1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Fuzhou Rockchip Electronics Co.Ltd
4  * Author:Mark Yao <mark.yao@rock-chips.com>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/component.h>
9 #include <linux/delay.h>
10 #include <linux/iopoll.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/of_device.h>
15 #include <linux/overflow.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/reset.h>
19 
20 #include <drm/drm.h>
21 #include <drm/drm_atomic.h>
22 #include <drm/drm_atomic_uapi.h>
23 #include <drm/drm_blend.h>
24 #include <drm/drm_crtc.h>
25 #include <drm/drm_flip_work.h>
26 #include <drm/drm_fourcc.h>
27 #include <drm/drm_framebuffer.h>
28 #include <drm/drm_gem_atomic_helper.h>
29 #include <drm/drm_gem_framebuffer_helper.h>
30 #include <drm/drm_probe_helper.h>
31 #include <drm/drm_self_refresh_helper.h>
32 #include <drm/drm_vblank.h>
33 
34 #ifdef CONFIG_DRM_ANALOGIX_DP
35 #include <drm/bridge/analogix_dp.h>
36 #endif
37 
38 #include "rockchip_drm_drv.h"
39 #include "rockchip_drm_gem.h"
40 #include "rockchip_drm_fb.h"
41 #include "rockchip_drm_vop.h"
42 #include "rockchip_rgb.h"
43 
44 #define VOP_WIN_SET(vop, win, name, v) \
45 		vop_reg_set(vop, &win->phy->name, win->base, ~0, v, #name)
46 #define VOP_SCL_SET(vop, win, name, v) \
47 		vop_reg_set(vop, &win->phy->scl->name, win->base, ~0, v, #name)
48 #define VOP_SCL_SET_EXT(vop, win, name, v) \
49 		vop_reg_set(vop, &win->phy->scl->ext->name, \
50 			    win->base, ~0, v, #name)
51 
52 #define VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, name, v) \
53 	do { \
54 		if (win_yuv2yuv && win_yuv2yuv->name.mask) \
55 			vop_reg_set(vop, &win_yuv2yuv->name, 0, ~0, v, #name); \
56 	} while (0)
57 
58 #define VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop, win_yuv2yuv, name, v) \
59 	do { \
60 		if (win_yuv2yuv && win_yuv2yuv->phy->name.mask) \
61 			vop_reg_set(vop, &win_yuv2yuv->phy->name, win_yuv2yuv->base, ~0, v, #name); \
62 	} while (0)
63 
64 #define VOP_INTR_SET_MASK(vop, name, mask, v) \
65 		vop_reg_set(vop, &vop->data->intr->name, 0, mask, v, #name)
66 
67 #define VOP_REG_SET(vop, group, name, v) \
68 		    vop_reg_set(vop, &vop->data->group->name, 0, ~0, v, #name)
69 
70 #define VOP_INTR_SET_TYPE(vop, name, type, v) \
71 	do { \
72 		int i, reg = 0, mask = 0; \
73 		for (i = 0; i < vop->data->intr->nintrs; i++) { \
74 			if (vop->data->intr->intrs[i] & type) { \
75 				reg |= (v) << i; \
76 				mask |= 1 << i; \
77 			} \
78 		} \
79 		VOP_INTR_SET_MASK(vop, name, mask, reg); \
80 	} while (0)
81 #define VOP_INTR_GET_TYPE(vop, name, type) \
82 		vop_get_intr_type(vop, &vop->data->intr->name, type)
83 
84 #define VOP_WIN_GET(vop, win, name) \
85 		vop_read_reg(vop, win->base, &win->phy->name)
86 
87 #define VOP_WIN_HAS_REG(win, name) \
88 	(!!(win->phy->name.mask))
89 
90 #define VOP_WIN_GET_YRGBADDR(vop, win) \
91 		vop_readl(vop, win->base + win->phy->yrgb_mst.offset)
92 
93 #define VOP_WIN_TO_INDEX(vop_win) \
94 	((vop_win) - (vop_win)->vop->win)
95 
96 #define VOP_AFBC_SET(vop, name, v) \
97 	do { \
98 		if ((vop)->data->afbc) \
99 			vop_reg_set((vop), &(vop)->data->afbc->name, \
100 				    0, ~0, v, #name); \
101 	} while (0)
102 
103 #define to_vop(x) container_of(x, struct vop, crtc)
104 #define to_vop_win(x) container_of(x, struct vop_win, base)
105 
106 #define AFBC_FMT_RGB565		0x0
107 #define AFBC_FMT_U8U8U8U8	0x5
108 #define AFBC_FMT_U8U8U8		0x4
109 
110 #define AFBC_TILE_16x16		BIT(4)
111 
112 /*
113  * The coefficients of the following matrix are all fixed points.
