case WIN_COLOR_DEPTH_YUV422R:
186 	case WIN_COLOR_DEPTH_YCbCr422RA:
187 	case WIN_COLOR_DEPTH_YUV422RA:
188 		if (planar)
189 			*planar = true;
190 
191 		return true;
192 	}
193 
194 	if (planar)
195 		*planar = false;
196 
197 	return false;
198 }
199 
200 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
201 				  unsigned int bpp)
202 {
203 	fixed20_12 outf = dfixed_init(out);
204 	fixed20_12 inf = dfixed_init(in);
205 	u32 dda_inc;
206 	int max;
207 
208 	if (v)
209 		max = 15;
210 	else {
211 		switch (bpp) {
212 		case 2:
213 			max = 8;
214 			break;
215 
216 		default:
217 			WARN_ON_ONCE(1);
218 			/* fallthrough */
219 		case 4:
220 			max = 4;
221 			break;
222 		}
223 	}
224 
225 	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
226 	inf.full -= dfixed_const(1);
227 
228 	dda_inc = dfixed_div(inf, outf);
229 	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
230 
231 	return dda_inc;
232 }
233 
234 static inline u32 compute_initial_dda(unsigned int in)
235 {
236 	fixed20_12 inf = dfixed_init(in);
237 	return dfixed_frac(inf);
238 }
239 
240 static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
241 				  const struct tegra_dc_window *window)
242 {
243 	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
244 	unsigned long value, flags;
245 	bool yuv, planar;
246 
247 	/*
248 	 * For YUV planar modes, the number of bytes per pixel takes into
249 	 * account only the luma component and therefore is 1.
250 	 */
251 	yuv = tegra_dc_format_is_yuv(window->format, &planar);
252 	if (!yuv)
253 		bpp = window->bits_per_pixel / 8;
254 	else
255 		bpp = planar ? 1 : 2;
256 
257 	spin_lock_irqsave(&dc->lock, flags);
258 
259 	value = WINDOW_A_SELECT << index;
260 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
261 
262 	tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
263 	tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
264 
265 	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
266 	tegra_dc_writel(dc, value, DC_WIN_POSITION);
267 
268 	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
269 	tegra_dc_writel(dc, value, DC_WIN_SIZE);
270 
271 	h_offset = window->src.x * bpp;
272 	v_offset = window->src.y;
273 	h_size = window->src.w * bpp;
274 	v_size = window->src.h;
275 
276 	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
277 	tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
278 
279 	/*
280 	 * For DDA computations the number of bytes per pixel for YUV planar
281 	 * modes needs to take into account all Y, U and V components.
282 	 */
283 	if (yuv && planar)
284 		bpp = 2;
285 
286 	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
287 	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
288 
289 	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
290 	tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
291 
292 	h_dda = compute_initial_dda(window->src.x);
293 	v_dda = compute_initial_dda(window->src.y);
294 
295 	tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
296 	tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
297 
298 	tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
299 	tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
300 
301 	tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
302 
303 	if (yuv && planar) {
304 		tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
305 		tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
306 		value = window->stride[1] << 16 | window->stride[0];
307 		tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
308 	} else {
309 		tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
310 	}
311 
312 	if (window->bottom_up)
313 		v_offset += window->src.h - 1;
314 
315 	tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
316 	tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
317 
318 	if (dc->soc->supports_block_linear) {
319 		unsigned long height = window->tiling.value;
320 
321 		switch (window->tiling.mode) {
322 		case TEGRA_BO_TILING_MODE_PITCH:
323 			value = DC_WINBUF_SURFACE_KIND_PITCH;
324 			break;
325 
326 		case TEGRA_BO_TILING_MODE_TILED:
327 			value = DC_WINBUF_SURFACE_KIND_TILED;
328 			break;
329 
330 		case TEGRA_BO_TILING_MODE_BLOCK:
331 			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
332 				DC_WINBUF_SURFACE_KIND_BLOCK;
333 			break;
334 		}
335 
336 		tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
337 	} else {
338 		switch (window->tiling.mode) {
339 		case TEGRA_BO_TILING_MODE_PITCH:
340 			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
341 				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
342 			break;
343 
344 		case TEGRA_BO_TILING_MODE_TILED:
345 			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
346 				DC_WIN_BUFFER_ADDR_MODE_TILE;
347 			break;
348 
349 		case TEGRA_BO_TILING_MODE_BLOCK:
350 			/*
351 			 * No need to handle this here because ->atomic_check
352 			 * will already have filtered it out.
353 			 */
354 			break;
355 		}
356 
357 		tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
358 	}
359 
360 	value = WIN_ENABLE;
361 
362 	if (yuv) {
363 		/* setup default colorspace conversion coefficients */
364 		tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
365 		tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
366 		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
367 		tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
368 		tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
369 		tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
370 		tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
371 		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
372 
373 		value |= CSC_ENABLE;
374 	} else if (window->bits_per_pixel < 24) {
375 		value |= COLOR_EXPAND;
376 	}
377 
378 	if (window->bottom_up)
379 		value |= V_DIRECTION;
380 
381 	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
382 
383 	/*
384 	 * Disable blending and assume Window A is the bottom-most window,
385 	 * Window C is the top-most window and Window B is in the middle.
