xref: /openbmc/linux/drivers/gpu/drm/rockchip/rockchip_drm_vop.c (revision a89aa749ece9c6fee7932163472d2ee0efd6ddd3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Fuzhou Rockchip Electronics Co.Ltd
4  * Author:Mark Yao <mark.yao@rock-chips.com>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/component.h>
9 #include <linux/delay.h>
10 #include <linux/iopoll.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/of_device.h>
15 #include <linux/overflow.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/reset.h>
19 
20 #include <drm/drm.h>
21 #include <drm/drm_atomic.h>
22 #include <drm/drm_atomic_uapi.h>
23 #include <drm/drm_crtc.h>
24 #include <drm/drm_flip_work.h>
25 #include <drm/drm_fourcc.h>
26 #include <drm/drm_gem_framebuffer_helper.h>
27 #include <drm/drm_plane_helper.h>
28 #include <drm/drm_probe_helper.h>
29 #include <drm/drm_self_refresh_helper.h>
30 #include <drm/drm_vblank.h>
31 
32 #ifdef CONFIG_DRM_ANALOGIX_DP
33 #include <drm/bridge/analogix_dp.h>
34 #endif
35 
36 #include "rockchip_drm_drv.h"
37 #include "rockchip_drm_gem.h"
38 #include "rockchip_drm_fb.h"
39 #include "rockchip_drm_vop.h"
40 #include "rockchip_rgb.h"
41 
42 #define VOP_WIN_SET(vop, win, name, v) \
43 		vop_reg_set(vop, &win->phy->name, win->base, ~0, v, #name)
44 #define VOP_SCL_SET(vop, win, name, v) \
45 		vop_reg_set(vop, &win->phy->scl->name, win->base, ~0, v, #name)
46 #define VOP_SCL_SET_EXT(vop, win, name, v) \
47 		vop_reg_set(vop, &win->phy->scl->ext->name, \
48 			    win->base, ~0, v, #name)
49 
50 #define VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, name, v) \
51 	do { \
52 		if (win_yuv2yuv && win_yuv2yuv->name.mask) \
53 			vop_reg_set(vop, &win_yuv2yuv->name, 0, ~0, v, #name); \
54 	} while (0)
55 
56 #define VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop, win_yuv2yuv, name, v) \
57 	do { \
58 		if (win_yuv2yuv && win_yuv2yuv->phy->name.mask) \
59 			vop_reg_set(vop, &win_yuv2yuv->phy->name, win_yuv2yuv->base, ~0, v, #name); \
60 	} while (0)
61 
62 #define VOP_INTR_SET_MASK(vop, name, mask, v) \
63 		vop_reg_set(vop, &vop->data->intr->name, 0, mask, v, #name)
64 
65 #define VOP_REG_SET(vop, group, name, v) \
66 		    vop_reg_set(vop, &vop->data->group->name, 0, ~0, v, #name)
67 
68 #define VOP_INTR_SET_TYPE(vop, name, type, v) \
69 	do { \
70 		int i, reg = 0, mask = 0; \
71 		for (i = 0; i < vop->data->intr->nintrs; i++) { \
72 			if (vop->data->intr->intrs[i] & type) { \
73 				reg |= (v) << i; \
74 				mask |= 1 << i; \
75 			} \
76 		} \
77 		VOP_INTR_SET_MASK(vop, name, mask, reg); \
78 	} while (0)
79 #define VOP_INTR_GET_TYPE(vop, name, type) \
80 		vop_get_intr_type(vop, &vop->data->intr->name, type)
81 
82 #define VOP_WIN_GET(vop, win, name) \
83 		vop_read_reg(vop, win->base, &win->phy->name)
84 
85 #define VOP_WIN_HAS_REG(win, name) \
86 	(!!(win->phy->name.mask))
87 
88 #define VOP_WIN_GET_YRGBADDR(vop, win) \
89 		vop_readl(vop, win->base + win->phy->yrgb_mst.offset)
90 
91 #define VOP_WIN_TO_INDEX(vop_win) \
92 	((vop_win) - (vop_win)->vop->win)
93 
94 #define to_vop(x) container_of(x, struct vop, crtc)
95 #define to_vop_win(x) container_of(x, struct vop_win, base)
96 
97 /*
98  * The coefficients of the following matrix are all fixed points.
99  * The format is S2.10 for the 3x3 part of the matrix, and S9.12 for the offsets.
100  * They are all represented in two's complement.
101  */
102 static const uint32_t bt601_yuv2rgb[] = {
103 	0x4A8, 0x0,    0x662,
104 	0x4A8, 0x1E6F, 0x1CBF,
105 	0x4A8, 0x812,  0x0,
106 	0x321168, 0x0877CF, 0x2EB127
107 };
108 
109 enum vop_pending {
110 	VOP_PENDING_FB_UNREF,
111 };
112 
113 struct vop_win {
114 	struct drm_plane base;
115 	const struct vop_win_data *data;
116 	const struct vop_win_yuv2yuv_data *yuv2yuv_data;
117 	struct vop *vop;
118 };
119 
120 struct rockchip_rgb;
121 struct vop {
122 	struct drm_crtc crtc;
123 	struct device *dev;
124 	struct drm_device *drm_dev;
125 	bool is_enabled;
126 
127 	struct completion dsp_hold_completion;
128 	unsigned int win_enabled;
129 
130 	/* protected by dev->event_lock */
131 	struct drm_pending_vblank_event *event;
132 
133 	struct drm_flip_work fb_unref_work;
134 	unsigned long pending;
135 
136 	struct completion line_flag_completion;
137 
138 	const struct vop_data *data;
139 
140 	uint32_t *regsbak;
141 	void __iomem *regs;
142 	void __iomem *lut_regs;
143 
144 	/* physical map length of vop register */
145 	uint32_t len;
146 
147 	/* one time only one process allowed to config the register */
148 	spinlock_t reg_lock;
149 	/* lock vop irq reg */
150 	spinlock_t irq_lock;
151 	/* protects crtc enable/disable */
152 	struct mutex vop_lock;
153 
154 	unsigned int irq;
155 
156 	/* vop AHP clk */
157 	struct clk *hclk;
158 	/* vop dclk */
159 	struct clk *dclk;
160 	/* vop share memory frequency */
161 	struct clk *aclk;
162 
163 	/* vop dclk reset */
164 	struct reset_control *dclk_rst;
165 
166 	/* optional internal rgb encoder */
167 	struct rockchip_rgb *rgb;
168 
169 	struct vop_win win[];
170 };
171 
172 static inline void vop_writel(struct vop *vop, uint32_t offset, uint32_t v)
173 {
174 	writel(v, vop->regs + offset);
175 	vop->regsbak[offset >> 2] = v;
176 }
177 
178 static inline uint32_t vop_readl(struct vop *vop, uint32_t offset)
179 {
180 	return readl(vop->regs + offset);
181 }
182 
183 static inline uint32_t vop_read_reg(struct vop *vop, uint32_t base,
184 				    const struct vop_reg *reg)
185 {
186 	return (vop_readl(vop, base + reg->offset) >> reg->shift) & reg->mask;
187 }
188 
189 static void vop_reg_set(struct vop *vop, const struct vop_reg *reg,
190 			uint32_t _offset, uint32_t _mask, uint32_t v,
191 			const char *reg_name)
192 {
193 	int offset, mask, shift;
194 
195 	if (!reg || !reg->mask) {
196 		DRM_DEV_DEBUG(vop->dev, "Warning: not support %s\n", reg_name);
197 		return;
198 	}
199 
200 	offset = reg->offset + _offset;
201 	mask = reg->mask & _mask;
202 	shift = reg->shift;
203 
204 	if (reg->write_mask) {
205 		v = ((v << shift) & 0xffff) | (mask << (shift + 16));
206 	} else {
207 		uint32_t cached_val = vop->regsbak[offset >> 2];
208 
209 		v = (cached_val & ~(mask << shift)) | ((v & mask) << shift);
210 		vop->regsbak[offset >> 2] = v;
211 	}
212 
213 	if (reg->relaxed)
214 		writel_relaxed(v, vop->regs + offset);
215 	else
216 		writel(v, vop->regs + offset);
217 }
218 
219 static inline uint32_t vop_get_intr_type(struct vop *vop,
220 					 const struct vop_reg *reg, int type)
221 {
222 	uint32_t i, ret = 0;
223 	uint32_t regs = vop_read_reg(vop, 0, reg);
224 
225 	for (i = 0; i < vop->data->intr->nintrs; i++) {
226 		if ((type & vop->data->intr->intrs[i]) && (regs & 1 << i))
227 			ret |= vop->data->intr->intrs[i];
228 	}
229 
230 	return ret;
231 }
232 
233 static inline void vop_cfg_done(struct vop *vop)
234 {
235 	VOP_REG_SET(vop, common, cfg_done, 1);
236 }
237 
238 static bool has_rb_swapped(uint32_t format)
239 {
240 	switch (format) {
241 	case DRM_FORMAT_XBGR8888:
242 	case DRM_FORMAT_ABGR8888:
243 	case DRM_FORMAT_BGR888:
244 	case DRM_FORMAT_BGR565:
245 		return true;
246 	default:
247 		return false;
248 	}
249 }
250 
251 static enum vop_data_format vop_convert_format(uint32_t format)
252 {
253 	switch (format) {
254 	case DRM_FORMAT_XRGB8888:
255 	case DRM_FORMAT_ARGB8888:
256 	case DRM_FORMAT_XBGR8888:
257 	case DRM_FORMAT_ABGR8888:
258 		return VOP_FMT_ARGB8888;
259 	case DRM_FORMAT_RGB888:
260 	case DRM_FORMAT_BGR888:
261 		return VOP_FMT_RGB888;
262 	case DRM_FORMAT_RGB565:
263 	case DRM_FORMAT_BGR565:
264 		return VOP_FMT_RGB565;
265 	case DRM_FORMAT_NV12:
266 		return VOP_FMT_YUV420SP;
267 	case DRM_FORMAT_NV16:
268 		return VOP_FMT_YUV422SP;
269 	case DRM_FORMAT_NV24:
270 		return VOP_FMT_YUV444SP;
271 	default:
272 		DRM_ERROR("unsupported format[%08x]\n", format);
273 		return -EINVAL;
274 	}
275 }
276 
277 static uint16_t scl_vop_cal_scale(enum scale_mode mode, uint32_t src,
278 				  uint32_t dst, bool is_horizontal,
279 				  int vsu_mode, int *vskiplines)
280 {
281 	uint16_t val = 1 << SCL_FT_DEFAULT_FIXPOINT_SHIFT;
282 
283 	if (vskiplines)
284 		*vskiplines = 0;
285 
286 	if (is_horizontal) {
287 		if (mode == SCALE_UP)
288 			val = GET_SCL_FT_BIC(src, dst);
289 		else if (mode == SCALE_DOWN)
290 			val = GET_SCL_FT_BILI_DN(src, dst);
291 	} else {
292 		if (mode == SCALE_UP) {
293 			if (vsu_mode == SCALE_UP_BIL)
294 				val = GET_SCL_FT_BILI_UP(src, dst);
295 			else
296 				val = GET_SCL_FT_BIC(src, dst);
297 		} else if (mode == SCALE_DOWN) {
298 			if (vskiplines) {
299 				*vskiplines = scl_get_vskiplines(src, dst);
300 				val = scl_get_bili_dn_vskip(src, dst,
301 							    *vskiplines);
302 			} else {
303 				val = GET_SCL_FT_BILI_DN(src, dst);
304 			}
305 		}
306 	}
