1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Fuzhou Rockchip Electronics Co.Ltd 4 * Author:Mark Yao <mark.yao@rock-chips.com> 5 */ 6 7 #include <linux/clk.h> 8 #include <linux/component.h> 9 #include <linux/delay.h> 10 #include <linux/iopoll.h> 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/of.h> 14 #include <linux/of_device.h> 15 #include <linux/overflow.h> 16 #include <linux/platform_device.h> 17 #include <linux/pm_runtime.h> 18 #include <linux/reset.h> 19 20 #include <drm/drm.h> 21 #include <drm/drm_atomic.h> 22 #include <drm/drm_atomic_uapi.h> 23 #include <drm/drm_crtc.h> 24 #include <drm/drm_flip_work.h> 25 #include <drm/drm_fourcc.h> 26 #include <drm/drm_gem_framebuffer_helper.h> 27 #include <drm/drm_plane_helper.h> 28 #include <drm/drm_probe_helper.h> 29 #include <drm/drm_self_refresh_helper.h> 30 #include <drm/drm_vblank.h> 31 32 #ifdef CONFIG_DRM_ANALOGIX_DP 33 #include <drm/bridge/analogix_dp.h> 34 #endif 35 36 #include "rockchip_drm_drv.h" 37 #include "rockchip_drm_gem.h" 38 #include "rockchip_drm_fb.h" 39 #include "rockchip_drm_vop.h" 40 #include "rockchip_rgb.h" 41 42 #define VOP_WIN_SET(vop, win, name, v) \ 43 vop_reg_set(vop, &win->phy->name, win->base, ~0, v, #name) 44 #define VOP_SCL_SET(vop, win, name, v) \ 45 vop_reg_set(vop, &win->phy->scl->name, win->base, ~0, v, #name) 46 #define VOP_SCL_SET_EXT(vop, win, name, v) \ 47 vop_reg_set(vop, &win->phy->scl->ext->name, \ 48 win->base, ~0, v, #name) 49 50 #define VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, name, v) \ 51 do { \ 52 if (win_yuv2yuv && win_yuv2yuv->name.mask) \ 53 vop_reg_set(vop, &win_yuv2yuv->name, 0, ~0, v, #name); \ 54 } while (0) 55 56 #define VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop, win_yuv2yuv, name, v) \ 57 do { \ 58 if (win_yuv2yuv && win_yuv2yuv->phy->name.mask) \ 59 vop_reg_set(vop, &win_yuv2yuv->phy->name, win_yuv2yuv->base, ~0, v, #name); \ 60 } while (0) 61 62 #define VOP_INTR_SET_MASK(vop, name, mask, v) \ 63 vop_reg_set(vop, &vop->data->intr->name, 0, mask, v, #name) 64 65 #define VOP_REG_SET(vop, group, name, v) \ 66 vop_reg_set(vop, &vop->data->group->name, 0, ~0, v, #name) 67 68 #define VOP_INTR_SET_TYPE(vop, name, type, v) \ 69 do { \ 70 int i, reg = 0, mask = 0; \ 71 for (i = 0; i < vop->data->intr->nintrs; i++) { \ 72 if (vop->data->intr->intrs[i] & type) { \ 73 reg |= (v) << i; \ 74 mask |= 1 << i; \ 75 } \ 76 } \ 77 VOP_INTR_SET_MASK(vop, name, mask, reg); \ 78 } while (0) 79 #define VOP_INTR_GET_TYPE(vop, name, type) \ 80 vop_get_intr_type(vop, &vop->data->intr->name, type) 81 82 #define VOP_WIN_GET(vop, win, name) \ 83 vop_read_reg(vop, win->base, &win->phy->name) 84 85 #define VOP_WIN_HAS_REG(win, name) \ 86 (!!(win->phy->name.mask)) 87 88 #define VOP_WIN_GET_YRGBADDR(vop, win) \ 89 vop_readl(vop, win->base + win->phy->yrgb_mst.offset) 90 91 #define VOP_WIN_TO_INDEX(vop_win) \ 92 ((vop_win) - (vop_win)->vop->win) 93 94 #define to_vop(x) container_of(x, struct vop, crtc) 95 #define to_vop_win(x) container_of(x, struct vop_win, base) 96 97 /* 98 * The coefficients of the following matrix are all fixed points. 99 * The format is S2.10 for the 3x3 part of the matrix, and S9.12 for the offsets. 100 * They are all represented in two's complement. 101 */ 102 static const uint32_t bt601_yuv2rgb[] = { 103 0x4A8, 0x0, 0x662, 104 0x4A8, 0x1E6F, 0x1CBF, 105 0x4A8, 0x812, 0x0, 106 0x321168, 0x0877CF, 0x2EB127 107 }; 108 109 enum vop_pending { 110 VOP_PENDING_FB_UNREF, 111 }; 112 113 struct vop_win { 114 struct drm_plane base; 115 const struct vop_win_data *data; 116 const struct vop_win_yuv2yuv_data *yuv2yuv_data; 117 struct vop *vop; 118 }; 119 120 struct rockchip_rgb; 121 struct vop { 122 struct drm_crtc crtc; 123 struct device *dev; 124 struct drm_device *drm_dev; 125 bool is_enabled; 126 127 struct completion dsp_hold_completion; 128 unsigned int win_enabled; 129 130 /* protected by dev->event_lock */ 131 struct drm_pending_vblank_event *event; 132 133 struct drm_flip_work fb_unref_work; 134 unsigned long pending; 135 136 struct completion line_flag_completion; 137 138 const struct vop_data *data; 139 140 uint32_t *regsbak; 141 void __iomem *regs; 142 void __iomem *lut_regs; 143 144 /* physical map length of vop register */ 145 uint32_t len; 146 147 /* one time only one process allowed to config the register */ 148 spinlock_t reg_lock; 149 /* lock vop irq reg */ 150 spinlock_t irq_lock; 151 /* protects crtc enable/disable */ 152 struct mutex vop_lock; 153 154 unsigned int irq; 155 156 /* vop AHP clk */ 157 struct clk *hclk; 158 /* vop dclk */ 159 struct clk *dclk; 160 /* vop share memory frequency */ 161 struct clk *aclk; 162 163 /* vop dclk reset */ 164 struct reset_control *dclk_rst; 165 166 /* optional internal rgb encoder */ 167 struct rockchip_rgb *rgb; 168 169 struct vop_win win[]; 170 }; 171 172 static inline void vop_writel(struct vop *vop, uint32_t offset, uint32_t v) 173 { 174 writel(v, vop->regs + offset); 175 vop->regsbak[offset >> 2] = v; 176 } 177 178 static inline uint32_t vop_readl(struct vop *vop, uint32_t offset) 179 { 180 return readl(vop->regs + offset); 181 } 182 183 static inline uint32_t vop_read_reg(struct vop *vop, uint32_t base, 184 const struct vop_reg *reg) 185 { 186 return (vop_readl(vop, base + reg->offset) >> reg->shift) & reg->mask; 187 } 188 189 static void vop_reg_set(struct vop *vop, const struct vop_reg *reg, 190 uint32_t _offset, uint32_t _mask, uint32_t v, 191 const char *reg_name) 192 { 193 int offset, mask, shift; 194 195 if (!reg || !reg->mask) { 196 DRM_DEV_DEBUG(vop->dev, "Warning: not support %s\n", reg_name); 197 return; 198 } 199 200 offset = reg->offset + _offset; 201 mask = reg->mask & _mask; 202 shift = reg->shift; 203 204 if (reg->write_mask) { 205 v = ((v << shift) & 0xffff) | (mask << (shift + 16)); 206 } else { 207 uint32_t cached_val = vop->regsbak[offset >> 2]; 208 209 v = (cached_val & ~(mask << shift)) | ((v & mask) << shift); 210 vop->regsbak[offset >> 2] = v; 211 } 212 213 if (reg->relaxed) 214 writel_relaxed(v, vop->regs + offset); 215 else 216 writel(v, vop->regs + offset); 217 } 218 219 static inline uint32_t vop_get_intr_type(struct vop *vop, 220 const struct vop_reg *reg, int type) 221 { 222 uint32_t i, ret = 0; 223 uint32_t regs = vop_read_reg(vop, 0, reg); 224 225 for (i = 0; i < vop->data->intr->nintrs; i++) { 226 if ((type & vop->data->intr->intrs[i]) && (regs & 1 << i)) 227 ret |= vop->data->intr->intrs[i]; 228 } 229 230 return ret; 231 } 232 233 static inline void vop_cfg_done(struct vop *vop) 234 { 235 VOP_REG_SET(vop, common, cfg_done, 1); 236 } 237 238 static bool has_rb_swapped(uint32_t format) 239 { 240 switch (format) { 241 case DRM_FORMAT_XBGR8888: 242 case DRM_FORMAT_ABGR8888: 243 case DRM_FORMAT_BGR888: 244 case DRM_FORMAT_BGR565: 245 return true; 246 default: 247 return false; 248 } 249 } 250 251 static enum vop_data_format vop_convert_format(uint32_t format) 252 { 253 switch (format) { 254 case DRM_FORMAT_XRGB8888: 255 case DRM_FORMAT_ARGB8888: 256 case DRM_FORMAT_XBGR8888: 257 case DRM_FORMAT_ABGR8888: 258 return VOP_FMT_ARGB8888; 259 case DRM_FORMAT_RGB888: 260 case DRM_FORMAT_BGR888: 261 return VOP_FMT_RGB888; 262 case DRM_FORMAT_RGB565: 263 case DRM_FORMAT_BGR565: 264 return VOP_FMT_RGB565; 265 case DRM_FORMAT_NV12: 266 return VOP_FMT_YUV420SP; 267 case DRM_FORMAT_NV16: 268 return VOP_FMT_YUV422SP; 269 case DRM_FORMAT_NV24: 270 return VOP_FMT_YUV444SP; 271 default: 272 DRM_ERROR("unsupported format[%08x]\n", format); 273 return -EINVAL; 274 } 275 } 276 277 static uint16_t scl_vop_cal_scale(enum scale_mode mode, uint32_t src, 278 uint32_t