xref: /openbmc/linux/drivers/gpu/drm/rockchip/rockchip_drm_vop.c (revision fefcd1c75bafa7c5d34e0a517de29f33688abf62)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Fuzhou Rockchip Electronics Co.Ltd
4  * Author:Mark Yao <mark.yao@rock-chips.com>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/component.h>
9 #include <linux/delay.h>
10 #include <linux/iopoll.h>
11 #include <linux/kernel.h>
12 #include <linux/log2.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/overflow.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/reset.h>
19 
20 #include <drm/drm.h>
21 #include <drm/drm_atomic.h>
22 #include <drm/drm_atomic_uapi.h>
23 #include <drm/drm_blend.h>
24 #include <drm/drm_crtc.h>
25 #include <drm/drm_flip_work.h>
26 #include <drm/drm_fourcc.h>
27 #include <drm/drm_framebuffer.h>
28 #include <drm/drm_gem_atomic_helper.h>
29 #include <drm/drm_gem_framebuffer_helper.h>
30 #include <drm/drm_probe_helper.h>
31 #include <drm/drm_self_refresh_helper.h>
32 #include <drm/drm_vblank.h>
33 
34 #ifdef CONFIG_DRM_ANALOGIX_DP
35 #include <drm/bridge/analogix_dp.h>
36 #endif
37 
38 #include "rockchip_drm_drv.h"
39 #include "rockchip_drm_gem.h"
40 #include "rockchip_drm_fb.h"
41 #include "rockchip_drm_vop.h"
42 #include "rockchip_rgb.h"
43 
44 #define VOP_WIN_SET(vop, win, name, v) \
45 		vop_reg_set(vop, &win->phy->name, win->base, ~0, v, #name)
46 #define VOP_SCL_SET(vop, win, name, v) \
47 		vop_reg_set(vop, &win->phy->scl->name, win->base, ~0, v, #name)
48 #define VOP_SCL_SET_EXT(vop, win, name, v) \
49 		vop_reg_set(vop, &win->phy->scl->ext->name, \
50 			    win->base, ~0, v, #name)
51 
52 #define VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, name, v) \
53 	do { \
54 		if (win_yuv2yuv && win_yuv2yuv->name.mask) \
55 			vop_reg_set(vop, &win_yuv2yuv->name, 0, ~0, v, #name); \
56 	} while (0)
57 
58 #define VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop, win_yuv2yuv, name, v) \
59 	do { \
60 		if (win_yuv2yuv && win_yuv2yuv->phy->name.mask) \
61 			vop_reg_set(vop, &win_yuv2yuv->phy->name, win_yuv2yuv->base, ~0, v, #name); \
62 	} while (0)
63 
64 #define VOP_INTR_SET_MASK(vop, name, mask, v) \
65 		vop_reg_set(vop, &vop->data->intr->name, 0, mask, v, #name)
66 
67 #define VOP_REG_SET(vop, group, name, v) \
68 		    vop_reg_set(vop, &vop->data->group->name, 0, ~0, v, #name)
69 
70 #define VOP_HAS_REG(vop, group, name) \
71 		(!!(vop->data->group->name.mask))
72 
73 #define VOP_INTR_SET_TYPE(vop, name, type, v) \
74 	do { \
75 		int i, reg = 0, mask = 0; \
76 		for (i = 0; i < vop->data->intr->nintrs; i++) { \
77 			if (vop->data->intr->intrs[i] & type) { \
78 				reg |= (v) << i; \
79 				mask |= 1 << i; \
80 			} \
81 		} \
82 		VOP_INTR_SET_MASK(vop, name, mask, reg); \
83 	} while (0)
84 #define VOP_INTR_GET_TYPE(vop, name, type) \
85 		vop_get_intr_type(vop, &vop->data->intr->name, type)
86 
87 #define VOP_WIN_GET(vop, win, name) \
88 		vop_read_reg(vop, win->base, &win->phy->name)
89 
90 #define VOP_WIN_HAS_REG(win, name) \
91 	(!!(win->phy->name.mask))
92 
93 #define VOP_WIN_GET_YRGBADDR(vop, win) \
94 		vop_readl(vop, win->base + win->phy->yrgb_mst.offset)
95 
96 #define VOP_WIN_TO_INDEX(vop_win) \
97 	((vop_win) - (vop_win)->vop->win)
98 
99 #define VOP_AFBC_SET(vop, name, v) \
100 	do { \
101 		if ((vop)->data->afbc) \
102 			vop_reg_set((vop), &(vop)->data->afbc->name, \
103 				    0, ~0, v, #name); \
104 	} while (0)
105 
106 #define to_vop(x) container_of(x, struct vop, crtc)
107 #define to_vop_win(x) container_of(x, struct vop_win, base)
108 
109 #define AFBC_FMT_RGB565		0x0
110 #define AFBC_FMT_U8U8U8U8	0x5
111 #define AFBC_FMT_U8U8U8		0x4
112 
113 #define AFBC_TILE_16x16		BIT(4)
114 
115 /*
116  * The coefficients of the following matrix are all fixed points.
117  * The format is S2.10 for the 3x3 part of the matrix, and S9.12 for the offsets.
118  * They are all represented in two's complement.
119  */
120 static const uint32_t bt601_yuv2rgb[] = {
121 	0x4A8, 0x0,    0x662,
122 	0x4A8, 0x1E6F, 0x1CBF,
123 	0x4A8, 0x812,  0x0,
124 	0x321168, 0x0877CF, 0x2EB127
125 };
126 
127 enum vop_pending {
128 	VOP_PENDING_FB_UNREF,
129 };
130 
131 struct vop_win {
132 	struct drm_plane base;
133 	const struct vop_win_data *data;
134 	const struct vop_win_yuv2yuv_data *yuv2yuv_data;
135 	struct vop *vop;
136 };
137 
138 struct rockchip_rgb;
139 struct vop {
140 	struct drm_crtc crtc;
141 	struct device *dev;
142 	struct drm_device *drm_dev;
143 	bool is_enabled;
144 
145 	struct completion dsp_hold_completion;
146 	unsigned int win_enabled;
147 
148 	/* protected by dev->event_lock */
149 	struct drm_pending_vblank_event *event;
150 
151 	struct drm_flip_work fb_unref_work;
152 	unsigned long pending;
153 
154 	struct completion line_flag_completion;
155 
156 	const struct vop_data *data;
157 
158 	uint32_t *regsbak;
159 	void __iomem *regs;
160 	void __iomem *lut_regs;
161 
162 	/* physical map length of vop register */
163 	uint32_t len;
164 
165 	/* one time only one process allowed to config the register */
166 	spinlock_t reg_lock;
167 	/* lock vop irq reg */
168 	spinlock_t irq_lock;
169 	/* protects crtc enable/disable */
170 	struct mutex vop_lock;
171 
172 	unsigned int irq;
173 
174 	/* vop AHP clk */
175 	struct clk *hclk;
176 	/* vop dclk */
177 	struct clk *dclk;
178 	/* vop share memory frequency */
179 	struct clk *aclk;
180 
181 	/* vop dclk reset */
182 	struct reset_control *dclk_rst;
183 
184 	/* optional internal rgb encoder */
185 	struct rockchip_rgb *rgb;
186 
187 	struct vop_win win[];
188 };
189 
190 static inline uint32_t vop_readl(struct vop *vop, uint32_t offset)
191 {
192 	return readl(vop->regs + offset);
193 }
194 
195 static inline uint32_t vop_read_reg(struct vop *vop, uint32_t base,
196 				    const struct vop_reg *reg)
197 {
198 	return (vop_readl(vop, base + reg->offset) >> reg->shift) & reg->mask;
199 }
200 
201 static void vop_reg_set(struct vop *vop, const struct vop_reg *reg,
202 			uint32_t _offset, uint32_t _mask, uint32_t v,
203 			const char *reg_name)
204 {
205 	int offset, mask, shift;
206 
207 	if (!reg || !reg->mask) {
208 		DRM_DEV_DEBUG(vop->dev, "Warning: not support %s\n", reg_name);
209 		return;
210 	}
211 
212 	offset = reg->offset + _offset;
213 	mask = reg->mask & _mask;
214 	shift = reg->shift;
215 
216 	if (reg->write_mask) {
217 		v = ((v << shift) & 0xffff) | (mask << (shift + 16));
218 	} else {
219 		uint32_t cached_val = vop->regsbak[offset >> 2];
220 
221 		v = (cached_val & ~(mask << shift)) | ((v & mask) << shift);
222 		vop->regsbak[offset >> 2] = v;
223 	}
224 
225 	if (reg->relaxed)
226 		writel_relaxed(v, vop->regs + offset);
227 	else
228 		writel(v, vop->regs + offset);
229 }
230 
231 static inline uint32_t vop_get_intr_type(struct vop *vop,
232 					 const struct vop_reg *reg, int type)
233 {
234 	uint32_t i, ret = 0;
235 	uint32_t regs = vop_read_reg(vop, 0, reg);
236 
237 	for (i = 0; i < vop->data->intr->nintrs; i++) {
238 		if ((type & vop->data->intr->intrs[i]) && (regs & 1 << i))
239 			ret |= vop->data->intr->intrs[i];
240 	}
241 
242 	return ret;
243 }
244 
245 static inline void vop_cfg_done(struct vop *vop)
246 {
247 	VOP_REG_SET(vop, common, cfg_done, 1);
248 }
249 
250 static bool has_rb_swapped(uint32_t version, uint32_t format)
251 {
252 	switch (format) {
253 	case DRM_FORMAT_XBGR8888:
254 	case DRM_FORMAT_ABGR8888:
255 	case DRM_FORMAT_BGR565:
256 		return true;
257 	/*
258 	 * full framework (IP version 3.x) only need rb swapped for RGB888 and
259 	 * little framework (IP version 2.x) only need rb swapped for BGR888,
260 	 * check for 3.x to also only rb swap BGR888 for unknown vop version
261 	 */
262 	case DRM_FORMAT_RGB888:
263 		return VOP_MAJOR(version) == 3;
264 	case DRM_FORMAT_BGR888:
265 		return VOP_MAJOR(version) != 3;
266 	default:
267 		return false;
268 	}
269 }
270 
271 static bool has_uv_swapped(uint32_t format)
272 {
273 	switch (format) {
274 	case DRM_FORMAT_NV21:
275 	case DRM_FORMAT_NV61:
276 	case DRM_FORMAT_NV42:
277 		return true;
278 	default:
279 		return false;
280 	}
281 }
282 
283 static enum vop_data_format vop_convert_format(uint32_t format)
284 {
285 	switch (format) {
286 	case DRM_FORMAT_XRGB8888:
287 	case DRM_FORMAT_ARGB8888:
288 	case DRM_FORMAT_XBGR8888:
289 	case DRM_FORMAT_ABGR8888:
290 		return VOP_FMT_ARGB8888;
291 	case DRM_FORMAT_RGB888:
292 	case DRM_FORMAT_BGR888:
293 		return VOP_FMT_RGB888;
294 	case DRM_FORMAT_RGB565:
295 	case DRM_FORMAT_BGR565:
296 		return VOP_FMT_RGB565;
297 	case DRM_FORMAT_NV12:
298 	case DRM_FORMAT_NV21:
299 		return VOP_FMT_YUV420SP;
300 	case DRM_FORMAT_NV16:
301 	case DRM_FORMAT_NV61:
302 		return VOP_FMT_YUV422SP;
303 	case DRM_FORMAT_NV24:
304 	case DRM_FORMAT_NV42:
305 		return VOP_FMT_YUV444SP;
306 	default:
307 		DRM_ERROR("unsupported format[%08x]\n", format);
308 		return -EINVAL;
309 	}
310 }
311 
312 static int vop_convert_afbc_format(uint32_t format)
313 {
314 	switch (format) {
315 	case DRM_FORMAT_XRGB8888:
316 	case DRM_FORMAT_ARGB8888:
317 	case DRM_FORMAT_XBGR8888:
318 	case DRM_FORMAT_ABGR8888:
319 		return AFBC_FMT_U8U8U8U8;
320 	case DRM_FORMAT_RGB888:
321 	case DRM_FORMAT_BGR888:
322 		return AFBC_FMT_U8U8U8;
323 	case DRM_FORMAT_RGB565:
324 	case DRM_FORMAT_BGR565:
325 		return AFBC_FMT_RGB565;
326 	default:
327 		DRM_DEBUG_KMS("unsupported AFBC format[%08x]\n", format);
328 		return -EINVAL;
329 	}
330 }
331 
332 static uint16_t scl_vop_cal_scale(enum scale_mode mode, uint32_t src,
333 				  uint32_t dst, bool is_horizontal,