307 
308 	return val;
309 }
310 
311 static void scl_vop_cal_scl_fac(struct vop *vop, const struct vop_win_data *win,
312 			     uint32_t src_w, uint32_t src_h, uint32_t dst_w,
313 			     uint32_t dst_h, const struct drm_format_info *info)
314 {
315 	uint16_t yrgb_hor_scl_mode, yrgb_ver_scl_mode;
316 	uint16_t cbcr_hor_scl_mode = SCALE_NONE;
317 	uint16_t cbcr_ver_scl_mode = SCALE_NONE;
318 	bool is_yuv = false;
319 	uint16_t cbcr_src_w = src_w / info->hsub;
320 	uint16_t cbcr_src_h = src_h / info->vsub;
321 	uint16_t vsu_mode;
322 	uint16_t lb_mode;
323 	uint32_t val;
324 	int vskiplines;
325 
326 	if (info->is_yuv)
327 		is_yuv = true;
328 
329 	if (dst_w > 3840) {
330 		DRM_DEV_ERROR(vop->dev, "Maximum dst width (3840) exceeded\n");
331 		return;
332 	}
333 
334 	if (!win->phy->scl->ext) {
335 		VOP_SCL_SET(vop, win, scale_yrgb_x,
336 			    scl_cal_scale2(src_w, dst_w));
337 		VOP_SCL_SET(vop, win, scale_yrgb_y,
338 			    scl_cal_scale2(src_h, dst_h));
339 		if (is_yuv) {
340 			VOP_SCL_SET(vop, win, scale_cbcr_x,
341 				    scl_cal_scale2(cbcr_src_w, dst_w));
342 			VOP_SCL_SET(vop, win, scale_cbcr_y,
343 				    scl_cal_scale2(cbcr_src_h, dst_h));
344 		}
345 		return;
346 	}
347 
348 	yrgb_hor_scl_mode = scl_get_scl_mode(src_w, dst_w);
349 	yrgb_ver_scl_mode = scl_get_scl_mode(src_h, dst_h);
350 
351 	if (is_yuv) {
352 		cbcr_hor_scl_mode = scl_get_scl_mode(cbcr_src_w, dst_w);
353 		cbcr_ver_scl_mode = scl_get_scl_mode(cbcr_src_h, dst_h);
354 		if (cbcr_hor_scl_mode == SCALE_DOWN)
355 			lb_mode = scl_vop_cal_lb_mode(dst_w, true);
356 		else
357 			lb_mode = scl_vop_cal_lb_mode(cbcr_src_w, true);
358 	} else {
359 		if (yrgb_hor_scl_mode == SCALE_DOWN)
360 			lb_mode = scl_vop_cal_lb_mode(dst_w, false);
361 		else
362 			lb_mode = scl_vop_cal_lb_mode(src_w, false);
363 	}
364 
365 	VOP_SCL_SET_EXT(vop, win, lb_mode, lb_mode);
366 	if (lb_mode == LB_RGB_3840X2) {
367 		if (yrgb_ver_scl_mode != SCALE_NONE) {
368 			DRM_DEV_ERROR(vop->dev, "not allow yrgb ver scale\n");
369 			return;
370 		}
371 		if (cbcr_ver_scl_mode != SCALE_NONE) {
372 			DRM_DEV_ERROR(vop->dev, "not allow cbcr ver scale\n");
373 			return;
374 		}
375 		vsu_mode = SCALE_UP_BIL;
376 	} else if (lb_mode == LB_RGB_2560X4) {
377 		vsu_mode = SCALE_UP_BIL;
378 	} else {
379 		vsu_mode = SCALE_UP_BIC;
380 	}
381 
382 	val = scl_vop_cal_scale(yrgb_hor_scl_mode, src_w, dst_w,
383 				true, 0, NULL);
384 	VOP_SCL_SET(vop, win, scale_yrgb_x, val);
385 	val = scl_vop_cal_scale(yrgb_ver_scl_mode, src_h, dst_h,
386 				false, vsu_mode, &vskiplines);
387 	VOP_SCL_SET(vop, win, scale_yrgb_y, val);
388 
389 	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt4, vskiplines == 4);
390 	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt2, vskiplines == 2);
391 
392 	VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, yrgb_hor_scl_mode);
393 	VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, yrgb_ver_scl_mode);
394 	VOP_SCL_SET_EXT(vop, win, yrgb_hsd_mode, SCALE_DOWN_BIL);
395 	VOP_SCL_SET_EXT(vop, win, yrgb_vsd_mode, SCALE_DOWN_BIL);
396 	VOP_SCL_SET_EXT(vop, win, yrgb_vsu_mode, vsu_mode);
397 	if (is_yuv) {
398 		val = scl_vop_cal_scale(cbcr_hor_scl_mode, cbcr_src_w,
399 					dst_w, true, 0, NULL);
400 		VOP_SCL_SET(vop, win, scale_cbcr_x, val);
401 		val = scl_vop_cal_scale(cbcr_ver_scl_mode, cbcr_src_h,
402 					dst_h, false, vsu_mode, &vskiplines);
403 		VOP_SCL_SET(vop, win, scale_cbcr_y, val);
404 
405 		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt4, vskiplines == 4);
406 		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt2, vskiplines == 2);
407 		VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, cbcr_hor_scl_mode);
408 		VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, cbcr_ver_scl_mode);
409 		VOP_SCL_SET_EXT(vop, win, cbcr_hsd_mode, SCALE_DOWN_BIL);
410 		VOP_SCL_SET_EXT(vop, win, cbcr_vsd_mode, SCALE_DOWN_BIL);
411 		VOP_SCL_SET_EXT(vop, win, cbcr_vsu_mode, vsu_mode);
412 	}
413 }
414 
415 static void vop_dsp_hold_valid_irq_enable(struct vop *vop)
416 {
417 	unsigned long flags;
418 
419 	if (WARN_ON(!vop->is_enabled))
420 		return;
421 
422 	spin_lock_irqsave(&vop->irq_lock, flags);
423 
424 	VOP_INTR_SET_TYPE(vop, clear, DSP_HOLD_VALID_INTR, 1);
425 	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 1);
426 
427 	spin_unlock_irqrestore(&vop->irq_lock, flags);
428 }
429 
430 static void vop_dsp_hold_valid_irq_disable(struct vop *vop)
431 {
432 	unsigned long flags;
433 
434 	if (WARN_ON(!vop->is_enabled))
435 		return;
436 
437 	spin_lock_irqsave(&vop->irq_lock, flags);
438 
439 	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 0);
440 
441 	spin_unlock_irqrestore(&vop->irq_lock, flags);
442 }
443 
444 /*
445  * (1) each frame starts at the start of the Vsync pulse which is signaled by
446  *     the "FRAME_SYNC" interrupt.
447  * (2) the active data region of each frame ends at dsp_vact_end
448  * (3) we should program this same number (dsp_vact_end) into dsp_line_frag_num,
449  *      to get "LINE_FLAG" interrupt at the end of the active on screen data.
450  *
451  * VOP_INTR_CTRL0.dsp_line_frag_num = VOP_DSP_VACT_ST_END.dsp_vact_end
452  * Interrupts
453  * LINE_FLAG -------------------------------+
454  * FRAME_SYNC ----+                         |
455  *                |                         |
456  *                v                         v
457  *                | Vsync | Vbp |  Vactive  | Vfp |
458  *                        ^     ^           ^     ^
459  *                        |     |           |     |
460  *                        |     |           |     |
461  * dsp_vs_end ------------+     |           |     |   VOP_DSP_VTOTAL_VS_END
462  * dsp_vact_start --------------+           |     |   VOP_DSP_VACT_ST_END
463  * dsp_vact_end ----------------------------+     |   VOP_DSP_VACT_ST_END
464  * dsp_total -------------------------------------+   VOP_DSP_VTOTAL_VS_END
465  */
466 static bool vop_line_flag_irq_is_enabled(struct vop *vop)
467 {
468 	uint32_t line_flag_irq;
469 	unsigned long flags;
470 
471 	spin_lock_irqsave(&vop->irq_lock, flags);
472 
473 	line_flag_irq = VOP_INTR_GET_TYPE(vop, enable, LINE_FLAG_INTR);
474 
475 	spin_unlock_irqrestore(&vop->irq_lock, flags);
476 
477 	return !!line_flag_irq;
478 }
479 
480 static void vop_line_flag_irq_enable(struct vop *vop)
481 {
482 	unsigned long flags;
483 
484 	if (WARN_ON(!vop->is_enabled))
485 		return;
486 
487 	spin_lock_irqsave(&vop->irq_lock, flags);
488 
489 	VOP_INTR_SET_TYPE(vop, clear, LINE_FLAG_INTR, 1);
490 	VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 1);
491 
492 	spin_unlock_irqrestore(&vop->irq_lock, flags);
493 }
494 
495 static void vop_line_flag_irq_disable(struct vop *vop)
496 {
497 	unsigned long flags;
498 
499 	if (WARN_ON(!vop->is_enabled))
500 		return;
501 
502 	spin_lock_irqsave(&vop->irq_lock, flags);
503 
504 	VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 0);
505 
506 	spin_unlock_irqrestore(&vop->irq_lock, flags);
507 }
508 
509 static int vop_core_clks_enable(struct vop *vop)
510 {
511 	int ret;
512 
513 	ret = clk_enable(vop->hclk);
514 	if (ret < 0)
515 		return ret;
516 
517 	ret = clk_enable(vop->aclk);
518 	if (ret < 0)
519 		goto err_disable_hclk;
520 
521 	return 0;
522 
523 err_disable_hclk:
524 	clk_disable(vop->hclk);
525 	return ret;
526 }
527 
528 static void vop_core_clks_disable(struct vop *vop)
529 {
530 	clk_disable(vop->aclk);
531 	clk_disable(vop->hclk);
532 }
533 
534 static void vop_win_disable(struct vop *vop, const struct vop_win *vop_win)
535 {
536 	const struct vop_win_data *win = vop_win->data;
537 
538 	if (win->phy->scl && win->phy->scl->ext) {
539 		VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, SCALE_NONE);
540 		VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, SCALE_NONE);
541 		VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, SCALE_NONE);
542 		VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, SCALE_NONE);
543 	}
544 
545 	VOP_WIN_SET(vop, win, enable, 0);
546 	vop->win_enabled &= ~BIT(VOP_WIN_TO_INDEX(vop_win));
547 }
548 
549 static int vop_enable(struct drm_crtc *crtc, struct drm_crtc_state *old_state)
550 {
551 	struct vop *vop = to_vop(crtc);
552 	int ret, i;
553 
554 	ret = pm_runtime_get_sync(vop->dev);
555 	if (ret < 0) {
556 		DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
557 		return ret;
558 	}
559 
560 	ret = vop_core_clks_enable(vop);
561 	if (WARN_ON(ret < 0))
562 		goto err_put_pm_runtime;
563 
564 	ret = clk_enable(vop->dclk);
565 	if (WARN_ON(ret < 0))
566 		goto err_disable_core;
567 
568 	/*
569 	 * Slave iommu shares power, irq and clock with vop.  It was associated
570 	 * automatically with this master device via common driver code.