386 	 */
387 	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
388 	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
389 
390 	switch (index) {
391 	case 0:
392 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
393 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
394 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
395 		break;
396 
397 	case 1:
398 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
399 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
400 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
401 		break;
402 
403 	case 2:
404 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
405 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
406 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
407 		break;
408 	}
409 
410 	spin_unlock_irqrestore(&dc->lock, flags);
411 }
412 
413 static void tegra_plane_destroy(struct drm_plane *plane)
414 {
415 	struct tegra_plane *p = to_tegra_plane(plane);
416 
417 	drm_plane_cleanup(plane);
418 	kfree(p);
419 }
420 
421 static const u32 tegra_primary_plane_formats[] = {
422 	DRM_FORMAT_XBGR8888,
423 	DRM_FORMAT_XRGB8888,
424 	DRM_FORMAT_RGB565,
425 };
426 
427 static void tegra_primary_plane_destroy(struct drm_plane *plane)
428 {
429 	tegra_plane_destroy(plane);
430 }
431 
432 static void tegra_plane_reset(struct drm_plane *plane)
433 {
434 	struct tegra_plane_state *state;
435 
436 	if (plane->state)
437 		__drm_atomic_helper_plane_destroy_state(plane->state);
438 
439 	kfree(plane->state);
440 	plane->state = NULL;
441 
442 	state = kzalloc(sizeof(*state), GFP_KERNEL);
443 	if (state) {
444 		plane->state = &state->base;
445 		plane->state->plane = plane;
446 	}
447 }
448 
449 static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
450 {
451 	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
452 	struct tegra_plane_state *copy;
453 
454 	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
455 	if (!copy)
456 		return NULL;
457 
458 	__drm_atomic_helper_plane_duplicate_state(plane, &copy->base);
459 	copy->tiling = state->tiling;
460 	copy->format = state->format;
461 	copy->swap = state->swap;
462 
463 	return &copy->base;
464 }
465 
466 static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
467 					     struct drm_plane_state *state)
468 {
469 	__drm_atomic_helper_plane_destroy_state(state);
470 	kfree(state);
471 }
472 
473 static const struct drm_plane_funcs tegra_primary_plane_funcs = {
474 	.update_plane = drm_atomic_helper_update_plane,
475 	.disable_plane = drm_atomic_helper_disable_plane,
476 	.destroy = tegra_primary_plane_destroy,
477 	.reset = tegra_plane_reset,
478 	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
479 	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
480 };
481 
482 static int tegra_plane_prepare_fb(struct drm_plane *plane,
483 				  const struct drm_plane_state *new_state)
484 {
485 	return 0;
486 }
487 
488 static void tegra_plane_cleanup_fb(struct drm_plane *plane,
489 				   const struct drm_plane_state *old_fb)
490 {
491 }
492 
493 static int tegra_plane_state_add(struct tegra_plane *plane,
494 				 struct drm_plane_state *state)
495 {
496 	struct drm_crtc_state *crtc_state;
497 	struct tegra_dc_state *tegra;
498 
499 	/* Propagate errors from allocation or locking failures. */
500 	crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
501 	if (IS_ERR(crtc_state))
502 		return PTR_ERR(crtc_state);
503 
504 	tegra = to_dc_state(crtc_state);
505 
506 	tegra->planes |= WIN_A_ACT_REQ << plane->index;
507 
508 	return 0;
509 }
510 
511 static int tegra_plane_atomic_check(struct drm_plane *plane,
512 				    struct drm_plane_state *state)
513 {
514 	struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
515 	struct tegra_bo_tiling *tiling = &plane_state->tiling;
516 	struct tegra_plane *tegra = to_tegra_plane(plane);
517 	struct tegra_dc *dc = to_tegra_dc(state->crtc);
518 	int err;
519 
520 	/* no need for further checks if the plane is being disabled */
521 	if (!state->crtc)
522 		return 0;
523 
524 	err = tegra_dc_format(state->fb->pixel_format, &plane_state->format,
525 			      &plane_state->swap);
526 	if (err < 0)
527 		return err;
528 
529 	err = tegra_fb_get_tiling(state->fb, tiling);
530 	if (err < 0)
531 		return err;
532 
533 	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
534 	    !dc->soc->supports_block_linear) {
535 		DRM_ERROR("hardware doesn't support block linear mode\n");
536 		return -EINVAL;
537 	}
538 
539 	/*
540 	 * Tegra doesn't support different strides for U and V planes so we
541 	 * error out if the user tries to display a framebuffer with such a
542 	 * configuration.
543 	 */
544 	if (drm_format_num_planes(state->fb->pixel_format) > 2) {
545 		if (state->fb->pitches[2] != state->fb->pitches[1]) {
546 			DRM_ERROR("unsupported UV-plane configuration\n");
547 			return -EINVAL;
548 		}
549 	}
550 
551 	err = tegra_plane_state_add(tegra, state);
552 	if (err < 0)
553 		return err;
554 
555 	return 0;
556 }
557 
558 static void tegra_plane_atomic_update(struct drm_plane *plane,
559 				      struct drm_plane_state *old_state)
560 {
561 	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
562 	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
563 	struct drm_framebuffer *fb = plane->state->fb;
564 	struct tegra_plane *p = to_tegra_plane(plane);
565 	struct tegra_dc_window window;
566 	unsigned int i;
567 
568 	/* rien ne va plus */
569 	if (!plane->state->crtc || !plane->state->fb)
570 		return;
571 
572 	memset(&window, 0, sizeof(window));
573 	window.src.x = plane->state->src_x >> 16;
574 	window.src.y = plane->state->src_y >> 16;
575 	window.src.w = plane->state->src_w >> 16;
576 	window.src.h = plane->state->src_h >> 16;
577 	window.dst.x = plane->state->crtc_x;
578 	window.dst.y = plane->state->crtc_y;
579 	window.dst.w = plane->state->crtc_w;
580 	window.dst.h = plane->state->crtc_h;
581 	window.bits_per_pixel = fb->bits_per_pixel;
582 	window.bottom_up = tegra_fb_is_bottom_up(fb);
583 
584 	/* copy from state */
585 	window.tiling = state->tiling;
586 	window.format = state->format;
587 	window.swap = state->swap;
588 
589 	for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) {
590 		struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
591 
592 		window.base[i] = bo->paddr + fb->offsets[i];
593 		window.stride[i] = fb->pitches[i];
594 	}
595 
596 	tegra_dc_setup_window(dc, p->index, &window);
597 }
598 
599 static void tegra_plane_atomic_disable(struct drm_plane *plane,
600 				       struct drm_plane_state *old_state)
601 {
602 	struct tegra_plane *p = to_tegra_plane(plane);
603 	struct tegra_dc *dc;
604 	unsigned long flags;
605 	u32 value;
606 
607 	/* rien ne va plus */
608 	if (!old_state || !old_state->crtc)
609 		return;
610 
611 	dc = to_tegra_dc(old_state->crtc);
612 
613 	spin_lock_irqsave(&dc->lock, flags);
614 
615 	value = WINDOW_A_SELECT << p->index;
616 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
617 
618 	value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
619 	value &= ~WIN_ENABLE;
620 	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
621 
622 	spin_unlock_irqrestore(&dc->lock, flags);
623 }
624 
625 static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = {
626 	.prepare_fb = tegra_plane_prepare_fb,
627 	.cleanup_fb = tegra_plane_cleanup_fb,
628 	.atomic_check = tegra_plane_atomic_check,
629 	.atomic_update = tegra_plane_atomic_update,
630 	.atomic_disable = tegra_plane_atomic_disable,
631 };
632 
633 static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
634 						       struct tegra_dc *dc)
635 {
636 	/*
637 	 * Ideally this would use drm_crtc_mask(), but that would require the
638 	 * CRTC to already be in the mode_config's list of CRTCs. However, it
639 	 * will only be added to that list in the drm_crtc_init_with_planes()
640 	 * (in tegra_dc_init()), which in turn requires registration of these
641 	 * planes. So we have ourselves a nice little chicken and egg problem
642 	 * here.
643 	 *
644 	 * We work around this by manually creating the mask from the number
645 	 * of CRTCs that have been registered, and should therefore always be
646 	 * the same as drm_crtc_index() after registration.
