1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Fuzhou Rockchip Electronics Co.Ltd 4 * Author:Mark Yao <mark.yao@rock-chips.com> 5 */ 6 7 #include <drm/drm.h> 8 #include <drm/drmP.h> 9 #include <drm/drm_atomic.h> 10 #include <drm/drm_atomic_uapi.h> 11 #include <drm/drm_crtc.h> 12 #include <drm/drm_flip_work.h> 13 #include <drm/drm_gem_framebuffer_helper.h> 14 #include <drm/drm_plane_helper.h> 15 #include <drm/drm_probe_helper.h> 16 #ifdef CONFIG_DRM_ANALOGIX_DP 17 #include <drm/bridge/analogix_dp.h> 18 #endif 19 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/platform_device.h> 23 #include <linux/clk.h> 24 #include <linux/iopoll.h> 25 #include <linux/of.h> 26 #include <linux/of_device.h> 27 #include <linux/pm_runtime.h> 28 #include <linux/component.h> 29 #include <linux/overflow.h> 30 31 #include <linux/reset.h> 32 #include <linux/delay.h> 33 34 #include "rockchip_drm_drv.h" 35 #include "rockchip_drm_gem.h" 36 #include "rockchip_drm_fb.h" 37 #include "rockchip_drm_psr.h" 38 #include "rockchip_drm_vop.h" 39 #include "rockchip_rgb.h" 40 41 #define VOP_WIN_SET(vop, win, name, v) \ 42 vop_reg_set(vop, &win->phy->name, win->base, ~0, v, #name) 43 #define VOP_SCL_SET(vop, win, name, v) \ 44 vop_reg_set(vop, &win->phy->scl->name, win->base, ~0, v, #name) 45 #define VOP_SCL_SET_EXT(vop, win, name, v) \ 46 vop_reg_set(vop, &win->phy->scl->ext->name, \ 47 win->base, ~0, v, #name) 48 49 #define VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, name, v) \ 50 do { \ 51 if (win_yuv2yuv && win_yuv2yuv->name.mask) \ 52 vop_reg_set(vop, &win_yuv2yuv->name, 0, ~0, v, #name); \ 53 } while (0) 54 55 #define VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop, win_yuv2yuv, name, v) \ 56 do { \ 57 if (win_yuv2yuv && win_yuv2yuv->phy->name.mask) \ 58 vop_reg_set(vop, &win_yuv2yuv->phy->name, win_yuv2yuv->base, ~0, v, #name); \ 59 } while (0) 60 61 #define VOP_INTR_SET_MASK(vop, name, mask, v) \ 62 vop_reg_set(vop, &vop->data->intr->name, 0, mask, v, #name) 63 64 #define VOP_REG_SET(vop, group, name, v) \ 65 vop_reg_set(vop, &vop->data->group->name, 0, ~0, v, #name) 66 67 #define VOP_INTR_SET_TYPE(vop, name, type, v) \ 68 do { \ 69 int i, reg = 0, mask = 0; \ 70 for (i = 0; i < vop->data->intr->nintrs; i++) { \ 71 if (vop->data->intr->intrs[i] & type) { \ 72 reg |= (v) << i; \ 73 mask |= 1 << i; \ 74 } \ 75 } \ 76 VOP_INTR_SET_MASK(vop, name, mask, reg); \ 77 } while (0) 78 #define VOP_INTR_GET_TYPE(vop, name, type) \ 79 vop_get_intr_type(vop, &vop->data->intr->name, type) 80 81 #define VOP_WIN_GET(vop, win, name) \ 82 vop_read_reg(vop, win->offset, win->phy->name) 83 84 #define VOP_WIN_HAS_REG(win, name) \ 85 (!!(win->phy->name.mask)) 86 87 #define VOP_WIN_GET_YRGBADDR(vop, win) \ 88 vop_readl(vop, win->base + win->phy->yrgb_mst.offset) 89 90 #define VOP_WIN_TO_INDEX(vop_win) \ 91 ((vop_win) - (vop_win)->vop->win) 92 93 #define to_vop(x) container_of(x, struct vop, crtc) 94 #define to_vop_win(x) container_of(x, struct vop_win, base) 95 96 /* 97 * The coefficients of the following matrix are all fixed points. 98 * The format is S2.10 for the 3x3 part of the matrix, and S9.12 for the offsets. 99 * They are all represented in two's complement. 100 */ 101 static const uint32_t bt601_yuv2rgb[] = { 102 0x4A8, 0x0, 0x662, 103 0x4A8, 0x1E6F, 0x1CBF, 104 0x4A8, 0x812, 0x0, 105 0x321168, 0x0877CF, 0x2EB127 106 }; 107 108 enum vop_pending { 109 VOP_PENDING_FB_UNREF, 110 }; 111 112 struct vop_win { 113 struct drm_plane base; 114 const struct vop_win_data *data; 115 const struct vop_win_yuv2yuv_data *yuv2yuv_data; 116 struct vop *vop; 117 }; 118 119 struct rockchip_rgb; 120 struct vop { 121 struct drm_crtc crtc; 122 struct device *dev; 123 struct drm_device *drm_dev; 124 bool is_enabled; 125 126 struct completion dsp_hold_completion; 127 128 /* protected by dev->event_lock */ 129 struct drm_pending_vblank_event *event; 130 131 struct drm_flip_work fb_unref_work; 132 unsigned long pending; 133 134 struct completion line_flag_completion; 135 136 const struct vop_data *data; 137 138 uint32_t *regsbak; 139 void __iomem *regs; 140 141 /* physical map length of vop register */ 142 uint32_t len; 143 144 /* one time only one process allowed to config the register */ 145 spinlock_t reg_lock; 146 /* lock vop irq reg */ 147 spinlock_t irq_lock; 148 /* protects crtc enable/disable */ 149 struct mutex vop_lock; 150 151 unsigned int irq; 152 153 /* vop AHP clk */ 154 struct clk *hclk; 155 /* vop dclk */ 156 struct clk *dclk; 157 /* vop share memory frequency */ 158 struct clk *aclk; 159 160 /* vop dclk reset */ 161 struct reset_control *dclk_rst; 162 163 /* optional internal rgb encoder */ 164 struct rockchip_rgb *rgb; 165 166 struct vop_win win[]; 167 }; 168 169 static inline void vop_writel(struct vop *vop, uint32_t offset, uint32_t v) 170 { 171 writel(v, vop->regs + offset); 172 vop->regsbak[offset >> 2] = v; 173 } 174 175 static inline uint32_t vop_readl(struct vop *vop, uint32_t offset) 176 { 177 return readl(vop->regs + offset); 178 } 179 180 static inline uint32_t vop_read_reg(struct vop *vop, uint32_t base, 181 const struct vop_reg *reg) 182 { 183 return (vop_readl(vop, base + reg->offset) >> reg->shift) & reg->mask; 184 } 185 186 static void vop_reg_set(struct vop *vop, const struct vop_reg *reg, 187 uint32_t _offset, uint32_t _mask, uint32_t v, 188 const char *reg_name) 189 { 190 int offset, mask, shift; 191 192 if (!reg || !reg->mask) { 193 DRM_DEV_DEBUG(vop->dev, "Warning: not support %s\n", reg_name); 194 return; 195 } 196 197 offset = reg->offset + _offset; 198 mask = reg->mask & _mask; 199 shift = reg->shift; 200 201 if (reg->write_mask) { 202 v = ((v << shift) & 0xffff) | (mask << (shift + 16)); 203 } else { 204 uint32_t cached_val = vop->regsbak[offset >> 2]; 205 206 v = (cached_val & ~(mask << shift)) | ((v & mask) << shift); 207 vop->regsbak[offset >> 2] = v; 208 } 209 210 if (reg->relaxed) 211 writel_relaxed(v, vop->regs + offset); 212 else 213 writel(v, vop->regs + offset); 214 } 215 216 static inline uint32_t vop_get_intr_type(struct vop *vop, 217 const struct vop_reg *reg, int type) 218 { 219 uint32_t i, ret = 0; 220 uint32_t regs = vop_read_reg(vop, 0, reg); 221 222 for (i = 0; i < vop->data->intr->nintrs; i++) { 223 if ((type & vop->data->intr->intrs[i]) && (regs & 1 << i)) 224 ret |= vop->data->intr->intrs[i]; 225 } 226 227 return ret; 228 } 229 230 static inline void vop_cfg_done(struct vop *vop) 231 { 232 VOP_REG_SET(vop, common, cfg_done, 1); 233 } 234 235 static bool has_rb_swapped(uint32_t format) 236 { 237 switch (format) { 238 case DRM_FORMAT_XBGR8888: 239 case DRM_FORMAT_ABGR8888: 240 case DRM_FORMAT_BGR888: 241 case DRM_FORMAT_BGR565: 242 return true; 243 default: 244 return false; 245 } 246 } 247 248 static enum vop_data_format vop_convert_format(uint32_t format) 249 { 250 switch (format) { 251 