571 	 * Now that we have enabled the clock we attach it to the shared drm
572 	 * mapping.
573 	 */
574 	ret = rockchip_drm_dma_attach_device(vop->drm_dev, vop->dev);
575 	if (ret) {
576 		DRM_DEV_ERROR(vop->dev,
577 			      "failed to attach dma mapping, %d\n", ret);
578 		goto err_disable_dclk;
579 	}
580 
581 	spin_lock(&vop->reg_lock);
582 	for (i = 0; i < vop->len; i += 4)
583 		writel_relaxed(vop->regsbak[i / 4], vop->regs + i);
584 
585 	/*
586 	 * We need to make sure that all windows are disabled before we
587 	 * enable the crtc. Otherwise we might try to scan from a destroyed
588 	 * buffer later.
589 	 *
590 	 * In the case of enable-after-PSR, we don't need to worry about this
591 	 * case since the buffer is guaranteed to be valid and disabling the
592 	 * window will result in screen glitches on PSR exit.
593 	 */
594 	if (!old_state || !old_state->self_refresh_active) {
595 		for (i = 0; i < vop->data->win_size; i++) {
596 			struct vop_win *vop_win = &vop->win[i];
597 
598 			vop_win_disable(vop, vop_win);
599 		}
600 	}
601 	spin_unlock(&vop->reg_lock);
602 
603 	vop_cfg_done(vop);
604 
605 	/*
606 	 * At here, vop clock & iommu is enable, R/W vop regs would be safe.
607 	 */
608 	vop->is_enabled = true;
609 
610 	spin_lock(&vop->reg_lock);
611 
612 	VOP_REG_SET(vop, common, standby, 1);
613 
614 	spin_unlock(&vop->reg_lock);
615 
616 	drm_crtc_vblank_on(crtc);
617 
618 	return 0;
619 
620 err_disable_dclk:
621 	clk_disable(vop->dclk);
622 err_disable_core:
623 	vop_core_clks_disable(vop);
624 err_put_pm_runtime:
625 	pm_runtime_put_sync(vop->dev);
626 	return ret;
627 }
628 
629 static void rockchip_drm_set_win_enabled(struct drm_crtc *crtc, bool enabled)
630 {
631         struct vop *vop = to_vop(crtc);
632         int i;
633 
634         spin_lock(&vop->reg_lock);
635 
636         for (i = 0; i < vop->data->win_size; i++) {
637                 struct vop_win *vop_win = &vop->win[i];
638                 const struct vop_win_data *win = vop_win->data;
639 
640                 VOP_WIN_SET(vop, win, enable,
641                             enabled && (vop->win_enabled & BIT(i)));
642         }
643         vop_cfg_done(vop);
644 
645         spin_unlock(&vop->reg_lock);
646 }
647 
648 static void vop_crtc_atomic_disable(struct drm_crtc *crtc,
649 				    struct drm_crtc_state *old_state)
650 {
651 	struct vop *vop = to_vop(crtc);
652 
653 	WARN_ON(vop->event);
654 
655 	if (crtc->state->self_refresh_active)
656 		rockchip_drm_set_win_enabled(crtc, false);
657 
658 	mutex_lock(&vop->vop_lock);
659 
660 	drm_crtc_vblank_off(crtc);
661 
662 	if (crtc->state->self_refresh_active)
663 		goto out;
664 
665 	/*
666 	 * Vop standby will take effect at end of current frame,
667 	 * if dsp hold valid irq happen, it means standby complete.
668 	 *
669 	 * we must wait standby complete when we want to disable aclk,
670 	 * if not, memory bus maybe dead.
671 	 */
672 	reinit_completion(&vop->dsp_hold_completion);
673 	vop_dsp_hold_valid_irq_enable(vop);
674 
675 	spin_lock(&vop->reg_lock);
676 
677 	VOP_REG_SET(vop, common, standby, 1);
678 
679 	spin_unlock(&vop->reg_lock);
680 
681 	wait_for_completion(&vop->dsp_hold_completion);
682 
683 	vop_dsp_hold_valid_irq_disable(vop);
684 
685 	vop->is_enabled = false;
686 
687 	/*
688 	 * vop standby complete, so iommu detach is safe.
689 	 */
690 	rockchip_drm_dma_detach_device(vop->drm_dev, vop->dev);
691 
692 	clk_disable(vop->dclk);
693 	vop_core_clks_disable(vop);
694 	pm_runtime_put(vop->dev);
695 
696 out:
697 	mutex_unlock(&vop->vop_lock);
698 
699 	if (crtc->state->event && !crtc->state->active) {
700 		spin_lock_irq(&crtc->dev->event_lock);
701 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
702 		spin_unlock_irq(&crtc->dev->event_lock);
703 
704 		crtc->state->event = NULL;
705 	}
706 }
707 
708 static void vop_plane_destroy(struct drm_plane *plane)
709 {
710 	drm_plane_cleanup(plane);
711 }
712 
713 static int vop_plane_atomic_check(struct drm_plane *plane,
714 			   struct drm_plane_state *state)
715 {
716 	struct drm_crtc *crtc = state->crtc;
717 	struct drm_crtc_state *crtc_state;
718 	struct drm_framebuffer *fb = state->fb;
719 	struct vop_win *vop_win = to_vop_win(plane);
720 	const struct vop_win_data *win = vop_win->data;
721 	int ret;
722 	int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
723 					DRM_PLANE_HELPER_NO_SCALING;
724 	int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
725 					DRM_PLANE_HELPER_NO_SCALING;
726 
727 	if (!crtc || WARN_ON(!fb))
728 		return 0;
729 
730 	crtc_state = drm_atomic_get_existing_crtc_state(state->state, crtc);
731 	if (WARN_ON(!crtc_state))
732 		return -EINVAL;
733 
734 	ret = drm_atomic_helper_check_plane_state(state, crtc_state,
735 						  min_scale, max_scale,
736 						  true, true);
737 	if (ret)
738 		return ret;
739 
740 	if (!state->visible)
741 		return 0;
742 
743 	ret = vop_convert_format(fb->format->format);
744 	if (ret < 0)
745 		return ret;
746 
747 	/*
748 	 * Src.x1 can be odd when do clip, but yuv plane start point
749 	 * need align with 2 pixel.
750 	 */
751 	if (fb->format->is_yuv && ((state->src.x1 >> 16) % 2)) {
752 		DRM_ERROR("Invalid Source: Yuv format not support odd xpos\n");
753 		return -EINVAL;
754 	}
755 
756 	if (fb->format->is_yuv && state->rotation & DRM_MODE_REFLECT_Y) {
757 		DRM_ERROR("Invalid Source: Yuv format does not support this rotation\n");
758 		return -EINVAL;
759 	}
760 
761 	return 0;
762 }
763 
764 static void vop_plane_atomic_disable(struct drm_plane *plane,
765 				     struct drm_plane_state *old_state)
766 {
767 	struct vop_win *vop_win = to_vop_win(plane);
768 	struct vop *vop = to_vop(old_state->crtc);
769 
770 	if (!old_state->crtc)
771 		return;
772 
773 	spin_lock(&vop->reg_lock);
774 
775 	vop_win_disable(vop, vop_win);
776 
777 	spin_unlock(&vop->reg_lock);
778 }
779 
780 static void vop_plane_atomic_update(struct drm_plane *plane,
781 		struct drm_plane_state *old_state)
782 {
783 	struct drm_plane_state *state = plane->state;
784 	struct drm_crtc *crtc = state->crtc;
785 	struct vop_win *vop_win = to_vop_win(plane);
786 	const struct vop_win_data *win = vop_win->data;
787 	const struct vop_win_yuv2yuv_data *win_yuv2yuv = vop_win->yuv2yuv_data;
788 	struct vop *vop = to_vop(state->crtc);
789 	struct drm_framebuffer *fb = state->fb;
790 	unsigned int actual_w, actual_h;
791 	unsigned int dsp_stx, dsp_sty;
792 	uint32_t act_info, dsp_info, dsp_st;
793 	struct drm_rect *src = &state->src;
794 	struct drm_rect *dest = &state->dst;
795 	struct drm_gem_object *obj, *uv_obj;
796 	struct rockchip_gem_object *rk_obj, *rk_uv_obj;
797 	unsigned long offset;
798 	dma_addr_t dma_addr;
799 	uint32_t val;
800 	bool rb_swap;
801 	int win_index = VOP_WIN_TO_INDEX(vop_win);
802 	int format;
803 	int is_yuv = fb->format->is_yuv;
804 	int i;
805 
806 	/*
807 	 * can't update plane when vop is disabled.