114  * The format is S2.10 for the 3x3 part of the matrix, and S9.12 for the offsets.
115  * They are all represented in two's complement.
116  */
117 static const uint32_t bt601_yuv2rgb[] = {
118 	0x4A8, 0x0,    0x662,
119 	0x4A8, 0x1E6F, 0x1CBF,
120 	0x4A8, 0x812,  0x0,
121 	0x321168, 0x0877CF, 0x2EB127
122 };
123 
124 enum vop_pending {
125 	VOP_PENDING_FB_UNREF,
126 };
127 
128 struct vop_win {
129 	struct drm_plane base;
130 	const struct vop_win_data *data;
131 	const struct vop_win_yuv2yuv_data *yuv2yuv_data;
132 	struct vop *vop;
133 };
134 
135 struct rockchip_rgb;
136 struct vop {
137 	struct drm_crtc crtc;
138 	struct device *dev;
139 	struct drm_device *drm_dev;
140 	bool is_enabled;
141 
142 	struct completion dsp_hold_completion;
143 	unsigned int win_enabled;
144 
145 	/* protected by dev->event_lock */
146 	struct drm_pending_vblank_event *event;
147 
148 	struct drm_flip_work fb_unref_work;
149 	unsigned long pending;
150 
151 	struct completion line_flag_completion;
152 
153 	const struct vop_data *data;
154 
155 	uint32_t *regsbak;
156 	void __iomem *regs;
157 	void __iomem *lut_regs;
158 
159 	/* physical map length of vop register */
160 	uint32_t len;
161 
162 	/* one time only one process allowed to config the register */
163 	spinlock_t reg_lock;
164 	/* lock vop irq reg */
165 	spinlock_t irq_lock;
166 	/* protects crtc enable/disable */
167 	struct mutex vop_lock;
168 
169 	unsigned int irq;
170 
171 	/* vop AHP clk */
172 	struct clk *hclk;
173 	/* vop dclk */
174 	struct clk *dclk;
175 	/* vop share memory frequency */
176 	struct clk *aclk;
177 
178 	/* vop dclk reset */
179 	struct reset_control *dclk_rst;
180 
181 	/* optional internal rgb encoder */
182 	struct rockchip_rgb *rgb;
183 
184 	struct vop_win win[];
185 };
186 
187 static inline void vop_writel(struct vop *vop, uint32_t offset, uint32_t v)
188 {
189 	writel(v, vop->regs + offset);
190 	vop->regsbak[offset >> 2] = v;
191 }
192 
193 static inline uint32_t vop_readl(struct vop *vop, uint32_t offset)
194 {
195 	return readl(vop->regs + offset);
196 }
197 
198 static inline uint32_t vop_read_reg(struct vop *vop, uint32_t base,
199 				    const struct vop_reg *reg)
200 {
201 	return (vop_readl(vop, base + reg->offset) >> reg->shift) & reg->mask;
202 }
203 
204 static void vop_reg_set(struct vop *vop, const struct vop_reg *reg,
205 			uint32_t _offset, uint32_t _mask, uint32_t v,
206 			const char *reg_name)
207 {
208 	int offset, mask, shift;
209 
210 	if (!reg || !reg->mask) {
211 		DRM_DEV_DEBUG(vop->dev, "Warning: not support %s\n", reg_name);
212 		return;
213 	}
214 
215 	offset = reg->offset + _offset;
216 	mask = reg->mask & _mask;
217 	shift = reg->shift;
218 
219 	if (reg->write_mask) {
220 		v = ((v << shift) & 0xffff) | (mask << (shift + 16));
221 	} else {
222 		uint32_t cached_val = vop->regsbak[offset >> 2];
223 