dst, bool is_horizontal, 279 int vsu_mode, int *vskiplines) 280 { 281 uint16_t val = 1 << SCL_FT_DEFAULT_FIXPOINT_SHIFT; 282 283 if (vskiplines) 284 *vskiplines = 0; 285 286 if (is_horizontal) { 287 if (mode == SCALE_UP) 288 val = GET_SCL_FT_BIC(src, dst); 289 else if (mode == SCALE_DOWN) 290 val = GET_SCL_FT_BILI_DN(src, dst); 291 } else { 292 if (mode == SCALE_UP) { 293 if (vsu_mode == SCALE_UP_BIL) 294 val = GET_SCL_FT_BILI_UP(src, dst); 295 else 296 val = GET_SCL_FT_BIC(src, dst); 297 } else if (mode == SCALE_DOWN) { 298 if (vskiplines) { 299 *vskiplines = scl_get_vskiplines(src, dst); 300 val = scl_get_bili_dn_vskip(src, dst, 301 *vskiplines); 302 } else { 303 val = GET_SCL_FT_BILI_DN(src, dst); 304 } 305 } 306 } 307 308 return val; 309 } 310 311 static void scl_vop_cal_scl_fac(struct vop *vop, const struct vop_win_data *win, 312 uint32_t src_w, uint32_t src_h, uint32_t dst_w, 313 uint32_t dst_h, const struct drm_format_info *info) 314 { 315 uint16_t yrgb_hor_scl_mode, yrgb_ver_scl_mode; 316 uint16_t cbcr_hor_scl_mode = SCALE_NONE; 317 uint16_t cbcr_ver_scl_mode = SCALE_NONE; 318 bool is_yuv = false; 319 uint16_t cbcr_src_w = src_w / info->hsub; 320 uint16_t cbcr_src_h = src_h / info->vsub; 321 uint16_t vsu_mode; 322 uint16_t lb_mode; 323 uint32_t val; 324 int vskiplines; 325 326 if (info->is_yuv) 327 is_yuv = true; 328 329 if (dst_w > 3840) { 330 DRM_DEV_ERROR(vop->dev, "Maximum dst width (3840) exceeded\n"); 331 return; 332 } 333 334 if (!win->phy->scl->ext) { 335 VOP_SCL_SET(vop, win, scale_yrgb_x, 336 scl_cal_scale2(src_w, dst_w)); 337 VOP_SCL_SET(vop, win, scale_yrgb_y, 338 scl_cal_scale2(src_h, dst_h)); 339 if (is_yuv) { 340 VOP_SCL_SET(vop, win, scale_cbcr_x, 341 scl_cal_scale2(cbcr_src_w, dst_w)); 342 VOP_SCL_SET(vop, win, scale_cbcr_y, 343 scl_cal_scale2(cbcr_src_h, dst_h)); 344 } 345 return; 346 } 347 348 yrgb_hor_scl_mode = scl_get_scl_mode(src_w, dst_w); 349 yrgb_ver_scl_mode = scl_get_scl_mode(src_h, dst_h); 350 351 if (is_yuv) { 352 cbcr_hor_scl_mode = scl_get_scl_mode(cbcr_src_w, dst_w); 353 cbcr_ver_scl_mode = scl_get_scl_mode(cbcr_src_h, dst_h); 354 if (cbcr_hor_scl_mode == SCALE_DOWN) 355 lb_mode = scl_vop_cal_lb_mode(dst_w, true); 356 else 357 lb_mode = scl_vop_cal_lb_mode(cbcr_src_w, true); 358 } else { 359 if (yrgb_hor_scl_mode == SCALE_DOWN) 360 lb_mode = scl_vop_cal_lb_mode(dst_w, false); 361 else 362 lb_mode = scl_vop_cal_lb_mode(src_w, false); 363 } 364 365 VOP_SCL_SET_EXT(vop, win, lb_mode, lb_mode); 366 if (lb_mode == LB_RGB_3840X2) { 367 if (yrgb_ver_scl_mode != SCALE_NONE) { 368 DRM_DEV_ERROR(vop->dev, "not allow yrgb ver scale\n"); 369 return; 370 } 371 if (cbcr_ver_scl_mode != SCALE_NONE) { 372 DRM_DEV_ERROR(vop->dev, "not allow cbcr ver scale\n"); 373 return; 374 } 375 vsu_mode = SCALE_UP_BIL; 376 } else if (lb_mode == LB_RGB_2560X4) { 377 vsu_mode = SCALE_UP_BIL; 378 } else { 379 vsu_mode = SCALE_UP_BIC; 380 } 381 382 val = scl_vop_cal_scale(yrgb_hor_scl_mode, src_w, dst_w, 383 true, 0, NULL); 384 VOP_SCL_SET(vop, win, scale_yrgb_x, val); 385 val = scl_vop_cal_scale(yrgb_ver_scl_mode, src_h, dst_h, 386 false, vsu_mode, &vskiplines); 387 VOP_SCL_SET(vop, win, scale_yrgb_y, val); 388 389 VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt4, vskiplines == 4); 390 VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt2, vskiplines == 2); 391 392 VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, yrgb_hor_scl_mode); 393 VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, yrgb_ver_scl_mode); 394 VOP_SCL_SET_EXT(vop, win, yrgb_hsd_mode, SCALE_DOWN_BIL); 395 VOP_SCL_SET_EXT(vop, win, yrgb_vsd_mode, SCALE_DOWN_BIL); 396 VOP_SCL_SET_EXT(vop, win, yrgb_vsu_mode, vsu_mode); 397 if (is_yuv) { 398 val = scl_vop_cal_scale(cbcr_hor_scl_mode, cbcr_src_w, 399 dst_w, true, 0, NULL); 400 VOP_SCL_SET(vop, win, scale_cbcr_x, val); 401 val = scl_vop_cal_scale(cbcr_ver_scl_mode, cbcr_src_h, 402 dst_h, false, vsu_mode, &vskiplines); 403 VOP_SCL_SET(vop, win, scale_cbcr_y, val); 404 405 VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt4, vskiplines == 4); 406 VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt2, vskiplines == 2); 407 VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, cbcr_hor_scl_mode); 408 VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, cbcr_ver_scl_mode); 409 VOP_SCL_SET_EXT(vop, win, cbcr_hsd_mode, SCALE_DOWN_BIL); 410 VOP_SCL_SET_EXT(vop, win, cbcr_vsd_mode, SCALE_DOWN_BIL); 411 VOP_SCL_SET_EXT(vop, win, cbcr_vsu_mode, vsu_mode); 412 } 413 } 414 415 static void vop_dsp_hold_valid_irq_enable(struct vop *vop) 416 { 417 unsigned long flags; 418 419 if (WARN_ON(!vop->is_enabled)) 420 return; 421 422 spin_lock_irqsave(&vop->irq_lock, flags); 423 424 VOP_INTR_SET_TYPE(vop, clear, DSP_HOLD_VALID_INTR, 1); 425 VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 1); 426 427 spin_unlock_irqrestore(&vop->irq_lock, flags); 428 } 429 430 static void vop_dsp_hold_valid_irq_disable(struct vop *vop) 431 { 432 unsigned long flags; 433 434 if (WARN_ON(!vop->is_enabled)) 435 return; 436 437 spin_lock_irqsave(&vop->irq_lock, flags); 438 439 VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 0); 440 441 spin_unlock_irqrestore(&vop->irq_lock, flags); 442 } 443 444 /* 445 * (1) each frame starts at the start of the Vsync pulse which is signaled by 446 * the "FRAME_SYNC" interrupt. 447 * (2) the active data region of each frame ends at dsp_vact_end 448 * (3) we should program this same number (dsp_vact_end) into dsp_line_frag_num, 449 * to get "LINE_FLAG" interrupt at the end of the active on screen data. 450 * 451 * VOP_INTR_CTRL0.dsp_line_frag_num = VOP_DSP_VACT_ST_END.dsp_vact_end 452 * Interrupts 453 * LINE_FLAG -------------------------------+ 454 * FRAME_SYNC ----+ | 455 * | | 456 * v v 457 * | Vsync | Vbp | Vactive | Vfp | 458 * ^ ^ ^ ^ 459 * | | | | 460 * | | | | 461 * dsp_vs_end ------------+ | | | VOP_DSP_VTOTAL_VS_END 462 * dsp_vact_start --------------+ | | VOP_DSP_VACT_ST_END 463 * dsp_vact_end ----------------------------+ | VOP_DSP_VACT_ST_END 464 * dsp_total -------------------------------------+ VOP_DSP_VTOTAL_VS_END 465 */ 466 static bool vop_line_flag_irq_is_enabled(struct vop *vop) 467 { 468 uint32_t line_flag_irq; 469 unsigned long flags; 470 471 spin_lock_irqsave(&vop->irq_lock, flags); 472 473 line_flag_irq = VOP_INTR_GET_TYPE(vop, enable, LINE_FLAG_INTR); 474 475 spin_unlock_irqrestore(&vop->irq_lock, flags); 476 477 return !!line_flag_irq; 478 } 479 480 static void vop_line_flag_irq_enable(struct vop *vop) 481 { 482 unsigned long flags; 483 484 if (WARN_ON(!vop->is_enabled)) 485 return; 486 487 spin_lock_irqsave(&vop->irq_lock, flags); 488 489 VOP_INTR_SET_TYPE(vop, clear, LINE_FLAG_INTR, 1); 490 VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 1); 491 492 spin_unlock_irqrestore(&vop->irq_lock, flags); 493 } 494 495 static void vop_line_flag_irq_disable(struct vop *vop) 496 { 497 unsigned long flags; 498 499 if (WARN_ON(!vop->is_enabled)) 500 return; 501 502 spin_lock_irqsave(&vop->irq_lock, flags); 503 504 VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 0); 505 506 spin_unlock_irqrestore(&vop->irq_lock, flags); 507 } 508 509 static int vop_core_clks_enable(struct vop *vop) 510 { 511 int ret; 512 513 ret = clk_enable(vop->hclk); 514 if (ret < 0) 515 return ret; 516 517 ret = clk_enable(vop->aclk); 518 if (ret < 0) 519 goto err_disable_hclk; 520 521 return 0; 522 523 err_disable_hclk: 524 clk_disable(vop->hclk); 525 return ret; 526 } 527 528 static void vop_core_clks_disable(struct vop *vop) 529 { 530 clk_disable(vop->aclk); 531 clk_disable(vop->hclk); 532 } 533 534 static void