808 	 */
809 	if (WARN_ON(!crtc))
810 		return;
811 
812 	if (WARN_ON(!vop->is_enabled))
813 		return;
814 
815 	if (!state->visible) {
816 		vop_plane_atomic_disable(plane, old_state);
817 		return;
818 	}
819 
820 	obj = fb->obj[0];
821 	rk_obj = to_rockchip_obj(obj);
822 
823 	actual_w = drm_rect_width(src) >> 16;
824 	actual_h = drm_rect_height(src) >> 16;
825 	act_info = (actual_h - 1) << 16 | ((actual_w - 1) & 0xffff);
826 
827 	dsp_info = (drm_rect_height(dest) - 1) << 16;
828 	dsp_info |= (drm_rect_width(dest) - 1) & 0xffff;
829 
830 	dsp_stx = dest->x1 + crtc->mode.htotal - crtc->mode.hsync_start;
831 	dsp_sty = dest->y1 + crtc->mode.vtotal - crtc->mode.vsync_start;
832 	dsp_st = dsp_sty << 16 | (dsp_stx & 0xffff);
833 
834 	offset = (src->x1 >> 16) * fb->format->cpp[0];
835 	offset += (src->y1 >> 16) * fb->pitches[0];
836 	dma_addr = rk_obj->dma_addr + offset + fb->offsets[0];
837 
838 	/*
839 	 * For y-mirroring we need to move address
840 	 * to the beginning of the last line.
841 	 */
842 	if (state->rotation & DRM_MODE_REFLECT_Y)
843 		dma_addr += (actual_h - 1) * fb->pitches[0];
844 
845 	format = vop_convert_format(fb->format->format);
846 
847 	spin_lock(&vop->reg_lock);
848 
849 	VOP_WIN_SET(vop, win, format, format);
850 	VOP_WIN_SET(vop, win, yrgb_vir, DIV_ROUND_UP(fb->pitches[0], 4));
851 	VOP_WIN_SET(vop, win, yrgb_mst, dma_addr);
852 	VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, y2r_en, is_yuv);
853 	VOP_WIN_SET(vop, win, y_mir_en,
854 		    (state->rotation & DRM_MODE_REFLECT_Y) ? 1 : 0);
855 	VOP_WIN_SET(vop, win, x_mir_en,
856 		    (state->rotation & DRM_MODE_REFLECT_X) ? 1 : 0);
857 
858 	if (is_yuv) {
859 		int hsub = fb->format->hsub;
860 		int vsub = fb->format->vsub;
861 		int bpp = fb->format->cpp[1];
862 
863 		uv_obj = fb->obj[1];
864 		rk_uv_obj = to_rockchip_obj(uv_obj);
865 
866 		offset = (src->x1 >> 16) * bpp / hsub;
867 		offset += (src->y1 >> 16) * fb->pitches[1] / vsub;
868 
869 		dma_addr = rk_uv_obj->dma_addr + offset + fb->offsets[1];
870 		VOP_WIN_SET(vop, win, uv_vir, DIV_ROUND_UP(fb->pitches[1], 4));
871 		VOP_WIN_SET(vop, win, uv_mst, dma_addr);
872 
873 		for (i = 0; i < NUM_YUV2YUV_COEFFICIENTS; i++) {
874 			VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop,
875 							win_yuv2yuv,
876 							y2r_coefficients[i],
877 							bt601_yuv2rgb[i]);
878 		}
879 	}
880 
881 	if (win->phy->scl)
882 		scl_vop_cal_scl_fac(vop, win, actual_w, actual_h,
883 				    drm_rect_width(dest), drm_rect_height(dest),
884 				    fb->format);
885 
886 	VOP_WIN_SET(vop, win, act_info, act_info);
887 	VOP_WIN_SET(vop, win, dsp_info, dsp_info);
888 	VOP_WIN_SET(vop, win, dsp_st, dsp_st);
889 
890 	rb_swap = has_rb_swapped(fb->format->format);
891 	VOP_WIN_SET(vop, win, rb_swap, rb_swap);
892 
893 	/*
894 	 * Blending win0 with the background color doesn't seem to work
895 	 * correctly. We only get the background color, no matter the contents
896 	 * of the win0 framebuffer.  However, blending pre-multiplied color
897 	 * with the default opaque black default background color is a no-op,
898 	 * so we can just disable blending to get the correct result.
899 	 */
900 	if (fb->format->has_alpha && win_index > 0) {
901 		VOP_WIN_SET(vop, win, dst_alpha_ctl,
902 			    DST_FACTOR_M0(ALPHA_SRC_INVERSE));
903 		val = SRC_ALPHA_EN(1) | SRC_COLOR_M0(ALPHA_SRC_PRE_MUL) |
904 			SRC_ALPHA_M0(ALPHA_STRAIGHT) |
905 			SRC_BLEND_M0(ALPHA_PER_PIX) |
906 			SRC_ALPHA_CAL_M0(ALPHA_NO_SATURATION) |
907 			SRC_FACTOR_M0(ALPHA_ONE);
908 		VOP_WIN_SET(vop, win, src_alpha_ctl, val);
909 	} else {
910 		VOP_WIN_SET(vop, win, src_alpha_ctl, SRC_ALPHA_EN(0));
911 	}
912 
913 	VOP_WIN_SET(vop, win, enable, 1);
914 	vop->win_enabled |= BIT(win_index);
915 	spin_unlock(&vop->reg_lock);
916 }
917 
918 static int vop_plane_atomic_async_check(struct drm_plane *plane,
919 					struct drm_plane_state *state)
920 {
921 	struct vop_win *vop_win = to_vop_win(plane);
922 	const struct vop_win_data *win = vop_win->data;
923 	int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
924 					DRM_PLANE_HELPER_NO_SCALING;
925 	int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
926 					DRM_PLANE_HELPER_NO_SCALING;
927 	struct drm_crtc_state *crtc_state;
928 
929 	if (plane != state->crtc->cursor)
930 		return -EINVAL;
931 
932 	if (!plane->state)
933 		return -EINVAL;
934 
935 	if (!plane->state->fb)
936 		return -EINVAL;
937 
938 	if (state->state)
939 		crtc_state = drm_atomic_get_existing_crtc_state(state->state,
940 								state->crtc);
941 	else /* Special case for asynchronous cursor updates. */
942 		crtc_state = plane->crtc->state;
943 
944 	return drm_atomic_helper_check_plane_state(plane->state, crtc_state,
945 						   min_scale, max_scale,
946 						   true, true);
947 }
948 
949 static void vop_plane_atomic_async_update(struct drm_plane *plane,
950 					  struct drm_plane_state *new_state)
951 {
952 	struct vop *vop = to_vop(plane->state->crtc);
953 	struct drm_framebuffer *old_fb = plane->state->fb;
954 
955 	plane->state->crtc_x = new_state->crtc_x;
956 	plane->state->crtc_y = new_state->crtc_y;
957 	plane->state->crtc_h = new_state->crtc_h;
958 	plane->state->crtc_w = new_state->crtc_w;
959 	plane->state->src_x = new_state->src_x;
960 	plane->state->src_y = new_state->src_y;
961 	plane->state->src_h = new_state->src_h;
962 	plane->state->src_w = new_state->src_w;
963 	swap(plane->state->fb, new_state->fb);
964 
965 	if (vop->is_enabled) {
966 		vop_plane_atomic_update(plane, plane->state);
967 		spin_lock(&vop->reg_lock);
968 		vop_cfg_done(vop);
969 		spin_unlock(&vop->reg_lock);
970 
971 		/*
972 		 * A scanout can still be occurring, so we can't drop the
973 		 * reference to the old framebuffer. To solve this we get a
974 		 * reference to old_fb and set a worker to release it later.
975 		 * FIXME: if we perform 500 async_update calls before the
976 		 * vblank, then we can have 500 different framebuffers waiting
977 		 * to be released.
978 		 */
979 		if (old_fb && plane->state->fb != old_fb) {
980 			drm_framebuffer_get(old_fb);
981 			WARN_ON(drm_crtc_vblank_get(plane->state->crtc) != 0);
982 			drm_flip_work_queue(&vop->fb_unref_work, old_fb);
983 			set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
984 		}
985 	}
986 }
987 
988 static const struct drm_plane_helper_funcs plane_helper_funcs = {
989 	.atomic_check = vop_plane_atomic_check,
990 	.atomic_update = vop_plane_atomic_update,
991 	.atomic_disable = vop_plane_atomic_disable,
992 	.atomic_async_check = vop_plane_atomic_async_check,
993 	.atomic_async_update = vop_plane_atomic_async_update,
994 	.prepare_fb = drm_gem_fb_prepare_fb,
995 };
996 
997 static const struct drm_plane_funcs vop_plane_funcs = {
998 	.update_plane	= drm_atomic_helper_update_plane,
999 	.disable_plane	= drm_atomic_helper_disable_plane,
1000 	.destroy = vop_plane_destroy,
1001 	.reset = drm_atomic_helper_plane_reset,
1002 	.atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state,
1003 	.atomic_destroy_state = drm_atomic_helper_plane_destroy_state,
1004 };
1005 
1006 static int vop_crtc_enable_vblank(struct drm_crtc *crtc)
1007 {
1008 	struct vop *vop = to_vop(crtc);
1009 	unsigned long flags;
1010 
1011 	if (WARN_ON(!vop->is_enabled))
1012 		return -EPERM;
1013 
1014 	spin_lock_irqsave(&vop->irq_lock, flags);
1015 
1016 	VOP_INTR_SET_TYPE(vop, clear, FS_INTR, 1);
1017 	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 1);
1018 
1019 	spin_unlock_irqrestore(&vop->irq_lock, flags);
1020 
1021 	return 0;
1022 }
1023 
1024 static void vop_crtc_disable_vblank(struct drm_crtc *crtc)
1025 {
1026 	struct vop *vop = to_vop(crtc);
1027 	unsigned long flags;
1028 
1029 	if (WARN_ON(!vop->is_enabled))
1030 		return;
1031 
1032 	spin_lock_irqsave(&vop->irq_lock, flags);
1033 
1034 	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 0);
1035 
1036 	spin_unlock_irqrestore(&vop->irq_lock, flags);
1037 }
1038 
1039 static bool vop_crtc_mode_fixup(struct drm_crtc *crtc,
1040 				const struct drm_display_mode *mode,
1041 				struct drm_display_mode *adjusted_mode)
1042 {
1043 	struct vop *vop = to_vop(crtc);
1044 	unsigned long rate;
1045 
1046 	/*
1047 	 * Clock craziness.
1048 	 *
1049 	 * Key points:
1050 	 *
1051 	 * - DRM works in in kHz.