224 		v = (cached_val & ~(mask << shift)) | ((v & mask) << shift);
225 		vop->regsbak[offset >> 2] = v;
226 	}
227 
228 	if (reg->relaxed)
229 		writel_relaxed(v, vop->regs + offset);
230 	else
231 		writel(v, vop->regs + offset);
232 }
233 
234 static inline uint32_t vop_get_intr_type(struct vop *vop,
235 					 const struct vop_reg *reg, int type)
236 {
237 	uint32_t i, ret = 0;
238 	uint32_t regs = vop_read_reg(vop, 0, reg);
239 
240 	for (i = 0; i < vop->data->intr->nintrs; i++) {
241 		if ((type & vop->data->intr->intrs[i]) && (regs & 1 << i))
242 			ret |= vop->data->intr->intrs[i];
243 	}
244 
245 	return ret;
246 }
247 
248 static inline void vop_cfg_done(struct vop *vop)
249 {
250 	VOP_REG_SET(vop, common, cfg_done, 1);
251 }
252 
253 static bool has_rb_swapped(uint32_t format)
254 {
255 	switch (format) {
256 	case DRM_FORMAT_XBGR8888:
257 	case DRM_FORMAT_ABGR8888:
258 	case DRM_FORMAT_BGR888:
259 	case DRM_FORMAT_BGR565:
260 		return true;
261 	default:
262 		return false;
263 	}
264 }
265 
266 static bool has_uv_swapped(uint32_t format)
267 {
268 	switch (format) {
269 	case DRM_FORMAT_NV21:
270 	case DRM_FORMAT_NV61:
271 	case DRM_FORMAT_NV42:
272 		return true;
273 	default:
274 		return false;
275 	}
276 }
277 
278 static enum vop_data_format vop_convert_format(uint32_t format)
279 {
280 	switch (format) {
281 	case DRM_FORMAT_XRGB8888:
282 	case DRM_FORMAT_ARGB8888:
283 	case DRM_FORMAT_XBGR8888:
284 	case DRM_FORMAT_ABGR8888:
285 		return VOP_FMT_ARGB8888;
286 	case DRM_FORMAT_RGB888:
287 	case DRM_FORMAT_BGR888:
288 		return VOP_FMT_RGB888;
289 	case DRM_FORMAT_RGB565:
290 	case DRM_FORMAT_BGR565:
291 		return VOP_FMT_RGB565;
292 	case DRM_FORMAT_NV12:
293 	case DRM_FORMAT_NV21:
294 		return VOP_FMT_YUV420SP;
295 	case DRM_FORMAT_NV16:
296 	case DRM_FORMAT_NV61:
297 		return VOP_FMT_YUV422SP;
298 	case DRM_FORMAT_NV24:
299 	case DRM_FORMAT_NV42:
300 		return VOP_FMT_YUV444SP;
301 	default:
302 		DRM_ERROR("unsupported format[%08x]\n", format);
303 		return -EINVAL;
304 	}
305 }
306 
307 static int vop_convert_afbc_format(uint32_t format)
308 {
309 	switch (format) {
310 	case DRM_FORMAT_XRGB8888:
311 	case DRM_FORMAT_ARGB8888:
312 	case DRM_FORMAT_XBGR8888:
313 	case DRM_FORMAT_ABGR8888:
314 		return AFBC_FMT_U8U8U8U8;
315 	case DRM_FORMAT_RGB888:
316 	case DRM_FORMAT_BGR888:
317 		return AFBC_FMT_U8U8U8;
318 	case DRM_FORMAT_RGB565:
319 	case DRM_FORMAT_BGR565:
320 		return AFBC_FMT_RGB565;
321 	/* either of the below should not be reachable */
322 	default:
323 		DRM_WARN_ONCE("unsupported AFBC format[%08x]\n", format);
324 		return -EINVAL;
325 	}
326 
327 	return -EINVAL;
328 }
329 
330 static uint16_t scl_vop_cal_scale(enum scale_mode mode, uint32_t src,
331 				  uint32_t dst, bool is_horizontal,
332 				  int vsu_mode, int *vskiplines)
333 {
334 	uint16_t val = 1 << SCL_FT_DEFAULT_FIXPOINT_SHIFT;
335 