vop_win_disable(struct vop *vop, const struct vop_win *vop_win) 535 { 536 const struct vop_win_data *win = vop_win->data; 537 538 if (win->phy->scl && win->phy->scl->ext) { 539 VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, SCALE_NONE); 540 VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, SCALE_NONE); 541 VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, SCALE_NONE); 542 VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, SCALE_NONE); 543 } 544 545 VOP_WIN_SET(vop, win, enable, 0); 546 vop->win_enabled &= ~BIT(VOP_WIN_TO_INDEX(vop_win)); 547 } 548 549 static int vop_enable(struct drm_crtc *crtc, struct drm_crtc_state *old_state) 550 { 551 struct vop *vop = to_vop(crtc); 552 int ret, i; 553 554 ret = pm_runtime_get_sync(vop->dev); 555 if (ret < 0) { 556 DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret); 557 return ret; 558 } 559 560 ret = vop_core_clks_enable(vop); 561 if (WARN_ON(ret < 0)) 562 goto err_put_pm_runtime; 563 564 ret = clk_enable(vop->dclk); 565 if (WARN_ON(ret < 0)) 566 goto err_disable_core; 567 568 /* 569 * Slave iommu shares power, irq and clock with vop. It was associated 570 * automatically with this master device via common driver code. 571 * Now that we have enabled the clock we attach it to the shared drm 572 * mapping. 573 */ 574 ret = rockchip_drm_dma_attach_device(vop->drm_dev, vop->dev); 575 if (ret) { 576 DRM_DEV_ERROR(vop->dev, 577 "failed to attach dma mapping, %d\n", ret); 578 goto err_disable_dclk; 579 } 580 581 spin_lock(&vop->reg_lock); 582 for (i = 0; i < vop->len; i += 4) 583 writel_relaxed(vop->regsbak[i / 4], vop->regs + i); 584 585 /* 586 * We need to make sure that all windows are disabled before we 587 * enable the crtc. Otherwise we might try to scan from a destroyed 588 * buffer later. 589 * 590 * In the case of enable-after-PSR, we don't need to worry about this 591 * case since the buffer is guaranteed to be valid and disabling the 592 * window will result in screen glitches on PSR exit. 593 */ 594 if (!old_state || !old_state->self_refresh_active) { 595 for (i = 0; i < vop->data->win_size; i++) { 596 struct vop_win *vop_win = &vop->win[i]; 597 598 vop_win_disable(vop, vop_win); 599 } 600 } 601 spin_unlock(&vop->reg_lock); 602 603 vop_cfg_done(vop); 604 605 /* 606 * At here, vop clock & iommu is enable, R/W vop regs would be safe. 607 */ 608 vop->is_enabled = true; 609 610 spin_lock(&vop->reg_lock); 611 612 VOP_REG_SET(vop, common, standby, 1); 613 614 spin_unlock(&vop->reg_lock); 615 616 drm_crtc_vblank_on(crtc); 617 618 return 0; 619 620 err_disable_dclk: 621 clk_disable(vop->dclk); 622 err_disable_core: 623 vop_core_clks_disable(vop); 624 err_put_pm_runtime: 625 pm_runtime_put_sync(vop->dev); 626 return ret; 627 } 628 629 static void rockchip_drm_set_win_enabled(struct drm_crtc *crtc, bool enabled) 630 { 631 struct vop *vop = to_vop(crtc); 632 int i; 633 634 spin_lock(&vop->reg_lock); 635 636 for (i = 0; i < vop->data->win_size; i++) { 637 struct vop_win *vop_win = &vop->win[i]; 638 const struct vop_win_data *win = vop_win->data; 639 640 VOP_WIN_SET(vop, win, enable, 641 enabled && (vop->win_enabled & BIT(i))); 642 } 643 vop_cfg_done(vop); 644 645 spin_unlock(&vop->reg_lock); 646 } 647 648 static void vop_crtc_atomic_disable(struct drm_crtc *crtc, 649 struct drm_crtc_state *old_state) 650 { 651 struct vop *vop = to_vop(crtc); 652 653 WARN_ON(vop->event); 654 655 if (crtc->state->self_refresh_active) 656 rockchip_drm_set_win_enabled(crtc, false); 657 658 mutex_lock(&vop->vop_lock); 659 660 drm_crtc_vblank_off(crtc); 661 662 if (crtc->state->self_refresh_active) 663 goto out; 664 665 /* 666 * Vop standby will take effect at end of current frame, 667 * if dsp hold valid irq happen, it means standby complete. 668 * 669 * we must wait standby complete when we want to disable aclk, 670 * if not, memory bus maybe dead. 671 */ 672 reinit_completion(&vop->dsp_hold_completion); 673 vop_dsp_hold_valid_irq_enable(vop); 674 675 spin_lock(&vop->reg_lock); 676 677 VOP_REG_SET(vop, common, standby, 1); 678 679 spin_unlock(&vop->reg_lock); 680 681 wait_for_completion(&vop->dsp_hold_completion); 682 683 vop_dsp_hold_valid_irq_disable(vop); 684 685 vop->is_enabled = false; 686 687 /* 688 * vop standby complete, so iommu detach is safe. 689 */ 690 rockchip_drm_dma_detach_device(vop->drm_dev, vop->dev); 691 692 clk_disable(vop->dclk); 693 vop_core_clks_disable(vop); 694 pm_runtime_put(vop->dev); 695 696 out: 697 mutex_unlock(&vop->vop_lock); 698 699 if (crtc->state->event && !crtc->state->active) { 700 spin_lock_irq(&crtc->dev->event_lock); 701 drm_crtc_send_vblank_event(crtc, crtc->state->event); 702 spin_unlock_irq(&crtc->dev->event_lock); 703 704 crtc->state->event = NULL; 705 } 706 } 707 708 static void vop_plane_destroy(struct drm_plane *plane) 709 { 710 drm_plane_cleanup(plane); 711 } 712 713 static int vop_plane_atomic_check(struct drm_plane *plane, 714 struct drm_plane_state *state) 715 { 716 struct drm_crtc *crtc = state->crtc; 717 struct drm_crtc_state *crtc_state; 718 struct drm_framebuffer *fb = state->fb; 719 struct vop_win *vop_win = to_vop_win(plane); 720 const struct vop_win_data *win = vop_win->data; 721 int ret; 722 int min_scale = win->phy->scl ? FRAC_16_16(1, 8) : 723 DRM_PLANE_HELPER_NO_SCALING; 724 int max_scale = win->phy->scl ? FRAC_16_16(8, 1) : 725 DRM_PLANE_HELPER_NO_SCALING; 726 727 if (!crtc || WARN_ON(!fb)) 728 return 0; 729 730 crtc_state = drm_atomic_get_existing_crtc_state(state->state, crtc); 731 if (WARN_ON(!crtc_state)) 732 return -EINVAL; 733 734 ret = drm_atomic_helper_check_plane_state(state, crtc_state, 735 min_scale, max_scale, 736 true, true); 737 if (ret) 738 return ret; 739 740 if (!state->visible) 741 return 0; 742 743 ret = vop_convert_format(fb->format->format); 744 if (ret < 0) 745 return ret; 746 747 /* 748 * Src.x1 can be odd when do clip, but yuv plane start point 749 * need align with 2 pixel. 750 */ 751 if (fb->format->is_yuv && ((state->src.x1 >> 16) % 2)) { 752 DRM_ERROR("Invalid Source: Yuv format not support odd xpos\n"); 753 return -EINVAL; 754 } 755 756 if (fb->format->is_yuv && state->rotation & DRM_MODE_REFLECT_Y) { 757 DRM_ERROR("Invalid Source: Yuv format does not support this rotation\n"); 758 return -EINVAL; 759 } 760 761 return 0; 762 } 763 764 static void vop_plane_atomic_disable(struct drm_plane *plane, 765 struct drm_plane_state *old_state) 766 { 767 struct vop_win *vop_win = to_vop_win(plane); 768 struct vop *vop = to_vop(old_state->crtc); 769 770 if (!old_state->crtc) 771 return; 772 773 spin_lock(&vop->reg_lock); 774 775 vop_win_disable(vop, vop_win); 776 777 spin_unlock(&vop->reg_lock); 778 } 779 780 static void vop_plane_atomic_update(struct drm_plane *plane, 781 struct drm_plane_state *old_state) 782 { 783 struct drm_plane_state *state = plane->state; 784 struct drm_crtc *crtc = state->crtc; 785 struct vop_win *vop_win = to_vop_win(plane); 786 const struct vop_win_data *win = vop_win->data; 787 const struct vop_win_yuv2yuv_data *win_yuv2yuv = vop_win->yuv2yuv_data; 788 struct vop *vop = to_vop(state->crtc); 789 struct drm_framebuffer *fb = state->fb; 790 unsigned int actual_w, actual_h; 791 unsigned int dsp_stx, dsp_sty; 792 uint32_t act_info, dsp_info, dsp_st; 793 struct drm_rect *src = &state->src; 794 struct drm_rect *dest = &state->dst; 795 struct drm_gem_object *obj, *uv_obj; 796 struct rockchip_gem_object *rk_obj, *rk_uv_obj; 797 unsigned long offset; 798 dma_addr_t dma_addr; 799 uint32_t val; 800 bool rb_swap; 801 int win_index = VOP_WIN_TO_INDEX(vop_win); 802 int format; 803 int is_yuv = fb->format->is_yuv; 804 int i; 805 806 /* 807 * can't update plane when vop is disabled. 