1052 	 * - Clock framework works in Hz.
1053 	 * - Rockchip's clock driver picks the clock rate that is the
1054 	 *   same _OR LOWER_ than the one requested.
1055 	 *
1056 	 * Action plan:
1057 	 *
1058 	 * 1. When DRM gives us a mode, we should add 999 Hz to it.  That way
1059 	 *    if the clock we need is 60000001 Hz (~60 MHz) and DRM tells us to
1060 	 *    make 60000 kHz then the clock framework will actually give us
1061 	 *    the right clock.
1062 	 *
1063 	 *    NOTE: if the PLL (maybe through a divider) could actually make
1064 	 *    a clock rate 999 Hz higher instead of the one we want then this
1065 	 *    could be a problem.  Unfortunately there's not much we can do
1066 	 *    since it's baked into DRM to use kHz.  It shouldn't matter in
1067 	 *    practice since Rockchip PLLs are controlled by tables and
1068 	 *    even if there is a divider in the middle I wouldn't expect PLL
1069 	 *    rates in the table that are just a few kHz different.
1070 	 *
1071 	 * 2. Get the clock framework to round the rate for us to tell us
1072 	 *    what it will actually make.
1073 	 *
1074 	 * 3. Store the rounded up rate so that we don't need to worry about
1075 	 *    this in the actual clk_set_rate().
1076 	 */
1077 	rate = clk_round_rate(vop->dclk, adjusted_mode->clock * 1000 + 999);
1078 	adjusted_mode->clock = DIV_ROUND_UP(rate, 1000);
1079 
1080 	return true;
1081 }
1082 
1083 static bool vop_dsp_lut_is_enabled(struct vop *vop)
1084 {
1085 	return vop_read_reg(vop, 0, &vop->data->common->dsp_lut_en);
1086 }
1087 
1088 static void vop_crtc_write_gamma_lut(struct vop *vop, struct drm_crtc *crtc)
1089 {
1090 	struct drm_color_lut *lut = crtc->state->gamma_lut->data;
1091 	unsigned int i;
1092 
1093 	for (i = 0; i < crtc->gamma_size; i++) {
1094 		u32 word;
1095 
1096 		word = (drm_color_lut_extract(lut[i].red, 10) << 20) |
1097 		       (drm_color_lut_extract(lut[i].green, 10) << 10) |
1098 			drm_color_lut_extract(lut[i].blue, 10);
1099 		writel(word, vop->lut_regs + i * 4);
1100 	}
1101 }
1102 
1103 static void vop_crtc_gamma_set(struct vop *vop, struct drm_crtc *crtc,
1104 			       struct drm_crtc_state *old_state)
1105 {
1106 	struct drm_crtc_state *state = crtc->state;
1107 	unsigned int idle;
1108 	int ret;
1109 
1110 	if (!vop->lut_regs)
1111 		return;
1112 	/*
1113 	 * To disable gamma (gamma_lut is null) or to write
1114 	 * an update to the LUT, clear dsp_lut_en.
1115 	 */
1116 	spin_lock(&vop->reg_lock);
1117 	VOP_REG_SET(vop, common, dsp_lut_en, 0);
1118 	vop_cfg_done(vop);
1119 	spin_unlock(&vop->reg_lock);
1120 
1121 	/*
1122 	 * In order to write the LUT to the internal memory,
1123 	 * we need to first make sure the dsp_lut_en bit is cleared.
1124 	 */
1125 	ret = readx_poll_timeout(vop_dsp_lut_is_enabled, vop,
1126 				 idle, !idle, 5, 30 * 1000);
1127 	if (ret) {
1128 		DRM_DEV_ERROR(vop->dev, "display LUT RAM enable timeout!\n");
1129 		return;
1130 	}
1131 
1132 	if (!state->gamma_lut)
1133 		return;
1134 
1135 	spin_lock(&vop->reg_lock);
1136 	vop_crtc_write_gamma_lut(vop, crtc);
1137 	VOP_REG_SET(vop, common, dsp_lut_en, 1);
1138 	vop_cfg_done(vop);
1139 	spin_unlock(&vop->reg_lock);
1140 }
1141 
1142 static void vop_crtc_atomic_begin(struct drm_crtc *crtc,
1143 				  struct drm_crtc_state *old_crtc_state)
1144 {
1145 	struct vop *vop = to_vop(crtc);
1146 
1147 	/*
1148 	 * Only update GAMMA if the 'active' flag is not changed,
1149 	 * otherwise it's updated by .atomic_enable.
1150 	 */
1151 	if (crtc->state->color_mgmt_changed &&
1152 	    !crtc->state->active_changed)
1153 		vop_crtc_gamma_set(vop, crtc, old_crtc_state);
1154 }
1155 
1156 static void vop_crtc_atomic_enable(struct drm_crtc *crtc,
1157 				   struct drm_crtc_state *old_state)
1158 {
1159 	struct vop *vop = to_vop(crtc);
1160 	const struct vop_data *vop_data = vop->data;
1161 	struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc->state);
1162 	struct drm_display_mode *adjusted_mode = &crtc->state->adjusted_mode;
1163 	u16 hsync_len = adjusted_mode->hsync_end - adjusted_mode->hsync_start;
1164 	u16 hdisplay = adjusted_mode->hdisplay;
1165 	u16 htotal = adjusted_mode->htotal;
1166 	u16 hact_st = adjusted_mode->htotal - adjusted_mode->hsync_start;
1167 	u16 hact_end = hact_st + hdisplay;
1168 	u16 vdisplay = adjusted_mode->vdisplay;
1169 	u16 vtotal = adjusted_mode->vtotal;
1170 	u16 vsync_len = adjusted_mode->vsync_end - adjusted_mode->vsync_start;
1171 	u16 vact_st = adjusted_mode->vtotal - adjusted_mode->vsync_start;
1172 	u16 vact_end = vact_st + vdisplay;
1173 	uint32_t pin_pol, val;
1174 	int dither_bpc = s->output_bpc ? s->output_bpc : 10;
1175 	int ret;
1176 
1177 	if (old_state && old_state->self_refresh_active) {
1178 		drm_crtc_vblank_on(crtc);
1179 		rockchip_drm_set_win_enabled(crtc, true);
1180 		return;
1181 	}
1182 
1183 	/*
1184 	 * If we have a GAMMA LUT in the state, then let's make sure
1185 	 * it's updated. We might be coming out of suspend,
1186 	 * which means the LUT internal memory needs to be re-written.
1187 	 */
1188 	if (crtc->state->gamma_lut)
1189 		vop_crtc_gamma_set(vop, crtc, old_state);
1190 
1191 	mutex_lock(&vop->vop_lock);
1192 
1193 	WARN_ON(vop->event);
1194 
1195 	ret = vop_enable(crtc, old_state);
1196 	if (ret) {
1197 		mutex_unlock(&vop->vop_lock);
1198 		DRM_DEV_ERROR(vop->dev, "Failed to enable vop (%d)\n", ret);
1199 		return;
1200 	}
1201 	pin_pol = (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) ?
1202 		   BIT(HSYNC_POSITIVE) : 0;
1203 	pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) ?
1204 		   BIT(VSYNC_POSITIVE) : 0;
1205 	VOP_REG_SET(vop, output, pin_pol, pin_pol);
1206 	VOP_REG_SET(vop, output, mipi_dual_channel_en, 0);
1207 
1208 	switch (s->output_type) {
1209 	case DRM_MODE_CONNECTOR_LVDS:
1210 		VOP_REG_SET(vop, output, rgb_dclk_pol, 1);
1211 		VOP_REG_SET(vop, output, rgb_pin_pol, pin_pol);
1212 		VOP_REG_SET(vop, output, rgb_en, 1);
1213 		break;
1214 	case DRM_MODE_CONNECTOR_eDP:
1215 		VOP_REG_SET(vop, output, edp_dclk_pol, 1);
1216 		VOP_REG_SET(vop, output, edp_pin_pol, pin_pol);
1217 		VOP_REG_SET(vop, output, edp_en, 1);
1218 		break;
1219 	case DRM_MODE_CONNECTOR_HDMIA:
1220 		VOP_REG_SET(vop, output, hdmi_dclk_pol, 1);
1221 		VOP_REG_SET(vop, output, hdmi_pin_pol, pin_pol);
1222 		VOP_REG_SET(vop, output, hdmi_en, 1);
1223 		break;
1224 	case DRM_MODE_CONNECTOR_DSI:
1225 		VOP_REG_SET(vop, output, mipi_dclk_pol, 1);
1226 		VOP_REG_SET(vop, output, mipi_pin_pol, pin_pol);
1227 		VOP_REG_SET(vop, output, mipi_en, 1);
1228 		VOP_REG_SET(vop, output, mipi_dual_channel_en,
1229 			    !!(s->output_flags & ROCKCHIP_OUTPUT_DSI_DUAL));
1230 		break;
1231 	case DRM_MODE_CONNECTOR_DisplayPort:
1232 		VOP_REG_SET(vop, output, dp_dclk_pol, 0);
1233 		VOP_REG_SET(vop, output, dp_pin_pol, pin_pol);
1234 		VOP_REG_SET(vop, output, dp_en, 1);
1235 		break;
1236 	default:
1237 		DRM_DEV_ERROR(vop->dev, "unsupported connector_type [%d]\n",
1238 			      s->output_type);
1239 	}
1240 
1241 	/*
1242 	 * if vop is not support RGB10 output, need force RGB10 to RGB888.