case DRM_FORMAT_XRGB8888: 252 case DRM_FORMAT_ARGB8888: 253 case DRM_FORMAT_XBGR8888: 254 case DRM_FORMAT_ABGR8888: 255 return VOP_FMT_ARGB8888; 256 case DRM_FORMAT_RGB888: 257 case DRM_FORMAT_BGR888: 258 return VOP_FMT_RGB888; 259 case DRM_FORMAT_RGB565: 260 case DRM_FORMAT_BGR565: 261 return VOP_FMT_RGB565; 262 case DRM_FORMAT_NV12: 263 return VOP_FMT_YUV420SP; 264 case DRM_FORMAT_NV16: 265 return VOP_FMT_YUV422SP; 266 case DRM_FORMAT_NV24: 267 return VOP_FMT_YUV444SP; 268 default: 269 DRM_ERROR("unsupported format[%08x]\n", format); 270 return -EINVAL; 271 } 272 } 273 274 static uint16_t scl_vop_cal_scale(enum scale_mode mode, uint32_t src, 275 uint32_t dst, bool is_horizontal, 276 int vsu_mode, int *vskiplines) 277 { 278 uint16_t val = 1 << SCL_FT_DEFAULT_FIXPOINT_SHIFT; 279 280 if (vskiplines) 281 *vskiplines = 0; 282 283 if (is_horizontal) { 284 if (mode == SCALE_UP) 285 val = GET_SCL_FT_BIC(src, dst); 286 else if (mode == SCALE_DOWN) 287 val = GET_SCL_FT_BILI_DN(src, dst); 288 } else { 289 if (mode == SCALE_UP) { 290 if (vsu_mode == SCALE_UP_BIL) 291 val = GET_SCL_FT_BILI_UP(src, dst); 292 else 293 val = GET_SCL_FT_BIC(src, dst); 294 } else if (mode == SCALE_DOWN) { 295 if (vskiplines) { 296 *vskiplines = scl_get_vskiplines(src, dst); 297 val = scl_get_bili_dn_vskip(src, dst, 298 *vskiplines); 299 } else { 300 val = GET_SCL_FT_BILI_DN(src, dst); 301 } 302 } 303 } 304 305 return val; 306 } 307 308 static void scl_vop_cal_scl_fac(struct vop *vop, const struct vop_win_data *win, 309 uint32_t src_w, uint32_t src_h, uint32_t dst_w, 310 uint32_t dst_h, uint32_t pixel_format) 311 { 312 uint16_t yrgb_hor_scl_mode, yrgb_ver_scl_mode; 313 uint16_t cbcr_hor_scl_mode = SCALE_NONE; 314 uint16_t cbcr_ver_scl_mode = SCALE_NONE; 315 int hsub = drm_format_horz_chroma_subsampling(pixel_format); 316 int vsub = drm_format_vert_chroma_subsampling(pixel_format); 317 const struct drm_format_info *info; 318 bool is_yuv = false; 319 uint16_t cbcr_src_w = src_w / hsub; 320 uint16_t cbcr_src_h = src_h / vsub; 321 uint16_t vsu_mode; 322 uint16_t lb_mode; 323 uint32_t val; 324 int vskiplines; 325 326 info = drm_format_info(pixel_format); 327 328 if (info->is_yuv) 329 is_yuv = true; 330 331 if (dst_w > 3840) { 332 DRM_DEV_ERROR(vop->dev, "Maximum dst width (3840) exceeded\n"); 333 return; 334 } 335 336 if (!win->phy->scl->ext) { 337 VOP_SCL_SET(vop, win, scale_yrgb_x, 338 scl_cal_scale2(src_w, dst_w)); 339 VOP_SCL_SET(vop, win, scale_yrgb_y, 340 scl_cal_scale2(src_h, dst_h)); 341 if (is_yuv) { 342 VOP_SCL_SET(vop, win, scale_cbcr_x, 343 scl_cal_scale2(cbcr_src_w, dst_w)); 344 VOP_SCL_SET(vop, win, scale_cbcr_y, 345 scl_cal_scale2(cbcr_src_h, dst_h)); 346 } 347 return; 348 } 349 350 yrgb_hor_scl_mode = scl_get_scl_mode(src_w, dst_w); 351 yrgb_ver_scl_mode = scl_get_scl_mode(src_h, dst_h); 352 353 if (is_yuv) { 354 cbcr_hor_scl_mode = scl_get_scl_mode(cbcr_src_w, dst_w); 355 cbcr_ver_scl_mode = scl_get_scl_mode(cbcr_src_h, dst_h); 356 if (cbcr_hor_scl_mode == SCALE_DOWN) 357 lb_mode = scl_vop_cal_lb_mode(dst_w, true); 358 else 359 lb_mode = scl_vop_cal_lb_mode(cbcr_src_w, true); 360 } else { 361 if (yrgb_hor_scl_mode == SCALE_DOWN) 362 lb_mode = scl_vop_cal_lb_mode(dst_w, false); 363 else 364 lb_mode = scl_vop_cal_lb_mode(src_w, false); 365 } 366 367 VOP_SCL_SET_EXT(vop, win, lb_mode, lb_mode); 368 if (lb_mode == LB_RGB_3840X2) { 369 if (yrgb_ver_scl_mode != SCALE_NONE) { 370 DRM_DEV_ERROR(vop->dev, "not allow yrgb ver scale\n"); 371 return; 372 } 373 if (cbcr_ver_scl_mode != SCALE_NONE) { 374 DRM_DEV_ERROR(vop->dev, "not allow cbcr ver scale\n"); 375 return; 376 } 377 vsu_mode = SCALE_UP_BIL; 378 } else if (lb_mode == LB_RGB_2560X4) { 379 vsu_mode = SCALE_UP_BIL; 380 } else { 381 vsu_mode = SCALE_UP_BIC; 382 } 383 384 val = scl_vop_cal_scale(yrgb_hor_scl_mode, src_w, dst_w, 385 true, 0, NULL); 386 VOP_SCL_SET(vop, win, scale_yrgb_x, val); 387 val = scl_vop_cal_scale(yrgb_ver_scl_mode, src_h, dst_h, 388 false, vsu_mode, &vskiplines); 389 VOP_SCL_SET(vop, win, scale_yrgb_y, val); 390 391 VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt4, vskiplines == 4); 392 VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt2, vskiplines == 2); 393 394 VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, yrgb_hor_scl_mode); 395 VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, yrgb_ver_scl_mode); 396 VOP_SCL_SET_EXT(vop, win, yrgb_hsd_mode, SCALE_DOWN_BIL); 397 VOP_SCL_SET_EXT(vop, win, yrgb_vsd_mode, SCALE_DOWN_BIL); 398 VOP_SCL_SET_EXT(vop, win, yrgb_vsu_mode, vsu_mode); 399 if (is_yuv) { 400 val = scl_vop_cal_scale(cbcr_hor_scl_mode, cbcr_src_w, 401 dst_w, true, 0, NULL); 402 VOP_SCL_SET(vop, win, scale_cbcr_x, val); 403 val = scl_vop_cal_scale(cbcr_ver_scl_mode, cbcr_src_h, 404 dst_h, false, vsu_mode, &vskiplines); 405 VOP_SCL_SET(vop, win, scale_cbcr_y, val); 406 407 VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt4, vskiplines == 4); 408 VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt2, vskiplines == 2); 409 VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, cbcr_hor_scl_mode); 410 VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, cbcr_ver_scl_mode); 411 VOP_SCL_SET_EXT(vop, win, cbcr_hsd_mode, SCALE_DOWN_BIL); 412 VOP_SCL_SET_EXT(vop, win, cbcr_vsd_mode, SCALE_DOWN_BIL); 413 VOP_SCL_SET_EXT(vop, win, cbcr_vsu_mode, vsu_mode); 414 } 415 } 416 417 static void vop_dsp_hold_valid_irq_enable(struct vop *vop) 418 { 419 unsigned long flags; 420 421 if (WARN_ON(!vop->is_enabled)) 422 return; 423 424 spin_lock_irqsave(&vop->irq_lock, flags); 425 426 VOP_INTR_SET_TYPE(vop, clear, DSP_HOLD_VALID_INTR, 1); 427 VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 1); 428 429 spin_unlock_irqrestore(&vop->irq_lock, flags); 430 } 431 432 static void vop_dsp_hold_valid_irq_disable(struct vop *vop) 433 { 434 unsigned long flags; 435 436 if (WARN_ON(!vop->is_enabled)) 437 return; 438 439 spin_lock_irqsave(&vop->irq_lock, flags); 440 441 VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 0); 442 443 spin_unlock_irqrestore(&vop->irq_lock, flags); 444 } 445 446 /* 447 * (1) each frame starts at the start of the Vsync pulse which is signaled by 448 * the "FRAME_SYNC" interrupt. 