808 */ 809 if (WARN_ON(!crtc)) 810 return; 811 812 if (WARN_ON(!vop->is_enabled)) 813 return; 814 815 if (!state->visible) { 816 vop_plane_atomic_disable(plane, old_state); 817 return; 818 } 819 820 obj = fb->obj[0]; 821 rk_obj = to_rockchip_obj(obj); 822 823 actual_w = drm_rect_width(src) >> 16; 824 actual_h = drm_rect_height(src) >> 16; 825 act_info = (actual_h - 1) << 16 | ((actual_w - 1) & 0xffff); 826 827 dsp_info = (drm_rect_height(dest) - 1) << 16; 828 dsp_info |= (drm_rect_width(dest) - 1) & 0xffff; 829 830 dsp_stx = dest->x1 + crtc->mode.htotal - crtc->mode.hsync_start; 831 dsp_sty = dest->y1 + crtc->mode.vtotal - crtc->mode.vsync_start; 832 dsp_st = dsp_sty << 16 | (dsp_stx & 0xffff); 833 834 offset = (src->x1 >> 16) * fb->format->cpp[0]; 835 offset += (src->y1 >> 16) * fb->pitches[0]; 836 dma_addr = rk_obj->dma_addr + offset + fb->offsets[0]; 837 838 /* 839 * For y-mirroring we need to move address 840 * to the beginning of the last line. 841 */ 842 if (state->rotation & DRM_MODE_REFLECT_Y) 843 dma_addr += (actual_h - 1) * fb->pitches[0]; 844 845 format = vop_convert_format(fb->format->format); 846 847 spin_lock(&vop->reg_lock); 848 849 VOP_WIN_SET(vop, win, format, format); 850 VOP_WIN_SET(vop, win, yrgb_vir, DIV_ROUND_UP(fb->pitches[0], 4)); 851 VOP_WIN_SET(vop, win, yrgb_mst, dma_addr); 852 VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, y2r_en, is_yuv); 853 VOP_WIN_SET(vop, win, y_mir_en, 854 (state->rotation & DRM_MODE_REFLECT_Y) ? 1 : 0); 855 VOP_WIN_SET(vop, win, x_mir_en, 856 (state->rotation & DRM_MODE_REFLECT_X) ? 1 : 0); 857 858 if (is_yuv) { 859 int hsub = fb->format->hsub; 860 int vsub = fb->format->vsub; 861 int bpp = fb->format->cpp[1]; 862 863 uv_obj = fb->obj[1]; 864 rk_uv_obj = to_rockchip_obj(uv_obj); 865 866 offset = (src->x1 >> 16) * bpp / hsub; 867 offset += (src->y1 >> 16) * fb->pitches[1] / vsub; 868 869 dma_addr = rk_uv_obj->dma_addr + offset + fb->offsets[1]; 870 VOP_WIN_SET(vop, win, uv_vir, DIV_ROUND_UP(fb->pitches[1], 4)); 871 VOP_WIN_SET(vop, win, uv_mst, dma_addr); 872 873 for (i = 0; i < NUM_YUV2YUV_COEFFICIENTS; i++) { 874 VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop, 875 win_yuv2yuv, 876 y2r_coefficients[i], 877 bt601_yuv2rgb[i]); 878 } 879 } 880 881 if (win->phy->scl) 882 scl_vop_cal_scl_fac(vop, win, actual_w, actual_h, 883 drm_rect_width(dest), drm_rect_height(dest), 884 fb->format); 885 886 VOP_WIN_SET(vop, win, act_info, act_info); 887 VOP_WIN_SET(vop, win, dsp_info, dsp_info); 888 VOP_WIN_SET(vop, win, dsp_st, dsp_st); 889 890 rb_swap = has_rb_swapped(fb->format->format); 891 VOP_WIN_SET(vop, win, rb_swap, rb_swap); 892 893 /* 894 * Blending win0 with the background color doesn't seem to work 895 * correctly. We only get the background color, no matter the contents 896 * of the win0 framebuffer. However, blending pre-multiplied color 897 * with the default opaque black default background color is a no-op, 898 * so we can just disable blending to get the correct result. 899 */ 900 if (fb->format->has_alpha && win_index > 0) { 901 VOP_WIN_SET(vop, win, dst_alpha_ctl, 902 DST_FACTOR_M0(ALPHA_SRC_INVERSE)); 903 val = SRC_ALPHA_EN(1) | SRC_COLOR_M0(ALPHA_SRC_PRE_MUL) | 904 SRC_ALPHA_M0(ALPHA_STRAIGHT) | 905 SRC_BLEND_M0(ALPHA_PER_PIX) | 906 SRC_ALPHA_CAL_M0(ALPHA_NO_SATURATION) | 907 SRC_FACTOR_M0(ALPHA_ONE); 908 VOP_WIN_SET(vop, win, src_alpha_ctl, val); 909 } else { 910 VOP_WIN_SET(vop, win, src_alpha_ctl, SRC_ALPHA_EN(0)); 911 } 912 913 VOP_WIN_SET(vop, win, enable, 1); 914 vop->win_enabled |= BIT(win_index); 915 spin_unlock(&vop->reg_lock); 916 } 917 918 static int vop_plane_atomic_async_check(struct drm_plane *plane, 919 struct drm_plane_state *state) 920 { 921 struct vop_win *vop_win = to_vop_win(plane); 922 const struct vop_win_data *win = vop_win->data; 923 int min_scale = win->phy->scl ? FRAC_16_16(1, 8) : 924 DRM_PLANE_HELPER_NO_SCALING; 925 int max_scale = win->phy->scl ? FRAC_16_16(8, 1) : 926 DRM_PLANE_HELPER_NO_SCALING; 927 struct drm_crtc_state *crtc_state; 928 929 if (plane != state->crtc->cursor) 930 return -EINVAL; 931 932 if (!plane->state) 933 return -EINVAL; 934 935 if (!plane->state->fb) 936 return -EINVAL; 937 938 if (state->state) 939 crtc_state = drm_atomic_get_existing_crtc_state(state->state, 940 state->crtc); 941 else /* Special case for asynchronous cursor updates. */ 942 crtc_state = plane->crtc->state; 943 944 return drm_atomic_helper_check_plane_state(plane->state, crtc_state, 945 min_scale, max_scale, 946 true, true); 947 } 948 949 static void vop_plane_atomic_async_update(struct drm_plane *plane, 950 struct drm_plane_state *new_state) 951 { 952 struct vop *vop = to_vop(plane->state->crtc); 953 struct drm_framebuffer *old_fb = plane->state->fb; 954 955 plane->state->crtc_x = new_state->crtc_x; 956 plane->state->crtc_y = new_state->crtc_y; 957 plane->state->crtc_h = new_state->crtc_h; 958 plane->state->crtc_w = new_state->crtc_w; 959 plane->state->src_x = new_state->src_x; 960 plane->state->src_y = new_state->src_y; 961 plane->state->src_h = new_state->src_h; 962 plane->state->src_w = new_state->src_w; 963 swap(plane->state->fb, new_state->fb); 964 965 if (vop->is_enabled) { 966 vop_plane_atomic_update(plane, plane->state); 967 spin_lock(&vop->reg_lock); 968 vop_cfg_done(vop); 969 spin_unlock(&vop->reg_lock); 970 971 /* 972 * A scanout can still be occurring, so we can't drop the 973 * reference to the old framebuffer. To solve this we get a 974 * reference to old_fb and set a worker to release it later. 975 * FIXME: if we perform 500 async_update calls before the 976 * vblank, then we can have 500 different framebuffers waiting 977 * to be released. 978 */ 979 if (old_fb && plane->state->fb != old_fb) { 980 drm_framebuffer_get(old_fb); 981 WARN_ON(drm_crtc_vblank_get(plane->state->crtc) != 0); 982 drm_flip_work_queue(&vop->fb_unref_work, old_fb); 983 set_bit(VOP_PENDING_FB_UNREF, &vop->pending); 984 } 985 } 986 } 987 988 static const struct drm_plane_helper_funcs plane_helper_funcs = { 989 .atomic_check = vop_plane_atomic_check, 990 .atomic_update = vop_plane_atomic_update, 991 .atomic_disable = vop_plane_atomic_disable, 992 .atomic_async_check = vop_plane_atomic_async_check, 993 .atomic_async_update = vop_plane_atomic_async_update, 994 .prepare_fb = drm_gem_fb_prepare_fb, 995 }; 996 997 static const struct drm_plane_funcs vop_plane_funcs = { 998 .update_plane = drm_atomic_helper_update_plane, 999 .disable_plane = drm_atomic_helper_disable_plane, 1000 .destroy = vop_plane_destroy, 1001 .reset = drm_atomic_helper_plane_reset, 1002 .atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state, 1003 .atomic_destroy_state = drm_atomic_helper_plane_destroy_state, 1004 }; 1005 1006 static int vop_crtc_enable_vblank(struct drm_crtc *crtc) 1007 { 1008 struct vop *vop = to_vop(crtc); 1009 unsigned long flags; 1010 1011 if (WARN_ON(!vop->is_enabled)) 1012 return -EPERM; 1013 1014 spin_lock_irqsave(&vop->irq_lock, flags); 1015 1016 VOP_INTR_SET_TYPE(vop, clear, FS_INTR, 1); 1017 VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 1); 1018 1019 spin_unlock_irqrestore(&vop->irq_lock, flags); 1020 1021 return 0; 1022 } 1023 1024 static void vop_crtc_disable_vblank(struct drm_crtc *crtc) 1025 { 1026 struct vop *vop = to_vop(crtc); 1027 unsigned long flags; 1028 1029 if (WARN_ON(!vop->is_enabled)) 1030 return; 1031 1032 spin_lock_irqsave(&vop->irq_lock, flags); 1033 1034 VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 0); 1035 1036 spin_unlock_irqrestore(&vop->irq_lock, flags); 1037 } 1038 1039 static bool vop_crtc_mode_fixup(struct drm_crtc *crtc, 1040 const struct drm_display_mode *mode, 1041 struct drm_display_mode *adjusted_mode) 1042 { 1043 struct vop *vop = to_vop(crtc); 1044 unsigned long rate; 1045 1046 /* 1047 * Clock craziness. 