336 	if (vskiplines)
337 		*vskiplines = 0;
338 
339 	if (is_horizontal) {
340 		if (mode == SCALE_UP)
341 			val = GET_SCL_FT_BIC(src, dst);
342 		else if (mode == SCALE_DOWN)
343 			val = GET_SCL_FT_BILI_DN(src, dst);
344 	} else {
345 		if (mode == SCALE_UP) {
346 			if (vsu_mode == SCALE_UP_BIL)
347 				val = GET_SCL_FT_BILI_UP(src, dst);
348 			else
349 				val = GET_SCL_FT_BIC(src, dst);
350 		} else if (mode == SCALE_DOWN) {
351 			if (vskiplines) {
352 				*vskiplines = scl_get_vskiplines(src, dst);
353 				val = scl_get_bili_dn_vskip(src, dst,
354 							    *vskiplines);
355 			} else {
356 				val = GET_SCL_FT_BILI_DN(src, dst);
357 			}
358 		}
359 	}
360 
361 	return val;
362 }
363 
364 static void scl_vop_cal_scl_fac(struct vop *vop, const struct vop_win_data *win,
365 			     uint32_t src_w, uint32_t src_h, uint32_t dst_w,
366 			     uint32_t dst_h, const struct drm_format_info *info)
367 {
368 	uint16_t yrgb_hor_scl_mode, yrgb_ver_scl_mode;
369 	uint16_t cbcr_hor_scl_mode = SCALE_NONE;
370 	uint16_t cbcr_ver_scl_mode = SCALE_NONE;
371 	bool is_yuv = false;
372 	uint16_t cbcr_src_w = src_w / info->hsub;
373 	uint16_t cbcr_src_h = src_h / info->vsub;
374 	uint16_t vsu_mode;
375 	uint16_t lb_mode;
376 	uint32_t val;
377 	int vskiplines;
378 
379 	if (info->is_yuv)
380 		is_yuv = true;
381 
382 	if (dst_w > 3840) {
383 		DRM_DEV_ERROR(vop->dev, "Maximum dst width (3840) exceeded\n");
384 		return;
385 	}
386 
387 	if (!win->phy->scl->ext) {
388 		VOP_SCL_SET(vop, win, scale_yrgb_x,
389 			    scl_cal_scale2(src_w, dst_w));
390 		VOP_SCL_SET(vop, win, scale_yrgb_y,
391 			    scl_cal_scale2(src_h, dst_h));
392 		if (is_yuv) {
393 			VOP_SCL_SET(vop, win, scale_cbcr_x,
394 				    scl_cal_scale2(cbcr_src_w, dst_w));
395 			VOP_SCL_SET(vop, win, scale_cbcr_y,
396 				    scl_cal_scale2(cbcr_src_h, dst_h));
397 		}
398 		return;
399 	}
400 
401 	yrgb_hor_scl_mode = scl_get_scl_mode(src_w, dst_w);
402 	yrgb_ver_scl_mode = scl_get_scl_mode(src_h, dst_h);
403 
404 	if (is_yuv) {
405 		cbcr_hor_scl_mode = scl_get_scl_mode(cbcr_src_w, dst_w);
406 		cbcr_ver_scl_mode = scl_get_scl_mode(cbcr_src_h, dst_h);
407 		if (cbcr_hor_scl_mode == SCALE_DOWN)
408 			lb_mode = scl_vop_cal_lb_mode(dst_w, true);
409 		else
410 			lb_mode = scl_vop_cal_lb_mode(cbcr_src_w, true);
411 	} else {
412 		if (yrgb_hor_scl_mode == SCALE_DOWN)
413 			lb_mode = scl_vop_cal_lb_mode(dst_w, false);
414 		else
415 			lb_mode = scl_vop_cal_lb_mode(src_w, false);
416 	}
417 
418 	VOP_SCL_SET_EXT(vop, win, lb_mode, lb_mode);
419 	if (lb_mode == LB_RGB_3840X2) {
420 		if (yrgb_ver_scl_mode != SCALE_NONE) {
421 			DRM_DEV_ERROR(vop->dev, "not allow yrgb ver scale\n");
422 			return;
423 		}
424 		if (cbcr_ver_scl_mode != SCALE_NONE) {
425 			DRM_DEV_ERROR(vop->dev, "not allow cbcr ver scale\n");
426 			return;
427 		}
428 		vsu_mode = SCALE_UP_BIL;