334 				  int vsu_mode, int *vskiplines)
335 {
336 	uint16_t val = 1 << SCL_FT_DEFAULT_FIXPOINT_SHIFT;
337 
338 	if (vskiplines)
339 		*vskiplines = 0;
340 
341 	if (is_horizontal) {
342 		if (mode == SCALE_UP)
343 			val = GET_SCL_FT_BIC(src, dst);
344 		else if (mode == SCALE_DOWN)
345 			val = GET_SCL_FT_BILI_DN(src, dst);
346 	} else {
347 		if (mode == SCALE_UP) {
348 			if (vsu_mode == SCALE_UP_BIL)
349 				val = GET_SCL_FT_BILI_UP(src, dst);
350 			else
351 				val = GET_SCL_FT_BIC(src, dst);
352 		} else if (mode == SCALE_DOWN) {
353 			if (vskiplines) {
354 				*vskiplines = scl_get_vskiplines(src, dst);
355 				val = scl_get_bili_dn_vskip(src, dst,
356 							    *vskiplines);
357 			} else {
358 				val = GET_SCL_FT_BILI_DN(src, dst);
359 			}
360 		}
361 	}
362 
363 	return val;
364 }
365 
366 static void scl_vop_cal_scl_fac(struct vop *vop, const struct vop_win_data *win,
367 			     uint32_t src_w, uint32_t src_h, uint32_t dst_w,
368 			     uint32_t dst_h, const struct drm_format_info *info)
369 {
370 	uint16_t yrgb_hor_scl_mode, yrgb_ver_scl_mode;
371 	uint16_t cbcr_hor_scl_mode = SCALE_NONE;
372 	uint16_t cbcr_ver_scl_mode = SCALE_NONE;
373 	bool is_yuv = false;
374 	uint16_t cbcr_src_w = src_w / info->hsub;
375 	uint16_t cbcr_src_h = src_h / info->vsub;
376 	uint16_t vsu_mode;
377 	uint16_t lb_mode;
378 	uint32_t val;
379 	int vskiplines;
380 
381 	if (info->is_yuv)
382 		is_yuv = true;
383 
384 	if (dst_w > 3840) {
385 		DRM_DEV_ERROR(vop->dev, "Maximum dst width (3840) exceeded\n");
386 		return;
387 	}
388 
389 	if (!win->phy->scl->ext) {
390 		VOP_SCL_SET(vop, win, scale_yrgb_x,
391 			    scl_cal_scale2(src_w, dst_w));
392 		VOP_SCL_SET(vop, win, scale_yrgb_y,
393 			    scl_cal_scale2(src_h, dst_h));
394 		if (is_yuv) {
395 			VOP_SCL_SET(vop, win, scale_cbcr_x,
396 				    scl_cal_scale2(cbcr_src_w, dst_w));
397 			VOP_SCL_SET(vop, win, scale_cbcr_y,
398 				    scl_cal_scale2(cbcr_src_h, dst_h));
399 		}
400 		return;
401 	}
402 
403 	yrgb_hor_scl_mode = scl_get_scl_mode(src_w, dst_w);
404 	yrgb_ver_scl_mode = scl_get_scl_mode(src_h, dst_h);
405 
406 	if (is_yuv) {
407 		cbcr_hor_scl_mode = scl_get_scl_mode(cbcr_src_w, dst_w);
408 		cbcr_ver_scl_mode = scl_get_scl_mode(cbcr_src_h, dst_h);
409 		if (cbcr_hor_scl_mode == SCALE_DOWN)
410 			lb_mode = scl_vop_cal_lb_mode(dst_w, true);
411 		else
412 			lb_mode = scl_vop_cal_lb_mode(cbcr_src_w, true);
413 	} else {
414 		if (yrgb_hor_scl_mode == SCALE_DOWN)
415 			lb_mode = scl_vop_cal_lb_mode(dst_w, false);
416 		else
417 			lb_mode = scl_vop_cal_lb_mode(src_w, false);
418 	}
419 
420 	VOP_SCL_SET_EXT(vop, win, lb_mode, lb_mode);
421 	if (lb_mode == LB_RGB_3840X2) {
422 		if (yrgb_ver_scl_mode != SCALE_NONE) {
423 			DRM_DEV_ERROR(vop->dev, "not allow yrgb ver scale\n");
424 			return;
425 		}
426 		if (cbcr_ver_scl_mode != SCALE_NONE) {
427 			DRM_DEV_ERROR(vop->dev, "not allow cbcr ver scale\n");
428 			return;
429 		}
430 		vsu_mode = SCALE_UP_BIL;
431 	} else if (lb_mode == LB_RGB_2560X4) {
432 		vsu_mode = SCALE_UP_BIL;
433 	} else {
434 		vsu_mode = SCALE_UP_BIC;
435 	}
436 
437 	val = scl_vop_cal_scale(yrgb_hor_scl_mode, src_w, dst_w,
438 				true, 0, NULL);
439 	VOP_SCL_SET(vop, win, scale_yrgb_x, val);
440 	val = scl_vop_cal_scale(yrgb_ver_scl_mode, src_h, dst_h,
441 				false, vsu_mode, &vskiplines);
442 	VOP_SCL_SET(vop, win, scale_yrgb_y, val);
443 
444 	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt4, vskiplines == 4);
445 	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt2, vskiplines == 2);
446 
447 	VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, yrgb_hor_scl_mode);
448 	VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, yrgb_ver_scl_mode);
449 	VOP_SCL_SET_EXT(vop, win, yrgb_hsd_mode, SCALE_DOWN_BIL);
450 	VOP_SCL_SET_EXT(vop, win, yrgb_vsd_mode, SCALE_DOWN_BIL);
451 	VOP_SCL_SET_EXT(vop, win, yrgb_vsu_mode, vsu_mode);
452 	if (is_yuv) {
453 		val = scl_vop_cal_scale(cbcr_hor_scl_mode, cbcr_src_w,
454 					dst_w, true, 0, NULL);
455 		VOP_SCL_SET(vop, win, scale_cbcr_x, val);
456 		val = scl_vop_cal_scale(cbcr_ver_scl_mode, cbcr_src_h,
457 					dst_h, false, vsu_mode, &vskiplines);
458 		VOP_SCL_SET(vop, win, scale_cbcr_y, val);
459 
460 		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt4, vskiplines == 4);
461 		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt2, vskiplines == 2);
462 		VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, cbcr_hor_scl_mode);
463 		VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, cbcr_ver_scl_mode);
464 		VOP_SCL_SET_EXT(vop, win, cbcr_hsd_mode, SCALE_DOWN_BIL);
465 		VOP_SCL_SET_EXT(vop, win, cbcr_vsd_mode, SCALE_DOWN_BIL);
466 		VOP_SCL_SET_EXT(vop, win, cbcr_vsu_mode, vsu_mode);
467 	}
468 }
469 
470 static void vop_dsp_hold_valid_irq_enable(struct vop *vop)
471 {
472 	unsigned long flags;
473 
474 	if (WARN_ON(!vop->is_enabled))
475 		return;
476 
477 	spin_lock_irqsave(&vop->irq_lock, flags);
478 
479 	VOP_INTR_SET_TYPE(vop, clear, DSP_HOLD_VALID_INTR, 1);
480 	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 1);
481 
482 	spin_unlock_irqrestore(&vop->irq_lock, flags);
483 }
484 
485 static void vop_dsp_hold_valid_irq_disable(struct vop *vop)
486 {
487 	unsigned long flags;
488 
489 	if (WARN_ON(!vop->is_enabled))
490 		return;
491 
492 	spin_lock_irqsave(&vop->irq_lock, flags);
493 
494 	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 0);
495 
496 	spin_unlock_irqrestore(&vop->irq_lock, flags);
497 }
498 
499 /*
500  * (1) each frame starts at the start of the Vsync pulse which is signaled by
501  *     the "FRAME_SYNC" interrupt.
502  * (2) the active data region of each frame ends at dsp_vact_end
503  * (3) we should program this same number (dsp_vact_end) into dsp_line_frag_num,
504  *      to get "LINE_FLAG" interrupt at the end of the active on screen data.
505  *
506  * VOP_INTR_CTRL0.dsp_line_frag_num = VOP_DSP_VACT_ST_END.dsp_vact_end
507  * Interrupts
508  * LINE_FLAG -------------------------------+
509  * FRAME_SYNC ----+                         |
510  *                |                         |
511  *                v                         v
512  *                | Vsync | Vbp |  Vactive  | Vfp |
513  *                        ^     ^           ^     ^
514  *                        |     |           |     |
515  *                        |     |           |     |
516  * dsp_vs_end ------------+     |           |     |   VOP_DSP_VTOTAL_VS_END
517  * dsp_vact_start --------------+           |     |   VOP_DSP_VACT_ST_END
518  * dsp_vact_end ----------------------------+     |   VOP_DSP_VACT_ST_END
519  * dsp_total -------------------------------------+   VOP_DSP_VTOTAL_VS_END
520  */
521 static bool vop_line_flag_irq_is_enabled(struct vop *vop)
522 {
523 	uint32_t line_flag_irq;
524 	unsigned long flags;
525 
526 	spin_lock_irqsave(&vop->irq_lock, flags);
527 
528 	line_flag_irq = VOP_INTR_GET_TYPE(vop, enable, LINE_FLAG_INTR);
529 
530 	spin_unlock_irqrestore(&vop->irq_lock, flags);
531 
532 	return !!line_flag_irq;
533 }
534 
535 static void vop_line_flag_irq_enable(struct vop *vop)
536 {
537 	unsigned long flags;
538 
539 	if (WARN_ON(!vop->is_enabled))
540 		return;
541 
542 	spin_lock_irqsave(&vop->irq_lock, flags);
543 
544 	VOP_INTR_SET_TYPE(vop, clear, LINE_FLAG_INTR, 1);
545 	VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 1);
546 
547 	spin_unlock_irqrestore(&vop->irq_lock, flags);
548 }
549 
550 static void vop_line_flag_irq_disable(struct vop *vop)
551 {
552 	unsigned long flags;
553 
554 	if (WARN_ON(!vop->is_enabled))
555 		return;
556 
557 	spin_lock_irqsave(&vop->irq_lock, flags);
558 
559 	VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 0);
560 
561 	spin_unlock_irqrestore(&vop->irq_lock, flags);
562 }
563 
564 static int vop_core_clks_enable(struct vop *vop)
565 {
566 	int ret;
567 
568 	ret = clk_enable(vop->hclk);
569 	if (ret < 0)
570 		return ret;
571 
572 	ret = clk_enable(vop->aclk);
573 	if (ret < 0)
574 		goto err_disable_hclk;
575 
576 	return 0;
577 
578 err_disable_hclk:
579 	clk_disable(vop->hclk);
580 	return ret;
581 }
582 
583 static void vop_core_clks_disable(struct vop *vop)
584 {
585 	clk_disable(vop->aclk);
586 	clk_disable(vop->hclk);
587 }
588 
589 static void vop_win_disable(struct vop *vop, const struct vop_win *vop_win)
590 {
591 	const struct vop_win_data *win = vop_win->data;
592 
593 	if (win->phy->scl && win->phy->scl->ext) {
594 		VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, SCALE_NONE);
595 		VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, SCALE_NONE);
596 		VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, SCALE_NONE);
597 		VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, SCALE_NONE);
598 	}
599 
600 	VOP_WIN_SET(vop, win, enable, 0);
601 	vop->win_enabled &= ~BIT(VOP_WIN_TO_INDEX(vop_win));
602 }
603 
604 static int vop_enable(struct drm_crtc *crtc, struct drm_crtc_state *old_state)
605 {
606 	struct vop *vop = to_vop(crtc);
607 	int ret, i;
608 
609 	ret = pm_runtime_resume_and_get(vop->dev);
610 	if (ret < 0) {
611 		DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
612 		return ret;
613 	}
614 
615 	ret = vop_core_clks_enable(vop);
616 	if (WARN_ON(ret < 0))
617 		goto err_put_pm_runtime;
618 
619 	ret = clk_enable(vop->dclk);
620 	if (WARN_ON(ret < 0))
621 		goto err_disable_core;
622 
623 	/*
624 	 * Slave iommu shares power, irq and clock with vop.  It was associated
625 	 * automatically with this master device via common driver code.