1048 * 1049 * Key points: 1050 * 1051 * - DRM works in in kHz. 1052 * - Clock framework works in Hz. 1053 * - Rockchip's clock driver picks the clock rate that is the 1054 * same _OR LOWER_ than the one requested. 1055 * 1056 * Action plan: 1057 * 1058 * 1. When DRM gives us a mode, we should add 999 Hz to it. That way 1059 * if the clock we need is 60000001 Hz (~60 MHz) and DRM tells us to 1060 * make 60000 kHz then the clock framework will actually give us 1061 * the right clock. 1062 * 1063 * NOTE: if the PLL (maybe through a divider) could actually make 1064 * a clock rate 999 Hz higher instead of the one we want then this 1065 * could be a problem. Unfortunately there's not much we can do 1066 * since it's baked into DRM to use kHz. It shouldn't matter in 1067 * practice since Rockchip PLLs are controlled by tables and 1068 * even if there is a divider in the middle I wouldn't expect PLL 1069 * rates in the table that are just a few kHz different. 1070 * 1071 * 2. Get the clock framework to round the rate for us to tell us 1072 * what it will actually make. 1073 * 1074 * 3. Store the rounded up rate so that we don't need to worry about 1075 * this in the actual clk_set_rate(). 1076 */ 1077 rate = clk_round_rate(vop->dclk, adjusted_mode->clock * 1000 + 999); 1078 adjusted_mode->clock = DIV_ROUND_UP(rate, 1000); 1079 1080 return true; 1081 } 1082 1083 static bool vop_dsp_lut_is_enabled(struct vop *vop) 1084 { 1085 return vop_read_reg(vop, 0, &vop->data->common->dsp_lut_en); 1086 } 1087 1088 static void vop_crtc_write_gamma_lut(struct vop *vop, struct drm_crtc *crtc) 1089 { 1090 struct drm_color_lut *lut = crtc->state->gamma_lut->data; 1091 unsigned int i; 1092 1093 for (i = 0; i < crtc->gamma_size; i++) { 1094 u32 word; 1095 1096 word = (drm_color_lut_extract(lut[i].red, 10) << 20) | 1097 (drm_color_lut_extract(lut[i].green, 10) << 10) | 1098 drm_color_lut_extract(lut[i].blue, 10); 1099 writel(word, vop->lut_regs + i * 4); 1100 } 1101 } 1102 1103 static void vop_crtc_gamma_set(struct vop *vop, struct drm_crtc *crtc, 1104 struct drm_crtc_state *old_state) 1105 { 1106 struct drm_crtc_state *state = crtc->state; 1107 unsigned int idle; 1108 int ret; 1109 1110 if (!vop->lut_regs) 1111 return; 1112 /* 1113 * To disable gamma (gamma_lut is null) or to write 1114 * an update to the LUT, clear dsp_lut_en. 1115 */ 1116 spin_lock(&vop->reg_lock); 1117 VOP_REG_SET(vop, common, dsp_lut_en, 0); 1118 vop_cfg_done(vop); 1119 spin_unlock(&vop->reg_lock); 1120 1121 /* 1122 * In order to write the LUT to the internal memory, 1123 * we need to first make sure the dsp_lut_en bit is cleared. 1124 */ 1125 ret = readx_poll_timeout(vop_dsp_lut_is_enabled, vop, 1126 idle, !idle, 5, 30 * 1000); 1127 if (ret) { 1128 DRM_DEV_ERROR(vop->dev, "display LUT RAM enable timeout!\n"); 1129 return; 1130 } 1131 1132 if (!state->gamma_lut) 1133 return; 1134 1135 spin_lock(&vop->reg_lock); 1136 vop_crtc_write_gamma_lut(vop, crtc); 1137 VOP_REG_SET(vop, common, dsp_lut_en, 1); 1138 vop_cfg_done(vop); 1139 spin_unlock(&vop->reg_lock); 1140 } 1141 1142 static void vop_crtc_atomic_begin(struct drm_crtc *crtc, 1143 struct drm_crtc_state *old_crtc_state) 1144 { 1145 struct vop *vop = to_vop(crtc); 1146 1147 /* 1148 * Only update GAMMA if the 'active' flag is not changed, 1149 * otherwise it's updated by .atomic_enable. 1150 */ 1151 if (crtc->state->color_mgmt_changed && 1152 !crtc->state->active_changed) 1153 vop_crtc_gamma_set(vop, crtc, old_crtc_state); 1154 } 1155 1156 static void vop_crtc_atomic_enable(struct drm_crtc *crtc, 1157 struct drm_crtc_state *old_state) 1158 { 1159 struct vop *vop = to_vop(crtc); 1160 const struct vop_data *vop_data = vop->data; 1161 struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc->state); 1162 struct drm_display_mode *adjusted_mode = &crtc->state->adjusted_mode; 1163 u16 hsync_len = adjusted_mode->hsync_end - adjusted_mode->hsync_start; 1164 u16 hdisplay = adjusted_mode->hdisplay; 1165 u16 htotal = adjusted_mode->htotal; 1166 u16 hact_st = adjusted_mode->htotal - adjusted_mode->hsync_start; 1167 u16 hact_end = hact_st + hdisplay; 1168 u16 vdisplay = adjusted_mode->vdisplay; 1169 u16 vtotal = adjusted_mode->vtotal; 1170 u16 vsync_len = adjusted_mode->vsync_end - adjusted_mode->vsync_start; 1171 u16 vact_st = adjusted_mode->vtotal - adjusted_mode->vsync_start; 1172 u16 vact_end = vact_st + vdisplay; 1173 uint32_t pin_pol, val; 1174 int dither_bpc = s->output_bpc ? s->output_bpc : 10; 1175 int ret; 1176 1177 if (old_state && old_state->self_refresh_active) { 1178 drm_crtc_vblank_on(crtc); 1179 rockchip_drm_set_win_enabled(crtc, true); 1180 return; 1181 } 1182 1183 /* 1184 * If we have a GAMMA LUT in the state, then let's make sure 1185 * it's updated. We might be coming out of suspend, 1186 * which means the LUT internal memory needs to be re-written. 1187 */ 1188 if (crtc->state->gamma_lut) 1189 vop_crtc_gamma_set(vop, crtc, old_state); 1190 1191 mutex_lock(&vop->vop_lock); 1192 1193 WARN_ON(vop->event); 1194 1195 ret = vop_enable(crtc, old_state); 1196 if (ret) { 1197 mutex_unlock(&vop->vop_lock); 1198 DRM_DEV_ERROR(vop->dev, "Failed to enable vop (%d)\n", ret); 1199 return; 1200 } 1201 pin_pol = (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) ? 1202 BIT(HSYNC_POSITIVE) : 0; 1203 pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) ? 1204 BIT(VSYNC_POSITIVE) : 0; 1205 VOP_REG_SET(vop, output, pin_pol, pin_pol); 1206 VOP_REG_SET(vop, output, mipi_dual_channel_en, 0); 1207 1208 switch (s->output_type) { 1209 case DRM_MODE_CONNECTOR_LVDS: 1210 VOP_REG_SET(vop, output, rgb_dclk_pol, 1); 1211 VOP_REG_SET(vop, output, rgb_pin_pol, pin_pol); 1212 VOP_REG_SET(vop, output, rgb_en, 1); 1213 break; 1214 case DRM_MODE_CONNECTOR_eDP: 1215 VOP_REG_SET(vop, output, edp_dclk_pol, 1); 1216 VOP_REG_SET(vop, output, edp_pin_pol, pin_pol); 1217 VOP_REG_SET(vop, output, edp_en, 1); 1218 break; 1219 case DRM_MODE_CONNECTOR_HDMIA: 1220 VOP_REG_SET(vop, output, hdmi_dclk_pol, 1); 1221 VOP_REG_SET(vop, output, hdmi_pin_pol, pin_pol); 1222 VOP_REG_SET(vop, output, hdmi_en, 1); 1223 break; 1224 case DRM_MODE_CONNECTOR_DSI: 1225 VOP_REG_SET(vop, output, mipi_dclk_pol, 1); 1226 VOP_REG_SET(vop, output, mipi_pin_pol, pin_pol); 1227 VOP_REG_SET(vop, output, mipi_en, 1); 1228 VOP_REG_SET(vop, output, mipi_dual_channel_en, 1229 !!(s->output_flags & ROCKCHIP_OUTPUT_DSI_DUAL)); 1230 break; 1231 case DRM_MODE_CONNECTOR_DisplayPort: 1232 VOP_REG_SET(vop, output, dp_dclk_pol, 0); 1233 VOP_REG_SET(vop, output, dp_pin_pol, pin_pol); 1234 VOP_REG_SET(vop, output, dp_en, 1); 1235 break; 1236 default: 1237 DRM_DEV_ERROR(vop->dev, "unsupported connector_type [%d]\n", 1238 s->output_type); 1239 } 1240 1241 /* 1242 * if vop is not support RGB10 output, need force RGB10 to RGB888. 1243 */ 1244 if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA && 1245 !