647 	 */
648 	unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
649 	struct tegra_plane *plane;
650 	unsigned int num_formats;
651 	const u32 *formats;
652 	int err;
653 
654 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
655 	if (!plane)
656 		return ERR_PTR(-ENOMEM);
657 
658 	num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
659 	formats = tegra_primary_plane_formats;
660 
661 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
662 				       &tegra_primary_plane_funcs, formats,
663 				       num_formats, DRM_PLANE_TYPE_PRIMARY,
664 				       NULL);
665 	if (err < 0) {
666 		kfree(plane);
667 		return ERR_PTR(err);
668 	}
669 
670 	drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs);
671 
672 	return &plane->base;
673 }
674 
675 static const u32 tegra_cursor_plane_formats[] = {
676 	DRM_FORMAT_RGBA8888,
677 };
678 
679 static int tegra_cursor_atomic_check(struct drm_plane *plane,
680 				     struct drm_plane_state *state)
681 {
682 	struct tegra_plane *tegra = to_tegra_plane(plane);
683 	int err;
684 
685 	/* no need for further checks if the plane is being disabled */
686 	if (!state->crtc)
687 		return 0;
688 
689 	/* scaling not supported for cursor */
690 	if ((state->src_w >> 16 != state->crtc_w) ||
691 	    (state->src_h >> 16 != state->crtc_h))
692 		return -EINVAL;
693 
694 	/* only square cursors supported */
695 	if (state->src_w != state->src_h)
696 		return -EINVAL;
697 
698 	if (state->crtc_w != 32 && state->crtc_w != 64 &&
699 	    state->crtc_w != 128 && state->crtc_w != 256)
700 		return -EINVAL;
701 
702 	err = tegra_plane_state_add(tegra, state);
703 	if (err < 0)
704 		return err;
705 
706 	return 0;
707 }
708 
709 static void tegra_cursor_atomic_update(struct drm_plane *plane,
710 				       struct drm_plane_state *old_state)
711 {
712 	struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
713 	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
714 	struct drm_plane_state *state = plane->state;
715 	u32 value = CURSOR_CLIP_DISPLAY;
716 
717 	/* rien ne va plus */
718 	if (!plane->state->crtc || !plane->state->fb)
719 		return;
720 
721 	switch (state->crtc_w) {
722 	case 32:
723 		value |= CURSOR_SIZE_32x32;
724 		break;
725 
726 	case 64:
727 		value |= CURSOR_SIZE_64x64;
728 		break;
729 
730 	case 128:
731 		value |= CURSOR_SIZE_128x128;
732 		break;
733 
734 	case 256:
735 		value |= CURSOR_SIZE_256x256;
736 		break;
737 
738 	default:
739 		WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
740 		     state->crtc_h);
741 		return;
742 	}
743 
744 	value |= (bo->paddr >> 10) & 0x3fffff;
745 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
746 
747 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
748 	value = (bo->paddr >> 32) & 0x3;
749 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
750 #endif
751 
752 	/* enable cursor and set blend mode */
753 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
754 	value |= CURSOR_ENABLE;
755 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
756 
757 	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
758 	value &= ~CURSOR_DST_BLEND_MASK;
759 	value &= ~CURSOR_SRC_BLEND_MASK;
760 	value |= CURSOR_MODE_NORMAL;
761 	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
762 	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
763 	value |= CURSOR_ALPHA;
764 	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
765 
766 	/* position the cursor */
767 	value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
768 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
769 }
770 
771 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
772 					struct drm_plane_state *old_state)
773 {
774 	struct tegra_dc *dc;
775 	u32 value;
776 
777 	/* rien ne va plus */
778 	if (!old_state || !old_state->crtc)
779 		return;
780 
781 	dc = to_tegra_dc(old_state->crtc);
782 
783 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
784 	value &= ~CURSOR_ENABLE;
785 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
786 }
787 
788 static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
789 	.update_plane = drm_atomic_helper_update_plane,
790 	.disable_plane = drm_atomic_helper_disable_plane,
791 	.destroy = tegra_plane_destroy,
792 	.reset = tegra_plane_reset,
793 	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
794 	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
795 };
796 
797 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
798 	.prepare_fb = tegra_plane_prepare_fb,
799 	.cleanup_fb = tegra_plane_cleanup_fb,
800 	.atomic_check = tegra_cursor_atomic_check,
801 	.atomic_update = tegra_cursor_atomic_update,
802 	.atomic_disable = tegra_cursor_atomic_disable,
803 };
804 
805 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
806 						      struct tegra_dc *dc)
807 {
808 	struct tegra_plane *plane;
809 	unsigned int num_formats;
810 	const u32 *formats;
811 	int err;
812 
813 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
814 	if (!plane)
815 		return ERR_PTR(-ENOMEM);
816 
817 	/*
818 	 * This index is kind of fake. The cursor isn't a regular plane, but
819 	 * its update and activation request bits in DC_CMD_STATE_CONTROL do
820 	 * use the same programming. Setting this fake index here allows the
821 	 * code in tegra_add_plane_state() to do the right thing without the
822 	 * need to special-casing the cursor plane.
823 	 */
824 	plane->index = 6;
825 
826 	num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
827 	formats = tegra_cursor_plane_formats;
828 
829 	err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
830 				       &tegra_cursor_plane_funcs, formats,
831 				       num_formats, DRM_PLANE_TYPE_CURSOR,
832 				       NULL);
833 	if (err < 0) {
834 		kfree(plane);
835 		return ERR_PTR(err);
836 	}
837 
838 	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
839 
840 	return &plane->base;
841 }
842 
843 static void tegra_overlay_plane_destroy(struct drm_plane *plane)
844 {
845 	tegra_plane_destroy(plane);
846 }
847 
848 static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
849 	.update_plane = drm_atomic_helper_update_plane,
850 	.disable_plane = drm_atomic_helper_disable_plane,
851 	.destroy = tegra_overlay_plane_destroy,
852 	.reset = tegra_plane_reset,
853 	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
854 	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
855 };
856 
857 static const uint32_t tegra_overlay_plane_formats[] = {
858 	DRM_FORMAT_XBGR8888,
859 	DRM_FORMAT_XRGB8888,
860 	DRM_FORMAT_RGB565,
861 	DRM_FORMAT_UYVY,
862 	DRM_FORMAT_YUYV,
863 	DRM_FORMAT_YUV420,
864 	DRM_FORMAT_YUV422,
865 };
866 
867 static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = {
868 	.prepare_fb = tegra_plane_prepare_fb,
869 	.cleanup_fb = tegra_plane_cleanup_fb,
870 	.atomic_check = tegra_plane_atomic_check,
871 	.atomic_update = tegra_plane_atomic_update,
872 	.atomic_disable = tegra_plane_atomic_disable,
873 };
874 
875 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
876 						       struct tegra_dc *dc,
877 						       unsigned int index)
878 {
879 	struct tegra_plane *plane;
880 	unsigned int num_formats;
881 	const u32 *formats;
882 	int err;
883 
884 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
885 	if (!plane)
886 		return ERR_PTR(-ENOMEM);
887 
888 	plane->index = index;
889 
890 	num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
891 	formats = tegra_overlay_plane_formats;
892 
893 	err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
894 				       &tegra_overlay_plane_funcs, formats,
895 				       num_formats, DRM_PLANE_TYPE_OVERLAY,
896 				       NULL);
897 	if (err < 0) {
898 		kfree(plane);
899 		return ERR_PTR(err);
900 	}
901 
902 	drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs);
903 
904 	return &plane->base;
905 }
906 
907 static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
908 {
909 	struct drm_plane *plane;
910 	unsigned int i;
911 
912 	for (i = 0; i < 2; i++) {
913 		plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
