1 /* 2 * Copyright (C) 2015 Free Electrons 3 * Copyright (C) 2015 NextThing Co 4 * 5 * Maxime Ripard <maxime.ripard@free-electrons.com> 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License as 9 * published by the Free Software Foundation; either version 2 of 10 * the License, or (at your option) any later version. 11 */ 12 13 #include <drm/drmP.h> 14 #include <drm/drm_atomic.h> 15 #include <drm/drm_atomic_helper.h> 16 #include <drm/drm_crtc.h> 17 #include <drm/drm_crtc_helper.h> 18 #include <drm/drm_fb_cma_helper.h> 19 #include <drm/drm_gem_cma_helper.h> 20 #include <drm/drm_plane_helper.h> 21 22 #include <linux/component.h> 23 #include <linux/list.h> 24 #include <linux/of_device.h> 25 #include <linux/of_graph.h> 26 #include <linux/reset.h> 27 28 #include "sun4i_backend.h" 29 #include "sun4i_drv.h" 30 #include "sun4i_frontend.h" 31 #include "sun4i_layer.h" 32 #include "sunxi_engine.h" 33 34 struct sun4i_backend_quirks { 35 /* backend <-> TCON muxing selection done in backend */ 36 bool needs_output_muxing; 37 }; 38 39 static const u32 sunxi_rgb2yuv_coef[12] = { 40 0x00000107, 0x00000204, 0x00000064, 0x00000108, 41 0x00003f69, 0x00003ed6, 0x000001c1, 0x00000808, 42 0x000001c1, 0x00003e88, 0x00003fb8, 0x00000808 43 }; 44 45 /* 46 * These coefficients are taken from the A33 BSP from Allwinner. 47 * 48 * The formula is for each component, each coefficient being multiplied by 49 * 1024 and each constant being multiplied by 16: 50 * G = 1.164 * Y - 0.391 * U - 0.813 * V + 135 51 * R = 1.164 * Y + 1.596 * V - 222 52 * B = 1.164 * Y + 2.018 * U + 276 53 * 54 * This seems to be a conversion from Y[16:235] UV[16:240] to RGB[0:255], 55 * following the BT601 spec. 56 */ 57 static const u32 sunxi_bt601_yuv2rgb_coef[12] = { 58 0x000004a7, 0x00001e6f, 0x00001cbf, 0x00000877, 59 0x000004a7, 0x00000000, 0x00000662, 0x00003211, 60 0x000004a7, 0x00000812, 0x00000000, 0x00002eb1, 61 }; 62 63 static inline bool sun4i_backend_format_is_planar_yuv(uint32_t format) 64 { 65 switch (format) { 66 case DRM_FORMAT_YUV411: 67 case DRM_FORMAT_YUV422: 68 case DRM_FORMAT_YUV444: 69 return true; 70 default: 71 return false; 72 } 73 } 74 75 static inline bool sun4i_backend_format_is_packed_yuv422(uint32_t format) 76 { 77 switch (format) { 78 case DRM_FORMAT_YUYV: 79 case DRM_FORMAT_YVYU: 80 case DRM_FORMAT_UYVY: 81 case DRM_FORMAT_VYUY: 82 return true; 83 84 default: 85 return false; 86 } 87 } 88 89 static inline bool sun4i_backend_format_is_yuv(uint32_t format) 90 { 91 return sun4i_backend_format_is_planar_yuv(format) || 92 sun4i_backend_format_is_packed_yuv422(format); 93 } 94 95 static void sun4i_backend_apply_color_correction(struct sunxi_engine *engine) 96 { 97 int i; 98 99 DRM_DEBUG_DRIVER("Applying RGB to YUV color correction\n"); 100 101 /* Set color correction */ 102 regmap_write(engine->regs, SUN4I_BACKEND_OCCTL_REG, 103 SUN4I_BACKEND_OCCTL_ENABLE); 104 105 for (i = 0; i < 12; i++) 106 regmap_write(engine->regs, SUN4I_BACKEND_OCRCOEF_REG(i), 107 sunxi_rgb2yuv_coef[i]); 108 } 109 110 static void sun4i_backend_disable_color_correction(struct sunxi_engine *engine) 111 { 112 DRM_DEBUG_DRIVER("Disabling color correction\n"); 113 114 /* Disable color correction */ 115 regmap_update_bits(engine->regs, SUN4I_BACKEND_OCCTL_REG, 116 SUN4I_BACKEND_OCCTL_ENABLE, 0); 117 } 118 119 static void sun4i_backend_commit(struct sunxi_engine *engine) 120 { 121 DRM_DEBUG_DRIVER("Committing changes\n"); 122 123 regmap_write(engine->regs, SUN4I_BACKEND_REGBUFFCTL_REG, 124 SUN4I_BACKEND_REGBUFFCTL_AUTOLOAD_DIS | 125 SUN4I_BACKEND_REGBUFFCTL_LOADCTL); 126 } 127 128 void sun4i_backend_layer_enable(struct sun4i_backend *backend, 129 int layer, bool enable) 130 { 131 u32 val; 132 133 DRM_DEBUG_DRIVER("%sabling layer %d\n", enable ? "En" : "Dis", 134 layer); 135 136 if (enable) 137 val = SUN4I_BACKEND_MODCTL_LAY_EN(layer); 138 else 139 val = 0; 140 141 regmap_update_bits(backend->engine.regs, SUN4I_BACKEND_MODCTL_REG, 142 SUN4I_BACKEND_MODCTL_LAY_EN(layer), val); 143 } 144 145 static int sun4i_backend_drm_format_to_layer(u32 format, u32 *mode) 146 { 147 switch (format) { 148 case DRM_FORMAT_ARGB8888: 149 *mode = SUN4I_BACKEND_LAY_FBFMT_ARGB8888; 150 break; 151 152 case DRM_FORMAT_ARGB4444: 153 *mode = SUN4I_BACKEND_LAY_FBFMT_ARGB4444; 154 break; 155 156 case DRM_FORMAT_ARGB1555: 157 *mode = SUN4I_BACKEND_LAY_FBFMT_ARGB1555; 158 break; 159 160 case DRM_FORMAT_RGBA5551: 161 *mode = SUN4I_BACKEND_LAY_FBFMT_RGBA5551; 162 break; 163 164 case DRM_FORMAT_RGBA4444: 165 *mode = SUN4I_BACKEND_LAY_FBFMT_RGBA4444; 166 break; 167 168 case DRM_FORMAT_XRGB8888: 169 *mode = SUN4I_BACKEND_LAY_FBFMT_XRGB8888; 170 break; 171 172 case DRM_FORMAT_RGB888: 173 *mode = SUN4I_BACKEND_LAY_FBFMT_RGB888; 174 break; 175 176 case DRM_FORMAT_RGB565: 177 *mode = SUN4I_BACKEND_LAY_FBFMT_RGB565; 178 break; 179 180 default: 181 return -EINVAL; 182 } 183 184 return 0; 185 } 186 187 int sun4i_backend_update_layer_coord(struct sun4i_backend *backend, 188 int layer, struct drm_plane *plane) 189 { 190 struct drm_plane_state *state = plane->state; 191 192 DRM_DEBUG_DRIVER("Updating layer %d\n", layer); 193 194 if (plane->type == DRM_PLANE_TYPE_PRIMARY) { 195 DRM_DEBUG_DRIVER("Primary layer, updating global size W: %u H: %u\n", 196 state->crtc_w, state->crtc_h); 197 regmap_write(backend->engine.regs, SUN4I_BACKEND_DISSIZE_REG, 198 SUN4I_BACKEND_DISSIZE(state->crtc_w, 199 state->crtc_h)); 200 } 201 202 /* Set height and width */ 203 DRM_DEBUG_DRIVER("Layer size W: %u H: %u\n", 204 state->crtc_w, state->crtc_h); 205 regmap_write(backend->engine.regs, SUN4I_BACKEND_LAYSIZE_REG(layer), 206 SUN4I_BACKEND_LAYSIZE(state->crtc_w, 207 state->crtc_h)); 208 209 /* Set base coordinates */ 210 DRM_DEBUG_DRIVER("Layer coordinates X: %d Y: %d\n", 211 state->crtc_x, state->crtc_y); 212 regmap_write(backend->engine.regs, SUN4I_BACKEND_LAYCOOR_REG(layer), 213 SUN4I_BACKEND_LAYCOOR(state->crtc_x, 214 state->crtc_y)); 215 216 return 0; 217 } 218 219 static int sun4i_backend_update_yuv_format(struct sun4i_backend *backend, 220 int layer, struct drm_plane *plane) 221 { 222 struct drm_plane_state *state = plane->state; 223 struct drm_framebuffer *fb = state->fb; 224 uint32_t format = fb->format->format; 225 u32 val = SUN4I_BACKEND_IYUVCTL_EN; 226 int i; 227 228 for (i = 0; i < ARRAY_SIZE(sunxi_bt601_yuv2rgb_coef); i++) 229 regmap_write(backend->engine.regs, 230 SUN4I_BACKEND_YGCOEF_REG(i), 231 sunxi_bt601_yuv2rgb_coef[i]); 232 233 /* 234 * We should do that only for a single plane, but the 235 * framebuffer's atomic_check has our back on this. 236 */ 237 regmap_update_bits(backend->engine.regs, SUN4I_BACKEND_ATTCTL_REG0(layer), 238 SUN4I_BACKEND_ATTCTL_REG0_LAY_YUVEN, 239 SUN4I_BACKEND_ATTCTL_REG0_LAY_YUVEN); 240 241 /* TODO: Add support for the multi-planar YUV formats */ 242 if (sun4i_backend_format_is_packed_yuv422(format)) 243 val |= SUN4I_BACKEND_IYUVCTL_FBFMT_PACKED_YUV422; 244 else 245 DRM_DEBUG_DRIVER("Unsupported YUV format (0x%x)\n", format); 246 247 /* 248 * Allwinner seems to list the pixel sequence from right to left, while 249 * DRM lists it from left to right. 