626 	 * Now that we have enabled the clock we attach it to the shared drm
627 	 * mapping.
628 	 */
629 	ret = rockchip_drm_dma_attach_device(vop->drm_dev, vop->dev);
630 	if (ret) {
631 		DRM_DEV_ERROR(vop->dev,
632 			      "failed to attach dma mapping, %d\n", ret);
633 		goto err_disable_dclk;
634 	}
635 
636 	spin_lock(&vop->reg_lock);
637 	for (i = 0; i < vop->len; i += 4)
638 		writel_relaxed(vop->regsbak[i / 4], vop->regs + i);
639 
640 	/*
641 	 * We need to make sure that all windows are disabled before we
642 	 * enable the crtc. Otherwise we might try to scan from a destroyed
643 	 * buffer later.
644 	 *
645 	 * In the case of enable-after-PSR, we don't need to worry about this
646 	 * case since the buffer is guaranteed to be valid and disabling the
647 	 * window will result in screen glitches on PSR exit.
648 	 */
649 	if (!old_state || !old_state->self_refresh_active) {
650 		for (i = 0; i < vop->data->win_size; i++) {
651 			struct vop_win *vop_win = &vop->win[i];
652 
653 			vop_win_disable(vop, vop_win);
654 		}
655 	}
656 
657 	if (vop->data->afbc) {
658 		struct rockchip_crtc_state *s;
659 		/*
660 		 * Disable AFBC and forget there was a vop window with AFBC
661 		 */
662 		VOP_AFBC_SET(vop, enable, 0);
663 		s = to_rockchip_crtc_state(crtc->state);
664 		s->enable_afbc = false;
665 	}
666 
667 	vop_cfg_done(vop);
668 
669 	spin_unlock(&vop->reg_lock);
670 
671 	/*
672 	 * At here, vop clock & iommu is enable, R/W vop regs would be safe.
673 	 */
674 	vop->is_enabled = true;
675 
676 	spin_lock(&vop->reg_lock);
677 
678 	VOP_REG_SET(vop, common, standby, 1);
679 
680 	spin_unlock(&vop->reg_lock);
681 
682 	drm_crtc_vblank_on(crtc);
683 
684 	return 0;
685 
686 err_disable_dclk:
687 	clk_disable(vop->dclk);
688 err_disable_core:
689 	vop_core_clks_disable(vop);
690 err_put_pm_runtime:
691 	pm_runtime_put_sync(vop->dev);
692 	return ret;
693 }
694 
695 static void rockchip_drm_set_win_enabled(struct drm_crtc *crtc, bool enabled)
696 {
697         struct vop *vop = to_vop(crtc);
698         int i;
699 
700         spin_lock(&vop->reg_lock);
701 
702         for (i = 0; i < vop->data->win_size; i++) {
703                 struct vop_win *vop_win = &vop->win[i];
704                 const struct vop_win_data *win = vop_win->data;
705 
706                 VOP_WIN_SET(vop, win, enable,
707                             enabled && (vop->win_enabled & BIT(i)));
708         }
709         vop_cfg_done(vop);
710 
711         spin_unlock(&vop->reg_lock);
712 }
713 
714 static void vop_crtc_atomic_disable(struct drm_crtc *crtc,
715 				    struct drm_atomic_state *state)
716 {
717 	struct vop *vop = to_vop(crtc);
718 
719 	WARN_ON(vop->event);
720 
721 	if (crtc->state->self_refresh_active)
722 		rockchip_drm_set_win_enabled(crtc, false);
723 
724 	if (crtc->state->self_refresh_active)
725 		goto out;
726 
727 	mutex_lock(&vop->vop_lock);
728 
729 	drm_crtc_vblank_off(crtc);
730 
731 	/*
732 	 * Vop standby will take effect at end of current frame,
733 	 * if dsp hold valid irq happen, it means standby complete.
734 	 *
735 	 * we must wait standby complete when we want to disable aclk,
736 	 * if not, memory bus maybe dead.
737 	 */
738 	reinit_completion(&vop->dsp_hold_completion);
739 	vop_dsp_hold_valid_irq_enable(vop);
740 
741 	spin_lock(&vop->reg_lock);
742 
743 	VOP_REG_SET(vop, common, standby, 1);
744 
745 	spin_unlock(&vop->reg_lock);
746 
747 	if (!wait_for_completion_timeout(&vop->dsp_hold_completion,
748 					 msecs_to_jiffies(200)))
749 		WARN(1, "%s: timed out waiting for DSP hold", crtc->name);
750 
751 	vop_dsp_hold_valid_irq_disable(vop);
752 
753 	vop->is_enabled = false;
754 
755 	/*
756 	 * vop standby complete, so iommu detach is safe.
757 	 */
758 	rockchip_drm_dma_detach_device(vop->drm_dev, vop->dev);
759 
760 	clk_disable(vop->dclk);
761 	vop_core_clks_disable(vop);
762 	pm_runtime_put(vop->dev);
763 
764 	mutex_unlock(&vop->vop_lock);
765 
766 out:
767 	if (crtc->state->event && !crtc->state->active) {
768 		spin_lock_irq(&crtc->dev->event_lock);
769 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
770 		spin_unlock_irq(&crtc->dev->event_lock);
771 
772 		crtc->state->event = NULL;
773 	}
774 }
775 
776 static void vop_plane_destroy(struct drm_plane *plane)
777 {
778 	drm_plane_cleanup(plane);
779 }
780 
781 static inline bool rockchip_afbc(u64 modifier)
782 {
783 	return modifier == ROCKCHIP_AFBC_MOD;
784 }
785 
786 static bool rockchip_mod_supported(struct drm_plane *plane,
787 				   u32 format, u64 modifier)
788 {
789 	if (modifier == DRM_FORMAT_MOD_LINEAR)
790 		return true;
791 
792 	if (!rockchip_afbc(modifier)) {
793 		DRM_DEBUG_KMS("Unsupported format modifier 0x%llx\n", modifier);
794 
795 		return false;
796 	}
797 
798 	return vop_convert_afbc_format(format) >= 0;
799 }
800 
801 static int vop_plane_atomic_check(struct drm_plane *plane,
802 			   struct drm_atomic_state *state)
803 {
804 	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
805 										 plane);
806 	struct drm_crtc *crtc = new_plane_state->crtc;
807 	struct drm_crtc_state *crtc_state;
808 	struct drm_framebuffer *fb = new_plane_state->fb;
809 	struct vop_win *vop_win = to_vop_win(plane);
810 	const struct vop_win_data *win = vop_win->data;
811 	int ret;
812 	int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
813 					DRM_PLANE_NO_SCALING;
814 	int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
815 					DRM_PLANE_NO_SCALING;
816 
817 	if (!crtc || WARN_ON(!fb))
818 		return 0;
819 
820 	crtc_state = drm_atomic_get_existing_crtc_state(state,
821 							crtc);
822 	if (WARN_ON(!crtc_state))
823 		return -EINVAL;
824 
825 	ret = drm_atomic_helper_check_plane_state(new_plane_state, crtc_state,
826 						  min_scale, max_scale,
827 						  true, true);
828 	if (ret)
829 		return ret;
830 
831 	if (!new_plane_state->visible)
832 		return 0;
833 
834 	ret = vop_convert_format(fb->format->format);
835 	if (ret < 0)
836 		return ret;
837 
838 	/*
839 	 * Src.x1 can be odd when do clip, but yuv plane start point
840 	 * need align with 2 pixel.
841 	 */
842 	if (fb->format->is_yuv && ((new_plane_state->src.x1 >> 16) % 2)) {
843 		DRM_DEBUG_KMS("Invalid Source: Yuv format not support odd xpos\n");
844 		return -EINVAL;
845 	}
846 
847 	if (fb->format->is_yuv && new_plane_state->rotation & DRM_MODE_REFLECT_Y) {
848 		DRM_DEBUG_KMS("Invalid Source: Yuv format does not support this rotation\n");
849 		return -EINVAL;
850 	}
851 
852 	if (rockchip_afbc(fb->modifier)) {
853 		struct vop *vop = to_vop(crtc);
854 
855 		if (!vop->data->afbc) {
856 			DRM_DEBUG_KMS("vop does not support AFBC\n");
857 			return -EINVAL;
858 		}
859 
860 		ret = vop_convert_afbc_format(fb->format->format);
861 		if (ret < 0)
862 			return ret;
863 
864 		if (new_plane_state->src.x1 || new_plane_state->src.y1) {
865 			DRM_DEBUG_KMS("AFBC does not support offset display, " \
866 				      "xpos=%d, ypos=%d, offset=%d\n",
867 				      new_plane_state->src.x1, new_plane_state->src.y1,
868 				      fb->offsets[0]);
869 			return -EINVAL;
870 		}
871 
872 		if (new_plane_state->rotation && new_plane_state->rotation != DRM_MODE_ROTATE_0) {
873 			DRM_DEBUG_KMS("No rotation support in AFBC, rotation=%d\n",
874 				      new_plane_state->rotation);
875 			return -EINVAL;
876 		}
877 	}
878 
879 	return 0;
880 }
881 
882 static void vop_plane_atomic_disable(struct drm_plane *plane,
883 				     struct drm_atomic_state *state)
884 {
885 	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
886 									   plane);
887 	struct vop_win *vop_win = to_vop_win(plane);
888 	struct vop *vop = to_vop(old_state->crtc);
889 
890 	if (!old_state->crtc)
891 		return;
892 
893 	spin_lock(&vop->reg_lock);
894 
895 	vop_win_disable(vop, vop_win);
896 
897 	spin_unlock(&vop->reg_lock);
898 }
899 
900 static void vop_plane_atomic_update(struct drm_plane *plane,
901 		struct drm_atomic_state *state)
902 {
903 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
904 									   plane);
905 	struct drm_crtc *crtc = new_state->crtc;
906 	struct vop_win *vop_win = to_vop_win(plane);
907 	const struct vop_win_data *win = vop_win->data;
908 	const struct vop_win_yuv2yuv_data *win_yuv2yuv = vop_win->yuv2yuv_data;
909 	struct vop *vop = to_vop(new_state->crtc);
910 	struct drm_framebuffer *fb = new_state->fb;
911 	unsigned int actual_w, actual_h;
912 	unsigned int dsp_stx, dsp_sty;
913 	uint32_t act_info, dsp_info, dsp_st;
914 	struct drm_rect *src = &new_state->src;
915 	struct drm_rect *dest = &new_state->dst;
916 	struct drm_gem_object *obj, *uv_obj;
917 	struct rockchip_gem_object *rk_obj, *rk_uv_obj;
918 	unsigned long offset;
919 	dma_addr_t dma_addr;
920 	uint32_t val;
921 	bool rb_swap, uv_swap;
922 	int win_index = VOP_WIN_TO_INDEX(vop_win);
923 	int format;
924 	int is_yuv = fb->format->is_yuv;
925 	int i;
926 
927 	/*
928 	 * can't update plane when vop is disabled.