914 		if (IS_ERR(plane))
915 			return PTR_ERR(plane);
916 	}
917 
918 	return 0;
919 }
920 
921 u32 tegra_dc_get_vblank_counter(struct tegra_dc *dc)
922 {
923 	if (dc->syncpt)
924 		return host1x_syncpt_read(dc->syncpt);
925 
926 	/* fallback to software emulated VBLANK counter */
927 	return drm_crtc_vblank_count(&dc->base);
928 }
929 
930 void tegra_dc_enable_vblank(struct tegra_dc *dc)
931 {
932 	unsigned long value, flags;
933 
934 	spin_lock_irqsave(&dc->lock, flags);
935 
936 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
937 	value |= VBLANK_INT;
938 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
939 
940 	spin_unlock_irqrestore(&dc->lock, flags);
941 }
942 
943 void tegra_dc_disable_vblank(struct tegra_dc *dc)
944 {
945 	unsigned long value, flags;
946 
947 	spin_lock_irqsave(&dc->lock, flags);
948 
949 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
950 	value &= ~VBLANK_INT;
951 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
952 
953 	spin_unlock_irqrestore(&dc->lock, flags);
954 }
955 
956 static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
957 {
958 	struct drm_device *drm = dc->base.dev;
959 	struct drm_crtc *crtc = &dc->base;
960 	unsigned long flags, base;
961 	struct tegra_bo *bo;
962 
963 	spin_lock_irqsave(&drm->event_lock, flags);
964 
965 	if (!dc->event) {
966 		spin_unlock_irqrestore(&drm->event_lock, flags);
967 		return;
968 	}
969 
970 	bo = tegra_fb_get_plane(crtc->primary->fb, 0);
971 
972 	spin_lock(&dc->lock);
973 
974 	/* check if new start address has been latched */
975 	tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
976 	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
977 	base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
978 	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
979 
980 	spin_unlock(&dc->lock);
981 
982 	if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
983 		drm_crtc_send_vblank_event(crtc, dc->event);
984 		drm_crtc_vblank_put(crtc);
985 		dc->event = NULL;
986 	}
987 
988 	spin_unlock_irqrestore(&drm->event_lock, flags);
989 }
990 
991 static void tegra_dc_destroy(struct drm_crtc *crtc)
992 {
993 	drm_crtc_cleanup(crtc);
994 }
995 
996 static void tegra_crtc_reset(struct drm_crtc *crtc)
997 {
998 	struct tegra_dc_state *state;
999 
1000 	if (crtc->state)
1001 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
1002 
1003 	kfree(crtc->state);
1004 	crtc->state = NULL;
1005 
1006 	state = kzalloc(sizeof(*state), GFP_KERNEL);
1007 	if (state) {
1008 		crtc->state = &state->base;
1009 		crtc->state->crtc = crtc;
1010 	}
1011 
1012 	drm_crtc_vblank_reset(crtc);
1013 }
1014 
1015 static struct drm_crtc_state *
1016 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1017 {
1018 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1019 	struct tegra_dc_state *copy;
1020 
1021 	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1022 	if (!copy)
1023 		return NULL;
1024 
1025 	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1026 	copy->clk = state->clk;
1027 	copy->pclk = state->pclk;
1028 	copy->div = state->div;
1029 	copy->planes = state->planes;
1030 
1031 	return &copy->base;
1032 }
1033 
1034 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1035 					    struct drm_crtc_state *state)
1036 {
1037 	__drm_atomic_helper_crtc_destroy_state(state);
1038 	kfree(state);
1039 }
1040 
1041 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1042 	.page_flip = drm_atomic_helper_page_flip,
1043 	.set_config = drm_atomic_helper_set_config,
1044 	.destroy = tegra_dc_destroy,
1045 	.reset = tegra_crtc_reset,
1046 	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1047 	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1048 };
1049 
1050 static int tegra_dc_set_timings(struct tegra_dc *dc,
1051 				struct drm_display_mode *mode)
1052 {
1053 	unsigned int h_ref_to_sync = 1;
1054 	unsigned int v_ref_to_sync = 1;
1055 	unsigned long value;
1056 
1057 	tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1058 
1059 	value = (v_ref_to_sync << 16) | h_ref_to_sync;
1060 	tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1061 
1062 	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1063 		((mode->hsync_end - mode->hsync_start) <<  0);
1064 	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1065 
1066 	value = ((mode->vtotal - mode->vsync_end) << 16) |
1067 		((mode->htotal - mode->hsync_end) <<  0);
1068 	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1069 
1070 	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1071 		((mode->hsync_start - mode->hdisplay) <<  0);
1072 	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1073 
1074 	value = (mode->vdisplay << 16) | mode->hdisplay;
1075 	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1076 
1077 	return 0;
1078 }
1079 
1080 /**
1081  * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1082  *     state
1083  * @dc: display controller
1084  * @crtc_state: CRTC atomic state
1085  * @clk: parent clock for display controller
1086  * @pclk: pixel clock
1087  * @div: shift clock divider
1088  *
1089  * Returns:
1090  * 0 on success or a negative error-code on failure.
1091  */
1092 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1093 			       struct drm_crtc_state *crtc_state,
1094 			       struct clk *clk, unsigned long pclk,
1095 			       unsigned int div)
1096 {
1097 	struct tegra_dc_state *state = to_dc_state(crtc_state);
1098 
1099 	if (!clk_has_parent(dc->clk, clk))
1100 		return -EINVAL;
1101 
1102 	state->clk = clk;
1103 	state->pclk = pclk;
1104 	state->div = div;
1105 
1106 	return 0;
1107 }
1108 
1109 static void tegra_dc_commit_state(struct tegra_dc *dc,
1110 				  struct tegra_dc_state *state)
1111 {
1112 	u32 value;
1113 	int err;
1114 
1115 	err = clk_set_parent(dc->clk, state->clk);
1116 	if (err < 0)
1117 		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1118 
1119 	/*
1120 	 * Outputs may not want to change the parent clock rate. This is only
1121 	 * relevant to Tegra20 where only a single display PLL is available.
1122 	 * Since that PLL would typically be used for HDMI, an internal LVDS
1123 	 * panel would need to be driven by some other clock such as PLL_P
1124 	 * which is shared with other peripherals. Changing the clock rate
1125 	 * should therefore be avoided.
1126 	 */
1127 	if (state->pclk > 0) {
1128 		err = clk_set_rate(state->clk, state->pclk);
1129 		if (err < 0)
1130 			dev_err(dc->dev,
1131 				"failed to set clock rate to %lu Hz\n",
1132 				state->pclk);
1133 	}
1134 
1135 	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1136 		      state->div);
1137 	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1138 
1139 	value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1140 	tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1141 }
1142 
1143 static void tegra_dc_stop(struct tegra_dc *dc)
1144 {
1145 	u32 value;
1146 
1147 	/* stop the display controller */
1148 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1149 	value &= ~DISP_CTRL_MODE_MASK;
1150 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1151 
1152 	tegra_dc_commit(dc);
1153 }
1154 
1155 static bool tegra_dc_idle(struct tegra_dc *dc)
1156 {
1157 	u32 value;
1158 
1159 	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1160 
1161 	return (value & DISP_CTRL_MODE_MASK) == 0;
1162 }
1163 
1164 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1165 {
1166 	timeout = jiffies + msecs_to_jiffies(timeout);
1167 
1168 	while (time_before(jiffies, timeout)) {
1169 		if (tegra_dc_idle(dc))
1170 			return 0;
1171 
1172 		usleep_range(1000, 2000);
1173 	}
1174 
1175 	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1176 	return -ETIMEDOUT;
1177 }
1178 
1179 static void tegra_crtc_disable(struct drm_crtc *crtc)
1180 {
1181 	struct tegra_dc *dc = to_tegra_dc(crtc);
1182 	u32 value;
1183 
1184 	if (!tegra_dc_idle(dc)) {
1185 		tegra_dc_stop(dc);
1186 
1187 		/*
1188 		 * Ignore the return value, there isn't anything useful to do
1189 		 * in case this fails.