449 * (2) the active data region of each frame ends at dsp_vact_end 450 * (3) we should program this same number (dsp_vact_end) into dsp_line_frag_num, 451 * to get "LINE_FLAG" interrupt at the end of the active on screen data. 452 * 453 * VOP_INTR_CTRL0.dsp_line_frag_num = VOP_DSP_VACT_ST_END.dsp_vact_end 454 * Interrupts 455 * LINE_FLAG -------------------------------+ 456 * FRAME_SYNC ----+ | 457 * | | 458 * v v 459 * | Vsync | Vbp | Vactive | Vfp | 460 * ^ ^ ^ ^ 461 * | | | | 462 * | | | | 463 * dsp_vs_end ------------+ | | | VOP_DSP_VTOTAL_VS_END 464 * dsp_vact_start --------------+ | | VOP_DSP_VACT_ST_END 465 * dsp_vact_end ----------------------------+ | VOP_DSP_VACT_ST_END 466 * dsp_total -------------------------------------+ VOP_DSP_VTOTAL_VS_END 467 */ 468 static bool vop_line_flag_irq_is_enabled(struct vop *vop) 469 { 470 uint32_t line_flag_irq; 471 unsigned long flags; 472 473 spin_lock_irqsave(&vop->irq_lock, flags); 474 475 line_flag_irq = VOP_INTR_GET_TYPE(vop, enable, LINE_FLAG_INTR); 476 477 spin_unlock_irqrestore(&vop->irq_lock, flags); 478 479 return !!line_flag_irq; 480 } 481 482 static void vop_line_flag_irq_enable(struct vop *vop) 483 { 484 unsigned long flags; 485 486 if (WARN_ON(!vop->is_enabled)) 487 return; 488 489 spin_lock_irqsave(&vop->irq_lock, flags); 490 491 VOP_INTR_SET_TYPE(vop, clear, LINE_FLAG_INTR, 1); 492 VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 1); 493 494 spin_unlock_irqrestore(&vop->irq_lock, flags); 495 } 496 497 static void vop_line_flag_irq_disable(struct vop *vop) 498 { 499 unsigned long flags; 500 501 if (WARN_ON(!vop->is_enabled)) 502 return; 503 504 spin_lock_irqsave(&vop->irq_lock, flags); 505 506 VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 0); 507 508 spin_unlock_irqrestore(&vop->irq_lock, flags); 509 } 510 511 static int vop_core_clks_enable(struct vop *vop) 512 { 513 int ret; 514 515 ret = clk_enable(vop->hclk); 516 if (ret < 0) 517 return ret; 518 519 ret = clk_enable(vop->aclk); 520 if (ret < 0) 521 goto err_disable_hclk; 522 523 return 0; 524 525 err_disable_hclk: 526 clk_disable(vop->hclk); 527 return ret; 528 } 529 530 static void vop_core_clks_disable(struct vop *vop) 531 { 532 clk_disable(vop->aclk); 533 clk_disable(vop->hclk); 534 } 535 536 static void vop_win_disable(struct vop *vop, const struct vop_win_data *win) 537 { 538 if (win->phy->scl && win->phy->scl->ext) { 539 VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, SCALE_NONE); 540 VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, SCALE_NONE); 541 VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, SCALE_NONE); 542 VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, SCALE_NONE); 543 } 544 545 VOP_WIN_SET(vop, win, enable, 0); 546 } 547 548 static int vop_enable(struct drm_crtc *crtc) 549 { 550 struct vop *vop = to_vop(crtc); 551 int ret, i; 552 553 ret = pm_runtime_get_sync(vop->dev); 554 if (ret < 0) { 555 DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret); 556 return ret; 557 } 558 559 ret = vop_core_clks_enable(vop); 560 if (WARN_ON(ret < 0)) 561 goto err_put_pm_runtime; 562 563 ret = clk_enable(vop->dclk); 564 if (WARN_ON(ret < 0)) 565 goto err_disable_core; 566 567 /* 568 * Slave iommu shares power, irq and clock with vop. It was associated 569 * automatically with this master device via common driver code. 570 * Now that we have enabled the clock we attach it to the shared drm 571 * mapping. 572 */ 573 ret = rockchip_drm_dma_attach_device(vop->drm_dev, vop->dev); 574 if (ret) { 575 DRM_DEV_ERROR(vop->dev, 576 "failed to attach dma mapping, %d\n", ret); 577 goto err_disable_dclk; 578 } 579 580 spin_lock(&vop->reg_lock); 581 for (i = 0; i < vop->len; i += 4) 582 writel_relaxed(vop->regsbak[i / 4], vop->regs + i); 583 584 /* 585 * We need to make sure that all windows are disabled before we 586 * enable the crtc. Otherwise we might try to scan from a destroyed 587 * buffer later. 588 */ 589 for (i = 0; i < vop->data->win_size; i++) { 590 struct vop_win *vop_win = &vop->win[i]; 591 const struct vop_win_data *win = vop_win->data; 592 593 vop_win_disable(vop, win); 594 } 595 spin_unlock(&vop->reg_lock); 596 597 vop_cfg_done(vop); 598 599 /* 600 * At here, vop clock & iommu is enable, R/W vop regs would be safe. 601 */ 602 vop->is_enabled = true; 603 604 spin_lock(&vop->reg_lock); 605 606 VOP_REG_SET(vop, common, standby, 1); 607 608 spin_unlock(&vop->reg_lock); 609 610 drm_crtc_vblank_on(crtc); 611 612 return 0; 613 614 err_disable_dclk: 615 clk_disable(vop->dclk); 616 err_disable_core: 617 vop_core_clks_disable(vop); 618 err_put_pm_runtime: 619 pm_runtime_put_sync(vop->dev); 620 return ret; 621 } 622 623 static void vop_crtc_atomic_disable(struct drm_crtc *crtc, 624 struct drm_crtc_state *old_state) 625 { 626 struct vop *vop = to_vop(crtc); 627 628 WARN_ON(vop->event); 629 630 mutex_lock(&vop->vop_lock); 631 drm_crtc_vblank_off(crtc); 632 633 /* 634 * Vop standby will take effect at end of current frame, 635 * if dsp hold valid irq happen, it means standby complete. 636 * 637 * we must wait standby complete when we want to disable aclk, 638 * if not, memory bus maybe dead. 639 */ 640 reinit_completion(&vop->dsp_hold_completion); 641 vop_dsp_hold_valid_irq_enable(vop); 642 643 spin_lock(&vop->reg_lock); 644 645 VOP_REG_SET(vop, common, standby, 1); 646 647 spin_unlock(&vop->reg_lock); 648 649 wait_for_completion(&vop->dsp_hold_completion); 650 651 vop_dsp_hold_valid_irq_disable(vop); 652 653 vop->is_enabled = false; 654 655 /* 656 * vop standby complete, so iommu detach is safe. 657 */ 658 rockchip_drm_dma_detach_device(vop->drm_dev, vop->dev); 659 660 clk_disable(vop->dclk); 661 vop_core_clks_disable(vop); 662 pm_runtime_put(vop->dev); 663 mutex_unlock(&vop->vop_lock); 664 665 if (crtc->state->event && !crtc->state->active) { 666 spin_lock_irq(&crtc->dev->event_lock); 667 drm_crtc_send_vblank_event(crtc, crtc->state->event); 668 spin_unlock_irq(&crtc->dev->event_lock); 669 670 crtc->state->event = NULL; 671 } 672 } 673 674 static void vop_plane_destroy(struct drm_plane *plane) 675 { 676 drm_plane_cleanup(plane); 677 } 678 679 static int vop_plane_atomic_check(struct drm_plane *plane, 680 struct drm_plane_state *state) 681 { 682 struct drm_crtc *crtc = state->crtc; 683 struct drm_crtc_state *crtc_state; 684 struct drm_framebuffer *fb = state->fb; 685 struct vop_win *vop_win = to_vop_win(plane); 686 const struct vop_win_data *win = vop_win->data; 687 int ret; 688 int min_scale = win->phy->scl ? FRAC_16_16(1, 8) : 689 DRM_PLANE_HELPER_NO_SCALING; 690 int max_scale = win->phy->scl ? FRAC_16_16(8, 1) : 691 DRM_PLANE_HELPER_NO_SCALING; 692 693 if (!crtc || !fb) 694 return 0; 695 696 crtc_state = drm_atomic_get_existing_crtc_state(state->state, crtc); 697 if (WARN_ON(!crtc_state)) 698 return -EINVAL; 699 700 ret = drm_atomic_helper_check_plane_state(state, crtc_state, 701 min_scale, max_scale, 702 true, true); 703 if (ret) 704 return ret; 705 706 if (!state->visible) 707 return 0; 708 709 ret = vop_convert_format(fb->format->format); 710 if (ret < 0) 711 return ret; 712 713 /* 714 * Src.x1 can be odd when do clip, but yuv plane start point 715 * need align with 2 pixel. 