929 	 */
930 	if (WARN_ON(!crtc))
931 		return;
932 
933 	if (WARN_ON(!vop->is_enabled))
934 		return;
935 
936 	if (!new_state->visible) {
937 		vop_plane_atomic_disable(plane, state);
938 		return;
939 	}
940 
941 	obj = fb->obj[0];
942 	rk_obj = to_rockchip_obj(obj);
943 
944 	actual_w = drm_rect_width(src) >> 16;
945 	actual_h = drm_rect_height(src) >> 16;
946 	act_info = (actual_h - 1) << 16 | ((actual_w - 1) & 0xffff);
947 
948 	dsp_info = (drm_rect_height(dest) - 1) << 16;
949 	dsp_info |= (drm_rect_width(dest) - 1) & 0xffff;
950 
951 	dsp_stx = dest->x1 + crtc->mode.htotal - crtc->mode.hsync_start;
952 	dsp_sty = dest->y1 + crtc->mode.vtotal - crtc->mode.vsync_start;
953 	dsp_st = dsp_sty << 16 | (dsp_stx & 0xffff);
954 
955 	offset = (src->x1 >> 16) * fb->format->cpp[0];
956 	offset += (src->y1 >> 16) * fb->pitches[0];
957 	dma_addr = rk_obj->dma_addr + offset + fb->offsets[0];
958 
959 	/*
960 	 * For y-mirroring we need to move address
961 	 * to the beginning of the last line.
962 	 */
963 	if (new_state->rotation & DRM_MODE_REFLECT_Y)
964 		dma_addr += (actual_h - 1) * fb->pitches[0];
965 
966 	format = vop_convert_format(fb->format->format);
967 
968 	spin_lock(&vop->reg_lock);
969 
970 	if (rockchip_afbc(fb->modifier)) {
971 		int afbc_format = vop_convert_afbc_format(fb->format->format);
972 
973 		VOP_AFBC_SET(vop, format, afbc_format | AFBC_TILE_16x16);
974 		VOP_AFBC_SET(vop, hreg_block_split, 0);
975 		VOP_AFBC_SET(vop, win_sel, VOP_WIN_TO_INDEX(vop_win));
976 		VOP_AFBC_SET(vop, hdr_ptr, dma_addr);
977 		VOP_AFBC_SET(vop, pic_size, act_info);
978 	}
979 
980 	VOP_WIN_SET(vop, win, format, format);
981 	VOP_WIN_SET(vop, win, yrgb_vir, DIV_ROUND_UP(fb->pitches[0], 4));
982 	VOP_WIN_SET(vop, win, yrgb_mst, dma_addr);
983 	VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, y2r_en, is_yuv);
984 	VOP_WIN_SET(vop, win, y_mir_en,
985 		    (new_state->rotation & DRM_MODE_REFLECT_Y) ? 1 : 0);
986 	VOP_WIN_SET(vop, win, x_mir_en,
987 		    (new_state->rotation & DRM_MODE_REFLECT_X) ? 1 : 0);
988 
989 	if (is_yuv) {
990 		int hsub = fb->format->hsub;
991 		int vsub = fb->format->vsub;
992 		int bpp = fb->format->cpp[1];
993 
994 		uv_obj = fb->obj[1];
995 		rk_uv_obj = to_rockchip_obj(uv_obj);
996 
997 		offset = (src->x1 >> 16) * bpp / hsub;
998 		offset += (src->y1 >> 16) * fb->pitches[1] / vsub;
999 
1000 		dma_addr = rk_uv_obj->dma_addr + offset + fb->offsets[1];
1001 		VOP_WIN_SET(vop, win, uv_vir, DIV_ROUND_UP(fb->pitches[1], 4));
1002 		VOP_WIN_SET(vop, win, uv_mst, dma_addr);
1003 
1004 		for (i = 0; i < NUM_YUV2YUV_COEFFICIENTS; i++) {
1005 			VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop,
1006 							win_yuv2yuv,
1007 							y2r_coefficients[i],
1008 							bt601_yuv2rgb[i]);
1009 		}
1010 
1011 		uv_swap = has_uv_swapped(fb->format->format);
1012 		VOP_WIN_SET(vop, win, uv_swap, uv_swap);
1013 	}
1014 
1015 	if (win->phy->scl)
1016 		scl_vop_cal_scl_fac(vop, win, actual_w, actual_h,
1017 				    drm_rect_width(dest), drm_rect_height(dest),
1018 				    fb->format);
1019 
1020 	VOP_WIN_SET(vop, win, act_info, act_info);
1021 	VOP_WIN_SET(vop, win, dsp_info, dsp_info);
1022 	VOP_WIN_SET(vop, win, dsp_st, dsp_st);
1023 
1024 	rb_swap = has_rb_swapped(vop->data->version, fb->format->format);
1025 	VOP_WIN_SET(vop, win, rb_swap, rb_swap);
1026 
1027 	/*
1028 	 * Blending win0 with the background color doesn't seem to work
1029 	 * correctly. We only get the background color, no matter the contents
1030 	 * of the win0 framebuffer.  However, blending pre-multiplied color
1031 	 * with the default opaque black default background color is a no-op,
1032 	 * so we can just disable blending to get the correct result.
1033 	 */
1034 	if (fb->format->has_alpha && win_index > 0) {
1035 		VOP_WIN_SET(vop, win, dst_alpha_ctl,
1036 			    DST_FACTOR_M0(ALPHA_SRC_INVERSE));
1037 		val = SRC_ALPHA_EN(1) | SRC_COLOR_M0(ALPHA_SRC_PRE_MUL) |
1038 			SRC_ALPHA_M0(ALPHA_STRAIGHT) |
1039 			SRC_BLEND_M0(ALPHA_PER_PIX) |
1040 			SRC_ALPHA_CAL_M0(ALPHA_NO_SATURATION) |
1041 			SRC_FACTOR_M0(ALPHA_ONE);
1042 		VOP_WIN_SET(vop, win, src_alpha_ctl, val);
1043 
1044 		VOP_WIN_SET(vop, win, alpha_pre_mul, ALPHA_SRC_PRE_MUL);
1045 		VOP_WIN_SET(vop, win, alpha_mode, ALPHA_PER_PIX);
1046 		VOP_WIN_SET(vop, win, alpha_en, 1);
1047 	} else {
1048 		VOP_WIN_SET(vop, win, src_alpha_ctl, SRC_ALPHA_EN(0));
1049 		VOP_WIN_SET(vop, win, alpha_en, 0);
1050 	}
1051 
1052 	VOP_WIN_SET(vop, win, enable, 1);
1053 	vop->win_enabled |= BIT(win_index);
1054 	spin_unlock(&vop->reg_lock);
1055 }
1056 
1057 static int vop_plane_atomic_async_check(struct drm_plane *plane,
1058 					struct drm_atomic_state *state)
1059 {
1060 	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1061 										 plane);
1062 	struct vop_win *vop_win = to_vop_win(plane);
1063 	const struct vop_win_data *win = vop_win->data;
1064 	int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
1065 					DRM_PLANE_NO_SCALING;
1066 	int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
1067 					DRM_PLANE_NO_SCALING;
1068 	struct drm_crtc_state *crtc_state;
1069 
1070 	if (plane != new_plane_state->crtc->cursor)
1071 		return -EINVAL;
1072 
1073 	if (!plane->state)
1074 		return -EINVAL;
1075 
1076 	if (!plane->state->fb)
1077 		return -EINVAL;
1078 
1079 	if (state)
1080 		crtc_state = drm_atomic_get_existing_crtc_state(state,
1081 								new_plane_state->crtc);
1082 	else /* Special case for asynchronous cursor updates. */
1083 		crtc_state = plane->crtc->state;
1084 
1085 	return drm_atomic_helper_check_plane_state(plane->state, crtc_state,
1086 						   min_scale, max_scale,
1087 						   true, true);
1088 }
1089 
1090 static void vop_plane_atomic_async_update(struct drm_plane *plane,
1091 					  struct drm_atomic_state *state)
1092 {
1093 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
1094 									   plane);
1095 	struct vop *vop = to_vop(plane->state->crtc);
1096 	struct drm_framebuffer *old_fb = plane->state->fb;
1097 
1098 	plane->state->crtc_x = new_state->crtc_x;
1099 	plane->state->crtc_y = new_state->crtc_y;
1100 	plane->state->crtc_h = new_state->crtc_h;
1101 	plane->state->crtc_w = new_state->crtc_w;
1102 	plane->state->src_x = new_state->src_x;
1103 	plane->state->src_y = new_state->src_y;
1104 	plane->state->src_h = new_state->src_h;
1105 	plane->state->src_w = new_state->src_w;
1106 	swap(plane->state->fb, new_state->fb);
1107 
1108 	if (vop->is_enabled) {
1109 		vop_plane_atomic_update(plane, state);
1110 		spin_lock(&vop->reg_lock);
1111 		vop_cfg_done(vop);
1112 		spin_unlock(&vop->reg_lock);
1113 
1114 		/*
1115 		 * A scanout can still be occurring, so we can't drop the
1116 		 * reference to the old framebuffer. To solve this we get a
1117 		 * reference to old_fb and set a worker to release it later.
1118 		 * FIXME: if we perform 500 async_update calls before the
1119 		 * vblank, then we can have 500 different framebuffers waiting
1120 		 * to be released.
1121 		 */
1122 		if (old_fb && plane->state->fb != old_fb) {
1123 			drm_framebuffer_get(old_fb);
1124 			WARN_ON(drm_crtc_vblank_get(plane->state->crtc) != 0);
1125 			drm_flip_work_queue(&vop->fb_unref_work, old_fb);
1126 			set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1127 		}
1128 	}
1129 }
1130 
1131 static const struct drm_plane_helper_funcs plane_helper_funcs = {
1132 	.atomic_check = vop_plane_atomic_check,
1133 	.atomic_update = vop_plane_atomic_update,
1134 	.atomic_disable = vop_plane_atomic_disable,
1135 	.atomic_async_check = vop_plane_atomic_async_check,
1136 	.atomic_async_update = vop_plane_atomic_async_update,
1137 };
1138 
1139 static const struct drm_plane_funcs vop_plane_funcs = {
1140 	.update_plane	= drm_atomic_helper_update_plane,
1141 	.disable_plane	= drm_atomic_helper_disable_plane,
1142 	.destroy = vop_plane_destroy,
1143 	.reset = drm_atomic_helper_plane_reset,
1144 	.atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state,
1145 	.atomic_destroy_state = drm_atomic_helper_plane_destroy_state,
1146 	.format_mod_supported = rockchip_mod_supported,
1147 };
1148 
1149 static int vop_crtc_enable_vblank(struct drm_crtc *crtc)
1150 {
1151 	struct vop *vop = to_vop(crtc);
1152 	unsigned long flags;
1153 
1154 	if (WARN_ON(!vop->is_enabled))
1155 		return -EPERM;
1156 
1157 	spin_lock_irqsave(&vop->irq_lock, flags);
1158 
1159 	VOP_INTR_SET_TYPE(vop, clear, FS_INTR, 1);
1160 	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 1);
1161 
1162 	spin_unlock_irqrestore(&vop->irq_lock, flags);
1163 
1164 	return 0;
1165 }
1166 
1167 static void vop_crtc_disable_vblank(struct drm_crtc *crtc)
1168 {
1169 	struct vop *vop = to_vop(crtc);
1170 	unsigned long flags;
1171 
1172 	if (WARN_ON(!vop->is_enabled))
1173 		return;
1174 
1175 	spin_lock_irqsave(&vop->irq_lock, flags);
1176 
1177 	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 0);
1178 
1179 	spin_unlock_irqrestore(&vop->irq_lock, flags);
1180 }
1181 
1182 static enum drm_mode_status vop_crtc_mode_valid(struct drm_crtc *crtc,
1183 						const struct drm_display_mode *mode)
1184 {
1185 	struct vop *vop = to_vop(crtc);
1186 
1187 	if (vop->data->max_output.width && mode->hdisplay > vop->data->max_output.width)
1188 		return MODE_BAD_HVALUE;
1189 
1190 	return MODE_OK;
1191 }
1192 
1193 static bool vop_crtc_mode_fixup(struct drm_crtc *crtc,
1194 				const struct drm_display_mode *mode,
1195 				struct drm_display_mode *adjusted_mode)
1196 {
1197 	struct vop *vop = to_vop(crtc);
1198 	unsigned long rate;
1199 
1200 	/*
1201 	 * Clock craziness.