1190 		 */
1191 		tegra_dc_wait_idle(dc, 100);
1192 	}
1193 
1194 	/*
1195 	 * This should really be part of the RGB encoder driver, but clearing
1196 	 * these bits has the side-effect of stopping the display controller.
1197 	 * When that happens no VBLANK interrupts will be raised. At the same
1198 	 * time the encoder is disabled before the display controller, so the
1199 	 * above code is always going to timeout waiting for the controller
1200 	 * to go idle.
1201 	 *
1202 	 * Given the close coupling between the RGB encoder and the display
1203 	 * controller doing it here is still kind of okay. None of the other
1204 	 * encoder drivers require these bits to be cleared.
1205 	 *
1206 	 * XXX: Perhaps given that the display controller is switched off at
1207 	 * this point anyway maybe clearing these bits isn't even useful for
1208 	 * the RGB encoder?
1209 	 */
1210 	if (dc->rgb) {
1211 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1212 		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1213 			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1214 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1215 	}
1216 
1217 	tegra_dc_stats_reset(&dc->stats);
1218 	drm_crtc_vblank_off(crtc);
1219 }
1220 
1221 static void tegra_crtc_enable(struct drm_crtc *crtc)
1222 {
1223 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1224 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1225 	struct tegra_dc *dc = to_tegra_dc(crtc);
1226 	u32 value;
1227 
1228 	tegra_dc_commit_state(dc, state);
1229 
1230 	/* program display mode */
1231 	tegra_dc_set_timings(dc, mode);
1232 
1233 	/* interlacing isn't supported yet, so disable it */
1234 	if (dc->soc->supports_interlacing) {
1235 		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1236 		value &= ~INTERLACE_ENABLE;
1237 		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1238 	}
1239 
1240 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1241 	value &= ~DISP_CTRL_MODE_MASK;
1242 	value |= DISP_CTRL_MODE_C_DISPLAY;
1243 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1244 
1245 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1246 	value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1247 		 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1248 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1249 
1250 	tegra_dc_commit(dc);
1251 
1252 	drm_crtc_vblank_on(crtc);
1253 }
1254 
1255 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
1256 				   struct drm_crtc_state *state)
1257 {
1258 	return 0;
1259 }
1260 
1261 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1262 				    struct drm_crtc_state *old_crtc_state)
1263 {
1264 	struct tegra_dc *dc = to_tegra_dc(crtc);
1265 
1266 	if (crtc->state->event) {
1267 		crtc->state->event->pipe = drm_crtc_index(crtc);
1268 
1269 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1270 
1271 		dc->event = crtc->state->event;
1272 		crtc->state->event = NULL;
1273 	}
1274 }
1275 
1276 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1277 				    struct drm_crtc_state *old_crtc_state)
1278 {
1279 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1280 	struct tegra_dc *dc = to_tegra_dc(crtc);
1281 
1282 	tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
1283 	tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
1284 }
1285 
1286 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1287 	.disable = tegra_crtc_disable,
1288 	.enable = tegra_crtc_enable,
1289 	.atomic_check = tegra_crtc_atomic_check,
1290 	.atomic_begin = tegra_crtc_atomic_begin,
1291 	.atomic_flush = tegra_crtc_atomic_flush,
1292 };
1293 
1294 static irqreturn_t tegra_dc_irq(int irq, void *data)
1295 {
1296 	struct tegra_dc *dc = data;
1297 	unsigned long status;
1298 
1299 	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1300 	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1301 
1302 	if (status & FRAME_END_INT) {
1303 		/*
1304 		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1305 		*/
1306 		dc->stats.frames++;
1307 	}
1308 
1309 	if (status & VBLANK_INT) {
1310 		/*
1311 		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1312 		*/
1313 		drm_crtc_handle_vblank(&dc->base);
1314 		tegra_dc_finish_page_flip(dc);
1315 		dc->stats.vblank++;
1316 	}
1317 
1318 	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1319 		/*
1320 		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1321 		*/
1322 		dc->stats.underflow++;
1323 	}
1324 
1325 	if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1326 		/*
1327 		dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1328 		*/
1329 		dc->stats.overflow++;
1330 	}
1331 
1332 	return IRQ_HANDLED;
1333 }
1334 
1335 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1336 {
1337 	struct drm_info_node *node = s->private;
1338 	struct tegra_dc *dc = node->info_ent->data;
1339 	int err = 0;
1340 
1341 	drm_modeset_lock_crtc(&dc->base, NULL);
1342 
1343 	if (!dc->base.state->active) {
1344 		err = -EBUSY;
1345 		goto unlock;
1346 	}
1347 
1348 #define DUMP_REG(name)						\
1349 	seq_printf(s, "%-40s %#05x %08x\n", #name, name,	\
1350 		   tegra_dc_readl(dc, name))
1351 
1352 	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
1353 	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1354 	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
1355 	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
1356 	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
1357 	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
1358 	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
1359 	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
1360 	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
1361 	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
1362 	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
1363 	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
1364 	DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
1365 	DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
1366 	DUMP_REG(DC_CMD_DISPLAY_COMMAND);
1367 	DUMP_REG(DC_CMD_SIGNAL_RAISE);
1368 	DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
1369 	DUMP_REG(DC_CMD_INT_STATUS);
1370 	DUMP_REG(DC_CMD_INT_MASK);
1371 	DUMP_REG(DC_CMD_INT_ENABLE);
1372 	DUMP_REG(DC_CMD_INT_TYPE);
1373 	DUMP_REG(DC_CMD_INT_POLARITY);
1374 	DUMP_REG(DC_CMD_SIGNAL_RAISE1);
1375 	DUMP_REG(DC_CMD_SIGNAL_RAISE2);
1376 	DUMP_REG(DC_CMD_SIGNAL_RAISE3);
1377 	DUMP_REG(DC_CMD_STATE_ACCESS);
1378 	DUMP_REG(DC_CMD_STATE_CONTROL);
1379 	DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
1380 	DUMP_REG(DC_CMD_REG_ACT_CONTROL);
1381 	DUMP_REG(DC_COM_CRC_CONTROL);
1382 	DUMP_REG(DC_COM_CRC_CHECKSUM);
1383 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
1384 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
1385 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
1386 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
1387 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
1388 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
1389 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
1390 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
1391 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
1392 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
1393 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
1394 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
1395 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
1396 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
1397 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
1398 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
1399 	DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
1400 	DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