250 */ 251 switch (format) { 252 case DRM_FORMAT_YUYV: 253 val |= SUN4I_BACKEND_IYUVCTL_FBPS_VYUY; 254 break; 255 case DRM_FORMAT_YVYU: 256 val |= SUN4I_BACKEND_IYUVCTL_FBPS_UYVY; 257 break; 258 case DRM_FORMAT_UYVY: 259 val |= SUN4I_BACKEND_IYUVCTL_FBPS_YVYU; 260 break; 261 case DRM_FORMAT_VYUY: 262 val |= SUN4I_BACKEND_IYUVCTL_FBPS_YUYV; 263 break; 264 default: 265 DRM_DEBUG_DRIVER("Unsupported YUV pixel sequence (0x%x)\n", 266 format); 267 } 268 269 regmap_write(backend->engine.regs, SUN4I_BACKEND_IYUVCTL_REG, val); 270 271 return 0; 272 } 273 274 int sun4i_backend_update_layer_formats(struct sun4i_backend *backend, 275 int layer, struct drm_plane *plane) 276 { 277 struct drm_plane_state *state = plane->state; 278 struct drm_framebuffer *fb = state->fb; 279 bool interlaced = false; 280 u32 val; 281 int ret; 282 283 /* Clear the YUV mode */ 284 regmap_update_bits(backend->engine.regs, SUN4I_BACKEND_ATTCTL_REG0(layer), 285 SUN4I_BACKEND_ATTCTL_REG0_LAY_YUVEN, 0); 286 287 if (plane->state->crtc) 288 interlaced = plane->state->crtc->state->adjusted_mode.flags 289 & DRM_MODE_FLAG_INTERLACE; 290 291 regmap_update_bits(backend->engine.regs, SUN4I_BACKEND_MODCTL_REG, 292 SUN4I_BACKEND_MODCTL_ITLMOD_EN, 293 interlaced ? SUN4I_BACKEND_MODCTL_ITLMOD_EN : 0); 294 295 DRM_DEBUG_DRIVER("Switching display backend interlaced mode %s\n", 296 interlaced ? "on" : "off"); 297 298 if (sun4i_backend_format_is_yuv(fb->format->format)) 299 return sun4i_backend_update_yuv_format(backend, layer, plane); 300 301 ret = sun4i_backend_drm_format_to_layer(fb->format->format, &val); 302 if (ret) { 303 DRM_DEBUG_DRIVER("Invalid format\n"); 304 return ret; 305 } 306 307 regmap_update_bits(backend->engine.regs, 308 SUN4I_BACKEND_ATTCTL_REG1(layer), 309 SUN4I_BACKEND_ATTCTL_REG1_LAY_FBFMT, val); 310 311 return 0; 312 } 313 314 int sun4i_backend_update_layer_frontend(struct sun4i_backend *backend, 315 int layer, uint32_t fmt) 316 { 317 u32 val; 318 int ret; 319 320 ret = sun4i_backend_drm_format_to_layer(fmt, &val); 321 if (ret) { 322 DRM_DEBUG_DRIVER("Invalid format\n"); 323 return ret; 324 } 325 326 regmap_update_bits(backend->engine.regs, 327 SUN4I_BACKEND_ATTCTL_REG0(layer), 328 SUN4I_BACKEND_ATTCTL_REG0_LAY_VDOEN, 329 SUN4I_BACKEND_ATTCTL_REG0_LAY_VDOEN); 330 331 regmap_update_bits(backend->engine.regs, 332 SUN4I_BACKEND_ATTCTL_REG1(layer), 333 SUN4I_BACKEND_ATTCTL_REG1_LAY_FBFMT, val); 334 335 return 0; 336 } 337 338 static int sun4i_backend_update_yuv_buffer(struct sun4i_backend *backend, 339 struct drm_framebuffer *fb, 340 dma_addr_t paddr) 341 { 342 /* TODO: Add support for the multi-planar YUV formats */ 343 DRM_DEBUG_DRIVER("Setting packed YUV buffer address to %pad\n", &paddr); 344 regmap_write(backend->engine.regs, SUN4I_BACKEND_IYUVADD_REG(0), paddr); 345 346 DRM_DEBUG_DRIVER("Layer line width: %d bits\n", fb->pitches[0] * 8); 347 regmap_write(backend->engine.regs, SUN4I_BACKEND_IYUVLINEWIDTH_REG(0), 348 fb->pitches[0] * 8); 349 350 return 0; 351 } 352 353 int sun4i_backend_update_layer_buffer(struct sun4i_backend *backend, 354 int layer, struct drm_plane *plane) 355 { 356 struct drm_plane_state *state = plane->state; 357 struct drm_framebuffer *fb = state->fb; 358 u32 lo_paddr, hi_paddr; 359 dma_addr_t paddr; 360 361 /* Set the line width */ 362 DRM_DEBUG_DRIVER("Layer line width: %d bits\n", fb->pitches[0] * 8); 363 regmap_write(backend->engine.regs, 364 SUN4I_BACKEND_LAYLINEWIDTH_REG(layer), 365 fb->pitches[0] * 8); 366 367 /* Get the start of the displayed memory */ 368 paddr = drm_fb_cma_get_gem_addr(fb, state, 0); 369 DRM_DEBUG_DRIVER("Setting buffer address to %pad\n", &paddr); 370 371 /* 372 * backend DMA accesses DRAM directly, bypassing the system 373 * bus. As such, the address range is different and the buffer 374 * address needs to be corrected. 