1243 	 */
1244 	if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA &&
1245 	    !(vop_data->feature & VOP_FEATURE_OUTPUT_RGB10))
1246 		s->output_mode = ROCKCHIP_OUT_MODE_P888;
1247 
1248 	if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA && dither_bpc <= 8)
1249 		VOP_REG_SET(vop, common, pre_dither_down, 1);
1250 	else
1251 		VOP_REG_SET(vop, common, pre_dither_down, 0);
1252 
1253 	if (dither_bpc == 6) {
1254 		VOP_REG_SET(vop, common, dither_down_sel, DITHER_DOWN_ALLEGRO);
1255 		VOP_REG_SET(vop, common, dither_down_mode, RGB888_TO_RGB666);
1256 		VOP_REG_SET(vop, common, dither_down_en, 1);
1257 	} else {
1258 		VOP_REG_SET(vop, common, dither_down_en, 0);
1259 	}
1260 
1261 	VOP_REG_SET(vop, common, out_mode, s->output_mode);
1262 
1263 	VOP_REG_SET(vop, modeset, htotal_pw, (htotal << 16) | hsync_len);
1264 	val = hact_st << 16;
1265 	val |= hact_end;
1266 	VOP_REG_SET(vop, modeset, hact_st_end, val);
1267 	VOP_REG_SET(vop, modeset, hpost_st_end, val);
1268 
1269 	VOP_REG_SET(vop, modeset, vtotal_pw, (vtotal << 16) | vsync_len);
1270 	val = vact_st << 16;
1271 	val |= vact_end;
1272 	VOP_REG_SET(vop, modeset, vact_st_end, val);
1273 	VOP_REG_SET(vop, modeset, vpost_st_end, val);
1274 
1275 	VOP_REG_SET(vop, intr, line_flag_num[0], vact_end);
1276 
1277 	clk_set_rate(vop->dclk, adjusted_mode->clock * 1000);
1278 
1279 	VOP_REG_SET(vop, common, standby, 0);
1280 	mutex_unlock(&vop->vop_lock);
1281 }
1282 
1283 static bool vop_fs_irq_is_pending(struct vop *vop)
1284 {
1285 	return VOP_INTR_GET_TYPE(vop, status, FS_INTR);
1286 }
1287 
1288 static void vop_wait_for_irq_handler(struct vop *vop)
1289 {
1290 	bool pending;
1291 	int ret;
1292 
1293 	/*
1294 	 * Spin until frame start interrupt status bit goes low, which means
1295 	 * that interrupt handler was invoked and cleared it. The timeout of
1296 	 * 10 msecs is really too long, but it is just a safety measure if
1297 	 * something goes really wrong. The wait will only happen in the very
1298 	 * unlikely case of a vblank happening exactly at the same time and
1299 	 * shouldn't exceed microseconds range.
1300 	 */
1301 	ret = readx_poll_timeout_atomic(vop_fs_irq_is_pending, vop, pending,
1302 					!pending, 0, 10 * 1000);
1303 	if (ret)
1304 		DRM_DEV_ERROR(vop->dev, "VOP vblank IRQ stuck for 10 ms\n");
1305 
1306 	synchronize_irq(vop->irq);
1307 }
1308 
1309 static int vop_crtc_atomic_check(struct drm_crtc *crtc,
1310 				 struct drm_crtc_state *crtc_state)
1311 {
1312 	struct vop *vop = to_vop(crtc);
1313 
1314 	if (vop->lut_regs && crtc_state->color_mgmt_changed &&
1315 	    crtc_state->gamma_lut) {
1316 		unsigned int len;
1317 
1318 		len = drm_color_lut_size(crtc_state->gamma_lut);
1319 		if (len != crtc->gamma_size) {
1320 			DRM_DEBUG_KMS("Invalid LUT size; got %d, expected %d\n",
1321 				      len, crtc->gamma_size);
1322 			return -EINVAL;
1323 		}
1324 	}
1325 
1326 	return 0;
1327 }
1328 
1329 static void vop_crtc_atomic_flush(struct drm_crtc *crtc,
1330 				  struct drm_crtc_state *old_crtc_state)
1331 {
1332 	struct drm_atomic_state *old_state = old_crtc_state->state;
1333 	struct drm_plane_state *old_plane_state, *new_plane_state;
1334 	struct vop *vop = to_vop(crtc);
1335 	struct drm_plane *plane;
1336 	int i;
1337 
1338 	if (WARN_ON(!vop->is_enabled))
1339 		return;
1340 
1341 	spin_lock(&vop->reg_lock);
1342 
1343 	vop_cfg_done(vop);
1344 
1345 	spin_unlock(&vop->reg_lock);
1346 
1347 	/*
1348 	 * There is a (rather unlikely) possiblity that a vblank interrupt
1349 	 * fired before we set the cfg_done bit. To avoid spuriously
1350 	 * signalling flip completion we need to wait for it to finish.
1351 	 */
1352 	vop_wait_for_irq_handler(vop);
1353 
1354 	spin_lock_irq(&crtc->dev->event_lock);
1355 	if (crtc->state->event) {
1356 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1357 		WARN_ON(vop->event);
1358 
1359 		vop->event = crtc->state->event;
1360 		crtc->state->event = NULL;
1361 	}
1362 	spin_unlock_irq(&crtc->dev->event_lock);
1363 
1364 	for_each_oldnew_plane_in_state(old_state, plane, old_plane_state,
1365 				       new_plane_state, i) {
1366 		if (!old_plane_state->fb)
1367 			continue;
1368 
1369 		if (old_plane_state->fb == new_plane_state->fb)
1370 			continue;
1371 
1372 		drm_framebuffer_get(old_plane_state->fb);
1373 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1374 		drm_flip_work_queue(&vop->fb_unref_work, old_plane_state->fb);
1375 		set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1376 	}
1377 }
1378 
1379 static const struct drm_crtc_helper_funcs vop_crtc_helper_funcs = {
1380 	.mode_fixup = vop_crtc_mode_fixup,
1381 	.atomic_check = vop_crtc_atomic_check,
1382 	.atomic_begin = vop_crtc_atomic_begin,
1383 	.atomic_flush = vop_crtc_atomic_flush,
1384 	.atomic_enable = vop_crtc_atomic_enable,
1385 	.atomic_disable = vop_crtc_atomic_disable,
1386 };
1387 
1388 static void vop_crtc_destroy(struct drm_crtc *crtc)
1389 {
1390 	drm_crtc_cleanup(crtc);
1391 }
1392 
1393 static struct drm_crtc_state *vop_crtc_duplicate_state(struct drm_crtc *crtc)
1394 {
1395 	struct rockchip_crtc_state *rockchip_state;
1396 
1397 	rockchip_state = kzalloc(sizeof(*rockchip_state), GFP_KERNEL);
1398 	if (!rockchip_state)
1399 		return NULL;
1400 
1401 	__drm_atomic_helper_crtc_duplicate_state(crtc, &rockchip_state->base);
1402 	return &rockchip_state->base;
1403 }
1404 
1405 static void vop_crtc_destroy_state(struct drm_crtc *crtc,
1406 				   struct drm_crtc_state *state)
1407 {
1408 	struct rockchip_crtc_state *s = to_rockchip_crtc_state(state);
1409 
1410 	__drm_atomic_helper_crtc_destroy_state(&s->base);
1411 	kfree(s);
1412 }
1413 
1414 static void vop_crtc_reset(struct drm_crtc *crtc)
1415 {
1416 	struct rockchip_crtc_state *crtc_state =
1417 		kzalloc(sizeof(*crtc_state), GFP_KERNEL);
1418 
1419 	if (crtc->state)
1420 		vop_crtc_destroy_state(crtc, crtc->state);
1421 
1422 	__drm_atomic_helper_crtc_reset(crtc, &crtc_state->base);
1423 }
1424 
1425 #ifdef CONFIG_DRM_ANALOGIX_DP
1426 static struct drm_connector *vop_get_edp_connector(struct vop *vop)
1427 {
1428 	struct drm_connector *connector;
1429 	struct drm_connector_list_iter conn_iter;
1430 
1431 	drm_connector_list_iter_begin(vop->drm_dev, &conn_iter);
1432 	drm_for_each_connector_iter(connector, &conn_iter) {
1433 		if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) {
1434 			drm_connector_list_iter_end(&conn_iter);
1435 			return connector;
1436 		}
1437 	}
1438 	drm_connector_list_iter_end(&conn_iter);
1439 
1440 	return NULL;
1441 }
1442 
1443 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1444 				   const char *source_name)
1445 {
1446 	struct vop *vop = to_vop(crtc);
1447 	struct drm_connector *connector;
1448 	int ret;
1449 
1450 	connector = vop_get_edp_connector(vop);
1451 	if (!connector)
1452 		return -EINVAL;
1453 
1454 	if (source_name && strcmp(source_name, "auto") == 0)
1455 		ret = analogix_dp_start_crc(connector);
1456 	else if (!source_name)
1457 		ret = analogix_dp_stop_crc(connector);
1458 	else
1459 		ret = -EINVAL;
1460 
1461 	return ret;
1462 }
1463 
1464 static int
1465 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1466 			   size_t *values_cnt)
1467 {
1468 	if (source_name && strcmp(source_name, "auto") != 0)
1469 		return -EINVAL;
1470 
1471 	*values_cnt = 3;
1472 	return 0;
1473 }
1474 
1475 #else
1476 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1477 				   const char *source_name)
1478 {
1479 	return -ENODEV;
1480 }
1481 
1482 static int
1483 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1484 			   size_t *values_cnt)
1485 {
1486 	return -ENODEV;
1487 }
1488 #endif
1489 
1490 static const struct drm_crtc_funcs vop_crtc_funcs = {
1491 	.set_config = drm_atomic_helper_set_config,
1492 	.page_flip = drm_atomic_helper_page_flip,
1493 	.destroy = vop_crtc_destroy,
1494 	.reset = vop_crtc_reset,
1495 	.atomic_duplicate_state = vop_crtc_duplicate_state,
1496 	.atomic_destroy_state = vop_crtc_destroy_state,
1497 	.enable_vblank = vop_crtc_enable_vblank,
1498 	.disable_vblank = vop_crtc_disable_vblank,
1499 	.set_crc_source = vop_crtc_set_crc_source,
1500 	.verify_crc_source = vop_crtc_verify_crc_source,
1501 	.gamma_set = drm_atomic_helper_legacy_gamma_set,
1502 };
1503 
1504 static void vop_fb_unref_worker(struct drm_flip_work *work, void *val)
1505 {
1506 	struct vop *vop = container_of(work, struct vop, fb_unref_work);
1507 	struct drm_framebuffer *fb = val;
1508 
1509 	drm_crtc_vblank_put(&vop->crtc);
1510 	drm_framebuffer_put(fb);
1511 }
1512 
1513 static void vop_handle_vblank(struct vop *vop)
1514 {
1515 	struct drm_device *drm = vop->drm_dev;
1516 	struct drm_crtc *crtc = &vop->crtc;
1517 
1518 	spin_lock(&drm->event_lock);
1519 	if (vop->event) {
1520 		drm_crtc_send_vblank_event(crtc, vop->event);
1521 		drm_crtc_vblank_put(crtc);
1522 		vop->event = NULL;
1523 	}
1524 	spin_unlock(&drm->event_lock);
1525 
1526 	if (test_and_clear_bit(VOP_PENDING_FB_UNREF, &vop->pending))
1527 		drm_flip_work_commit(&vop->fb_unref_work, system_unbound_wq);
1528 }
1529 
1530 static irqreturn_t vop_isr(int irq, void *data)
1531 {
1532 	struct vop *vop = data;
1533 	struct drm_crtc *crtc = &vop->crtc;
1534 	uint32_t active_irqs;
1535 	int ret = IRQ_NONE;
1536 
1537 	/*
1538 	 * The irq is shared with the iommu. If the runtime-pm state of the
1539 	 * vop-device is disabled the irq has to be targeted at the iommu.