1202 	 *
1203 	 * Key points:
1204 	 *
1205 	 * - DRM works in kHz.
1206 	 * - Clock framework works in Hz.
1207 	 * - Rockchip's clock driver picks the clock rate that is the
1208 	 *   same _OR LOWER_ than the one requested.
1209 	 *
1210 	 * Action plan:
1211 	 *
1212 	 * 1. Try to set the exact rate first, and confirm the clock framework
1213 	 *    can provide it.
1214 	 *
1215 	 * 2. If the clock framework cannot provide the exact rate, we should
1216 	 *    add 999 Hz to the requested rate.  That way if the clock we need
1217 	 *    is 60000001 Hz (~60 MHz) and DRM tells us to make 60000 kHz then
1218 	 *    the clock framework will actually give us the right clock.
1219 	 *
1220 	 * 3. Get the clock framework to round the rate for us to tell us
1221 	 *    what it will actually make.
1222 	 *
1223 	 * 4. Store the rounded up rate so that we don't need to worry about
1224 	 *    this in the actual clk_set_rate().
1225 	 */
1226 	rate = clk_round_rate(vop->dclk, adjusted_mode->clock * 1000);
1227 	if (rate / 1000 != adjusted_mode->clock)
1228 		rate = clk_round_rate(vop->dclk,
1229 				      adjusted_mode->clock * 1000 + 999);
1230 	adjusted_mode->clock = DIV_ROUND_UP(rate, 1000);
1231 
1232 	return true;
1233 }
1234 
1235 static bool vop_dsp_lut_is_enabled(struct vop *vop)
1236 {
1237 	return vop_read_reg(vop, 0, &vop->data->common->dsp_lut_en);
1238 }
1239 
1240 static u32 vop_lut_buffer_index(struct vop *vop)
1241 {
1242 	return vop_read_reg(vop, 0, &vop->data->common->lut_buffer_index);
1243 }
1244 
1245 static void vop_crtc_write_gamma_lut(struct vop *vop, struct drm_crtc *crtc)
1246 {
1247 	struct drm_color_lut *lut = crtc->state->gamma_lut->data;
1248 	unsigned int i, bpc = ilog2(vop->data->lut_size);
1249 
1250 	for (i = 0; i < crtc->gamma_size; i++) {
1251 		u32 word;
1252 
1253 		word = (drm_color_lut_extract(lut[i].red, bpc) << (2 * bpc)) |
1254 		       (drm_color_lut_extract(lut[i].green, bpc) << bpc) |
1255 			drm_color_lut_extract(lut[i].blue, bpc);
1256 		writel(word, vop->lut_regs + i * 4);
1257 	}
1258 }
1259 
1260 static void vop_crtc_gamma_set(struct vop *vop, struct drm_crtc *crtc,
1261 			       struct drm_crtc_state *old_state)
1262 {
1263 	struct drm_crtc_state *state = crtc->state;
1264 	unsigned int idle;
1265 	u32 lut_idx, old_idx;
1266 	int ret;
1267 
1268 	if (!vop->lut_regs)
1269 		return;
1270 
1271 	if (!state->gamma_lut || !VOP_HAS_REG(vop, common, update_gamma_lut)) {
1272 		/*
1273 		 * To disable gamma (gamma_lut is null) or to write
1274 		 * an update to the LUT, clear dsp_lut_en.
1275 		 */
1276 		spin_lock(&vop->reg_lock);
1277 		VOP_REG_SET(vop, common, dsp_lut_en, 0);
1278 		vop_cfg_done(vop);
1279 		spin_unlock(&vop->reg_lock);
1280 
1281 		/*
1282 		 * In order to write the LUT to the internal memory,
1283 		 * we need to first make sure the dsp_lut_en bit is cleared.
1284 		 */
1285 		ret = readx_poll_timeout(vop_dsp_lut_is_enabled, vop,
1286 					 idle, !idle, 5, 30 * 1000);
1287 		if (ret) {
1288 			DRM_DEV_ERROR(vop->dev, "display LUT RAM enable timeout!\n");
1289 			return;
1290 		}
1291 
1292 		if (!state->gamma_lut)
1293 			return;
1294 	} else {
1295 		/*
1296 		 * On RK3399 the gamma LUT can updated without clearing dsp_lut_en,
1297 		 * by setting update_gamma_lut then waiting for lut_buffer_index change
1298 		 */
1299 		old_idx = vop_lut_buffer_index(vop);
1300 	}
1301 
1302 	spin_lock(&vop->reg_lock);
1303 	vop_crtc_write_gamma_lut(vop, crtc);
1304 	VOP_REG_SET(vop, common, dsp_lut_en, 1);
1305 	VOP_REG_SET(vop, common, update_gamma_lut, 1);
1306 	vop_cfg_done(vop);
1307 	spin_unlock(&vop->reg_lock);
1308 
1309 	if (VOP_HAS_REG(vop, common, update_gamma_lut)) {
1310 		ret = readx_poll_timeout(vop_lut_buffer_index, vop,
1311 					 lut_idx, lut_idx != old_idx, 5, 30 * 1000);
1312 		if (ret) {
1313 			DRM_DEV_ERROR(vop->dev, "gamma LUT update timeout!\n");
1314 			return;
1315 		}
1316 
1317 		/*
1318 		 * update_gamma_lut is auto cleared by HW, but write 0 to clear the bit
1319 		 * in our backup of the regs.
1320 		 */
1321 		spin_lock(&vop->reg_lock);
1322 		VOP_REG_SET(vop, common, update_gamma_lut, 0);
1323 		spin_unlock(&vop->reg_lock);
1324 	}
1325 }
1326 
1327 static void vop_crtc_atomic_begin(struct drm_crtc *crtc,
1328 				  struct drm_atomic_state *state)
1329 {
1330 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1331 									  crtc);
1332 	struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1333 									      crtc);
1334 	struct vop *vop = to_vop(crtc);
1335 
1336 	/*
1337 	 * Only update GAMMA if the 'active' flag is not changed,
1338 	 * otherwise it's updated by .atomic_enable.
1339 	 */
1340 	if (crtc_state->color_mgmt_changed &&
1341 	    !crtc_state->active_changed)
1342 		vop_crtc_gamma_set(vop, crtc, old_crtc_state);
1343 }
1344 
1345 static void vop_crtc_atomic_enable(struct drm_crtc *crtc,
1346 				   struct drm_atomic_state *state)
1347 {
1348 	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
1349 									 crtc);
1350 	struct vop *vop = to_vop(crtc);
1351 	const struct vop_data *vop_data = vop->data;
1352 	struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc->state);
1353 	struct drm_display_mode *adjusted_mode = &crtc->state->adjusted_mode;
1354 	u16 hsync_len = adjusted_mode->hsync_end - adjusted_mode->hsync_start;
1355 	u16 hdisplay = adjusted_mode->hdisplay;
1356 	u16 htotal = adjusted_mode->htotal;
1357 	u16 hact_st = adjusted_mode->htotal - adjusted_mode->hsync_start;
1358 	u16 hact_end = hact_st + hdisplay;
1359 	u16 vdisplay = adjusted_mode->vdisplay;
1360 	u16 vtotal = adjusted_mode->vtotal;
1361 	u16 vsync_len = adjusted_mode->vsync_end - adjusted_mode->vsync_start;
1362 	u16 vact_st = adjusted_mode->vtotal - adjusted_mode->vsync_start;
1363 	u16 vact_end = vact_st + vdisplay;
1364 	uint32_t pin_pol, val;
1365 	int dither_bpc = s->output_bpc ? s->output_bpc : 10;
1366 	int ret;
1367 
1368 	if (old_state && old_state->self_refresh_active) {
1369 		drm_crtc_vblank_on(crtc);
1370 		rockchip_drm_set_win_enabled(crtc, true);
1371 		return;
1372 	}
1373 
1374 	mutex_lock(&vop->vop_lock);
1375 
1376 	WARN_ON(vop->event);
1377 
1378 	ret = vop_enable(crtc, old_state);
1379 	if (ret) {
1380 		mutex_unlock(&vop->vop_lock);
1381 		DRM_DEV_ERROR(vop->dev, "Failed to enable vop (%d)\n", ret);
1382 		return;
1383 	}
1384 	pin_pol = (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) ?
1385 		   BIT(HSYNC_POSITIVE) : 0;
1386 	pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) ?
1387 		   BIT(VSYNC_POSITIVE) : 0;
1388 	VOP_REG_SET(vop, output, pin_pol, pin_pol);
1389 	VOP_REG_SET(vop, output, mipi_dual_channel_en, 0);
1390 
1391 	switch (s->output_type) {
1392 	case DRM_MODE_CONNECTOR_LVDS:
1393 		VOP_REG_SET(vop, output, rgb_dclk_pol, 1);
1394 		VOP_REG_SET(vop, output, rgb_pin_pol, pin_pol);
1395 		VOP_REG_SET(vop, output, rgb_en, 1);
1396 		break;
1397 	case DRM_MODE_CONNECTOR_eDP:
1398 		VOP_REG_SET(vop, output, edp_dclk_pol, 1);
1399 		VOP_REG_SET(vop, output, edp_pin_pol, pin_pol);
1400 		VOP_REG_SET(vop, output, edp_en, 1);
1401 		break;
1402 	case DRM_MODE_CONNECTOR_HDMIA:
1403 		VOP_REG_SET(vop, output, hdmi_dclk_pol, 1);
1404 		VOP_REG_SET(vop, output, hdmi_pin_pol, pin_pol);
1405 		VOP_REG_SET(vop, output, hdmi_en, 1);
1406 		break;
1407 	case DRM_MODE_CONNECTOR_DSI:
1408 		VOP_REG_SET(vop, output, mipi_dclk_pol, 1);
1409 		VOP_REG_SET(vop, output, mipi_pin_pol, pin_pol);
1410 		VOP_REG_SET(vop, output, mipi_en, 1);
1411 		VOP_REG_SET(vop, output, mipi_dual_channel_en,
1412 			    !!(s->output_flags & ROCKCHIP_OUTPUT_DSI_DUAL));
1413 		break;
1414 	case DRM_MODE_CONNECTOR_DisplayPort:
1415 		VOP_REG_SET(vop, output, dp_dclk_pol, 0);
1416 		VOP_REG_SET(vop, output, dp_pin_pol, pin_pol);
1417 		VOP_REG_SET(vop, output, dp_en, 1);
1418 		break;
1419 	default:
1420 		DRM_DEV_ERROR(vop->dev, "unsupported connector_type [%d]\n",
1421 			      s->output_type);
1422 	}
1423 
1424 	/*
1425 	 * if vop is not support RGB10 output, need force RGB10 to RGB888.