375 */ 376 paddr -= PHYS_OFFSET; 377 378 if (sun4i_backend_format_is_yuv(fb->format->format)) 379 return sun4i_backend_update_yuv_buffer(backend, fb, paddr); 380 381 /* Write the 32 lower bits of the address (in bits) */ 382 lo_paddr = paddr << 3; 383 DRM_DEBUG_DRIVER("Setting address lower bits to 0x%x\n", lo_paddr); 384 regmap_write(backend->engine.regs, 385 SUN4I_BACKEND_LAYFB_L32ADD_REG(layer), 386 lo_paddr); 387 388 /* And the upper bits */ 389 hi_paddr = paddr >> 29; 390 DRM_DEBUG_DRIVER("Setting address high bits to 0x%x\n", hi_paddr); 391 regmap_update_bits(backend->engine.regs, SUN4I_BACKEND_LAYFB_H4ADD_REG, 392 SUN4I_BACKEND_LAYFB_H4ADD_MSK(layer), 393 SUN4I_BACKEND_LAYFB_H4ADD(layer, hi_paddr)); 394 395 return 0; 396 } 397 398 int sun4i_backend_update_layer_zpos(struct sun4i_backend *backend, int layer, 399 struct drm_plane *plane) 400 { 401 struct drm_plane_state *state = plane->state; 402 struct sun4i_layer_state *p_state = state_to_sun4i_layer_state(state); 403 unsigned int priority = state->normalized_zpos; 404 unsigned int pipe = p_state->pipe; 405 406 DRM_DEBUG_DRIVER("Setting layer %d's priority to %d and pipe %d\n", 407 layer, priority, pipe); 408 regmap_update_bits(backend->engine.regs, SUN4I_BACKEND_ATTCTL_REG0(layer), 409 SUN4I_BACKEND_ATTCTL_REG0_LAY_PIPESEL_MASK | 410 SUN4I_BACKEND_ATTCTL_REG0_LAY_PRISEL_MASK, 411 SUN4I_BACKEND_ATTCTL_REG0_LAY_PIPESEL(p_state->pipe) | 412 SUN4I_BACKEND_ATTCTL_REG0_LAY_PRISEL(priority)); 413 414 return 0; 415 } 416 417 static bool sun4i_backend_plane_uses_scaler(struct drm_plane_state *state) 418 { 419 u16 src_h = state->src_h >> 16; 420 u16 src_w = state->src_w >> 16; 421 422 DRM_DEBUG_DRIVER("Input size %dx%d, output size %dx%d\n", 423 src_w, src_h, state->crtc_w, state->crtc_h); 424 425 if ((state->crtc_h != src_h) || (state->crtc_w != src_w)) 426 return true; 427 428 return false; 429 } 430 431 static bool sun4i_backend_plane_uses_frontend(struct drm_plane_state *state) 432 { 433 struct sun4i_layer *layer = plane_to_sun4i_layer(state->plane); 434 struct sun4i_backend *backend = layer->backend; 435 436 if (IS_ERR(backend->frontend)) 437 return false; 438 439 return sun4i_backend_plane_uses_scaler(state); 440 } 441 442 static void sun4i_backend_atomic_begin(struct sunxi_engine *engine, 443 struct drm_crtc_state *old_state) 444 { 445 u32 val; 446 447 WARN_ON(regmap_read_poll_timeout(engine->regs, 448 SUN4I_BACKEND_REGBUFFCTL_REG, 449 val, !(val & SUN4I_BACKEND_REGBUFFCTL_LOADCTL), 450 100, 50000)); 451 } 452 453 static int sun4i_backend_atomic_check(struct sunxi_engine *engine, 454 struct drm_crtc_state *crtc_state) 455 { 456 struct drm_plane_state *plane_states[SUN4I_BACKEND_NUM_LAYERS] = { 0 }; 457 struct drm_atomic_state *state = crtc_state->state; 458 struct drm_device *drm = state->dev; 459 struct drm_plane *plane; 460 unsigned int num_planes = 0; 461 unsigned int num_alpha_planes = 0; 462 unsigned int num_frontend_planes = 0; 463 unsigned int num_yuv_planes = 0; 464 unsigned int current_pipe = 0; 465 unsigned int i; 466 467 DRM_DEBUG_DRIVER("Starting checking our planes\n"); 468 469 if (!crtc_state->planes_changed) 470 return 0; 471 472 drm_for_each_plane_mask(plane, drm, crtc_state->plane_mask) { 473 struct drm_plane_state *plane_state = 474 drm_atomic_get_plane_state(state, plane); 475 struct sun4i_layer_state *layer_state = 476 state_to_sun4i_layer_state(plane_state); 477 struct drm_framebuffer *fb = plane_state->fb; 478 struct drm_format_name_buf format_name; 479 480 if (sun4i_backend_plane_uses_frontend(plane_state)) { 481 DRM_DEBUG_DRIVER("Using the frontend for plane %d\n", 482 plane->index); 483 484 layer_state->uses_frontend = true; 485 num_frontend_planes++; 486 } else { 487 layer_state->uses_frontend = false; 488 } 489 490 DRM_DEBUG_DRIVER("Plane FB format is %s\n", 491 drm_get_format_name(fb->format->format, 492 &format_name)); 493 if (fb->format->has_alpha) 494 num_alpha_planes++; 495 496 if (sun4i_backend_format_is_yuv(fb->format->format)) { 497 DRM_DEBUG_DRIVER("Plane FB format is YUV\n"); 498 num_yuv_planes++; 499 } 500 501 DRM_DEBUG_DRIVER("Plane zpos is %d\n", 502 plane_state->normalized_zpos); 503 504 /* Sort our planes by Zpos */ 505 plane_states[plane_state->normalized_zpos] = plane_state; 506 507 num_planes++; 508 } 509 510 /* All our planes were disabled, bail out */ 511 if (!num_planes) 512 return 0; 513 514 /* 515 * The hardware is a bit unusual here. 516 * 517 * Even though it supports 4 layers, it does the composition 518 * in two separate steps. 