(vop_data->feature & VOP_FEATURE_OUTPUT_RGB10)) 1246 s->output_mode = ROCKCHIP_OUT_MODE_P888; 1247 1248 if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA && dither_bpc <= 8) 1249 VOP_REG_SET(vop, common, pre_dither_down, 1); 1250 else 1251 VOP_REG_SET(vop, common, pre_dither_down, 0); 1252 1253 if (dither_bpc == 6) { 1254 VOP_REG_SET(vop, common, dither_down_sel, DITHER_DOWN_ALLEGRO); 1255 VOP_REG_SET(vop, common, dither_down_mode, RGB888_TO_RGB666); 1256 VOP_REG_SET(vop, common, dither_down_en, 1); 1257 } else { 1258 VOP_REG_SET(vop, common, dither_down_en, 0); 1259 } 1260 1261 VOP_REG_SET(vop, common, out_mode, s->output_mode); 1262 1263 VOP_REG_SET(vop, modeset, htotal_pw, (htotal << 16) | hsync_len); 1264 val = hact_st << 16; 1265 val |= hact_end; 1266 VOP_REG_SET(vop, modeset, hact_st_end, val); 1267 VOP_REG_SET(vop, modeset, hpost_st_end, val); 1268 1269 VOP_REG_SET(vop, modeset, vtotal_pw, (vtotal << 16) | vsync_len); 1270 val = vact_st << 16; 1271 val |= vact_end; 1272 VOP_REG_SET(vop, modeset, vact_st_end, val); 1273 VOP_REG_SET(vop, modeset, vpost_st_end, val); 1274 1275 VOP_REG_SET(vop, intr, line_flag_num[0], vact_end); 1276 1277 clk_set_rate(vop->dclk, adjusted_mode->clock * 1000); 1278 1279 VOP_REG_SET(vop, common, standby, 0); 1280 mutex_unlock(&vop->vop_lock); 1281 } 1282 1283 static bool vop_fs_irq_is_pending(struct vop *vop) 1284 { 1285 return VOP_INTR_GET_TYPE(vop, status, FS_INTR); 1286 } 1287 1288 static void vop_wait_for_irq_handler(struct vop *vop) 1289 { 1290 bool pending; 1291 int ret; 1292 1293 /* 1294 * Spin until frame start interrupt status bit goes low, which means 1295 * that interrupt handler was invoked and cleared it. The timeout of 1296 * 10 msecs is really too long, but it is just a safety measure if 1297 * something goes really wrong. The wait will only happen in the very 1298 * unlikely case of a vblank happening exactly at the same time and 1299 * shouldn't exceed microseconds range. 1300 */ 1301 ret = readx_poll_timeout_atomic(vop_fs_irq_is_pending, vop, pending, 1302 !pending, 0, 10 * 1000); 1303 if (ret) 1304 DRM_DEV_ERROR(vop->dev, "VOP vblank IRQ stuck for 10 ms\n"); 1305 1306 synchronize_irq(vop->irq); 1307 } 1308 1309 static int vop_crtc_atomic_check(struct drm_crtc *crtc, 1310 struct drm_crtc_state *crtc_state) 1311 { 1312 struct vop *vop = to_vop(crtc); 1313 1314 if (vop->lut_regs && crtc_state->color_mgmt_changed && 1315 crtc_state->gamma_lut) { 1316 unsigned int len; 1317 1318 len = drm_color_lut_size(crtc_state->gamma_lut); 1319 if (len != crtc->gamma_size) { 1320 DRM_DEBUG_KMS("Invalid LUT size; got %d, expected %d\n", 1321 len, crtc->gamma_size); 1322 return -EINVAL; 1323 } 1324 } 1325 1326 return 0; 1327 } 1328 1329 static void vop_crtc_atomic_flush(struct drm_crtc *crtc, 1330 struct drm_crtc_state *old_crtc_state) 1331 { 1332 struct drm_atomic_state *old_state = old_crtc_state->state; 1333 struct drm_plane_state *old_plane_state, *new_plane_state; 1334 struct vop *vop = to_vop(crtc); 1335 struct drm_plane *plane; 1336 int i; 1337 1338 if (WARN_ON(!vop->is_enabled)) 1339 return; 1340 1341 spin_lock(&vop->reg_lock); 1342 1343 vop_cfg_done(vop); 1344 1345 spin_unlock(&vop->reg_lock); 1346 1347 /* 1348 * There is a (rather unlikely) possiblity that a vblank interrupt 1349 * fired before we set the cfg_done bit. To avoid spuriously 1350 * signalling flip completion we need to wait for it to finish. 1351 */ 1352 vop_wait_for_irq_handler(vop); 1353 1354 spin_lock_irq(&crtc->dev->event_lock); 1355 if (crtc->state->event) { 1356 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 1357 WARN_ON(vop->event); 1358 1359 vop->event = crtc->state->event; 1360 crtc->state->event = NULL; 1361 } 1362 spin_unlock_irq(&crtc->dev->event_lock); 1363 1364 for_each_oldnew_plane_in_state(old_state, plane, old_plane_state, 1365 new_plane_state, i) { 1366 if (!old_plane_state->fb) 1367 continue; 1368 1369 if (old_plane_state->fb == new_plane_state->fb) 1370 continue; 1371 1372 drm_framebuffer_get(old_plane_state->fb); 1373 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 1374 drm_flip_work_queue(&vop->fb_unref_work, old_plane_state->fb); 1375 set_bit(VOP_PENDING_FB_UNREF, &vop->pending); 1376 } 1377 } 1378 1379 static const struct drm_crtc_helper_funcs vop_crtc_helper_funcs = { 1380 .mode_fixup = vop_crtc_mode_fixup, 1381 .atomic_check = vop_crtc_atomic_check, 1382 .atomic_begin = vop_crtc_atomic_begin, 1383 .atomic_flush = vop_crtc_atomic_flush, 1384 .atomic_enable = vop_crtc_atomic_enable, 1385 .atomic_disable = vop_crtc_atomic_disable, 1386 }; 1387 1388 static void vop_crtc_destroy(struct drm_crtc *crtc) 1389 { 1390 drm_crtc_cleanup(crtc); 1391 } 1392 1393 static struct drm_crtc_state *vop_crtc_duplicate_state(struct drm_crtc *crtc) 1394 { 1395 struct rockchip_crtc_state *rockchip_state; 1396 1397 rockchip_state = kzalloc(sizeof(*rockchip_state), GFP_KERNEL); 1398 if (!rockchip_state) 1399 return NULL; 1400 1401 __drm_atomic_helper_crtc_duplicate_state(crtc, &rockchip_state->base); 1402 return &rockchip_state->base; 1403 } 1404 1405 static void vop_crtc_destroy_state(struct drm_crtc *crtc, 1406 struct drm_crtc_state *state) 1407 { 1408 struct rockchip_crtc_state *s = to_rockchip_crtc_state(state); 1409 1410 __drm_atomic_helper_crtc_destroy_state(&s->base); 1411 kfree(s); 1412 } 1413 1414 static void vop_crtc_reset(struct drm_crtc *crtc) 1415 { 1416 struct rockchip_crtc_state *crtc_state = 1417 kzalloc(sizeof(*crtc_state), GFP_KERNEL); 1418 1419 if (crtc->state) 1420 vop_crtc_destroy_state(crtc, crtc->state); 1421 1422 __drm_atomic_helper_crtc_reset(crtc, &crtc_state->base); 1423 } 1424 1425 #ifdef CONFIG_DRM_ANALOGIX_DP 1426 static struct drm_connector *vop_get_edp_connector(struct vop *vop) 1427 { 1428 struct drm_connector *connector; 1429 struct drm_connector_list_iter conn_iter; 1430 1431 drm_connector_list_iter_begin(vop->drm_dev, &conn_iter); 1432 drm_for_each_connector_iter(connector, &conn_iter) { 1433 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) { 1434 drm_connector_list_iter_end(&conn_iter); 1435 return connector; 1436 } 1437 } 1438 drm_connector_list_iter_end(&conn_iter); 1439 1440 return NULL; 1441 } 1442 1443 static int vop_crtc_set_crc_source(struct drm_crtc *crtc, 1444 const char *source_name) 1445 { 1446 struct vop *vop = to_vop(crtc); 1447 struct drm_connector *connector; 1448 int ret; 1449 1450 connector = vop_get_edp_connector(vop); 1451 if (!connector) 1452 return -EINVAL; 1453 1454 if (source_name && strcmp(source_name, "auto") == 0) 1455 ret = analogix_dp_start_crc(connector); 1456 else if (!source_name) 1457 ret = analogix_dp_stop_crc(connector); 1458 else 1459 ret = -EINVAL; 1460 1461 return ret; 1462 } 1463 1464 static int 1465 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name, 1466 size_t *values_cnt) 1467 { 1468 if (source_name && strcmp(source_name, "auto") != 0) 1469 return -EINVAL; 1470 1471 *values_cnt = 3; 1472 return 0; 1473 } 1474 1475 #else 1476 static int vop_crtc_set_crc_source(struct drm_crtc *crtc, 1477 const char *source_name) 1478 { 1479 return -ENODEV; 1480 } 1481 1482 static int 1483 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name, 1484 size_t *values_cnt) 1485 { 1486 return -ENODEV; 1487 } 1488 #endif 1489 1490 static const struct drm_crtc_funcs vop_crtc_funcs = { 1491 .set_config = drm_atomic_helper_set_config, 1492 .page_flip = drm_atomic_helper_page_flip, 1493 .destroy = vop_crtc_destroy, 1494 .reset = vop_crtc_reset, 1495 .atomic_duplicate_state = vop_crtc_duplicate_state, 1496 .atomic_destroy_state = vop_crtc_destroy_state, 1497 .enable_vblank = vop_crtc_enable_vblank, 1498 .disable_vblank = vop_crtc_disable_vblank, 1499 .set_crc_source = vop_crtc_set_crc_source, 1500 .verify_crc_source = vop_crtc_verify_crc_source, 1501 .gamma_set = drm_atomic_helper_legacy_gamma_set, 1502 }; 1503 1504 static void vop_fb_unref_worker(struct drm_flip_work *work, void *val) 1505 { 1506 struct vop *vop = container_of(work, struct vop, fb_unref_work); 1507 struct drm_framebuffer *fb = val; 1508 1509 drm_crtc_vblank_put(&vop->crtc); 1510 drm_framebuffer_put(fb); 1511 } 1512 1513 static void vop_handle_vblank(struct vop *vop) 1514 { 1515 struct drm_device *drm = vop->drm_dev; 1516 struct drm_crtc *crtc = &vop->crtc; 1517 1518 spin_lock(&drm->event_lock); 1519 if (vop->event) { 1520 drm_crtc_send_vblank_event(crtc, vop->event); 1521 drm_crtc_vblank_put(crtc); 1522 vop->event = NULL; 1523 } 1524 spin_unlock(&drm->event_lock); 1525 1526 if (test_and_clear_bit(VOP_PENDING_FB_UNREF, &vop->pending)) 1527 drm_flip_work_commit(&vop->fb_unref_work, system_unbound_wq); 1528 } 1529 1530 static irqreturn_t vop_isr(int irq, void *data) 1531 { 1532 struct vop *vop = data; 1533 struct drm_crtc *crtc = &vop->crtc; 1534 uint32_t active_irqs; 1535 int ret = IRQ_NONE; 1536 1537 /* 1538 * The irq is shared with the iommu. If the runtime-pm state of the 1539 * vop-device is disabled the irq has to be targeted at the iommu. 