1401 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
1402 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
1403 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
1404 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
1405 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
1406 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
1407 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
1408 	DUMP_REG(DC_COM_PIN_MISC_CONTROL);
1409 	DUMP_REG(DC_COM_PIN_PM0_CONTROL);
1410 	DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
1411 	DUMP_REG(DC_COM_PIN_PM1_CONTROL);
1412 	DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
1413 	DUMP_REG(DC_COM_SPI_CONTROL);
1414 	DUMP_REG(DC_COM_SPI_START_BYTE);
1415 	DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
1416 	DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
1417 	DUMP_REG(DC_COM_HSPI_CS_DC);
1418 	DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
1419 	DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
1420 	DUMP_REG(DC_COM_GPIO_CTRL);
1421 	DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
1422 	DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
1423 	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
1424 	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
1425 	DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
1426 	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
1427 	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1428 	DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
1429 	DUMP_REG(DC_DISP_REF_TO_SYNC);
1430 	DUMP_REG(DC_DISP_SYNC_WIDTH);
1431 	DUMP_REG(DC_DISP_BACK_PORCH);
1432 	DUMP_REG(DC_DISP_ACTIVE);
1433 	DUMP_REG(DC_DISP_FRONT_PORCH);
1434 	DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
1435 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
1436 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
1437 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
1438 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
1439 	DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
1440 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
1441 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
1442 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
1443 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
1444 	DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
1445 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
1446 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
1447 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
1448 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
1449 	DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
1450 	DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
1451 	DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
1452 	DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
1453 	DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
1454 	DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
1455 	DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
1456 	DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
1457 	DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
1458 	DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
1459 	DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
1460 	DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
1461 	DUMP_REG(DC_DISP_M0_CONTROL);
1462 	DUMP_REG(DC_DISP_M1_CONTROL);
1463 	DUMP_REG(DC_DISP_DI_CONTROL);
1464 	DUMP_REG(DC_DISP_PP_CONTROL);
1465 	DUMP_REG(DC_DISP_PP_SELECT_A);
1466 	DUMP_REG(DC_DISP_PP_SELECT_B);
1467 	DUMP_REG(DC_DISP_PP_SELECT_C);
1468 	DUMP_REG(DC_DISP_PP_SELECT_D);
1469 	DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
1470 	DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
1471 	DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
1472 	DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
1473 	DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
1474 	DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
1475 	DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
1476 	DUMP_REG(DC_DISP_BORDER_COLOR);
1477 	DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
1478 	DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
1479 	DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
1480 	DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
1481 	DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
1482 	DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
1483 	DUMP_REG(DC_DISP_CURSOR_START_ADDR);
1484 	DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
1485 	DUMP_REG(DC_DISP_CURSOR_POSITION);
1486 	DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
1487 	DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
1488 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
1489 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
1490 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
1491 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
1492 	DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
1493 	DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
1494 	DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
1495 	DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
1496 	DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
1497 	DUMP_REG(DC_DISP_DAC_CRT_CTRL);
1498 	DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
1499 	DUMP_REG(DC_DISP_SD_CONTROL);
1500 	DUMP_REG(DC_DISP_SD_CSC_COEFF);
1501 	DUMP_REG(DC_DISP_SD_LUT(0));
1502 	DUMP_REG(DC_DISP_SD_LUT(1));
1503 	DUMP_REG(DC_DISP_SD_LUT(2));
1504 	DUMP_REG(DC_DISP_SD_LUT(3));
1505 	DUMP_REG(DC_DISP_SD_LUT(4));
1506 	DUMP_REG(DC_DISP_SD_LUT(5));
1507 	DUMP_REG(DC_DISP_SD_LUT(6));
1508 	DUMP_REG(DC_DISP_SD_LUT(7));
1509 	DUMP_REG(DC_DISP_SD_LUT(8));
1510 	DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
1511 	DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
1512 	DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
1513 	DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
1514 	DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
1515 	DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
1516 	DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
1517 	DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
1518 	DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
1519 	DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
1520 	DUMP_REG(DC_DISP_SD_BL_TF(0));
1521 	DUMP_REG(DC_DISP_SD_BL_TF(1));
1522 	DUMP_REG(DC_DISP_SD_BL_TF(2));
1523 	DUMP_REG(DC_DISP_SD_BL_TF(3));
1524 	DUMP_REG(DC_DISP_SD_BL_CONTROL);
1525 	DUMP_REG(DC_DISP_SD_HW_K_VALUES);
1526 	DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
1527 	DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
1528 	DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
1529 	DUMP_REG(DC_WIN_WIN_OPTIONS);
1530 	DUMP_REG(DC_WIN_BYTE_SWAP);
1531 	DUMP_REG(DC_WIN_BUFFER_CONTROL);
1532 	DUMP_REG(DC_WIN_COLOR_DEPTH);
1533 	DUMP_REG(DC_WIN_POSITION);
1534 	DUMP_REG(DC_WIN_SIZE);
1535 	DUMP_REG(DC_WIN_PRESCALED_SIZE);
1536 	DUMP_REG(DC_WIN_H_INITIAL_DDA);
1537 	DUMP_REG(DC_WIN_V_INITIAL_DDA);
1538 	DUMP_REG(DC_WIN_DDA_INC);
1539 	DUMP_REG(DC_WIN_LINE_STRIDE);
1540 	DUMP_REG(DC_WIN_BUF_STRIDE);
1541 	DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1542 	DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1543 	DUMP_REG(DC_WIN_DV_CONTROL);
1544 	DUMP_REG(DC_WIN_BLEND_NOKEY);
1545 	DUMP_REG(DC_WIN_BLEND_1WIN);
1546 	DUMP_REG(DC_WIN_BLEND_2WIN_X);
1547 	DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1548 	DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1549 	DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1550 	DUMP_REG(DC_WINBUF_START_ADDR);