519 * 520 * The first one is assigning a layer to one of its two 521 * pipes. If more that 1 layer is assigned to the same pipe, 522 * and if pixels overlaps, the pipe will take the pixel from 523 * the layer with the highest priority. 524 * 525 * The second step is the actual alpha blending, that takes 526 * the two pipes as input, and uses the eventual alpha 527 * component to do the transparency between the two. 528 * 529 * This two steps scenario makes us unable to guarantee a 530 * robust alpha blending between the 4 layers in all 531 * situations, since this means that we need to have one layer 532 * with alpha at the lowest position of our two pipes. 533 * 534 * However, we cannot even do that, since the hardware has a 535 * bug where the lowest plane of the lowest pipe (pipe 0, 536 * priority 0), if it has any alpha, will discard the pixel 537 * entirely and just display the pixels in the background 538 * color (black by default). 539 * 540 * This means that we effectively have only three valid 541 * configurations with alpha, all of them with the alpha being 542 * on pipe1 with the lowest position, which can be 1, 2 or 3 543 * depending on the number of planes and their zpos. 544 */ 545 if (num_alpha_planes > SUN4I_BACKEND_NUM_ALPHA_LAYERS) { 546 DRM_DEBUG_DRIVER("Too many planes with alpha, rejecting...\n"); 547 return -EINVAL; 548 } 549 550 /* We can't have an alpha plane at the lowest position */ 551 if (plane_states[0]->fb->format->has_alpha) 552 return -EINVAL; 553 554 for (i = 1; i < num_planes; i++) { 555 struct drm_plane_state *p_state = plane_states[i]; 556 struct drm_framebuffer *fb = p_state->fb; 557 struct sun4i_layer_state *s_state = state_to_sun4i_layer_state(p_state); 558 559 /* 560 * The only alpha position is the lowest plane of the 561 * second pipe. 562 */ 563 if (fb->format->has_alpha) 564 current_pipe++; 565 566 s_state->pipe = current_pipe; 567 } 568 569 /* We can only have a single YUV plane at a time */ 570 if (num_yuv_planes > SUN4I_BACKEND_NUM_YUV_PLANES) { 571 DRM_DEBUG_DRIVER("Too many planes with YUV, rejecting...\n"); 572 return -EINVAL; 573 } 574 575 if (num_frontend_planes > SUN4I_BACKEND_NUM_FRONTEND_LAYERS) { 576 DRM_DEBUG_DRIVER("Too many planes going through the frontend, rejecting\n"); 577 return -EINVAL; 578 } 579 580 DRM_DEBUG_DRIVER("State valid with %u planes, %u alpha, %u video, %u YUV\n", 581 num_planes, num_alpha_planes, num_frontend_planes, 582 num_yuv_planes); 583 584 return 0; 585 } 586 587 static void sun4i_backend_vblank_quirk(struct sunxi_engine *engine) 588 { 589 struct sun4i_backend *backend = engine_to_sun4i_backend(engine); 590 struct sun4i_frontend *frontend = backend->frontend; 591 592 if (!frontend) 593 return; 594 595 /* 596 * In a teardown scenario with the frontend involved, we have 597 * to keep the frontend enabled until the next vblank, and 598 * only then disable it. 599 * 600 * This is due to the fact that the backend will not take into 601 * account the new configuration (with the plane that used to 602 * be fed by the frontend now disabled) until we write to the 603 * commit bit and the hardware fetches the new configuration 604 * during the next vblank. 605 * 606 * So we keep the frontend around in order to prevent any 607 * visual artifacts. 