429 	} else if (lb_mode == LB_RGB_2560X4) {
430 		vsu_mode = SCALE_UP_BIL;
431 	} else {
432 		vsu_mode = SCALE_UP_BIC;
433 	}
434 
435 	val = scl_vop_cal_scale(yrgb_hor_scl_mode, src_w, dst_w,
436 				true, 0, NULL);
437 	VOP_SCL_SET(vop, win, scale_yrgb_x, val);
438 	val = scl_vop_cal_scale(yrgb_ver_scl_mode, src_h, dst_h,
439 				false, vsu_mode, &vskiplines);
440 	VOP_SCL_SET(vop, win, scale_yrgb_y, val);
441 
442 	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt4, vskiplines == 4);
443 	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt2, vskiplines == 2);
444 
445 	VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, yrgb_hor_scl_mode);
446 	VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, yrgb_ver_scl_mode);
447 	VOP_SCL_SET_EXT(vop, win, yrgb_hsd_mode, SCALE_DOWN_BIL);
448 	VOP_SCL_SET_EXT(vop, win, yrgb_vsd_mode, SCALE_DOWN_BIL);
449 	VOP_SCL_SET_EXT(vop, win, yrgb_vsu_mode, vsu_mode);
450 	if (is_yuv) {
451 		val = scl_vop_cal_scale(cbcr_hor_scl_mode, cbcr_src_w,
452 					dst_w, true, 0, NULL);
453 		VOP_SCL_SET(vop, win, scale_cbcr_x, val);
454 		val = scl_vop_cal_scale(cbcr_ver_scl_mode, cbcr_src_h,
455 					dst_h, false, vsu_mode, &vskiplines);
456 		VOP_SCL_SET(vop, win, scale_cbcr_y, val);
457 
458 		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt4, vskiplines == 4);
459 		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt2, vskiplines == 2);
460 		VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, cbcr_hor_scl_mode);
461 		VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, cbcr_ver_scl_mode);
462 		VOP_SCL_SET_EXT(vop, win, cbcr_hsd_mode, SCALE_DOWN_BIL);
463 		VOP_SCL_SET_EXT(vop, win, cbcr_vsd_mode, SCALE_DOWN_BIL);
464 		VOP_SCL_SET_EXT(vop, win, cbcr_vsu_mode, vsu_mode);
465 	}
466 }
467 
468 static void vop_dsp_hold_valid_irq_enable(struct vop *vop)
469 {
470 	unsigned long flags;
471 
472 	if (WARN_ON(!vop->is_enabled))
473 		return;
474 
475 	spin_lock_irqsave(&vop->irq_lock, flags);
476 
477 	VOP_INTR_SET_TYPE(vop, clear, DSP_HOLD_VALID_INTR, 1);
478 	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 1);
479 
480 	spin_unlock_irqrestore(&vop->irq_lock, flags);
481 }
482 
483 static void vop_dsp_hold_valid_irq_disable(struct vop *vop)
484 {
485 	unsigned long flags;
486 
487 	if (WARN_ON(!vop->is_enabled))
488 		return;
489 
490 	spin_lock_irqsave(&vop->irq_lock, flags);
491 
492 	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 0);
493 
494 	spin_unlock_irqrestore(&vop->irq_lock, flags);
495 }
496 
497 /*
498  * (1) each frame starts at the start of the Vsync pulse which is signaled by
499  *     the "FRAME_SYNC" interrupt.
500  * (2) the active data region of each frame ends at dsp_vact_end
501  * (3) we should program this same number (dsp_vact_end) into dsp_line_frag_num,
502  *      to get "LINE_FLAG" interrupt at the end of the active on screen data.