716 */ 717 if (fb->format->is_yuv && ((state->src.x1 >> 16) % 2)) { 718 DRM_ERROR("Invalid Source: Yuv format not support odd xpos\n"); 719 return -EINVAL; 720 } 721 722 if (fb->format->is_yuv && state->rotation & DRM_MODE_REFLECT_Y) { 723 DRM_ERROR("Invalid Source: Yuv format does not support this rotation\n"); 724 return -EINVAL; 725 } 726 727 return 0; 728 } 729 730 static void vop_plane_atomic_disable(struct drm_plane *plane, 731 struct drm_plane_state *old_state) 732 { 733 struct vop_win *vop_win = to_vop_win(plane); 734 const struct vop_win_data *win = vop_win->data; 735 struct vop *vop = to_vop(old_state->crtc); 736 737 if (!old_state->crtc) 738 return; 739 740 spin_lock(&vop->reg_lock); 741 742 vop_win_disable(vop, win); 743 744 spin_unlock(&vop->reg_lock); 745 } 746 747 static void vop_plane_atomic_update(struct drm_plane *plane, 748 struct drm_plane_state *old_state) 749 { 750 struct drm_plane_state *state = plane->state; 751 struct drm_crtc *crtc = state->crtc; 752 struct vop_win *vop_win = to_vop_win(plane); 753 const struct vop_win_data *win = vop_win->data; 754 const struct vop_win_yuv2yuv_data *win_yuv2yuv = vop_win->yuv2yuv_data; 755 struct vop *vop = to_vop(state->crtc); 756 struct drm_framebuffer *fb = state->fb; 757 unsigned int actual_w, actual_h; 758 unsigned int dsp_stx, dsp_sty; 759 uint32_t act_info, dsp_info, dsp_st; 760 struct drm_rect *src = &state->src; 761 struct drm_rect *dest = &state->dst; 762 struct drm_gem_object *obj, *uv_obj; 763 struct rockchip_gem_object *rk_obj, *rk_uv_obj; 764 unsigned long offset; 765 dma_addr_t dma_addr; 766 uint32_t val; 767 bool rb_swap; 768 int win_index = VOP_WIN_TO_INDEX(vop_win); 769 int format; 770 int is_yuv = fb->format->is_yuv; 771 int i; 772 773 /* 774 * can't update plane when vop is disabled. 775 */ 776 if (WARN_ON(!crtc)) 777 return; 778 779 if (WARN_ON(!vop->is_enabled)) 780 return; 781 782 if (!state->visible) { 783 vop_plane_atomic_disable(plane, old_state); 784 return; 785 } 786 787 obj = fb->obj[0]; 788 rk_obj = to_rockchip_obj(obj); 789 790 actual_w = drm_rect_width(src) >> 16; 791 actual_h = drm_rect_height(src) >> 16; 792 act_info = (actual_h - 1) << 16 | ((actual_w - 1) & 0xffff); 793 794 dsp_info = (drm_rect_height(dest) - 1) << 16; 795 dsp_info |= (drm_rect_width(dest) - 1) & 0xffff; 796 797 dsp_stx = dest->x1 + crtc->mode.htotal - crtc->mode.hsync_start; 798 dsp_sty = dest->y1 + crtc->mode.vtotal - crtc->mode.vsync_start; 799 dsp_st = dsp_sty << 16 | (dsp_stx & 0xffff); 800 801 offset = (src->x1 >> 16) * fb->format->cpp[0]; 802 offset += (src->y1 >> 16) * fb->pitches[0]; 803 dma_addr = rk_obj->dma_addr + offset + fb->offsets[0]; 804 805 /* 806 * For y-mirroring we need to move address 807 * to the beginning of the last line. 808 */ 809 if (state->rotation & DRM_MODE_REFLECT_Y) 810 dma_addr += (actual_h - 1) * fb->pitches[0]; 811 812 format = vop_convert_format(fb->format->format); 813 814 spin_lock(&vop->reg_lock); 815 816 VOP_WIN_SET(vop, win, format, format); 817 VOP_WIN_SET(vop, win, yrgb_vir, DIV_ROUND_UP(fb->pitches[0], 4)); 818 VOP_WIN_SET(vop, win, yrgb_mst, dma_addr); 819 VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, y2r_en, is_yuv); 820 VOP_WIN_SET(vop, win, y_mir_en, 821 (state->rotation & DRM_MODE_REFLECT_Y) ? 1 : 0); 822 VOP_WIN_SET(vop, win, x_mir_en, 823 (state->rotation & DRM_MODE_REFLECT_X) ? 1 : 0); 824 825 if (is_yuv) { 826 int hsub = drm_format_horz_chroma_subsampling(fb->format->format); 827 int vsub = drm_format_vert_chroma_subsampling(fb->format->format); 828 int bpp = fb->format->cpp[1]; 829 830 uv_obj = fb->obj[1]; 831 rk_uv_obj = to_rockchip_obj(uv_obj); 832 833 offset = (src->x1 >> 16) * bpp / hsub; 834 offset += (src->y1 >> 16) * fb->pitches[1] / vsub; 835 836 dma_addr = rk_uv_obj->dma_addr + offset + fb->offsets[1]; 837 VOP_WIN_SET(vop, win, uv_vir, DIV_ROUND_UP(fb->pitches[1], 4)); 838 VOP_WIN_SET(vop, win, uv_mst, dma_addr); 839 840 for (i = 0; i < NUM_YUV2YUV_COEFFICIENTS; i++) { 841 VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop, 842 win_yuv2yuv, 843 y2r_coefficients[i], 844 bt601_yuv2rgb[i]); 845 } 846 } 847 848 if (win->phy->scl) 849 scl_vop_cal_scl_fac(vop, win, actual_w, actual_h, 850 drm_rect_width(dest), drm_rect_height(dest), 851 fb->format->format); 852 853 VOP_WIN_SET(vop, win, act_info, act_info); 854 VOP_WIN_SET(vop, win, dsp_info, dsp_info); 855 VOP_WIN_SET(vop, win, dsp_st, dsp_st); 856 857 rb_swap = has_rb_swapped(fb->format->format); 858 VOP_WIN_SET(vop, win, rb_swap, rb_swap); 859 860 /* 861 * Blending win0 with the background color doesn't seem to work 862 * correctly. We only get the background color, no matter the contents 863 * of the win0 framebuffer. However, blending pre-multiplied color 864 * with the default opaque black default background color is a no-op, 865 * so we can just disable blending to get the correct result. 866 */ 867 if (fb->format->has_alpha && win_index > 0) { 868 VOP_WIN_SET(vop, win, dst_alpha_ctl, 869 DST_FACTOR_M0(ALPHA_SRC_INVERSE)); 870 val = SRC_ALPHA_EN(1) | SRC_COLOR_M0(ALPHA_SRC_PRE_MUL) | 871 SRC_ALPHA_M0(ALPHA_STRAIGHT) | 872 SRC_BLEND_M0(ALPHA_PER_PIX) | 873 SRC_ALPHA_CAL_M0(ALPHA_NO_SATURATION) | 874 SRC_FACTOR_M0(ALPHA_ONE); 875 VOP_WIN_SET(vop, win, src_alpha_ctl, val); 876 } else { 877 VOP_WIN_SET(vop, win, src_alpha_ctl, SRC_ALPHA_EN(0)); 878 } 879 880 VOP_WIN_SET(vop, win, enable, 1); 881 spin_unlock(&vop->reg_lock); 882 } 883 884 static int vop_plane_atomic_async_check(struct drm_plane *plane, 885 struct drm_plane_state *state) 886 { 887 struct vop_win *vop_win = to_vop_win(plane); 888 const struct vop_win_data *win = vop_win->data; 889 int min_scale = win->phy->scl ? FRAC_16_16(1, 8) : 890 DRM_PLANE_HELPER_NO_SCALING; 891 int max_scale = win->phy->scl ? FRAC_16_16(8, 1) : 892 DRM_PLANE_HELPER_NO_SCALING; 893 struct drm_crtc_state *crtc_state; 894 895 if (plane != state->crtc->cursor) 896 return -EINVAL; 897 898 if (!plane->state) 899 return -EINVAL; 900 901 if (!plane->state->fb) 902 return -EINVAL; 903 904 if (state->state) 905 crtc_state = drm_atomic_get_existing_crtc_state(state->state, 906 state->crtc); 907 else /* Special case for asynchronous cursor updates. */ 908 crtc_state = plane->crtc->state; 909 910 return drm_atomic_helper_check_plane_state(plane->state, crtc_state, 911 min_scale, max_scale, 912 true, true); 913 } 914 915 static void vop_plane_atomic_async_update(struct drm_plane *plane, 916 struct drm_plane_state *new_state) 917 { 918 struct vop *vop = to_vop(plane->state->crtc); 919 struct drm_framebuffer *old_fb = plane->state->fb; 920 921 plane->state->crtc_x = new_state->crtc_x; 922 plane->state->crtc_y = new_state->crtc_y; 923 plane->state->crtc_h = new_state->crtc_h; 924 plane->state->crtc_w = new_state->crtc_w; 925 plane->state->src_x = new_state->src_x; 926 plane->state->src_y = new_state->src_y; 927 plane->state->src_h = new_state->src_h; 928 plane->state->src_w = new_state->src_w; 929 swap(plane->state->fb, new_state->fb); 930 931 if (vop->is_enabled) { 932 rockchip_drm_psr_inhibit_get_state(new_state->state); 933 vop_plane_atomic_update(plane, plane->state); 934 spin_lock(&vop->reg_lock); 935 vop_cfg_done(vop); 936 spin_unlock(&vop->reg_lock); 937 rockchip_drm_psr_inhibit_put_state(new_state->state); 938 939 /* 940 * A scanout can still be occurring, so we can't drop the 941 * reference to the old framebuffer. To solve this we get a 942 * reference to old_fb and set a worker to release it later. 