608 */ 609 spin_lock(&backend->frontend_lock); 610 if (backend->frontend_teardown) { 611 sun4i_frontend_exit(frontend); 612 backend->frontend_teardown = false; 613 } 614 spin_unlock(&backend->frontend_lock); 615 }; 616 617 static int sun4i_backend_init_sat(struct device *dev) { 618 struct sun4i_backend *backend = dev_get_drvdata(dev); 619 int ret; 620 621 backend->sat_reset = devm_reset_control_get(dev, "sat"); 622 if (IS_ERR(backend->sat_reset)) { 623 dev_err(dev, "Couldn't get the SAT reset line\n"); 624 return PTR_ERR(backend->sat_reset); 625 } 626 627 ret = reset_control_deassert(backend->sat_reset); 628 if (ret) { 629 dev_err(dev, "Couldn't deassert the SAT reset line\n"); 630 return ret; 631 } 632 633 backend->sat_clk = devm_clk_get(dev, "sat"); 634 if (IS_ERR(backend->sat_clk)) { 635 dev_err(dev, "Couldn't get our SAT clock\n"); 636 ret = PTR_ERR(backend->sat_clk); 637 goto err_assert_reset; 638 } 639 640 ret = clk_prepare_enable(backend->sat_clk); 641 if (ret) { 642 dev_err(dev, "Couldn't enable the SAT clock\n"); 643 return ret; 644 } 645 646 return 0; 647 648 err_assert_reset: 649 reset_control_assert(backend->sat_reset); 650 return ret; 651 } 652 653 static int sun4i_backend_free_sat(struct device *dev) { 654 struct sun4i_backend *backend = dev_get_drvdata(dev); 655 656 clk_disable_unprepare(backend->sat_clk); 657 reset_control_assert(backend->sat_reset); 658 659 return 0; 660 } 661 662 /* 663 * The display backend can take video output from the display frontend, or 664 * the display enhancement unit on the A80, as input for one it its layers. 665 * This relationship within the display pipeline is encoded in the device 666 * tree with of_graph, and we use it here to figure out which backend, if 667 * there are 2 or more, we are currently probing. The number would be in 668 * the "reg" property of the upstream output port endpoint. 669 */ 670 static int sun4i_backend_of_get_id(struct device_node *node) 671 { 672 struct device_node *port, *ep; 673 int ret = -EINVAL; 674 675 /* input is port 0 */ 676 port = of_graph_get_port_by_id(node, 0); 677 if (!port) 678 return -EINVAL; 679 680 /* try finding an upstream endpoint */ 681 for_each_available_child_of_node(port, ep) { 682 struct device_node *remote; 683 u32 reg; 684 685 remote = of_graph_get_remote_endpoint(ep); 686 if (!remote) 687 continue; 688 689 ret = of_property_read_u32(remote, "reg", ®); 690 if (ret) 691 continue; 692 693 ret = reg; 694 } 695 696 of_node_put(port); 697 698 return ret; 699 } 700 701 /* TODO: This needs to take multiple pipelines into account */ 702 static struct sun4i_frontend *sun4i_backend_find_frontend(struct sun4i_drv *drv, 703 struct device_node *node) 704 { 705 struct device_node *port, *ep, *remote; 706 struct sun4i_frontend *frontend; 707 708 port = of_graph_get_port_by_id(node, 0); 709 if (!port) 710 return ERR_PTR(-EINVAL); 711 712 for_each_available_child_of_node(port, ep) { 713 remote = of_graph_get_remote_port_parent(ep); 714 if (!remote) 715 continue; 716 717 /* does this node match any registered engines? */ 718 list_for_each_entry(frontend, &drv->frontend_list, list) { 719 if (remote == frontend->node) { 720 of_node_put(remote); 721 of_node_put(port); 722 return frontend; 723 } 724 } 725 } 726 727 return ERR_PTR(-EINVAL); 728 } 729 730 static const struct sunxi_engine_ops sun4i_backend_engine_ops = { 731 .atomic_begin = sun4i_backend_atomic_begin, 732 .atomic_check = sun4i_backend_atomic_check, 733 .commit = sun4i_backend_commit, 734 .layers_init = sun4i_layers_init, 735 .apply_color_correction = sun4i_backend_apply_color_correction, 736 .disable_color_correction = sun4i_backend_disable_color_correction, 737 .vblank_quirk = sun4i_backend_vblank_quirk, 738 }; 739 740 static struct