1426 	 */
1427 	if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA &&
1428 	    !(vop_data->feature & VOP_FEATURE_OUTPUT_RGB10))
1429 		s->output_mode = ROCKCHIP_OUT_MODE_P888;
1430 
1431 	if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA && dither_bpc <= 8)
1432 		VOP_REG_SET(vop, common, pre_dither_down, 1);
1433 	else
1434 		VOP_REG_SET(vop, common, pre_dither_down, 0);
1435 
1436 	if (dither_bpc == 6) {
1437 		VOP_REG_SET(vop, common, dither_down_sel, DITHER_DOWN_ALLEGRO);
1438 		VOP_REG_SET(vop, common, dither_down_mode, RGB888_TO_RGB666);
1439 		VOP_REG_SET(vop, common, dither_down_en, 1);
1440 	} else {
1441 		VOP_REG_SET(vop, common, dither_down_en, 0);
1442 	}
1443 
1444 	VOP_REG_SET(vop, common, out_mode, s->output_mode);
1445 
1446 	VOP_REG_SET(vop, modeset, htotal_pw, (htotal << 16) | hsync_len);
1447 	val = hact_st << 16;
1448 	val |= hact_end;
1449 	VOP_REG_SET(vop, modeset, hact_st_end, val);
1450 	VOP_REG_SET(vop, modeset, hpost_st_end, val);
1451 
1452 	VOP_REG_SET(vop, modeset, vtotal_pw, (vtotal << 16) | vsync_len);
1453 	val = vact_st << 16;
1454 	val |= vact_end;
1455 	VOP_REG_SET(vop, modeset, vact_st_end, val);
1456 	VOP_REG_SET(vop, modeset, vpost_st_end, val);
1457 
1458 	VOP_REG_SET(vop, intr, line_flag_num[0], vact_end);
1459 
1460 	clk_set_rate(vop->dclk, adjusted_mode->clock * 1000);
1461 
1462 	VOP_REG_SET(vop, common, standby, 0);
1463 	mutex_unlock(&vop->vop_lock);
1464 
1465 	/*
1466 	 * If we have a GAMMA LUT in the state, then let's make sure
1467 	 * it's updated. We might be coming out of suspend,
1468 	 * which means the LUT internal memory needs to be re-written.
1469 	 */
1470 	if (crtc->state->gamma_lut)
1471 		vop_crtc_gamma_set(vop, crtc, old_state);
1472 }
1473 
1474 static bool vop_fs_irq_is_pending(struct vop *vop)
1475 {
1476 	return VOP_INTR_GET_TYPE(vop, status, FS_INTR);
1477 }
1478 
1479 static void vop_wait_for_irq_handler(struct vop *vop)
1480 {
1481 	bool pending;
1482 	int ret;
1483 
1484 	/*
1485 	 * Spin until frame start interrupt status bit goes low, which means
1486 	 * that interrupt handler was invoked and cleared it. The timeout of
1487 	 * 10 msecs is really too long, but it is just a safety measure if
1488 	 * something goes really wrong. The wait will only happen in the very
1489 	 * unlikely case of a vblank happening exactly at the same time and
1490 	 * shouldn't exceed microseconds range.
1491 	 */
1492 	ret = readx_poll_timeout_atomic(vop_fs_irq_is_pending, vop, pending,
1493 					!pending, 0, 10 * 1000);
1494 	if (ret)
1495 		DRM_DEV_ERROR(vop->dev, "VOP vblank IRQ stuck for 10 ms\n");
1496 
1497 	synchronize_irq(vop->irq);
1498 }
1499 
1500 static int vop_crtc_atomic_check(struct drm_crtc *crtc,
1501 				 struct drm_atomic_state *state)
1502 {
1503 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1504 									  crtc);
1505 	struct vop *vop = to_vop(crtc);
1506 	struct drm_plane *plane;
1507 	struct drm_plane_state *plane_state;
1508 	struct rockchip_crtc_state *s;
1509 	int afbc_planes = 0;
1510 
1511 	if (vop->lut_regs && crtc_state->color_mgmt_changed &&
1512 	    crtc_state->gamma_lut) {
1513 		unsigned int len;
1514 
1515 		len = drm_color_lut_size(crtc_state->gamma_lut);
1516 		if (len != crtc->gamma_size) {
1517 			DRM_DEBUG_KMS("Invalid LUT size; got %d, expected %d\n",
1518 				      len, crtc->gamma_size);
1519 			return -EINVAL;
1520 		}
1521 	}
1522 
1523 	drm_atomic_crtc_state_for_each_plane(plane, crtc_state) {
1524 		plane_state =
1525 			drm_atomic_get_plane_state(crtc_state->state, plane);
1526 		if (IS_ERR(plane_state)) {
1527 			DRM_DEBUG_KMS("Cannot get plane state for plane %s\n",
1528 				      plane->name);
1529 			return PTR_ERR(plane_state);
1530 		}
1531 
1532 		if (drm_is_afbc(plane_state->fb->modifier))
1533 			++afbc_planes;
1534 	}
1535 
1536 	if (afbc_planes > 1) {
1537 		DRM_DEBUG_KMS("Invalid number of AFBC planes; got %d, expected at most 1\n", afbc_planes);
1538 		return -EINVAL;
1539 	}
1540 
1541 	s = to_rockchip_crtc_state(crtc_state);
1542 	s->enable_afbc = afbc_planes > 0;
1543 
1544 	return 0;
1545 }
1546 
1547 static void vop_crtc_atomic_flush(struct drm_crtc *crtc,
1548 				  struct drm_atomic_state *state)
1549 {
1550 	struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1551 									      crtc);
1552 	struct drm_atomic_state *old_state = old_crtc_state->state;
1553 	struct drm_plane_state *old_plane_state, *new_plane_state;
1554 	struct vop *vop = to_vop(crtc);
1555 	struct drm_plane *plane;
1556 	struct rockchip_crtc_state *s;
1557 	int i;
1558 
1559 	if (WARN_ON(!vop->is_enabled))
1560 		return;
1561 
1562 	spin_lock(&vop->reg_lock);
1563 
1564 	/* Enable AFBC if there is some AFBC window, disable otherwise. */
1565 	s = to_rockchip_crtc_state(crtc->state);
1566 	VOP_AFBC_SET(vop, enable, s->enable_afbc);
1567 	vop_cfg_done(vop);
1568 
1569 	spin_unlock(&vop->reg_lock);
1570 
1571 	/*
1572 	 * There is a (rather unlikely) possiblity that a vblank interrupt
1573 	 * fired before we set the cfg_done bit. To avoid spuriously
1574 	 * signalling flip completion we need to wait for it to finish.
1575 	 */
1576 	vop_wait_for_irq_handler(vop);
1577 
1578 	spin_lock_irq(&crtc->dev->event_lock);
1579 	if (crtc->state->event) {
1580 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1581 		WARN_ON(vop->event);
1582 
1583 		vop->event = crtc->state->event;
1584 		crtc->state->event = NULL;
1585 	}
1586 	spin_unlock_irq(&crtc->dev->event_lock);
1587 
1588 	for_each_oldnew_plane_in_state(old_state, plane, old_plane_state,
1589 				       new_plane_state, i) {
1590 		if (!old_plane_state->fb)
1591 			continue;
1592 
1593 		if (old_plane_state->fb == new_plane_state->fb)
1594 			continue;
1595 
1596 		drm_framebuffer_get(old_plane_state->fb);
1597 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1598 		drm_flip_work_queue(&vop->fb_unref_work, old_plane_state->fb);
1599 		set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1600 	}
1601 }
1602 
1603 static const struct drm_crtc_helper_funcs vop_crtc_helper_funcs = {
1604 	.mode_valid = vop_crtc_mode_valid,
1605 	.mode_fixup = vop_crtc_mode_fixup,
1606 	.atomic_check = vop_crtc_atomic_check,
1607 	.atomic_begin = vop_crtc_atomic_begin,
1608 	.atomic_flush = vop_crtc_atomic_flush,
1609 	.atomic_enable = vop_crtc_atomic_enable,
1610 	.atomic_disable = vop_crtc_atomic_disable,
1611 };
1612 
1613 static void vop_crtc_destroy(struct drm_crtc *crtc)
1614 {
1615 	drm_crtc_cleanup(crtc);
1616 }
1617 
1618 static struct drm_crtc_state *vop_crtc_duplicate_state(struct drm_crtc *crtc)
1619 {
1620 	struct rockchip_crtc_state *rockchip_state;
1621 
1622 	if (WARN_ON(!crtc->state))
1623 		return NULL;
1624 
1625 	rockchip_state = kmemdup(to_rockchip_crtc_state(crtc->state),
1626 				 sizeof(*rockchip_state), GFP_KERNEL);
1627 	if (!rockchip_state)
1628 		return NULL;
1629 
1630 	__drm_atomic_helper_crtc_duplicate_state(crtc, &rockchip_state->base);
1631 	return &rockchip_state->base;
1632 }
1633 
1634 static void vop_crtc_destroy_state(struct drm_crtc *crtc,
1635 				   struct drm_crtc_state *state)
1636 {
1637 	struct rockchip_crtc_state *s = to_rockchip_crtc_state(state);
1638 
1639 	__drm_atomic_helper_crtc_destroy_state(&s->base);
1640 	kfree(s);
1641 }
1642 
1643 static void vop_crtc_reset(struct drm_crtc *crtc)
1644 {
1645 	struct rockchip_crtc_state *crtc_state =
1646 		kzalloc(sizeof(*crtc_state), GFP_KERNEL);
1647 
1648 	if (crtc->state)
1649 		vop_crtc_destroy_state(crtc, crtc->state);
1650 
1651 	if (crtc_state)
1652 		__drm_atomic_helper_crtc_reset(crtc, &crtc_state->base);
1653 	else
1654 		__drm_atomic_helper_crtc_reset(crtc, NULL);
1655 }
1656 
1657 #ifdef CONFIG_DRM_ANALOGIX_DP
1658 static struct drm_connector *vop_get_edp_connector(struct vop *vop)
1659 {
1660 	struct drm_connector *connector;
1661 	struct drm_connector_list_iter conn_iter;
1662 
1663 	drm_connector_list_iter_begin(vop->drm_dev, &conn_iter);
1664 	drm_for_each_connector_iter(connector, &conn_iter) {
1665 		if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) {
1666 			drm_connector_list_iter_end(&conn_iter);
1667 			return connector;
1668 		}
1669 	}
1670 	drm_connector_list_iter_end(&conn_iter);
1671 
1672 	return NULL;
1673 }
1674 
1675 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1676 				   const char *source_name)
1677 {
1678 	struct vop *vop = to_vop(crtc);
1679 	struct drm_connector *connector;
1680 	int ret;
1681 
1682 	connector = vop_get_edp_connector(vop);
1683 	if (!connector)
1684 		return -EINVAL;
1685 
1686 	if (source_name && strcmp(source_name, "auto") == 0)
1687 		ret = analogix_dp_start_crc(connector);
1688 	else if (!source_name)
1689 		ret = analogix_dp_stop_crc(connector);
1690 	else
1691 		ret = -EINVAL;
1692 
1693 	return ret;
1694 }
1695 
1696 static int
1697 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1698 			   size_t *values_cnt)
1699 {
1700 	if (source_name && strcmp(source_name, "auto") != 0)
1701 		return -EINVAL;
1702 
1703 	*values_cnt = 3;
1704 	return 0;
1705 }
1706 
1707 #else
1708 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1709 				   const char *source_name)
1710 {
1711 	return -ENODEV;
1712 }
1713 
1714 static int
1715 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1716 			   size_t *values_cnt)
1717 {
1718 	return -ENODEV;
1719 }
1720 #endif
1721 
1722 static const struct drm_crtc_funcs vop_crtc_funcs = {
1723 	.set_config = drm_atomic_helper_set_config,
1724 	.page_flip = drm_atomic_helper_page_flip,
1725 	.destroy = vop_crtc_destroy,
1726 	.reset = vop_crtc_reset,
1727 	.atomic_duplicate_state = vop_crtc_duplicate_state,
1728 	.atomic_destroy_state = vop_crtc_destroy_state,
1729 	.enable_vblank = vop_crtc_enable_vblank,
1730 	.disable_vblank = vop_crtc_disable_vblank,
1731 	.set_crc_source = vop_crtc_set_crc_source,
1732 	.verify_crc_source = vop_crtc_verify_crc_source,
1733 };
1734 
1735 static void vop_fb_unref_worker(struct drm_flip_work *work, void *val)
1736 {
1737 	struct vop *vop = container_of(work, struct vop, fb_unref_work);
1738 	struct drm_framebuffer *fb = val;
1739 
1740 	drm_crtc_vblank_put(&vop->crtc);
1741 	drm_framebuffer_put(fb);
1742 }
1743 
1744 static void vop_handle_vblank(struct vop *vop)
1745 {
1746 	struct drm_device *drm = vop->drm_dev;
1747 	struct drm_crtc *crtc = &vop->crtc;
1748 
1749 	spin_lock(&drm->event_lock);
1750 	if (vop->event) {
1751 		drm_crtc_send_vblank_event(crtc, vop->event);
1752 		drm_crtc_vblank_put(crtc);
1753 		vop->event = NULL;
1754 	}
1755 	spin_unlock(&drm->event_lock);
1756 
1757 	if (test_and_clear_bit(VOP_PENDING_FB_UNREF, &vop->pending))
1758 		drm_flip_work_commit(&vop->fb_unref_work, system_unbound_wq);
1759 }
1760 
1761 static irqreturn_t vop_isr(int irq, void *data)
1762 {
1763 	struct vop *vop = data;
1764 	struct drm_crtc *crtc = &vop->crtc;
1765 	uint32_t active_irqs;
1766 	int ret = IRQ_NONE;
1767 
1768 	/*
1769 	 * The irq is shared with the iommu. If the runtime-pm state of the
1770 	 * vop-device is disabled the irq has to be targeted at the iommu.