943 * FIXME: if we perform 500 async_update calls before the 944 * vblank, then we can have 500 different framebuffers waiting 945 * to be released. 946 */ 947 if (old_fb && plane->state->fb != old_fb) { 948 drm_framebuffer_get(old_fb); 949 WARN_ON(drm_crtc_vblank_get(plane->state->crtc) != 0); 950 drm_flip_work_queue(&vop->fb_unref_work, old_fb); 951 set_bit(VOP_PENDING_FB_UNREF, &vop->pending); 952 } 953 } 954 } 955 956 static const struct drm_plane_helper_funcs plane_helper_funcs = { 957 .atomic_check = vop_plane_atomic_check, 958 .atomic_update = vop_plane_atomic_update, 959 .atomic_disable = vop_plane_atomic_disable, 960 .atomic_async_check = vop_plane_atomic_async_check, 961 .atomic_async_update = vop_plane_atomic_async_update, 962 .prepare_fb = drm_gem_fb_prepare_fb, 963 }; 964 965 static const struct drm_plane_funcs vop_plane_funcs = { 966 .update_plane = drm_atomic_helper_update_plane, 967 .disable_plane = drm_atomic_helper_disable_plane, 968 .destroy = vop_plane_destroy, 969 .reset = drm_atomic_helper_plane_reset, 970 .atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state, 971 .atomic_destroy_state = drm_atomic_helper_plane_destroy_state, 972 }; 973 974 static int vop_crtc_enable_vblank(struct drm_crtc *crtc) 975 { 976 struct vop *vop = to_vop(crtc); 977 unsigned long flags; 978 979 if (WARN_ON(!vop->is_enabled)) 980 return -EPERM; 981 982 spin_lock_irqsave(&vop->irq_lock, flags); 983 984 VOP_INTR_SET_TYPE(vop, clear, FS_INTR, 1); 985 VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 1); 986 987 spin_unlock_irqrestore(&vop->irq_lock, flags); 988 989 return 0; 990 } 991 992 static void vop_crtc_disable_vblank(struct drm_crtc *crtc) 993 { 994 struct vop *vop = to_vop(crtc); 995 unsigned long flags; 996 997 if (WARN_ON(!vop->is_enabled)) 998 return; 999 1000 spin_lock_irqsave(&vop->irq_lock, flags); 1001 1002 VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 0); 1003 1004 spin_unlock_irqrestore(&vop->irq_lock, flags); 1005 } 1006 1007 static bool vop_crtc_mode_fixup(struct drm_crtc *crtc, 1008 const struct drm_display_mode *mode, 1009 struct drm_display_mode *adjusted_mode) 1010 { 1011 struct vop *vop = to_vop(crtc); 1012 1013 adjusted_mode->clock = 1014 clk_round_rate(vop->dclk, mode->clock * 1000) / 1000; 1015 1016 return true; 1017 } 1018 1019 static void vop_crtc_atomic_enable(struct drm_crtc *crtc, 1020 struct drm_crtc_state *old_state) 1021 { 1022 struct vop *vop = to_vop(crtc); 1023 const struct vop_data *vop_data = vop->data; 1024 struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc->state); 1025 struct drm_display_mode *adjusted_mode = &crtc->state->adjusted_mode; 1026 u16 hsync_len = adjusted_mode->hsync_end - adjusted_mode->hsync_start; 1027 u16 hdisplay = adjusted_mode->hdisplay; 1028 u16 htotal = adjusted_mode->htotal; 1029 u16 hact_st = adjusted_mode->htotal - adjusted_mode->hsync_start; 1030 u16 hact_end = hact_st + hdisplay; 1031 u16 vdisplay = adjusted_mode->vdisplay; 1032 u16 vtotal = adjusted_mode->vtotal; 1033 u16 vsync_len = adjusted_mode->vsync_end - adjusted_mode->vsync_start; 1034 u16 vact_st = adjusted_mode->vtotal - adjusted_mode->vsync_start; 1035 u16 vact_end = vact_st + vdisplay; 1036 uint32_t pin_pol, val; 1037 int dither_bpc = s->output_bpc ? s->output_bpc : 10; 1038 int ret; 1039 1040 mutex_lock(&vop->vop_lock); 1041 1042 WARN_ON(vop->event); 1043 1044 ret = vop_enable(crtc); 1045 if (ret) { 1046 mutex_unlock(&vop->vop_lock); 1047 DRM_DEV_ERROR(vop->dev, "Failed to enable vop (%d)\n", ret); 1048 return; 1049 } 1050 1051 pin_pol = BIT(DCLK_INVERT); 1052 pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) ? 1053 BIT(HSYNC_POSITIVE) : 0; 1054 pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) ? 1055 BIT(VSYNC_POSITIVE) : 0; 1056 VOP_REG_SET(vop, output, pin_pol, pin_pol); 1057 VOP_REG_SET(vop, output, mipi_dual_channel_en, 0); 1058 1059 switch (s->output_type) { 1060 case DRM_MODE_CONNECTOR_LVDS: 1061 VOP_REG_SET(vop, output, rgb_en, 1); 1062 VOP_REG_SET(vop, output, rgb_pin_pol, pin_pol); 1063 break; 1064 case DRM_MODE_CONNECTOR_eDP: 1065 VOP_REG_SET(vop, output, edp_pin_pol, pin_pol); 1066 VOP_REG_SET(vop, output, edp_en, 1); 1067 break; 1068 case DRM_MODE_CONNECTOR_HDMIA: 1069 VOP_REG_SET(vop, output, hdmi_pin_pol, pin_pol); 1070 VOP_REG_SET(vop, output, hdmi_en, 1); 1071 break; 1072 case DRM_MODE_CONNECTOR_DSI: 1073 VOP_REG_SET(vop, output, mipi_pin_pol, pin_pol); 1074 VOP_REG_SET(vop, output, mipi_en, 1); 1075 VOP_REG_SET(vop, output, mipi_dual_channel_en, 1076 !!(s->output_flags & ROCKCHIP_OUTPUT_DSI_DUAL)); 1077 break; 1078 case DRM_MODE_CONNECTOR_DisplayPort: 1079 pin_pol &= ~BIT(DCLK_INVERT); 1080 VOP_REG_SET(vop, output, dp_pin_pol, pin_pol); 1081 VOP_REG_SET(vop, output, dp_en, 1); 1082 break; 1083 default: 1084 DRM_DEV_ERROR(vop->dev, "unsupported connector_type [%d]\n", 1085 s->output_type); 1086 } 1087 1088 /* 1089 * if vop is not support RGB10 output, need force RGB10 to RGB888. 1090 */ 1091 if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA && 1092 !(vop_data->feature & VOP_FEATURE_OUTPUT_RGB10)) 1093 s->output_mode = ROCKCHIP_OUT_MODE_P888; 1094 1095 if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA && dither_bpc <= 8) 1096 VOP_REG_SET(vop, common, pre_dither_down, 1); 1097 else 1098 VOP_REG_SET(vop, common, pre_dither_down, 0); 1099 1100 if (dither_bpc == 6) { 1101 VOP_REG_SET(vop, common, dither_down_sel, DITHER_DOWN_ALLEGRO); 1102 VOP_REG_SET(vop, common, dither_down_mode, RGB888_TO_RGB666); 1103 VOP_REG_SET(vop, common, dither_down_en, 1); 1104 } else { 1105 VOP_REG_SET(vop, common, dither_down_en, 0); 1106 } 1107 1108 VOP_REG_SET(vop, common, out_mode, s->output_mode); 1109 1110 VOP_REG_SET(vop, modeset, htotal_pw, (htotal << 16) | hsync_len); 1111 val = hact_st << 16; 1112 val |= hact_end; 1113 VOP_REG_SET(vop, modeset, hact_st_end, val); 1114 VOP_REG_SET(vop, modeset, hpost_st_end, val); 1115 1116 VOP_REG_SET(vop, modeset, vtotal_pw, (vtotal << 16) | vsync_len); 1117 val = vact_st << 16; 1118 val |= vact_end; 1119 VOP_REG_SET(vop, modeset, vact_st_end, val); 1120 VOP_REG_SET(vop, modeset, vpost_st_end, val); 1121 1122 VOP_REG_SET(vop, intr, line_flag_num[0], vact_end); 1123 1124 clk_set_rate(vop->dclk, adjusted_mode->clock * 1000); 1125 1126 VOP_REG_SET(vop, common, standby, 0); 1127 mutex_unlock(&vop->vop_lock); 1128 } 1129 1130 static bool vop_fs_irq_is_pending(struct vop *vop) 1131 { 1132 return VOP_INTR_GET_TYPE(vop, status, FS_INTR); 1133 } 1134 1135 static void vop_wait_for_irq_handler(struct vop *vop) 1136 { 1137 bool pending; 1138 int ret; 1139 1140 /* 1141 * Spin until frame start interrupt status bit goes low, which means 1142 * that interrupt handler was invoked and cleared it. The timeout of 1143 * 10 msecs is really too long, but it is just a safety measure if 1144 * something goes really wrong. The wait will only happen in the very 1145 * unlikely case of a vblank happening exactly at the same time and 1146 * shouldn't exceed microseconds range. 