regmap_config sun4i_backend_regmap_config = { 741 .reg_bits = 32, 742 .val_bits = 32, 743 .reg_stride = 4, 744 .max_register = 0x5800, 745 }; 746 747 static int sun4i_backend_bind(struct device *dev, struct device *master, 748 void *data) 749 { 750 struct platform_device *pdev = to_platform_device(dev); 751 struct drm_device *drm = data; 752 struct sun4i_drv *drv = drm->dev_private; 753 struct sun4i_backend *backend; 754 const struct sun4i_backend_quirks *quirks; 755 struct resource *res; 756 void __iomem *regs; 757 int i, ret; 758 759 backend = devm_kzalloc(dev, sizeof(*backend), GFP_KERNEL); 760 if (!backend) 761 return -ENOMEM; 762 dev_set_drvdata(dev, backend); 763 spin_lock_init(&backend->frontend_lock); 764 765 backend->engine.node = dev->of_node; 766 backend->engine.ops = &sun4i_backend_engine_ops; 767 backend->engine.id = sun4i_backend_of_get_id(dev->of_node); 768 if (backend->engine.id < 0) 769 return backend->engine.id; 770 771 backend->frontend = sun4i_backend_find_frontend(drv, dev->of_node); 772 if (IS_ERR(backend->frontend)) 773 dev_warn(dev, "Couldn't find matching frontend, frontend features disabled\n"); 774 775 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 776 regs = devm_ioremap_resource(dev, res); 777 if (IS_ERR(regs)) 778 return PTR_ERR(regs); 779 780 backend->reset = devm_reset_control_get(dev, NULL); 781 if (IS_ERR(backend->reset)) { 782 dev_err(dev, "Couldn't get our reset line\n"); 783 return PTR_ERR(backend->reset); 784 } 785 786 ret = reset_control_deassert(backend->reset); 787 if (ret) { 788 dev_err(dev, "Couldn't deassert our reset line\n"); 789 return ret; 790 } 791 792 backend->bus_clk = devm_clk_get(dev, "ahb"); 793 if (IS_ERR(backend->bus_clk)) { 794 dev_err(dev, "Couldn't get the backend bus clock\n"); 795 ret = PTR_ERR(backend->bus_clk); 796 goto err_assert_reset; 797 } 798 clk_prepare_enable(backend->bus_clk); 799 800 backend->mod_clk = devm_clk_get(dev, "mod"); 801 if (IS_ERR(backend->mod_clk)) { 802 dev_err(dev, "Couldn't get the backend module clock\n"); 803 ret = PTR_ERR(backend->mod_clk); 804 goto err_disable_bus_clk; 805 } 806 clk_prepare_enable(backend->mod_clk); 807 808 backend->ram_clk = devm_clk_get(dev, "ram"); 809 if (IS_ERR(backend->ram_clk)) { 810 dev_err(dev, "Couldn't get the backend RAM clock\n"); 811 ret = PTR_ERR(backend->ram_clk); 812 goto err_disable_mod_clk; 813 } 814 clk_prepare_enable(backend->ram_clk); 815 816 if (of_device_is_compatible(dev->of_node, 817 "allwinner,sun8i-a33-display-backend")) { 818 ret = sun4i_backend_init_sat(dev); 819 if (ret) { 820 dev_err(dev, "Couldn't init SAT resources\n"); 821 goto err_disable_ram_clk; 822 } 823 } 824 825 backend->engine.regs = devm_regmap_init_mmio(dev, regs, 826 &sun4i_backend_regmap_config); 827 if (IS_ERR(backend->engine.regs)) { 828 dev_err(dev, "Couldn't create the backend regmap\n"); 829 return PTR_ERR(backend->engine.regs); 830 } 831 832 list_add_tail(&backend->engine.list, &drv->engine_list); 833 834 /* 835 * Many of the backend's layer configuration registers have 836 * undefined default values. This poses a risk as we use 837 * regmap_update_bits in some places, and don't overwrite 838 * the whole register. 839 * 840 * Clear the registers here to have something predictable. 