1771 	 */
1772 	if (!pm_runtime_get_if_in_use(vop->dev))
1773 		return IRQ_NONE;
1774 
1775 	if (vop_core_clks_enable(vop)) {
1776 		DRM_DEV_ERROR_RATELIMITED(vop->dev, "couldn't enable clocks\n");
1777 		goto out;
1778 	}
1779 
1780 	/*
1781 	 * interrupt register has interrupt status, enable and clear bits, we
1782 	 * must hold irq_lock to avoid a race with enable/disable_vblank().
1783 	*/
1784 	spin_lock(&vop->irq_lock);
1785 
1786 	active_irqs = VOP_INTR_GET_TYPE(vop, status, INTR_MASK);
1787 	/* Clear all active interrupt sources */
1788 	if (active_irqs)
1789 		VOP_INTR_SET_TYPE(vop, clear, active_irqs, 1);
1790 
1791 	spin_unlock(&vop->irq_lock);
1792 
1793 	/* This is expected for vop iommu irqs, since the irq is shared */
1794 	if (!active_irqs)
1795 		goto out_disable;
1796 
1797 	if (active_irqs & DSP_HOLD_VALID_INTR) {
1798 		complete(&vop->dsp_hold_completion);
1799 		active_irqs &= ~DSP_HOLD_VALID_INTR;
1800 		ret = IRQ_HANDLED;
1801 	}
1802 
1803 	if (active_irqs & LINE_FLAG_INTR) {
1804 		complete(&vop->line_flag_completion);
1805 		active_irqs &= ~LINE_FLAG_INTR;
1806 		ret = IRQ_HANDLED;
1807 	}
1808 
1809 	if (active_irqs & FS_INTR) {
1810 		drm_crtc_handle_vblank(crtc);
1811 		vop_handle_vblank(vop);
1812 		active_irqs &= ~FS_INTR;
1813 		ret = IRQ_HANDLED;
1814 	}
1815 
1816 	/* Unhandled irqs are spurious. */
1817 	if (active_irqs)
1818 		DRM_DEV_ERROR(vop->dev, "Unknown VOP IRQs: %#02x\n",
1819 			      active_irqs);
1820 
1821 out_disable:
1822 	vop_core_clks_disable(vop);
1823 out:
1824 	pm_runtime_put(vop->dev);
1825 	return ret;
1826 }
1827 
1828 static void vop_plane_add_properties(struct drm_plane *plane,
1829 				     const struct vop_win_data *win_data)
1830 {
1831 	unsigned int flags = 0;
1832 
1833 	flags |= VOP_WIN_HAS_REG(win_data, x_mir_en) ? DRM_MODE_REFLECT_X : 0;
1834 	flags |= VOP_WIN_HAS_REG(win_data, y_mir_en) ? DRM_MODE_REFLECT_Y : 0;
1835 	if (flags)
1836 		drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
1837 						   DRM_MODE_ROTATE_0 | flags);
1838 }
1839 
1840 static int vop_create_crtc(struct vop *vop)
1841 {
1842 	const struct vop_data *vop_data = vop->data;
1843 	struct device *dev = vop->dev;
1844 	struct drm_device *drm_dev = vop->drm_dev;
1845 	struct drm_plane *primary = NULL, *cursor = NULL, *plane, *tmp;
1846 	struct drm_crtc *crtc = &vop->crtc;
1847 	struct device_node *port;
1848 	int ret;
1849 	int i;
1850 
1851 	/*
1852 	 * Create drm_plane for primary and cursor planes first, since we need
1853 	 * to pass them to drm_crtc_init_with_planes, which sets the
1854 	 * "possible_crtcs" to the newly initialized crtc.
1855 	 */
1856 	for (i = 0; i < vop_data->win_size; i++) {
1857 		struct vop_win *vop_win = &vop->win[i];
1858 		const struct vop_win_data *win_data = vop_win->data;
1859 
1860 		if (win_data->type != DRM_PLANE_TYPE_PRIMARY &&
1861 		    win_data->type != DRM_PLANE_TYPE_CURSOR)
1862 			continue;
1863 
1864 		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1865 					       0, &vop_plane_funcs,
1866 					       win_data->phy->data_formats,
1867 					       win_data->phy->nformats,
1868 					       win_data->phy->format_modifiers,
1869 					       win_data->type, NULL);
1870 		if (ret) {
1871 			DRM_DEV_ERROR(vop->dev, "failed to init plane %d\n",
1872 				      ret);
1873 			goto err_cleanup_planes;
1874 		}
1875 
1876 		plane = &vop_win->base;
1877 		drm_plane_helper_add(plane, &plane_helper_funcs);
1878 		vop_plane_add_properties(plane, win_data);
1879 		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
1880 			primary = plane;
1881 		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
1882 			cursor = plane;
1883 	}
1884 
1885 	ret = drm_crtc_init_with_planes(drm_dev, crtc, primary, cursor,
1886 					&vop_crtc_funcs, NULL);
1887 	if (ret)
1888 		goto err_cleanup_planes;
1889 
1890 	drm_crtc_helper_add(crtc, &vop_crtc_helper_funcs);
1891 	if (vop->lut_regs) {
1892 		drm_mode_crtc_set_gamma_size(crtc, vop_data->lut_size);
1893 		drm_crtc_enable_color_mgmt(crtc, 0, false, vop_data->lut_size);
1894 	}
1895 
1896 	/*
1897 	 * Create drm_planes for overlay windows with possible_crtcs restricted
1898 	 * to the newly created crtc.
1899 	 */
1900 	for (i = 0; i < vop_data->win_size; i++) {
1901 		struct vop_win *vop_win = &vop->win[i];
1902 		const struct vop_win_data *win_data = vop_win->data;
1903 		unsigned long possible_crtcs = drm_crtc_mask(crtc);
1904 
1905 		if (win_data->type != DRM_PLANE_TYPE_OVERLAY)
1906 			continue;
1907 
1908 		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1909 					       possible_crtcs,
1910 					       &vop_plane_funcs,
1911 					       win_data->phy->data_formats,
1912 					       win_data->phy->nformats,
1913 					       win_data->phy->format_modifiers,
1914 					       win_data->type, NULL);
1915 		if (ret) {
1916 			DRM_DEV_ERROR(vop->dev, "failed to init overlay %d\n",
1917 				      ret);
1918 			goto err_cleanup_crtc;
1919 		}
1920 		drm_plane_helper_add(&vop_win->base, &plane_helper_funcs);
1921 		vop_plane_add_properties(&vop_win->base, win_data);
1922 	}
1923 
1924 	port = of_get_child_by_name(dev->of_node, "port");
1925 	if (!port) {
1926 		DRM_DEV_ERROR(vop->dev, "no port node found in %pOF\n",
1927 			      dev->of_node);
1928 		ret = -ENOENT;
1929 		goto err_cleanup_crtc;
1930 	}
1931 
1932 	drm_flip_work_init(&vop->fb_unref_work, "fb_unref",
1933 			   vop_fb_unref_worker);
1934 
1935 	init_completion(&vop->dsp_hold_completion);
1936 	init_completion(&vop->line_flag_completion);
1937 	crtc->port = port;
1938 
1939 	ret = drm_self_refresh_helper_init(crtc);
1940 	if (ret)
1941 		DRM_DEV_DEBUG_KMS(vop->dev,
1942 			"Failed to init %s with SR helpers %d, ignoring\n",
1943 			crtc->name, ret);
1944 
1945 	return 0;
1946 
1947 err_cleanup_crtc:
1948 	drm_crtc_cleanup(crtc);
1949 err_cleanup_planes:
1950 	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1951 				 head)
1952 		drm_plane_cleanup(plane);
1953 	return ret;
1954 }
1955 
1956 static void vop_destroy_crtc(struct vop *vop)
1957 {
1958 	struct drm_crtc *crtc = &vop->crtc;
1959 	struct drm_device *drm_dev = vop->drm_dev;
1960 	struct drm_plane *plane, *tmp;
1961 
1962 	drm_self_refresh_helper_cleanup(crtc);
1963 
1964 	of_node_put(crtc->port);
1965 
1966 	/*
1967 	 * We need to cleanup the planes now.  Why?
1968 	 *
1969 	 * The planes are "&vop->win[i].base".  That means the memory is
1970 	 * all part of the big "struct vop" chunk of memory.  That memory
1971 	 * was devm allocated and associated with this component.  We need to
1972 	 * free it ourselves before vop_unbind() finishes.
1973 	 */
1974 	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1975 				 head)
1976 		vop_plane_destroy(plane);
1977 
1978 	/*
1979 	 * Destroy CRTC after vop_plane_destroy() since vop_disable_plane()
1980 	 * references the CRTC.