1540 */ 1541 if (!pm_runtime_get_if_in_use(vop->dev)) 1542 return IRQ_NONE; 1543 1544 if (vop_core_clks_enable(vop)) { 1545 DRM_DEV_ERROR_RATELIMITED(vop->dev, "couldn't enable clocks\n"); 1546 goto out; 1547 } 1548 1549 /* 1550 * interrupt register has interrupt status, enable and clear bits, we 1551 * must hold irq_lock to avoid a race with enable/disable_vblank(). 1552 */ 1553 spin_lock(&vop->irq_lock); 1554 1555 active_irqs = VOP_INTR_GET_TYPE(vop, status, INTR_MASK); 1556 /* Clear all active interrupt sources */ 1557 if (active_irqs) 1558 VOP_INTR_SET_TYPE(vop, clear, active_irqs, 1); 1559 1560 spin_unlock(&vop->irq_lock); 1561 1562 /* This is expected for vop iommu irqs, since the irq is shared */ 1563 if (!active_irqs) 1564 goto out_disable; 1565 1566 if (active_irqs & DSP_HOLD_VALID_INTR) { 1567 complete(&vop->dsp_hold_completion); 1568 active_irqs &= ~DSP_HOLD_VALID_INTR; 1569 ret = IRQ_HANDLED; 1570 } 1571 1572 if (active_irqs & LINE_FLAG_INTR) { 1573 complete(&vop->line_flag_completion); 1574 active_irqs &= ~LINE_FLAG_INTR; 1575 ret = IRQ_HANDLED; 1576 } 1577 1578 if (active_irqs & FS_INTR) { 1579 drm_crtc_handle_vblank(crtc); 1580 vop_handle_vblank(vop); 1581 active_irqs &= ~FS_INTR; 1582 ret = IRQ_HANDLED; 1583 } 1584 1585 /* Unhandled irqs are spurious. */ 1586 if (active_irqs) 1587 DRM_DEV_ERROR(vop->dev, "Unknown VOP IRQs: %#02x\n", 1588 active_irqs); 1589 1590 out_disable: 1591 vop_core_clks_disable(vop); 1592 out: 1593 pm_runtime_put(vop->dev); 1594 return ret; 1595 } 1596 1597 static void vop_plane_add_properties(struct drm_plane *plane, 1598 const struct vop_win_data *win_data) 1599 { 1600 unsigned int flags = 0; 1601 1602 flags |= VOP_WIN_HAS_REG(win_data, x_mir_en) ? DRM_MODE_REFLECT_X : 0; 1603 flags |= VOP_WIN_HAS_REG(win_data, y_mir_en) ? DRM_MODE_REFLECT_Y : 0; 1604 if (flags) 1605 drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0, 1606 DRM_MODE_ROTATE_0 | flags); 1607 } 1608 1609 static int vop_create_crtc(struct vop *vop) 1610 { 1611 const struct vop_data *vop_data = vop->data; 1612 struct device *dev = vop->dev; 1613 struct drm_device *drm_dev = vop->drm_dev; 1614 struct drm_plane *primary = NULL, *cursor = NULL, *plane, *tmp; 1615 struct drm_crtc *crtc = &vop->crtc; 1616 struct device_node *port; 1617 int ret; 1618 int i; 1619 1620 /* 1621 * Create drm_plane for primary and cursor planes first, since we need 1622 * to pass them to drm_crtc_init_with_planes, which sets the 1623 * "possible_crtcs" to the newly initialized crtc. 1624 */ 1625 for (i = 0; i < vop_data->win_size; i++) { 1626 struct vop_win *vop_win = &vop->win[i]; 1627 const struct vop_win_data *win_data = vop_win->data; 1628 1629 if (win_data->type != DRM_PLANE_TYPE_PRIMARY && 1630 win_data->type != DRM_PLANE_TYPE_CURSOR) 1631 continue; 1632 1633 ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base, 1634 0, &vop_plane_funcs, 1635 win_data->phy->data_formats, 1636 win_data->phy->nformats, 1637 NULL, win_data->type, NULL); 1638 if (ret) { 1639 DRM_DEV_ERROR(vop->dev, "failed to init plane %d\n", 1640 ret); 1641 goto err_cleanup_planes; 1642 } 1643 1644 plane = &vop_win->base; 1645 drm_plane_helper_add(plane, &plane_helper_funcs); 1646 vop_plane_add_properties(plane, win_data); 1647 if (plane->type == DRM_PLANE_TYPE_PRIMARY) 1648 primary = plane; 1649 else if (plane->type == DRM_PLANE_TYPE_CURSOR) 1650 cursor = plane; 1651 } 1652 1653 ret = drm_crtc_init_with_planes(drm_dev, crtc, primary, cursor, 1654 &vop_crtc_funcs, NULL); 1655 if (ret) 1656 goto err_cleanup_planes; 1657 1658 drm_crtc_helper_add(crtc, &vop_crtc_helper_funcs); 1659 if (vop->lut_regs) { 1660 drm_mode_crtc_set_gamma_size(crtc, vop_data->lut_size); 1661 drm_crtc_enable_color_mgmt(crtc, 0, false, vop_data->lut_size); 1662 } 1663 1664 /* 1665 * Create drm_planes for overlay windows with possible_crtcs restricted 1666 * to the newly created crtc. 1667 */ 1668 for (i = 0; i < vop_data->win_size; i++) { 1669 struct vop_win *vop_win = &vop->win[i]; 1670 const struct vop_win_data *win_data = vop_win->data; 1671 unsigned long possible_crtcs = drm_crtc_mask(crtc); 1672 1673 if (win_data->type != DRM_PLANE_TYPE_OVERLAY) 1674 continue; 1675 1676 ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base, 1677 possible_crtcs, 1678 &vop_plane_funcs, 1679 win_data->phy->data_formats, 1680 win_data->phy->nformats, 1681 NULL, win_data->type, NULL); 1682 if (ret) { 1683 DRM_DEV_ERROR(vop->dev, "failed to init overlay %d\n", 1684 ret); 1685 goto err_cleanup_crtc; 1686 } 1687 drm_plane_helper_add(&vop_win->base, &plane_helper_funcs); 1688 vop_plane_add_properties(&vop_win->base, win_data); 1689 } 1690 1691 port = of_get_child_by_name(dev->of_node, "port"); 1692 if (!port) { 1693 DRM_DEV_ERROR(vop->dev, "no port node found in %pOF\n", 1694 dev->of_node); 1695 ret = -ENOENT; 1696 goto err_cleanup_crtc; 1697 } 1698 1699 drm_flip_work_init(&vop->fb_unref_work, "fb_unref", 1700 vop_fb_unref_worker); 1701 1702 init_completion(&vop->dsp_hold_completion); 1703 init_completion(&vop->line_flag_completion); 1704 crtc->port = port; 1705 1706 ret = drm_self_refresh_helper_init(crtc); 1707 if (ret) 1708 DRM_DEV_DEBUG_KMS(vop->dev, 1709 "Failed to init %s with SR helpers %d, ignoring\n", 1710 crtc->name, ret); 1711 1712 return 0; 1713 1714 err_cleanup_crtc: 1715 drm_crtc_cleanup(crtc); 1716 err_cleanup_planes: 1717 list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list, 1718 head) 1719 drm_plane_cleanup(plane); 1720 return ret; 1721 } 1722 1723 static void vop_destroy_crtc(struct vop *vop) 1724 { 1725 struct drm_crtc *crtc = &vop->crtc; 1726 struct drm_device *drm_dev = vop->drm_dev; 1727 struct drm_plane *plane, *tmp; 1728 1729 drm_self_refresh_helper_cleanup(crtc); 1730 1731 of_node_put(crtc->port); 1732 1733 /* 1734 * We need to cleanup the planes now. Why? 1735 * 1736 * The planes are "&vop->win[i].base". That means the memory is 1737 * all part of the big "struct vop" chunk of memory. That memory 1738 * was devm allocated and associated with this component. We need to 1739 * free it ourselves before vop_unbind() finishes. 