1147 */ 1148 ret = readx_poll_timeout_atomic(vop_fs_irq_is_pending, vop, pending, 1149 !pending, 0, 10 * 1000); 1150 if (ret) 1151 DRM_DEV_ERROR(vop->dev, "VOP vblank IRQ stuck for 10 ms\n"); 1152 1153 synchronize_irq(vop->irq); 1154 } 1155 1156 static void vop_crtc_atomic_flush(struct drm_crtc *crtc, 1157 struct drm_crtc_state *old_crtc_state) 1158 { 1159 struct drm_atomic_state *old_state = old_crtc_state->state; 1160 struct drm_plane_state *old_plane_state, *new_plane_state; 1161 struct vop *vop = to_vop(crtc); 1162 struct drm_plane *plane; 1163 int i; 1164 1165 if (WARN_ON(!vop->is_enabled)) 1166 return; 1167 1168 spin_lock(&vop->reg_lock); 1169 1170 vop_cfg_done(vop); 1171 1172 spin_unlock(&vop->reg_lock); 1173 1174 /* 1175 * There is a (rather unlikely) possiblity that a vblank interrupt 1176 * fired before we set the cfg_done bit. To avoid spuriously 1177 * signalling flip completion we need to wait for it to finish. 1178 */ 1179 vop_wait_for_irq_handler(vop); 1180 1181 spin_lock_irq(&crtc->dev->event_lock); 1182 if (crtc->state->event) { 1183 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 1184 WARN_ON(vop->event); 1185 1186 vop->event = crtc->state->event; 1187 crtc->state->event = NULL; 1188 } 1189 spin_unlock_irq(&crtc->dev->event_lock); 1190 1191 for_each_oldnew_plane_in_state(old_state, plane, old_plane_state, 1192 new_plane_state, i) { 1193 if (!old_plane_state->fb) 1194 continue; 1195 1196 if (old_plane_state->fb == new_plane_state->fb) 1197 continue; 1198 1199 drm_framebuffer_get(old_plane_state->fb); 1200 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 1201 drm_flip_work_queue(&vop->fb_unref_work, old_plane_state->fb); 1202 set_bit(VOP_PENDING_FB_UNREF, &vop->pending); 1203 } 1204 } 1205 1206 static const struct drm_crtc_helper_funcs vop_crtc_helper_funcs = { 1207 .mode_fixup = vop_crtc_mode_fixup, 1208 .atomic_flush = vop_crtc_atomic_flush, 1209 .atomic_enable = vop_crtc_atomic_enable, 1210 .atomic_disable = vop_crtc_atomic_disable, 1211 }; 1212 1213 static void vop_crtc_destroy(struct drm_crtc *crtc) 1214 { 1215 drm_crtc_cleanup(crtc); 1216 } 1217 1218 static void vop_crtc_reset(struct drm_crtc *crtc) 1219 { 1220 if (crtc->state) 1221 __drm_atomic_helper_crtc_destroy_state(crtc->state); 1222 kfree(crtc->state); 1223 1224 crtc->state = kzalloc(sizeof(struct rockchip_crtc_state), GFP_KERNEL); 1225 if (crtc->state) 1226 crtc->state->crtc = crtc; 1227 } 1228 1229 static struct drm_crtc_state *vop_crtc_duplicate_state(struct drm_crtc *crtc) 1230 { 1231 struct rockchip_crtc_state *rockchip_state; 1232 1233 rockchip_state = kzalloc(sizeof(*rockchip_state), GFP_KERNEL); 1234 if (!rockchip_state) 1235 return NULL; 1236 1237 __drm_atomic_helper_crtc_duplicate_state(crtc, &rockchip_state->base); 1238 return &rockchip_state->base; 1239 } 1240 1241 static void vop_crtc_destroy_state(struct drm_crtc *crtc, 1242 struct drm_crtc_state *state) 1243 { 1244 struct rockchip_crtc_state *s = to_rockchip_crtc_state(state); 1245 1246 __drm_atomic_helper_crtc_destroy_state(&s->base); 1247 kfree(s); 1248 } 1249 1250 #ifdef CONFIG_DRM_ANALOGIX_DP 1251 static struct drm_connector *vop_get_edp_connector(struct vop *vop) 1252 { 1253 struct drm_connector *connector; 1254 struct drm_connector_list_iter conn_iter; 1255 1256 drm_connector_list_iter_begin(vop->drm_dev, &conn_iter); 1257 drm_for_each_connector_iter(connector, &conn_iter) { 1258 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) { 1259 drm_connector_list_iter_end(&conn_iter); 1260 return connector; 1261 } 1262 } 1263 drm_connector_list_iter_end(&conn_iter); 1264 1265 return NULL; 1266 } 1267 1268 static int vop_crtc_set_crc_source(struct drm_crtc *crtc, 1269 const char *source_name) 1270 { 1271 struct vop *vop = to_vop(crtc); 1272 struct drm_connector *connector; 1273 int ret; 1274 1275 connector = vop_get_edp_connector(vop); 1276 if (!connector) 1277 return -EINVAL; 1278 1279 if (source_name && strcmp(source_name, "auto") == 0) 1280 ret = analogix_dp_start_crc(connector); 1281 else if (!source_name) 1282 ret = analogix_dp_stop_crc(connector); 1283 else 1284 ret = -EINVAL; 1285 1286 return ret; 1287 } 1288 1289 static int 1290 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name, 1291 size_t *values_cnt) 1292 { 1293 if (source_name && strcmp(source_name, "auto") != 0) 1294 return -EINVAL; 1295 1296 *values_cnt = 3; 1297 return 0; 1298 } 1299 1300 #else 1301 static int vop_crtc_set_crc_source(struct drm_crtc *crtc, 1302 const char *source_name) 1303 { 1304 return -ENODEV; 1305 } 1306 1307 static int 1308 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name, 1309 size_t *values_cnt) 1310 { 1311 return -ENODEV; 1312 } 1313 #endif 1314 1315 static const struct drm_crtc_funcs vop_crtc_funcs = { 1316 .set_config = drm_atomic_helper_set_config, 1317 .page_flip = drm_atomic_helper_page_flip, 1318 .destroy = vop_crtc_destroy, 1319 .reset = vop_crtc_reset, 1320 .atomic_duplicate_state = vop_crtc_duplicate_state, 1321 .atomic_destroy_state = vop_crtc_destroy_state, 1322 .enable_vblank = vop_crtc_enable_vblank, 1323 .disable_vblank = vop_crtc_disable_vblank, 1324 .set_crc_source = vop_crtc_set_crc_source, 1325 .verify_crc_source = vop_crtc_verify_crc_source, 1326 }; 1327 1328 static void vop_fb_unref_worker(struct drm_flip_work *work, void *val) 1329 { 1330 struct vop *vop = container_of(work, struct vop, fb_unref_work); 1331 struct drm_framebuffer *fb = val; 1332 1333 drm_crtc_vblank_put(&vop->crtc); 1334 drm_framebuffer_put(fb); 1335 } 1336 1337 static void vop_handle_vblank(struct vop *vop) 1338 { 1339 struct drm_device *drm = vop->drm_dev; 1340 struct drm_crtc *crtc = &vop->crtc; 1341 1342 spin_lock(&drm->event_lock); 1343 if (vop->event) { 1344 drm_crtc_send_vblank_event(crtc, vop->event); 1345 drm_crtc_vblank_put(crtc); 1346 vop->event = NULL; 1347 } 1348 spin_unlock(&drm->event_lock); 1349 1350 if (test_and_clear_bit(VOP_PENDING_FB_UNREF, &vop->pending)) 1351 drm_flip_work_commit(&vop->fb_unref_work, system_unbound_wq); 1352 } 1353 1354 static irqreturn_t vop_isr(int irq, void *data) 1355 { 1356 struct vop *vop = data; 1357 struct drm_crtc *crtc = &vop->crtc; 1358 uint32_t active_irqs; 1359 int ret = IRQ_NONE; 1360 1361 /* 1362 * The irq is shared with the iommu. If the runtime-pm state of the 1363 * vop-device is disabled the irq has to be targeted at the iommu. 