1981 	 */
1982 	drm_crtc_cleanup(crtc);
1983 	drm_flip_work_cleanup(&vop->fb_unref_work);
1984 }
1985 
1986 static int vop_initial(struct vop *vop)
1987 {
1988 	struct reset_control *ahb_rst;
1989 	int i, ret;
1990 
1991 	vop->hclk = devm_clk_get(vop->dev, "hclk_vop");
1992 	if (IS_ERR(vop->hclk)) {
1993 		DRM_DEV_ERROR(vop->dev, "failed to get hclk source\n");
1994 		return PTR_ERR(vop->hclk);
1995 	}
1996 	vop->aclk = devm_clk_get(vop->dev, "aclk_vop");
1997 	if (IS_ERR(vop->aclk)) {
1998 		DRM_DEV_ERROR(vop->dev, "failed to get aclk source\n");
1999 		return PTR_ERR(vop->aclk);
2000 	}
2001 	vop->dclk = devm_clk_get(vop->dev, "dclk_vop");
2002 	if (IS_ERR(vop->dclk)) {
2003 		DRM_DEV_ERROR(vop->dev, "failed to get dclk source\n");
2004 		return PTR_ERR(vop->dclk);
2005 	}
2006 
2007 	ret = pm_runtime_resume_and_get(vop->dev);
2008 	if (ret < 0) {
2009 		DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
2010 		return ret;
2011 	}
2012 
2013 	ret = clk_prepare(vop->dclk);
2014 	if (ret < 0) {
2015 		DRM_DEV_ERROR(vop->dev, "failed to prepare dclk\n");
2016 		goto err_put_pm_runtime;
2017 	}
2018 
2019 	/* Enable both the hclk and aclk to setup the vop */
2020 	ret = clk_prepare_enable(vop->hclk);
2021 	if (ret < 0) {
2022 		DRM_DEV_ERROR(vop->dev, "failed to prepare/enable hclk\n");
2023 		goto err_unprepare_dclk;
2024 	}
2025 
2026 	ret = clk_prepare_enable(vop->aclk);
2027 	if (ret < 0) {
2028 		DRM_DEV_ERROR(vop->dev, "failed to prepare/enable aclk\n");
2029 		goto err_disable_hclk;
2030 	}
2031 
2032 	/*
2033 	 * do hclk_reset, reset all vop registers.
2034 	 */
2035 	ahb_rst = devm_reset_control_get(vop->dev, "ahb");
2036 	if (IS_ERR(ahb_rst)) {
2037 		DRM_DEV_ERROR(vop->dev, "failed to get ahb reset\n");
2038 		ret = PTR_ERR(ahb_rst);
2039 		goto err_disable_aclk;
2040 	}
2041 	reset_control_assert(ahb_rst);
2042 	usleep_range(10, 20);
2043 	reset_control_deassert(ahb_rst);
2044 
2045 	VOP_INTR_SET_TYPE(vop, clear, INTR_MASK, 1);
2046 	VOP_INTR_SET_TYPE(vop, enable, INTR_MASK, 0);
2047 
2048 	for (i = 0; i < vop->len; i += sizeof(u32))
2049 		vop->regsbak[i / 4] = readl_relaxed(vop->regs + i);
2050 
2051 	VOP_REG_SET(vop, misc, global_regdone_en, 1);
2052 	VOP_REG_SET(vop, common, dsp_blank, 0);
2053 
2054 	for (i = 0; i < vop->data->win_size; i++) {
2055 		struct vop_win *vop_win = &vop->win[i];
2056 		const struct vop_win_data *win = vop_win->data;
2057 		int channel = i * 2 + 1;
2058 
2059 		VOP_WIN_SET(vop, win, channel, (channel + 1) << 4 | channel);
2060 		vop_win_disable(vop, vop_win);
2061 		VOP_WIN_SET(vop, win, gate, 1);
2062 	}
2063 
2064 	vop_cfg_done(vop);
2065 
2066 	/*
2067 	 * do dclk_reset, let all config take affect.
2068 	 */
2069 	vop->dclk_rst = devm_reset_control_get(vop->dev, "dclk");
2070 	if (IS_ERR(vop->dclk_rst)) {
2071 		DRM_DEV_ERROR(vop->dev, "failed to get dclk reset\n");
2072 		ret = PTR_ERR(vop->dclk_rst);
2073 		goto err_disable_aclk;
2074 	}
2075 	reset_control_assert(vop->dclk_rst);
2076 	usleep_range(10, 20);
2077 	reset_control_deassert(vop->dclk_rst);
2078 
2079 	clk_disable(vop->hclk);
2080 	clk_disable(vop->aclk);
2081 
2082 	vop->is_enabled = false;
2083 
2084 	pm_runtime_put_sync(vop->dev);
2085 
2086 	return 0;
2087 
2088 err_disable_aclk:
2089 	clk_disable_unprepare(vop->aclk);
2090 err_disable_hclk:
2091 	clk_disable_unprepare(vop->hclk);
2092 err_unprepare_dclk:
2093 	clk_unprepare(vop->dclk);
2094 err_put_pm_runtime:
2095 	pm_runtime_put_sync(vop->dev);
2096 	return ret;
2097 }
2098 
2099 /*
2100  * Initialize the vop->win array elements.
2101  */
2102 static void vop_win_init(struct vop *vop)
2103 {
2104 	const struct vop_data *vop_data = vop->data;
2105 	unsigned int i;
2106 
2107 	for (i = 0; i < vop_data->win_size; i++) {
2108 		struct vop_win *vop_win = &vop->win[i];
2109 		const struct vop_win_data *win_data = &vop_data->win[i];
2110 
2111 		vop_win->data = win_data;
2112 		vop_win->vop = vop;
2113 
2114 		if (vop_data->win_yuv2yuv)
2115 			vop_win->yuv2yuv_data = &vop_data->win_yuv2yuv[i];
2116 	}
2117 }
2118 
2119 /**
2120  * rockchip_drm_wait_vact_end
2121  * @crtc: CRTC to enable line flag
2122  * @mstimeout: millisecond for timeout
2123  *
2124  * Wait for vact_end line flag irq or timeout.
2125  *
2126  * Returns:
2127  * Zero on success, negative errno on failure.
2128  */
2129 int rockchip_drm_wait_vact_end(struct drm_crtc *crtc, unsigned int mstimeout)
2130 {
2131 	struct vop *vop = to_vop(crtc);
2132 	unsigned long jiffies_left;
2133 	int ret = 0;
2134 
2135 	if (!crtc || !vop->is_enabled)
2136 		return -ENODEV;
2137 
2138 	mutex_lock(&vop->vop_lock);
2139 	if (mstimeout <= 0) {
2140 		ret = -EINVAL;
2141 		goto out;
2142 	}
2143 
2144 	if (vop_line_flag_irq_is_enabled(vop)) {
2145 		ret = -EBUSY;
2146 		goto out;
2147 	}
2148 
2149 	reinit_completion(&vop->line_flag_completion);
2150 	vop_line_flag_irq_enable(vop);
2151 
2152 	jiffies_left = wait_for_completion_timeout(&vop->line_flag_completion,
2153 						   msecs_to_jiffies(mstimeout));
2154 	vop_line_flag_irq_disable(vop);
2155 
2156 	if (jiffies_left == 0) {
2157 		DRM_DEV_ERROR(vop->dev, "Timeout waiting for IRQ\n");
2158 		ret = -ETIMEDOUT;
2159 		goto out;
2160 	}
2161 
2162 out:
2163 	mutex_unlock(&vop->vop_lock);
2164 	return ret;
2165 }
2166 EXPORT_SYMBOL(rockchip_drm_wait_vact_end);
2167 
2168 static int vop_bind(struct device *dev, struct device *master, void *data)
2169 {
2170 	struct platform_device *pdev = to_platform_device(dev);
2171 	const struct vop_data *vop_data;
2172 	struct drm_device *drm_dev = data;
2173 	struct vop *vop;
2174 	struct resource *res;
2175 	int ret, irq;
2176 
2177 	vop_data = of_device_get_match_data(dev);
2178 	if (!vop_data)
2179 		return -ENODEV;
2180 
2181 	/* Allocate vop struct and its vop_win array */
2182 	vop = devm_kzalloc(dev, struct_size(vop, win, vop_data->win_size),
2183 			   GFP_KERNEL);
2184 	if (!vop)
2185 		return -ENOMEM;
2186 
2187 	vop->dev = dev;
2188 	vop->data = vop_data;
2189 	vop->drm_dev = drm_dev;
2190 	dev_set_drvdata(dev, vop);
2191 
2192 	vop_win_init(vop);
2193 
2194 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2195 	vop->regs = devm_ioremap_resource(dev, res);
2196 	if (IS_ERR(vop->regs))
2197 		return PTR_ERR(vop->regs);
2198 	vop->len = resource_size(res);
2199 
2200 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2201 	if (res) {
2202 		if (vop_data->lut_size != 1024 && vop_data->lut_size != 256) {
2203 			DRM_DEV_ERROR(dev, "unsupported gamma LUT size %d\n", vop_data->lut_size);
2204 			return -EINVAL;
2205 		}
2206 		vop->lut_regs = devm_ioremap_resource(dev, res);
2207 		if (IS_ERR(vop->lut_regs))
2208 			return PTR_ERR(vop->lut_regs);
2209 	}
2210 
2211 	vop->regsbak = devm_kzalloc(dev, vop->len, GFP_KERNEL);
2212 	if (!vop->regsbak)
2213 		return -ENOMEM;
2214 
2215 	irq = platform_get_irq(pdev, 0);
2216 	if (irq < 0) {
2217 		DRM_DEV_ERROR(dev, "cannot find irq for vop\n");
2218 		return irq;
2219 	}
2220 	vop->irq = (unsigned int)irq;
2221 
2222 	spin_lock_init(&vop->reg_lock);
2223 	spin_lock_init(&vop->irq_lock);
2224 	mutex_init(&vop->vop_lock);
2225 
2226 	ret = vop_create_crtc(vop);
2227 	if (ret)
2228 		return ret;
2229 
2230 	pm_runtime_enable(&pdev->dev);
2231 
2232 	ret = vop_initial(vop);
2233 	if (ret < 0) {
2234 		DRM_DEV_ERROR(&pdev->dev,
2235 			      "cannot initial vop dev - err %d\n", ret);
2236 		goto err_disable_pm_runtime;
2237 	}
2238 
2239 	ret = devm_request_irq(dev, vop->irq, vop_isr,
2240 			       IRQF_SHARED, dev_name(dev), vop);
2241 	if (ret)
2242 		goto err_disable_pm_runtime;
2243 
2244 	if (vop->data->feature & VOP_FEATURE_INTERNAL_RGB) {
2245 		vop->rgb = rockchip_rgb_init(dev, &vop->crtc, vop->drm_dev, 0);
2246 		if (IS_ERR(vop->rgb)) {
2247 			ret = PTR_ERR(vop->rgb);
2248 			goto err_disable_pm_runtime;
2249 		}
2250 	}
2251 
2252 	rockchip_drm_dma_init_device(drm_dev, dev);
2253 
2254 	return 0;
2255 
2256 err_disable_pm_runtime:
2257 	pm_runtime_disable(&pdev->dev);
2258 	vop_destroy_crtc(vop);
2259 	return ret;
2260 }
2261 
2262 static void vop_unbind(struct device *dev, struct device *master, void *data)
2263 {
2264 	struct vop *vop = dev_get_drvdata(dev);
2265 
2266 	if (vop->rgb)
2267 		rockchip_rgb_fini(vop->rgb);
2268 
2269 	pm_runtime_disable(dev);
2270 	vop_destroy_crtc(vop);
2271 
2272 	clk_unprepare(vop->aclk);
2273 	clk_unprepare(vop->hclk);
2274 	clk_unprepare(vop->dclk);
2275 }
2276 
2277 const struct component_ops vop_component_ops = {
2278 	.bind = vop_bind,
2279 	.unbind = vop_unbind,
2280 };
2281 EXPORT_SYMBOL_GPL(vop_component_ops);
2282