841 */ 842 for (i = 0x800; i < 0x1000; i += 4) 843 regmap_write(backend->engine.regs, i, 0); 844 845 /* Disable registers autoloading */ 846 regmap_write(backend->engine.regs, SUN4I_BACKEND_REGBUFFCTL_REG, 847 SUN4I_BACKEND_REGBUFFCTL_AUTOLOAD_DIS); 848 849 /* Enable the backend */ 850 regmap_write(backend->engine.regs, SUN4I_BACKEND_MODCTL_REG, 851 SUN4I_BACKEND_MODCTL_DEBE_EN | 852 SUN4I_BACKEND_MODCTL_START_CTL); 853 854 /* Set output selection if needed */ 855 quirks = of_device_get_match_data(dev); 856 if (quirks->needs_output_muxing) { 857 /* 858 * We assume there is no dynamic muxing of backends 859 * and TCONs, so we select the backend with same ID. 860 * 861 * While dynamic selection might be interesting, since 862 * the CRTC is tied to the TCON, while the layers are 863 * tied to the backends, this means, we will need to 864 * switch between groups of layers. There might not be 865 * a way to represent this constraint in DRM. 866 */ 867 regmap_update_bits(backend->engine.regs, 868 SUN4I_BACKEND_MODCTL_REG, 869 SUN4I_BACKEND_MODCTL_OUT_SEL, 870 (backend->engine.id 871 ? SUN4I_BACKEND_MODCTL_OUT_LCD1 872 : SUN4I_BACKEND_MODCTL_OUT_LCD0)); 873 } 874 875 return 0; 876 877 err_disable_ram_clk: 878 clk_disable_unprepare(backend->ram_clk); 879 err_disable_mod_clk: 880 clk_disable_unprepare(backend->mod_clk); 881 err_disable_bus_clk: 882 clk_disable_unprepare(backend->bus_clk); 883 err_assert_reset: 884 reset_control_assert(backend->reset); 885 return ret; 886 } 887 888 static void sun4i_backend_unbind(struct device *dev, struct device *master, 889 void *data) 890 { 891 struct sun4i_backend *backend = dev_get_drvdata(dev); 892 893 list_del(&backend->engine.list); 894 895 if (of_device_is_compatible(dev->of_node, 896 "allwinner,sun8i-a33-display-backend")) 897 sun4i_backend_free_sat(dev); 898 899 clk_disable_unprepare(backend->ram_clk); 900 clk_disable_unprepare(backend->mod_clk); 901 clk_disable_unprepare(backend->bus_clk); 902 reset_control_assert(backend->reset); 903 } 904 905 static const struct component_ops sun4i_backend_ops = { 906 .bind = sun4i_backend_bind, 907 .unbind = sun4i_backend_unbind, 908 }; 909 910 static int sun4i_backend_probe(struct platform_device *pdev) 911 { 912 return component_add(&pdev->dev, &sun4i_backend_ops); 913 } 914 915 static int sun4i_backend_remove(struct platform_device *pdev) 916 { 917 component_del(&pdev->dev, &sun4i_backend_ops); 918 919 return 0; 920 } 921 922 static const struct sun4i_backend_quirks sun4i_backend_quirks = { 923 .needs_output_muxing = true, 924 }; 925 926 static const struct sun4i_backend_quirks sun5i_backend_quirks = { 927 }; 928 929 static const struct sun4i_backend_quirks sun6i_backend_quirks = { 930 }; 931 932 static const struct sun4i_backend_quirks sun7i_backend_quirks = { 933 .needs_output_muxing = true, 934 }; 935 936 static const struct sun4i_backend_quirks sun8i_a33_backend_quirks = { 937 }; 938 939 static const struct sun4i_backend_quirks sun9i_backend_quirks = { 940 }; 941 942 static const struct of_device_id sun4i_backend_of_table[] = { 943 { 944 .compatible = "allwinner,sun4i-a10-display-backend", 945 .data = &sun4i_backend_quirks, 946 }, 947 { 948 .compatible = "allwinner,sun5i-a13-display-backend", 949 .data = &sun5i_backend_quirks, 950 }, 951 { 952 .compatible = "allwinner,sun6i-a31-display-backend", 953 .data = &sun6i_backend_quirks, 954 }, 955 { 956 .compatible = "allwinner,sun7i-a20-display-backend", 957 .data = &sun7i_backend_quirks, 958 }, 959 { 960 .compatible = "allwinner,sun8i-a33-display-backend", 961 .data = &sun8i_a33_backend_quirks, 962 }, 963 { 964 .compatible = "allwinner,sun9i-a80-display-backend", 965 .data = &sun9i_backend_quirks, 966 }, 967 { } 968 }; 969 MODULE_DEVICE_TABLE(of, sun4i_backend_of_table); 970 971 static struct platform_driver sun4i_backend_platform_driver = { 972 .probe = sun4i_backend_probe, 973 .remove = sun4i_backend_remove, 974 .driver = { 975 .name = "sun4i-backend", 976 .of_match_table = sun4i_backend_of_table, 977 }, 978 }; 979 module_platform_driver(sun4i_backend_platform_driver); 980 981 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>"); 982 MODULE_DESCRIPTION("Allwinner A10 Display Backend Driver"); 983 MODULE_LICENSE("GPL"); 984