1364 */ 1365 if (!pm_runtime_get_if_in_use(vop->dev)) 1366 return IRQ_NONE; 1367 1368 if (vop_core_clks_enable(vop)) { 1369 DRM_DEV_ERROR_RATELIMITED(vop->dev, "couldn't enable clocks\n"); 1370 goto out; 1371 } 1372 1373 /* 1374 * interrupt register has interrupt status, enable and clear bits, we 1375 * must hold irq_lock to avoid a race with enable/disable_vblank(). 1376 */ 1377 spin_lock(&vop->irq_lock); 1378 1379 active_irqs = VOP_INTR_GET_TYPE(vop, status, INTR_MASK); 1380 /* Clear all active interrupt sources */ 1381 if (active_irqs) 1382 VOP_INTR_SET_TYPE(vop, clear, active_irqs, 1); 1383 1384 spin_unlock(&vop->irq_lock); 1385 1386 /* This is expected for vop iommu irqs, since the irq is shared */ 1387 if (!active_irqs) 1388 goto out_disable; 1389 1390 if (active_irqs & DSP_HOLD_VALID_INTR) { 1391 complete(&vop->dsp_hold_completion); 1392 active_irqs &= ~DSP_HOLD_VALID_INTR; 1393 ret = IRQ_HANDLED; 1394 } 1395 1396 if (active_irqs & LINE_FLAG_INTR) { 1397 complete(&vop->line_flag_completion); 1398 active_irqs &= ~LINE_FLAG_INTR; 1399 ret = IRQ_HANDLED; 1400 } 1401 1402 if (active_irqs & FS_INTR) { 1403 drm_crtc_handle_vblank(crtc); 1404 vop_handle_vblank(vop); 1405 active_irqs &= ~FS_INTR; 1406 ret = IRQ_HANDLED; 1407 } 1408 1409 /* Unhandled irqs are spurious. */ 1410 if (active_irqs) 1411 DRM_DEV_ERROR(vop->dev, "Unknown VOP IRQs: %#02x\n", 1412 active_irqs); 1413 1414 out_disable: 1415 vop_core_clks_disable(vop); 1416 out: 1417 pm_runtime_put(vop->dev); 1418 return ret; 1419 } 1420 1421 static void vop_plane_add_properties(struct drm_plane *plane, 1422 const struct vop_win_data *win_data) 1423 { 1424 unsigned int flags = 0; 1425 1426 flags |= VOP_WIN_HAS_REG(win_data, x_mir_en) ? DRM_MODE_REFLECT_X : 0; 1427 flags |= VOP_WIN_HAS_REG(win_data, y_mir_en) ? DRM_MODE_REFLECT_Y : 0; 1428 if (flags) 1429 drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0, 1430 DRM_MODE_ROTATE_0 | flags); 1431 } 1432 1433 static int vop_create_crtc(struct vop *vop) 1434 { 1435 const struct vop_data *vop_data = vop->data; 1436 struct device *dev = vop->dev; 1437 struct drm_device *drm_dev = vop->drm_dev; 1438 struct drm_plane *primary = NULL, *cursor = NULL, *plane, *tmp; 1439 struct drm_crtc *crtc = &vop->crtc; 1440 struct device_node *port; 1441 int ret; 1442 int i; 1443 1444 /* 1445 * Create drm_plane for primary and cursor planes first, since we need 1446 * to pass them to drm_crtc_init_with_planes, which sets the 1447 * "possible_crtcs" to the newly initialized crtc. 1448 */ 1449 for (i = 0; i < vop_data->win_size; i++) { 1450 struct vop_win *vop_win = &vop->win[i]; 1451 const struct vop_win_data *win_data = vop_win->data; 1452 1453 if (win_data->type != DRM_PLANE_TYPE_PRIMARY && 1454 win_data->type != DRM_PLANE_TYPE_CURSOR) 1455 continue; 1456 1457 ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base, 1458 0, &vop_plane_funcs, 1459 win_data->phy->data_formats, 1460 win_data->phy->nformats, 1461 NULL, win_data->type, NULL); 1462 if (ret) { 1463 DRM_DEV_ERROR(vop->dev, "failed to init plane %d\n", 1464 ret); 1465 goto err_cleanup_planes; 1466 } 1467 1468 plane = &vop_win->base; 1469 drm_plane_helper_add(plane, &plane_helper_funcs); 1470 vop_plane_add_properties(plane, win_data); 1471 if (plane->type == DRM_PLANE_TYPE_PRIMARY) 1472 primary = plane; 1473 else if (plane->type == DRM_PLANE_TYPE_CURSOR) 1474 cursor = plane; 1475 } 1476 1477 ret = drm_crtc_init_with_planes(drm_dev, crtc, primary, cursor, 1478 &vop_crtc_funcs, NULL); 1479 if (ret) 1480 goto err_cleanup_planes; 1481 1482 drm_crtc_helper_add(crtc, &vop_crtc_helper_funcs); 1483 1484 /* 1485 * Create drm_planes for overlay windows with possible_crtcs restricted 1486 * to the newly created crtc. 1487 */ 1488 for (i = 0; i < vop_data->win_size; i++) { 1489 struct vop_win *vop_win = &vop->win[i]; 1490 const struct vop_win_data *win_data = vop_win->data; 1491 unsigned long possible_crtcs = drm_crtc_mask(crtc); 1492 1493 if (win_data->type != DRM_PLANE_TYPE_OVERLAY) 1494 continue; 1495 1496 ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base, 1497 possible_crtcs, 1498 &vop_plane_funcs, 1499 win_data->phy->data_formats, 1500 win_data->phy->nformats, 1501 NULL, win_data->type, NULL); 1502 if (ret) { 1503 DRM_DEV_ERROR(vop->dev, "failed to init overlay %d\n", 1504 ret); 1505 goto err_cleanup_crtc; 1506 } 1507 drm_plane_helper_add(&vop_win->base, &plane_helper_funcs); 1508 vop_plane_add_properties(&vop_win->base, win_data); 1509 } 1510 1511 port = of_get_child_by_name(dev->of_node, "port"); 1512 if (!port) { 1513 DRM_DEV_ERROR(vop->dev, "no port node found in %pOF\n", 1514 dev->of_node); 1515 ret = -ENOENT; 1516 goto err_cleanup_crtc; 1517 } 1518 1519 drm_flip_work_init(&vop->fb_unref_work, "fb_unref", 1520 vop_fb_unref_worker); 1521 1522 init_completion(&vop->dsp_hold_completion); 1523 init_completion(&vop->line_flag_completion); 1524 crtc->port = port; 1525 1526 return 0; 1527 1528 err_cleanup_crtc: 1529 drm_crtc_cleanup(crtc); 1530 err_cleanup_planes: 1531 list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list, 1532 head) 1533 drm_plane_cleanup(plane); 1534 return ret; 1535 } 1536 1537 static void vop_destroy_crtc(struct vop *vop) 1538 { 1539 struct drm_crtc *crtc = &vop->crtc; 1540 struct drm_device *drm_dev = vop->drm_dev; 1541 struct drm_plane *plane, *tmp; 1542 1543 of_node_put(crtc->port); 1544 1545 /* 1546 * We need to cleanup the planes now. Why? 1547 * 1548 * The planes are "&vop->win[i].base". That means the memory is 1549 * all part of the big "struct vop" chunk of memory. That memory 1550 * was devm allocated and associated with this component. We need to 1551 * free it ourselves before vop_unbind() finishes. 1552 */ 1553 list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list, 1554 head) 1555 vop_plane_destroy(plane); 1556 1557 /* 1558 * Destroy CRTC after vop_plane_destroy() since vop_disable_plane() 1559 * references the CRTC. 1560 */ 1561 drm_crtc_cleanup(crtc); 1562 drm_flip_work_cleanup(&vop->fb_unref_work); 1563 } 1564 1565 static int vop_initial(struct vop *vop) 1566 { 1567 const struct vop_data *vop_data = vop->data; 1568 struct reset_control *ahb_rst; 1569 int i, ret; 1570 1571 vop->hclk = devm_clk_get(vop->dev, "hclk_vop"); 1572 if (IS_ERR(vop->hclk)) { 1573 DRM_DEV_ERROR(vop->dev, "failed to get hclk source\n"); 1574 return PTR_ERR(vop->hclk); 1575 } 1576 vop->aclk = devm_clk_get(vop->dev, "aclk_vop"); 1577 if (IS_ERR(vop->aclk)) { 1578 DRM_DEV_ERROR(vop->dev, "failed to get aclk source\n"); 1579 return PTR_ERR(vop->aclk); 1580 } 1581 vop->dclk = devm_clk_get(vop->dev, "dclk_vop"); 1582 if (IS_ERR(vop->dclk)) { 1583 DRM_DEV_ERROR(vop->dev, "failed to get dclk source\n"); 1584 return PTR_ERR(vop->dclk); 1585 } 1586 1587 ret = pm_runtime_get_sync(vop->dev); 1588 if (ret < 0) { 1589 DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret); 1590 return ret; 1591 } 1592 1593 ret = clk_prepare(vop->dclk); 1594 if (ret < 0) { 1595 DRM_DEV_ERROR(vop->dev, "failed to prepare dclk\n"); 1596 goto err_put_pm_runtime; 1597 } 1598 1599 /* Enable both the hclk and aclk to setup the vop */ 1600 ret = clk_prepare_enable(vop->hclk); 1601 if (ret < 0) { 1602 DRM_DEV_ERROR(vop->dev, "failed to prepare/enable hclk\n"); 1603 goto err_unprepare_dclk; 1604 } 1605 1606 ret = clk_prepare_enable(vop->aclk); 1607 if (ret < 0) { 1608 DRM_DEV_ERROR(vop->dev, "failed to prepare/enable aclk\n"); 1609 goto err_disable_hclk; 1610 } 1611 1612 /* 1613 * do hclk_reset, reset all vop registers. 