1740 */ 1741 list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list, 1742 head) 1743 vop_plane_destroy(plane); 1744 1745 /* 1746 * Destroy CRTC after vop_plane_destroy() since vop_disable_plane() 1747 * references the CRTC. 1748 */ 1749 drm_crtc_cleanup(crtc); 1750 drm_flip_work_cleanup(&vop->fb_unref_work); 1751 } 1752 1753 static int vop_initial(struct vop *vop) 1754 { 1755 struct reset_control *ahb_rst; 1756 int i, ret; 1757 1758 vop->hclk = devm_clk_get(vop->dev, "hclk_vop"); 1759 if (IS_ERR(vop->hclk)) { 1760 DRM_DEV_ERROR(vop->dev, "failed to get hclk source\n"); 1761 return PTR_ERR(vop->hclk); 1762 } 1763 vop->aclk = devm_clk_get(vop->dev, "aclk_vop"); 1764 if (IS_ERR(vop->aclk)) { 1765 DRM_DEV_ERROR(vop->dev, "failed to get aclk source\n"); 1766 return PTR_ERR(vop->aclk); 1767 } 1768 vop->dclk = devm_clk_get(vop->dev, "dclk_vop"); 1769 if (IS_ERR(vop->dclk)) { 1770 DRM_DEV_ERROR(vop->dev, "failed to get dclk source\n"); 1771 return PTR_ERR(vop->dclk); 1772 } 1773 1774 ret = pm_runtime_get_sync(vop->dev); 1775 if (ret < 0) { 1776 DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret); 1777 return ret; 1778 } 1779 1780 ret = clk_prepare(vop->dclk); 1781 if (ret < 0) { 1782 DRM_DEV_ERROR(vop->dev, "failed to prepare dclk\n"); 1783 goto err_put_pm_runtime; 1784 } 1785 1786 /* Enable both the hclk and aclk to setup the vop */ 1787 ret = clk_prepare_enable(vop->hclk); 1788 if (ret < 0) { 1789 DRM_DEV_ERROR(vop->dev, "failed to prepare/enable hclk\n"); 1790 goto err_unprepare_dclk; 1791 } 1792 1793 ret = clk_prepare_enable(vop->aclk); 1794 if (ret < 0) { 1795 DRM_DEV_ERROR(vop->dev, "failed to prepare/enable aclk\n"); 1796 goto err_disable_hclk; 1797 } 1798 1799 /* 1800 * do hclk_reset, reset all vop registers. 1801 */ 1802 ahb_rst = devm_reset_control_get(vop->dev, "ahb"); 1803 if (IS_ERR(ahb_rst)) { 1804 DRM_DEV_ERROR(vop->dev, "failed to get ahb reset\n"); 1805 ret = PTR_ERR(ahb_rst); 1806 goto err_disable_aclk; 1807 } 1808 reset_control_assert(ahb_rst); 1809 usleep_range(10, 20); 1810 reset_control_deassert(ahb_rst); 1811 1812 VOP_INTR_SET_TYPE(vop, clear, INTR_MASK, 1); 1813 VOP_INTR_SET_TYPE(vop, enable, INTR_MASK, 0); 1814 1815 for (i = 0; i < vop->len; i += sizeof(u32)) 1816 vop->regsbak[i / 4] = readl_relaxed(vop->regs + i); 1817 1818 VOP_REG_SET(vop, misc, global_regdone_en, 1); 1819 VOP_REG_SET(vop, common, dsp_blank, 0); 1820 1821 for (i = 0; i < vop->data->win_size; i++) { 1822 struct vop_win *vop_win = &vop->win[i]; 1823 const struct vop_win_data *win = vop_win->data; 1824 int channel = i * 2 + 1; 1825 1826 VOP_WIN_SET(vop, win, channel, (channel + 1) << 4 | channel); 1827 vop_win_disable(vop, vop_win); 1828 VOP_WIN_SET(vop, win, gate, 1); 1829 } 1830 1831 vop_cfg_done(vop); 1832 1833 /* 1834 * do dclk_reset, let all config take affect. 1835 */ 1836 vop->dclk_rst = devm_reset_control_get(vop->dev, "dclk"); 1837 if (IS_ERR(vop->dclk_rst)) { 1838 DRM_DEV_ERROR(vop->dev, "failed to get dclk reset\n"); 1839 ret = PTR_ERR(vop->dclk_rst); 1840 goto err_disable_aclk; 1841 } 1842 reset_control_assert(vop->dclk_rst); 1843 usleep_range(10, 20); 1844 reset_control_deassert(vop->dclk_rst); 1845 1846 clk_disable(vop->hclk); 1847 clk_disable(vop->aclk); 1848 1849 vop->is_enabled = false; 1850 1851 pm_runtime_put_sync(vop->dev); 1852 1853 return 0; 1854 1855 err_disable_aclk: 1856 clk_disable_unprepare(vop->aclk); 1857 err_disable_hclk: 1858 clk_disable_unprepare(vop->hclk); 1859 err_unprepare_dclk: 1860 clk_unprepare(vop->dclk); 1861 err_put_pm_runtime: 1862 pm_runtime_put_sync(vop->dev); 1863 return ret; 1864 } 1865 1866 /* 1867 * Initialize the vop->win array elements. 1868 */ 1869 static void vop_win_init(struct vop *vop) 1870 { 1871 const struct vop_data *vop_data = vop->data; 1872 unsigned int i; 1873 1874 for (i = 0; i < vop_data->win_size; i++) { 1875 struct vop_win *vop_win = &vop->win[i]; 1876 const struct vop_win_data *win_data = &vop_data->win[i]; 1877 1878 vop_win->data = win_data; 1879 vop_win->vop = vop; 1880 1881 if (vop_data->win_yuv2yuv) 1882 vop_win->yuv2yuv_data = &vop_data->win_yuv2yuv[i]; 1883 } 1884 } 1885 1886 /** 1887 * rockchip_drm_wait_vact_end 1888 * @crtc: CRTC to enable line flag 1889 * @mstimeout: millisecond for timeout 1890 * 1891 * Wait for vact_end line flag irq or timeout. 1892 * 1893 * Returns: 1894 * Zero on success, negative errno on failure. 1895 */ 1896 int rockchip_drm_wait_vact_end(struct drm_crtc *crtc, unsigned int mstimeout) 1897 { 1898 struct vop *vop = to_vop(crtc); 1899 unsigned long jiffies_left; 1900 int ret = 0; 1901 1902 if (!crtc || !vop->is_enabled) 1903 return -ENODEV; 1904 1905 mutex_lock(&vop->vop_lock); 1906 if (mstimeout <= 0) { 1907 ret = -EINVAL; 1908 goto out; 1909 } 1910 1911 if (vop_line_flag_irq_is_enabled(vop)) { 1912 ret = -EBUSY; 1913 goto out; 1914 } 1915 1916 reinit_completion(&vop->line_flag_completion); 1917 vop_line_flag_irq_enable(vop); 1918 1919 jiffies_left = wait_for_completion_timeout(&vop->line_flag_completion, 1920 msecs_to_jiffies(mstimeout)); 1921 vop_line_flag_irq_disable(vop); 1922 1923 if (jiffies_left == 0) { 1924 DRM_DEV_ERROR(vop->dev, "Timeout waiting for IRQ\n"); 1925 ret = -ETIMEDOUT; 1926 goto out; 1927 } 1928 1929 out: 1930 mutex_unlock(&vop->vop_lock); 1931 return ret; 1932 } 1933 EXPORT_SYMBOL(rockchip_drm_wait_vact_end); 1934 1935 static int vop_bind(struct device *dev, struct device *master, void *data) 1936 { 1937 struct platform_device *pdev = to_platform_device(dev); 1938 const struct vop_data *vop_data; 1939 struct drm_device *drm_dev = data; 1940 struct vop *vop; 1941 struct resource *res; 1942 int ret, irq; 1943 1944 vop_data = of_device_get_match_data(dev); 1945 if (!vop_data) 1946 return -ENODEV; 1947 1948 /* Allocate vop struct and its vop_win array */ 1949 vop = devm_kzalloc(dev, struct_size(vop, win, vop_data->win_size), 1950 GFP_KERNEL); 1951 if (!vop) 1952 return -ENOMEM; 1953 1954 vop->dev = dev; 1955 vop->data = vop_data; 1956 vop->drm_dev = drm_dev; 1957 dev_set_drvdata(dev, vop); 1958 1959 vop_win_init(vop); 1960 1961 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1962 vop->len = resource_size(res); 1963 vop->regs = devm_ioremap_resource(dev, res); 1964 if (IS_ERR(vop->regs)) 1965 return PTR_ERR(vop->regs); 1966 1967 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1968 if (res) { 1969 if (!vop_data->lut_size) { 1970 DRM_DEV_ERROR(dev, "no gamma LUT size defined\n"); 1971 return -EINVAL; 1972 } 1973 vop->lut_regs = devm_ioremap_resource(dev, res); 1974 if (IS_ERR(vop->lut_regs)) 1975 return PTR_ERR(vop->lut_regs); 1976 } 1977 1978 vop->regsbak = devm_kzalloc(dev, vop->len, GFP_KERNEL); 1979 if (!vop->regsbak) 1980 return -ENOMEM; 1981 1982 irq = platform_get_irq(pdev, 0); 1983 if (irq < 0) { 1984 DRM_DEV_ERROR(dev, "cannot find irq for vop\n"); 1985 return irq; 1986 } 1987 vop->irq = (unsigned int)irq; 1988 1989 spin_lock_init(&vop->reg_lock); 1990 spin_lock_init(&vop->irq_lock); 1991 mutex_init(&vop->vop_lock); 1992 1993 ret = vop_create_crtc(vop); 1994 if (ret) 1995 return ret; 1996 1997 pm_runtime_enable(&pdev->dev); 1998 1999 ret = vop_initial(vop); 2000 if (ret < 0) { 2001 DRM_DEV_ERROR(&pdev->dev, 2002 "cannot initial vop dev - err %d\n", ret); 2003 goto err_disable_pm_runtime; 2004 } 2005 2006 ret = devm_request_irq(dev, vop->irq, vop_isr, 2007 IRQF_SHARED, dev_name(dev), vop); 2008 if (ret) 2009 goto err_disable_pm_runtime; 2010 2011 if (vop->data->feature & VOP_FEATURE_INTERNAL_RGB) { 2012 vop->rgb = rockchip_rgb_init(dev, &vop->crtc, vop->drm_dev); 2013 if (IS_ERR(vop->rgb)) { 2014 ret = PTR_ERR(vop->rgb); 2015 goto err_disable_pm_runtime; 2016 } 2017 } 2018 2019 return 0; 2020 2021 err_disable_pm_runtime: 2022 pm_runtime_disable(&pdev->dev); 2023 vop_destroy_crtc(vop); 2024 return ret; 2025 } 2026 2027 static void vop_unbind(struct device *dev, struct device *master, void *data) 2028 { 2029 struct vop *vop = dev_get_drvdata(dev); 2030 2031 if (vop->rgb) 2032 rockchip_rgb_fini(vop->rgb); 2033 2034 pm_runtime_disable(dev); 2035 vop_destroy_crtc(vop); 2036 2037 clk_unprepare(vop->aclk); 2038 clk_unprepare(vop->hclk); 2039 clk_unprepare(vop->dclk); 2040 } 2041 2042 const struct component_ops vop_component_ops = { 2043 .bind = vop_bind, 2044 .unbind = vop_unbind, 2045 }; 2046 EXPORT_SYMBOL_GPL(vop_component_ops); 2047