1551 	DUMP_REG(DC_WINBUF_START_ADDR_NS);
1552 	DUMP_REG(DC_WINBUF_START_ADDR_U);
1553 	DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1554 	DUMP_REG(DC_WINBUF_START_ADDR_V);
1555 	DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1556 	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1557 	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1558 	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1559 	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1560 	DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1561 	DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1562 	DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1563 	DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1564 
1565 #undef DUMP_REG
1566 
1567 unlock:
1568 	drm_modeset_unlock_crtc(&dc->base);
1569 	return err;
1570 }
1571 
1572 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1573 {
1574 	struct drm_info_node *node = s->private;
1575 	struct tegra_dc *dc = node->info_ent->data;
1576 	int err = 0;
1577 	u32 value;
1578 
1579 	drm_modeset_lock_crtc(&dc->base, NULL);
1580 
1581 	if (!dc->base.state->active) {
1582 		err = -EBUSY;
1583 		goto unlock;
1584 	}
1585 
1586 	value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1587 	tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1588 	tegra_dc_commit(dc);
1589 
1590 	drm_crtc_wait_one_vblank(&dc->base);
1591 	drm_crtc_wait_one_vblank(&dc->base);
1592 
1593 	value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1594 	seq_printf(s, "%08x\n", value);
1595 
1596 	tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1597 
1598 unlock:
1599 	drm_modeset_unlock_crtc(&dc->base);
1600 	return err;
1601 }
1602 
1603 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1604 {
1605 	struct drm_info_node *node = s->private;
1606 	struct tegra_dc *dc = node->info_ent->data;
1607 
1608 	seq_printf(s, "frames: %lu\n", dc->stats.frames);
1609 	seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1610 	seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1611 	seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1612 
1613 	return 0;
1614 }
1615 
1616 static struct drm_info_list debugfs_files[] = {
1617 	{ "regs", tegra_dc_show_regs, 0, NULL },
1618 	{ "crc", tegra_dc_show_crc, 0, NULL },
1619 	{ "stats", tegra_dc_show_stats, 0, NULL },
1620 };
1621 
1622 static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1623 {
1624 	unsigned int i;
1625 	char *name;
1626 	int err;
1627 
1628 	name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1629 	dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1630 	kfree(name);
1631 
1632 	if (!dc->debugfs)
1633 		return -ENOMEM;
1634 
1635 	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1636 				    GFP_KERNEL);
1637 	if (!dc->debugfs_files) {
1638 		err = -ENOMEM;
1639 		goto remove;
1640 	}
1641 
1642 	for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1643 		dc->debugfs_files[i].data = dc;
1644 
1645 	err = drm_debugfs_create_files(dc->debugfs_files,
1646 				       ARRAY_SIZE(debugfs_files),
1647 				       dc->debugfs, minor);
1648 	if (err < 0)
1649 		goto free;
1650 
1651 	dc->minor = minor;
1652 
1653 	return 0;
1654 
1655 free:
1656 	kfree(dc->debugfs_files);
1657 	dc->debugfs_files = NULL;
1658 remove:
1659 	debugfs_remove(dc->debugfs);
1660 	dc->debugfs = NULL;
1661 
1662 	return err;
1663 }
1664 
1665 static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1666 {
1667 	drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1668 				 dc->minor);
1669 	dc->minor = NULL;
1670 
1671 	kfree(dc->debugfs_files);
1672 	dc->debugfs_files = NULL;
1673 
1674 	debugfs_remove(dc->debugfs);
1675 	dc->debugfs = NULL;
1676 
1677 	return 0;
1678 }
1679 
1680 static int tegra_dc_init(struct host1x_client *client)
1681 {
1682 	struct drm_device *drm = dev_get_drvdata(client->parent);
1683 	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1684 	struct tegra_dc *dc = host1x_client_to_dc(client);
1685 	struct tegra_drm *tegra = drm->dev_private;
1686 	struct drm_plane *primary = NULL;
1687 	struct drm_plane *cursor = NULL;
1688 	u32 value;
1689 	int err;
1690 
1691 	dc->syncpt = host1x_syncpt_request(dc->dev, flags);
1692 	if (!dc->syncpt)
1693 		dev_warn(dc->dev, "failed to allocate syncpoint\n");
1694 
1695 	if (tegra->domain) {
1696 		err = iommu_attach_device(tegra->domain, dc->dev);
1697 		if (err < 0) {
1698 			dev_err(dc->dev, "failed to attach to domain: %d\n",
1699 				err);
1700 			return err;
1701 		}
1702 
1703 		dc->domain = tegra->domain;
1704 	}
1705 
1706 	primary = tegra_dc_primary_plane_create(drm, dc);
1707 	if (IS_ERR(primary)) {
1708 		err = PTR_ERR(primary);
1709 		goto cleanup;
1710 	}
1711 
1712 	if (dc->soc->supports_cursor) {
1713 		cursor = tegra_dc_cursor_plane_create(drm, dc);
1714 		if (IS_ERR(cursor)) {
1715 			err = PTR_ERR(cursor);
1716 			goto cleanup;
1717 		}
1718 	}
1719 
1720 	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1721 					&tegra_crtc_funcs, NULL);
1722 	if (err < 0)
1723 		goto cleanup;
1724 
1725 	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1726 
1727 	/*
1728 	 * Keep track of the minimum pitch alignment across all display
1729 	 * controllers.
1730 	 */
1731 	if (dc->soc->pitch_align > tegra->pitch_align)
1732 		tegra->pitch_align = dc->soc->pitch_align;
1733 
1734 	err = tegra_dc_rgb_init(drm, dc);
1735 	if (err < 0 && err != -ENODEV) {
1736 		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1737 		goto cleanup;
1738 	}
1739 
1740 	err = tegra_dc_add_planes(drm, dc);
1741 	if (err < 0)
1742 		goto cleanup;
1743 
1744 	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1745 		err = tegra_dc_debugfs_init(dc, drm->primary);
1746 		if (err < 0)
1747 			dev_err(dc->dev, "debugfs setup failed: %d\n", err);
1748 	}
1749 
1750 	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1751 			       dev_name(dc->dev), dc);
1752 	if (err < 0) {
1753 		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1754 			err);
1755 		goto cleanup;
1756 	}
1757 
1758 	/* initialize display controller */
1759 	if (dc->syncpt) {
1760 		u32 syncpt = host1x_syncpt_id(dc->syncpt);
1761 
1762 		value = SYNCPT_CNTRL_NO_STALL;
1763 		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1764 
1765 		value = SYNCPT_VSYNC_ENABLE | syncpt;
1766 		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1767 	}
1768 
1769 	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1770 		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1771 	tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1772 
1773 	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1774 		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1775 	tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1776 
1777 	/* initialize timer */
1778 	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1779 		WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1780 	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1781 
1782 	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1783 		WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1784 	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1785 
1786 	value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1787 		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1788 	tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1789 
1790 	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1791 		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1792 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1793 
1794 	if (dc->soc->supports_border_color)
1795 		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1796 
1797 	tegra_dc_stats_reset(&dc->stats);
1798 
1799 	return 0;
1800 
1801 cleanup:
1802 	if (cursor)