1614 */ 1615 ahb_rst = devm_reset_control_get(vop->dev, "ahb"); 1616 if (IS_ERR(ahb_rst)) { 1617 DRM_DEV_ERROR(vop->dev, "failed to get ahb reset\n"); 1618 ret = PTR_ERR(ahb_rst); 1619 goto err_disable_aclk; 1620 } 1621 reset_control_assert(ahb_rst); 1622 usleep_range(10, 20); 1623 reset_control_deassert(ahb_rst); 1624 1625 VOP_INTR_SET_TYPE(vop, clear, INTR_MASK, 1); 1626 VOP_INTR_SET_TYPE(vop, enable, INTR_MASK, 0); 1627 1628 for (i = 0; i < vop->len; i += sizeof(u32)) 1629 vop->regsbak[i / 4] = readl_relaxed(vop->regs + i); 1630 1631 VOP_REG_SET(vop, misc, global_regdone_en, 1); 1632 VOP_REG_SET(vop, common, dsp_blank, 0); 1633 1634 for (i = 0; i < vop_data->win_size; i++) { 1635 const struct vop_win_data *win = &vop_data->win[i]; 1636 int channel = i * 2 + 1; 1637 1638 VOP_WIN_SET(vop, win, channel, (channel + 1) << 4 | channel); 1639 vop_win_disable(vop, win); 1640 VOP_WIN_SET(vop, win, gate, 1); 1641 } 1642 1643 vop_cfg_done(vop); 1644 1645 /* 1646 * do dclk_reset, let all config take affect. 1647 */ 1648 vop->dclk_rst = devm_reset_control_get(vop->dev, "dclk"); 1649 if (IS_ERR(vop->dclk_rst)) { 1650 DRM_DEV_ERROR(vop->dev, "failed to get dclk reset\n"); 1651 ret = PTR_ERR(vop->dclk_rst); 1652 goto err_disable_aclk; 1653 } 1654 reset_control_assert(vop->dclk_rst); 1655 usleep_range(10, 20); 1656 reset_control_deassert(vop->dclk_rst); 1657 1658 clk_disable(vop->hclk); 1659 clk_disable(vop->aclk); 1660 1661 vop->is_enabled = false; 1662 1663 pm_runtime_put_sync(vop->dev); 1664 1665 return 0; 1666 1667 err_disable_aclk: 1668 clk_disable_unprepare(vop->aclk); 1669 err_disable_hclk: 1670 clk_disable_unprepare(vop->hclk); 1671 err_unprepare_dclk: 1672 clk_unprepare(vop->dclk); 1673 err_put_pm_runtime: 1674 pm_runtime_put_sync(vop->dev); 1675 return ret; 1676 } 1677 1678 /* 1679 * Initialize the vop->win array elements. 1680 */ 1681 static void vop_win_init(struct vop *vop) 1682 { 1683 const struct vop_data *vop_data = vop->data; 1684 unsigned int i; 1685 1686 for (i = 0; i < vop_data->win_size; i++) { 1687 struct vop_win *vop_win = &vop->win[i]; 1688 const struct vop_win_data *win_data = &vop_data->win[i]; 1689 1690 vop_win->data = win_data; 1691 vop_win->vop = vop; 1692 1693 if (vop_data->win_yuv2yuv) 1694 vop_win->yuv2yuv_data = &vop_data->win_yuv2yuv[i]; 1695 } 1696 } 1697 1698 /** 1699 * rockchip_drm_wait_vact_end 1700 * @crtc: CRTC to enable line flag 1701 * @mstimeout: millisecond for timeout 1702 * 1703 * Wait for vact_end line flag irq or timeout. 1704 * 1705 * Returns: 1706 * Zero on success, negative errno on failure. 1707 */ 1708 int rockchip_drm_wait_vact_end(struct drm_crtc *crtc, unsigned int mstimeout) 1709 { 1710 struct vop *vop = to_vop(crtc); 1711 unsigned long jiffies_left; 1712 int ret = 0; 1713 1714 if (!crtc || !vop->is_enabled) 1715 return -ENODEV; 1716 1717 mutex_lock(&vop->vop_lock); 1718 if (mstimeout <= 0) { 1719 ret = -EINVAL; 1720 goto out; 1721 } 1722 1723 if (vop_line_flag_irq_is_enabled(vop)) { 1724 ret = -EBUSY; 1725 goto out; 1726 } 1727 1728 reinit_completion(&vop->line_flag_completion); 1729 vop_line_flag_irq_enable(vop); 1730 1731 jiffies_left = wait_for_completion_timeout(&vop->line_flag_completion, 1732 msecs_to_jiffies(mstimeout)); 1733 vop_line_flag_irq_disable(vop); 1734 1735 if (jiffies_left == 0) { 1736 DRM_DEV_ERROR(vop->dev, "Timeout waiting for IRQ\n"); 1737 ret = -ETIMEDOUT; 1738 goto out; 1739 } 1740 1741 out: 1742 mutex_unlock(&vop->vop_lock); 1743 return ret; 1744 } 1745 EXPORT_SYMBOL(rockchip_drm_wait_vact_end); 1746 1747 static int vop_bind(struct device *dev, struct device *master, void *data) 1748 { 1749 struct platform_device *pdev = to_platform_device(dev); 1750 const struct vop_data *vop_data; 1751 struct drm_device *drm_dev = data; 1752 struct vop *vop; 1753 struct resource *res; 1754 int ret, irq; 1755 1756 vop_data = of_device_get_match_data(dev); 1757 if (!vop_data) 1758 return -ENODEV; 1759 1760 /* Allocate vop struct and its vop_win array */ 1761 vop = devm_kzalloc(dev, struct_size(vop, win, vop_data->win_size), 1762 GFP_KERNEL); 1763 if (!vop) 1764 return -ENOMEM; 1765 1766 vop->dev = dev; 1767 vop->data = vop_data; 1768 vop->drm_dev = drm_dev; 1769 dev_set_drvdata(dev, vop); 1770 1771 vop_win_init(vop); 1772 1773 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1774 vop->len = resource_size(res); 1775 vop->regs = devm_ioremap_resource(dev, res); 1776 if (IS_ERR(vop->regs)) 1777 return PTR_ERR(vop->regs); 1778 1779 vop->regsbak = devm_kzalloc(dev, vop->len, GFP_KERNEL); 1780 if (!vop->regsbak) 1781 return -ENOMEM; 1782 1783 irq = platform_get_irq(pdev, 0); 1784 if (irq < 0) { 1785 DRM_DEV_ERROR(dev, "cannot find irq for vop\n"); 1786 return irq; 1787 } 1788 vop->irq = (unsigned int)irq; 1789 1790 spin_lock_init(&vop->reg_lock); 1791 spin_lock_init(&vop->irq_lock); 1792 mutex_init(&vop->vop_lock); 1793 1794 ret = vop_create_crtc(vop); 1795 if (ret) 1796 return ret; 1797 1798 pm_runtime_enable(&pdev->dev); 1799 1800 ret = vop_initial(vop); 1801 if (ret < 0) { 1802 DRM_DEV_ERROR(&pdev->dev, 1803 "cannot initial vop dev - err %d\n", ret); 1804 goto err_disable_pm_runtime; 1805 } 1806 1807 ret = devm_request_irq(dev, vop->irq, vop_isr, 1808 IRQF_SHARED, dev_name(dev), vop); 1809 if (ret) 1810 goto err_disable_pm_runtime; 1811 1812 if (vop->data->feature & VOP_FEATURE_INTERNAL_RGB) { 1813 vop->rgb = rockchip_rgb_init(dev, &vop->crtc, vop->drm_dev); 1814 if (IS_ERR(vop->rgb)) { 1815 ret = PTR_ERR(vop->rgb); 1816 goto err_disable_pm_runtime; 1817 } 1818 } 1819 1820 return 0; 1821 1822 err_disable_pm_runtime: 1823 pm_runtime_disable(&pdev->dev); 1824 vop_destroy_crtc(vop); 1825 return ret; 1826 } 1827 1828 static void vop_unbind(struct device *dev, struct device *master, void *data) 1829 { 1830 struct vop *vop = dev_get_drvdata(dev); 1831 1832 if (vop->rgb) 1833 rockchip_rgb_fini(vop->rgb); 1834 1835 pm_runtime_disable(dev); 1836 vop_destroy_crtc(vop); 1837 1838 clk_unprepare(vop->aclk); 1839 clk_unprepare(vop->hclk); 1840 clk_unprepare(vop->dclk); 1841 } 1842 1843 const struct component_ops vop_component_ops = { 1844 .bind = vop_bind, 1845 .unbind = vop_unbind, 1846 }; 1847 EXPORT_SYMBOL_GPL(vop_component_ops); 1848