1540 	 */
1541 	if (!pm_runtime_get_if_in_use(vop->dev))
1542 		return IRQ_NONE;
1543 
1544 	if (vop_core_clks_enable(vop)) {
1545 		DRM_DEV_ERROR_RATELIMITED(vop->dev, "couldn't enable clocks\n");
1546 		goto out;
1547 	}
1548 
1549 	/*
1550 	 * interrupt register has interrupt status, enable and clear bits, we
1551 	 * must hold irq_lock to avoid a race with enable/disable_vblank().
1552 	*/
1553 	spin_lock(&vop->irq_lock);
1554 
1555 	active_irqs = VOP_INTR_GET_TYPE(vop, status, INTR_MASK);
1556 	/* Clear all active interrupt sources */
1557 	if (active_irqs)
1558 		VOP_INTR_SET_TYPE(vop, clear, active_irqs, 1);
1559 
1560 	spin_unlock(&vop->irq_lock);
1561 
1562 	/* This is expected for vop iommu irqs, since the irq is shared */
1563 	if (!active_irqs)
1564 		goto out_disable;
1565 
1566 	if (active_irqs & DSP_HOLD_VALID_INTR) {
1567 		complete(&vop->dsp_hold_completion);
1568 		active_irqs &= ~DSP_HOLD_VALID_INTR;
1569 		ret = IRQ_HANDLED;
1570 	}
1571 
1572 	if (active_irqs & LINE_FLAG_INTR) {
1573 		complete(&vop->line_flag_completion);
1574 		active_irqs &= ~LINE_FLAG_INTR;
1575 		ret = IRQ_HANDLED;
1576 	}
1577 
1578 	if (active_irqs & FS_INTR) {
1579 		drm_crtc_handle_vblank(crtc);
1580 		vop_handle_vblank(vop);
1581 		active_irqs &= ~FS_INTR;
1582 		ret = IRQ_HANDLED;
1583 	}
1584 
1585 	/* Unhandled irqs are spurious. */
1586 	if (active_irqs)
1587 		DRM_DEV_ERROR(vop->dev, "Unknown VOP IRQs: %#02x\n",
1588 			      active_irqs);
1589 
1590 out_disable:
1591 	vop_core_clks_disable(vop);
1592 out:
1593 	pm_runtime_put(vop->dev);
1594 	return ret;
1595 }
1596 
1597 static void vop_plane_add_properties(struct drm_plane *plane,
1598 				     const struct vop_win_data *win_data)
1599 {
1600 	unsigned int flags = 0;
1601 
1602 	flags |= VOP_WIN_HAS_REG(win_data, x_mir_en) ? DRM_MODE_REFLECT_X : 0;
1603 	flags |= VOP_WIN_HAS_REG(win_data, y_mir_en) ? DRM_MODE_REFLECT_Y : 0;
1604 	if (flags)
1605 		drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
1606 						   DRM_MODE_ROTATE_0 | flags);
1607 }
1608 
1609 static int vop_create_crtc(struct vop *vop)
1610 {
1611 	const struct vop_data *vop_data = vop->data;
1612 	struct device *dev = vop->dev;
1613 	struct drm_device *drm_dev = vop->drm_dev;
1614 	struct drm_plane *primary = NULL, *cursor = NULL, *plane, *tmp;
1615 	struct drm_crtc *crtc = &vop->crtc;
1616 	struct device_node *port;
1617 	int ret;
1618 	int i;
1619 
1620 	/*
1621 	 * Create drm_plane for primary and cursor planes first, since we need
1622 	 * to pass them to drm_crtc_init_with_planes, which sets the
1623 	 * "possible_crtcs" to the newly initialized crtc.
1624 	 */
1625 	for (i = 0; i < vop_data->win_size; i++) {
1626 		struct vop_win *vop_win = &vop->win[i];
1627 		const struct vop_win_data *win_data = vop_win->data;
1628 
1629 		if (win_data->type != DRM_PLANE_TYPE_PRIMARY &&
1630 		    win_data->type != DRM_PLANE_TYPE_CURSOR)
1631 			continue;
1632 
1633 		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1634 					       0, &vop_plane_funcs,
1635 					       win_data->phy->data_formats,
1636 					       win_data->phy->nformats,
1637 					       NULL, win_data->type, NULL);
1638 		if (ret) {
1639 			DRM_DEV_ERROR(vop->dev, "failed to init plane %d\n",
1640 				      ret);
1641 			goto err_cleanup_planes;
1642 		}
1643 
1644 		plane = &vop_win->base;
1645 		drm_plane_helper_add(plane, &plane_helper_funcs);
1646 		vop_plane_add_properties(plane, win_data);
1647 		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
1648 			primary = plane;
1649 		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
1650 			cursor = plane;
1651 	}
1652 
1653 	ret = drm_crtc_init_with_planes(drm_dev, crtc, primary, cursor,
1654 					&vop_crtc_funcs, NULL);
1655 	if (ret)
1656 		goto err_cleanup_planes;
1657 
1658 	drm_crtc_helper_add(crtc, &vop_crtc_helper_funcs);
1659 	if (vop->lut_regs) {
1660 		drm_mode_crtc_set_gamma_size(crtc, vop_data->lut_size);
1661 		drm_crtc_enable_color_mgmt(crtc, 0, false, vop_data->lut_size);
1662 	}
1663 
1664 	/*
1665 	 * Create drm_planes for overlay windows with possible_crtcs restricted
1666 	 * to the newly created crtc.
1667 	 */
1668 	for (i = 0; i < vop_data->win_size; i++) {
1669 		struct vop_win *vop_win = &vop->win[i];
1670 		const struct vop_win_data *win_data = vop_win->data;
1671 		unsigned long possible_crtcs = drm_crtc_mask(crtc);
1672 
1673 		if (win_data->type != DRM_PLANE_TYPE_OVERLAY)
1674 			continue;
1675 
1676 		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1677 					       possible_crtcs,
1678 					       &vop_plane_funcs,
1679 					       win_data->phy->data_formats,
1680 					       win_data->phy->nformats,
1681 					       NULL, win_data->type, NULL);
1682 		if (ret) {
1683 			DRM_DEV_ERROR(vop->dev, "failed to init overlay %d\n",
1684 				      ret);
1685 			goto err_cleanup_crtc;
1686 		}
1687 		drm_plane_helper_add(&vop_win->base, &plane_helper_funcs);
1688 		vop_plane_add_properties(&vop_win->base, win_data);
1689 	}
1690 
1691 	port = of_get_child_by_name(dev->of_node, "port");
1692 	if (!port) {
1693 		DRM_DEV_ERROR(vop->dev, "no port node found in %pOF\n",
1694 			      dev->of_node);
1695 		ret = -ENOENT;
1696 		goto err_cleanup_crtc;
1697 	}
1698 
1699 	drm_flip_work_init(&vop->fb_unref_work, "fb_unref",
1700 			   vop_fb_unref_worker);
1701 
1702 	init_completion(&vop->dsp_hold_completion);
1703 	init_completion(&vop->line_flag_completion);
1704 	crtc->port = port;
1705 
1706 	ret = drm_self_refresh_helper_init(crtc);
1707 	if (ret)
1708 		DRM_DEV_DEBUG_KMS(vop->dev,
1709 			"Failed to init %s with SR helpers %d, ignoring\n",
1710 			crtc->name, ret);
1711 
1712 	return 0;
1713 
1714 err_cleanup_crtc:
1715 	drm_crtc_cleanup(crtc);
1716 err_cleanup_planes:
1717 	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1718 				 head)
1719 		drm_plane_cleanup(plane);
1720 	return ret;
1721 }
1722 
1723 static void vop_destroy_crtc(struct vop *vop)
1724 {
1725 	struct drm_crtc *crtc = &vop->crtc;
1726 	struct drm_device *drm_dev = vop->drm_dev;
1727 	struct drm_plane *plane, *tmp;
1728 
1729 	drm_self_refresh_helper_cleanup(crtc);
1730 
1731 	of_node_put(crtc->port);
1732 
1733 	/*
1734 	 * We need to cleanup the planes now.  Why?
1735 	 *
1736 	 * The planes are "&vop->win[i].base".  That means the memory is
1737 	 * all part of the big "struct vop" chunk of memory.  That memory
1738 	 * was devm allocated and associated with this component.  We need to
1739 	 * free it ourselves before vop_unbind() finishes.
1740 	 */
1741 	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1742 				 head)
1743 		vop_plane_destroy(plane);
1744 
1745 	/*
1746 	 * Destroy CRTC after vop_plane_destroy() since vop_disable_plane()
1747 	 * references the CRTC.
1748 	 */
1749 	drm_crtc_cleanup(crtc);
1750 	drm_flip_work_cleanup(&vop->fb_unref_work);
1751 }
1752 
1753 static int vop_initial(struct vop *vop)
1754 {
1755 	struct reset_control *ahb_rst;
1756 	int i, ret;
1757 
1758 	vop->hclk = devm_clk_get(vop->dev, "hclk_vop");
1759 	if (IS_ERR(vop->hclk)) {
1760 		DRM_DEV_ERROR(vop->dev, "failed to get hclk source\n");
1761 		return PTR_ERR(vop->hclk);
1762 	}
1763 	vop->aclk = devm_clk_get(vop->dev, "aclk_vop");
1764 	if (IS_ERR(vop->aclk)) {
1765 		DRM_DEV_ERROR(vop->dev, "failed to get aclk source\n");
1766 		return PTR_ERR(vop->aclk);
1767 	}
1768 	vop->dclk = devm_clk_get(vop->dev, "dclk_vop");
1769 	if (IS_ERR(vop->dclk)) {
1770 		DRM_DEV_ERROR(vop->dev, "failed to get dclk source\n");
1771 		return PTR_ERR(vop->dclk);
1772 	}
1773 
1774 	ret = pm_runtime_get_sync(vop->dev);
1775 	if (ret < 0) {
1776 		DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
1777 		return ret;
1778 	}
1779 
1780 	ret = clk_prepare(vop->dclk);
1781 	if (ret < 0) {
1782 		DRM_DEV_ERROR(vop->dev, "failed to prepare dclk\n");
1783 		goto err_put_pm_runtime;
1784 	}
1785 
1786 	/* Enable both the hclk and aclk to setup the vop */
1787 	ret = clk_prepare_enable(vop->hclk);
1788 	if (ret < 0) {
1789 		DRM_DEV_ERROR(vop->dev, "failed to prepare/enable hclk\n");
1790 		goto err_unprepare_dclk;
1791 	}
1792 
1793 	ret = clk_prepare_enable(vop->aclk);
1794 	if (ret < 0) {
1795 		DRM_DEV_ERROR(vop->dev, "failed to prepare/enable aclk\n");
1796 		goto err_disable_hclk;
1797 	}
1798 
1799 	/*
1800 	 * do hclk_reset, reset all vop registers.