1803 		drm_plane_cleanup(cursor);
1804 
1805 	if (primary)
1806 		drm_plane_cleanup(primary);
1807 
1808 	if (tegra->domain) {
1809 		iommu_detach_device(tegra->domain, dc->dev);
1810 		dc->domain = NULL;
1811 	}
1812 
1813 	return err;
1814 }
1815 
1816 static int tegra_dc_exit(struct host1x_client *client)
1817 {
1818 	struct tegra_dc *dc = host1x_client_to_dc(client);
1819 	int err;
1820 
1821 	devm_free_irq(dc->dev, dc->irq, dc);
1822 
1823 	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1824 		err = tegra_dc_debugfs_exit(dc);
1825 		if (err < 0)
1826 			dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1827 	}
1828 
1829 	err = tegra_dc_rgb_exit(dc);
1830 	if (err) {
1831 		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1832 		return err;
1833 	}
1834 
1835 	if (dc->domain) {
1836 		iommu_detach_device(dc->domain, dc->dev);
1837 		dc->domain = NULL;
1838 	}
1839 
1840 	host1x_syncpt_free(dc->syncpt);
1841 
1842 	return 0;
1843 }
1844 
1845 static const struct host1x_client_ops dc_client_ops = {
1846 	.init = tegra_dc_init,
1847 	.exit = tegra_dc_exit,
1848 };
1849 
1850 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1851 	.supports_border_color = true,
1852 	.supports_interlacing = false,
1853 	.supports_cursor = false,
1854 	.supports_block_linear = false,
1855 	.pitch_align = 8,
1856 	.has_powergate = false,
1857 };
1858 
1859 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1860 	.supports_border_color = true,
1861 	.supports_interlacing = false,
1862 	.supports_cursor = false,
1863 	.supports_block_linear = false,
1864 	.pitch_align = 8,
1865 	.has_powergate = false,
1866 };
1867 
1868 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1869 	.supports_border_color = true,
1870 	.supports_interlacing = false,
1871 	.supports_cursor = false,
1872 	.supports_block_linear = false,
1873 	.pitch_align = 64,
1874 	.has_powergate = true,
1875 };
1876 
1877 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1878 	.supports_border_color = false,
1879 	.supports_interlacing = true,
1880 	.supports_cursor = true,
1881 	.supports_block_linear = true,
1882 	.pitch_align = 64,
1883 	.has_powergate = true,
1884 };
1885 
1886 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
1887 	.supports_border_color = false,
1888 	.supports_interlacing = true,
1889 	.supports_cursor = true,
1890 	.supports_block_linear = true,
1891 	.pitch_align = 64,
1892 	.has_powergate = true,
1893 };
1894 
1895 static const struct of_device_id tegra_dc_of_match[] = {
1896 	{
1897 		.compatible = "nvidia,tegra210-dc",
1898 		.data = &tegra210_dc_soc_info,
1899 	}, {
1900 		.compatible = "nvidia,tegra124-dc",
1901 		.data = &tegra124_dc_soc_info,
1902 	}, {
1903 		.compatible = "nvidia,tegra114-dc",
1904 		.data = &tegra114_dc_soc_info,
1905 	}, {
1906 		.compatible = "nvidia,tegra30-dc",
1907 		.data = &tegra30_dc_soc_info,
1908 	}, {
1909 		.compatible = "nvidia,tegra20-dc",
1910 		.data = &tegra20_dc_soc_info,
1911 	}, {
1912 		/* sentinel */
1913 	}
1914 };
1915 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
1916 
1917 static int tegra_dc_parse_dt(struct tegra_dc *dc)
1918 {
1919 	struct device_node *np;
1920 	u32 value = 0;
1921 	int err;
1922 
1923 	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1924 	if (err < 0) {
1925 		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1926 
1927 		/*
1928 		 * If the nvidia,head property isn't present, try to find the
1929 		 * correct head number by looking up the position of this
1930 		 * display controller's node within the device tree. Assuming
1931 		 * that the nodes are ordered properly in the DTS file and
1932 		 * that the translation into a flattened device tree blob
1933 		 * preserves that ordering this will actually yield the right
1934 		 * head number.
1935 		 *
1936 		 * If those assumptions don't hold, this will still work for
1937 		 * cases where only a single display controller is used.
1938 		 */
1939 		for_each_matching_node(np, tegra_dc_of_match) {
1940 			if (np == dc->dev->of_node) {
1941 				of_node_put(np);
1942 				break;
1943 			}
1944 
1945 			value++;
1946 		}
1947 	}
1948 
1949 	dc->pipe = value;
1950 
1951 	return 0;
1952 }
1953 
1954 static int tegra_dc_probe(struct platform_device *pdev)
1955 {
1956 	const struct of_device_id *id;
1957 	struct resource *regs;
1958 	struct tegra_dc *dc;
1959 	int err;
1960 
1961 	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1962 	if (!dc)
1963 		return -ENOMEM;
1964 
1965 	id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
1966 	if (!id)
1967 		return -ENODEV;
1968 
1969 	spin_lock_init(&dc->lock);
1970 	INIT_LIST_HEAD(&dc->list);
1971 	dc->dev = &pdev->dev;
1972 	dc->soc = id->data;
1973 
1974 	err = tegra_dc_parse_dt(dc);
1975 	if (err < 0)
1976 		return err;
1977 
1978 	dc->clk = devm_clk_get(&pdev->dev, NULL);
1979 	if (IS_ERR(dc->clk)) {
1980 		dev_err(&pdev->dev, "failed to get clock\n");
1981 		return PTR_ERR(dc->clk);
1982 	}
1983 
1984 	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
1985 	if (IS_ERR(dc->rst)) {
1986 		dev_err(&pdev->dev, "failed to get reset\n");
1987 		return PTR_ERR(dc->rst);
1988 	}
1989 
1990 	if (dc->soc->has_powergate) {
1991 		if (dc->pipe == 0)
1992 			dc->powergate = TEGRA_POWERGATE_DIS;
1993 		else
1994 			dc->powergate = TEGRA_POWERGATE_DISB;
1995 
1996 		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
1997 							dc->rst);
1998 		if (err < 0) {
1999 			dev_err(&pdev->dev, "failed to power partition: %d\n",
2000 				err);
2001 			return err;
2002 		}
2003 	} else {
2004 		err = clk_prepare_enable(dc->clk);
2005 		if (err < 0) {
2006 			dev_err(&pdev->dev, "failed to enable clock: %d\n",
2007 				err);
2008 			return err;
2009 		}
2010 
2011 		err = reset_control_deassert(dc->rst);
2012 		if (err < 0) {
2013 			dev_err(&pdev->dev, "failed to deassert reset: %d\n",
2014 				err);
2015 			return err;
2016 		}
2017 	}
2018 
2019 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2020 	dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2021 	if (IS_ERR(dc->regs))
2022 		return PTR_ERR(dc->regs);
2023 
2024 	dc->irq = platform_get_irq(pdev, 0);
2025 	if (dc->irq < 0) {
2026 		dev_err(&pdev->dev, "failed to get IRQ\n");
2027 		return -ENXIO;
2028 	}
2029 
2030 	INIT_LIST_HEAD(&dc->client.list);
2031 	dc->client.ops = &dc_client_ops;
2032 	dc->client.dev = &pdev->dev;
2033 
2034 	err = tegra_dc_rgb_probe(dc);
2035 	if (err < 0 && err != -ENODEV) {
2036 		dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2037 		return err;
2038 	}
2039 
2040 	err = host1x_client_register(&dc->client);
2041 	if (err < 0) {
2042 		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2043 			err);
2044 		return err;
2045 	}
2046 
2047 	platform_set_drvdata(pdev, dc);
2048 
2049 	return 0;
2050 }
2051 
2052 static int tegra_dc_remove(struct platform_device *pdev)
2053 {
2054 	struct tegra_dc *dc = platform_get_drvdata(pdev);
2055 	int err;
2056 
2057 	err = host1x_client_unregister(&dc->client);
2058 	if (err < 0) {
2059 		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2060 			err);
2061 		return err;
2062 	}
2063 
2064 	err = tegra_dc_rgb_remove(dc);
2065 	if (err < 0) {
2066 		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2067 		return err;
2068 	}
2069 
2070 	reset_control_assert(dc->rst);
2071 
2072 	if (dc->soc->has_powergate)
2073 		tegra_powergate_power_off(dc->powergate);
2074 
2075 	clk_disable_unprepare(dc->clk);
2076 
2077 	return 0;
2078 }
2079 
2080 struct platform_driver tegra_dc_driver = {
2081 	.driver = {
2082 		.name = "tegra-dc",
2083 		.of_match_table = tegra_dc_of_match,
2084 	},
2085 	.probe = tegra_dc_probe,
2086 	.remove = tegra_dc_remove,
2087 };
2088