1801 	 */
1802 	ahb_rst = devm_reset_control_get(vop->dev, "ahb");
1803 	if (IS_ERR(ahb_rst)) {
1804 		DRM_DEV_ERROR(vop->dev, "failed to get ahb reset\n");
1805 		ret = PTR_ERR(ahb_rst);
1806 		goto err_disable_aclk;
1807 	}
1808 	reset_control_assert(ahb_rst);
1809 	usleep_range(10, 20);
1810 	reset_control_deassert(ahb_rst);
1811 
1812 	VOP_INTR_SET_TYPE(vop, clear, INTR_MASK, 1);
1813 	VOP_INTR_SET_TYPE(vop, enable, INTR_MASK, 0);
1814 
1815 	for (i = 0; i < vop->len; i += sizeof(u32))
1816 		vop->regsbak[i / 4] = readl_relaxed(vop->regs + i);
1817 
1818 	VOP_REG_SET(vop, misc, global_regdone_en, 1);
1819 	VOP_REG_SET(vop, common, dsp_blank, 0);
1820 
1821 	for (i = 0; i < vop->data->win_size; i++) {
1822 		struct vop_win *vop_win = &vop->win[i];
1823 		const struct vop_win_data *win = vop_win->data;
1824 		int channel = i * 2 + 1;
1825 
1826 		VOP_WIN_SET(vop, win, channel, (channel + 1) << 4 | channel);
1827 		vop_win_disable(vop, vop_win);
1828 		VOP_WIN_SET(vop, win, gate, 1);
1829 	}
1830 
1831 	vop_cfg_done(vop);
1832 
1833 	/*
1834 	 * do dclk_reset, let all config take affect.
1835 	 */
1836 	vop->dclk_rst = devm_reset_control_get(vop->dev, "dclk");
1837 	if (IS_ERR(vop->dclk_rst)) {
1838 		DRM_DEV_ERROR(vop->dev, "failed to get dclk reset\n");
1839 		ret = PTR_ERR(vop->dclk_rst);
1840 		goto err_disable_aclk;
1841 	}
1842 	reset_control_assert(vop->dclk_rst);
1843 	usleep_range(10, 20);
1844 	reset_control_deassert(vop->dclk_rst);
1845 
1846 	clk_disable(vop->hclk);
1847 	clk_disable(vop->aclk);
1848 
1849 	vop->is_enabled = false;
1850 
1851 	pm_runtime_put_sync(vop->dev);
1852 
1853 	return 0;
1854 
1855 err_disable_aclk:
1856 	clk_disable_unprepare(vop->aclk);
1857 err_disable_hclk:
1858 	clk_disable_unprepare(vop->hclk);
1859 err_unprepare_dclk:
1860 	clk_unprepare(vop->dclk);
1861 err_put_pm_runtime:
1862 	pm_runtime_put_sync(vop->dev);
1863 	return ret;
1864 }
1865 
1866 /*
1867  * Initialize the vop->win array elements.
1868  */
1869 static void vop_win_init(struct vop *vop)
1870 {
1871 	const struct vop_data *vop_data = vop->data;
1872 	unsigned int i;
1873 
1874 	for (i = 0; i < vop_data->win_size; i++) {
1875 		struct vop_win *vop_win = &vop->win[i];
1876 		const struct vop_win_data *win_data = &vop_data->win[i];
1877 
1878 		vop_win->data = win_data;
1879 		vop_win->vop = vop;
1880 
1881 		if (vop_data->win_yuv2yuv)
1882 			vop_win->yuv2yuv_data = &vop_data->win_yuv2yuv[i];
1883 	}
1884 }
1885 
1886 /**
1887  * rockchip_drm_wait_vact_end
1888  * @crtc: CRTC to enable line flag
1889  * @mstimeout: millisecond for timeout
1890  *
1891  * Wait for vact_end line flag irq or timeout.
1892  *
1893  * Returns:
1894  * Zero on success, negative errno on failure.
1895  */
1896 int rockchip_drm_wait_vact_end(struct drm_crtc *crtc, unsigned int mstimeout)
1897 {
1898 	struct vop *vop = to_vop(crtc);
1899 	unsigned long jiffies_left;
1900 	int ret = 0;
1901 
1902 	if (!crtc || !vop->is_enabled)
1903 		return -ENODEV;
1904 
1905 	mutex_lock(&vop->vop_lock);
1906 	if (mstimeout <= 0) {
1907 		ret = -EINVAL;
1908 		goto out;
1909 	}
1910 
1911 	if (vop_line_flag_irq_is_enabled(vop)) {
1912 		ret = -EBUSY;
1913 		goto out;
1914 	}
1915 
1916 	reinit_completion(&vop->line_flag_completion);
1917 	vop_line_flag_irq_enable(vop);
1918 
1919 	jiffies_left = wait_for_completion_timeout(&vop->line_flag_completion,
1920 						   msecs_to_jiffies(mstimeout));
1921 	vop_line_flag_irq_disable(vop);
1922 
1923 	if (jiffies_left == 0) {
1924 		DRM_DEV_ERROR(vop->dev, "Timeout waiting for IRQ\n");
1925 		ret = -ETIMEDOUT;
1926 		goto out;
1927 	}
1928 
1929 out:
1930 	mutex_unlock(&vop->vop_lock);
1931 	return ret;
1932 }
1933 EXPORT_SYMBOL(rockchip_drm_wait_vact_end);
1934 
1935 static int vop_bind(struct device *dev, struct device *master, void *data)
1936 {
1937 	struct platform_device *pdev = to_platform_device(dev);
1938 	const struct vop_data *vop_data;
1939 	struct drm_device *drm_dev = data;
1940 	struct vop *vop;
1941 	struct resource *res;
1942 	int ret, irq;
1943 
1944 	vop_data = of_device_get_match_data(dev);
1945 	if (!vop_data)
1946 		return -ENODEV;
1947 
1948 	/* Allocate vop struct and its vop_win array */
1949 	vop = devm_kzalloc(dev, struct_size(vop, win, vop_data->win_size),
1950 			   GFP_KERNEL);
1951 	if (!vop)
1952 		return -ENOMEM;
1953 
1954 	vop->dev = dev;
1955 	vop->data = vop_data;
1956 	vop->drm_dev = drm_dev;
1957 	dev_set_drvdata(dev, vop);
1958 
1959 	vop_win_init(vop);
1960 
1961 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1962 	vop->len = resource_size(res);
1963 	vop->regs = devm_ioremap_resource(dev, res);
1964 	if (IS_ERR(vop->regs))
1965 		return PTR_ERR(vop->regs);
1966 
1967 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1968 	if (res) {
1969 		if (!vop_data->lut_size) {
1970 			DRM_DEV_ERROR(dev, "no gamma LUT size defined\n");
1971 			return -EINVAL;
1972 		}
1973 		vop->lut_regs = devm_ioremap_resource(dev, res);
1974 		if (IS_ERR(vop->lut_regs))
1975 			return PTR_ERR(vop->lut_regs);
1976 	}
1977 
1978 	vop->regsbak = devm_kzalloc(dev, vop->len, GFP_KERNEL);
1979 	if (!vop->regsbak)
1980 		return -ENOMEM;
1981 
1982 	irq = platform_get_irq(pdev, 0);
1983 	if (irq < 0) {
1984 		DRM_DEV_ERROR(dev, "cannot find irq for vop\n");
1985 		return irq;
1986 	}
1987 	vop->irq = (unsigned int)irq;
1988 
1989 	spin_lock_init(&vop->reg_lock);
1990 	spin_lock_init(&vop->irq_lock);
1991 	mutex_init(&vop->vop_lock);
1992 
1993 	ret = vop_create_crtc(vop);
1994 	if (ret)
1995 		return ret;
1996 
1997 	pm_runtime_enable(&pdev->dev);
1998 
1999 	ret = vop_initial(vop);
2000 	if (ret < 0) {
2001 		DRM_DEV_ERROR(&pdev->dev,
2002 			      "cannot initial vop dev - err %d\n", ret);
2003 		goto err_disable_pm_runtime;
2004 	}
2005 
2006 	ret = devm_request_irq(dev, vop->irq, vop_isr,
2007 			       IRQF_SHARED, dev_name(dev), vop);
2008 	if (ret)
2009 		goto err_disable_pm_runtime;
2010 
2011 	if (vop->data->feature & VOP_FEATURE_INTERNAL_RGB) {
2012 		vop->rgb = rockchip_rgb_init(dev, &vop->crtc, vop->drm_dev);
2013 		if (IS_ERR(vop->rgb)) {
2014 			ret = PTR_ERR(vop->rgb);
2015 			goto err_disable_pm_runtime;
2016 		}
2017 	}
2018 
2019 	return 0;
2020 
2021 err_disable_pm_runtime:
2022 	pm_runtime_disable(&pdev->dev);
2023 	vop_destroy_crtc(vop);
2024 	return ret;
2025 }
2026 
2027 static void vop_unbind(struct device *dev, struct device *master, void *data)
2028 {
2029 	struct vop *vop = dev_get_drvdata(dev);
2030 
2031 	if (vop->rgb)
2032 		rockchip_rgb_fini(vop->rgb);
2033 
2034 	pm_runtime_disable(dev);
2035 	vop_destroy_crtc(vop);
2036 
2037 	clk_unprepare(vop->aclk);
2038 	clk_unprepare(vop->hclk);
2039 	clk_unprepare(vop->dclk);
2040 }
2041 
2042 const struct component_ops vop_component_ops = {
2043 	.bind = vop_bind,
2044 	.unbind = vop_unbind,
2045 };
2046 EXPORT_SYMBOL_GPL(vop_component_ops);
2047