503  *
504  * VOP_INTR_CTRL0.dsp_line_frag_num = VOP_DSP_VACT_ST_END.dsp_vact_end
505  * Interrupts
506  * LINE_FLAG -------------------------------+
507  * FRAME_SYNC ----+                         |
508  *                |                         |
509  *                v                         v
510  *                | Vsync | Vbp |  Vactive  | Vfp |
511  *                        ^     ^           ^     ^
512  *                        |     |           |     |
513  *                        |     |           |     |
514  * dsp_vs_end ------------+     |           |     |   VOP_DSP_VTOTAL_VS_END
515  * dsp_vact_start --------------+           |     |   VOP_DSP_VACT_ST_END
516  * dsp_vact_end ----------------------------+     |   VOP_DSP_VACT_ST_END
517  * dsp_total -------------------------------------+   VOP_DSP_VTOTAL_VS_END
518  */
519 static bool vop_line_flag_irq_is_enabled(struct vop *vop)
520 {
521 	uint32_t line_flag_irq;
522 	unsigned long flags;
523 
524 	spin_lock_irqsave(&vop->irq_lock, flags);
525 
526 	line_flag_irq = VOP_INTR_GET_TYPE(vop, enable, LINE_FLAG_INTR);
527 
528 	spin_unlock_irqrestore(&vop->irq_lock, flags);
529 
530 	return !!line_flag_irq;
531 }
532 
533 static void vop_line_flag_irq_enable(struct vop *vop)
534 {
535 	unsigned long flags;
536 
537 	if (WARN_ON(!vop->is_enabled))
538 		return;
539 
540 	spin_lock_irqsave(&vop->irq_lock, flags);
541 
542 	VOP_INTR_SET_TYPE(vop, clear, LINE_FLAG_INTR, 1);
543 	VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 1);
544 
545 	spin_unlock_irqrestore(&vop->irq_lock, flags);
546 }
547 
548 static void vop_line_flag_irq_disable(struct vop *vop)
549 {
550 	unsigned long flags;
551 
552 	if (WARN_ON(!vop->is_enabled))
553 		return;
554 
555 	spin_lock_irqsave(&vop->irq_lock, flags);
556 
557 	VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 0);
558 
559 	spin_unlock_irqrestore(&vop->irq_lock, flags);
560 }
561 
562 static int vop_core_clks_enable(struct vop *vop)
563 {
564 	int ret;
565 
566 	ret = clk_enable(vop->hclk);
567 	if (ret < 0)
568 		return ret;
569 
570 	ret = clk_enable(vop->aclk);
571 	if (ret < 0)
572 		goto err_disable_hclk;
573 
574 	return 0;
575 
576 err_disable_hclk:
577 	clk_disable(vop->hclk);
578 	return ret;
579 }
580 
581 static void vop_core_clks_disable(struct vop *vop)
582 {
583 	clk_disable(vop->aclk);
584 	clk_disable(vop->hclk);
585 }
586 
587 static void vop_win_disable(struct vop *vop, const struct vop_win *vop_win)
588 {
589 	const struct vop_win_data *win = vop_win->data;
590 
591 	if (win->phy->scl && win->phy->scl->ext) {
592 		VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, SCALE_NONE);
593 		VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, SCALE_NONE);
594 		VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, SCALE_NONE);
595 		VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, SCALE_NONE);
596 	}
597 
598 	VOP_WIN_SET(vop, win, enable, 0);
599 	vop->win_enabled &= ~BIT(VOP_WIN_TO_INDEX(vop_win));
600 }
601 
602 static int vop_enable(struct drm_crtc *crtc, struct drm_crtc_state *old_state)
603 {
604 	struct vop *vop = to_vop(crtc);
605 	int ret, i;
606 
607 	ret = pm_runtime_get_sync(vop->dev);
608 	if (ret < 0) {
609 		DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
610 		return ret;
611 	}
612 
613 	ret = vop_core_clks_enable(vop);
614 	if (WARN_ON(ret < 0))
615 		goto err_put_pm_runtime;
616 
617 	ret = clk_enable(vop->dclk);
618 	if (WARN_ON(ret < 0))
619 		goto err_disable_core;
620 
621 	/*
622 	 * Slave iommu shares power, irq and clock with vop.  It was associated
623 	 * automatically with this master device via common driver code.
624 	 * Now that we have enabled the clock we attach it to the shared drm
625 	 * mapping.
626 	 */
627 	ret = rockchip_drm_dma_attach_device(vop->drm_dev, vop->dev);
628 	if (ret) {
629 		DRM_DEV_ERROR(vop->dev,
630 			      "failed to attach dma mapping, %d\n", ret);
631 		goto err_disable_dclk;
632 	}
633 
634 	spin_lock(&vop->reg_lock);
635 	for (i = 0; i < vop->len; i += 4)
636 		writel_relaxed(vop->regsbak[i / 4], vop->regs + i);
637 
638 	/*
639 	 * We need to make sure that all windows are disabled before we
640 	 * enable the crtc. Otherwise we might try to scan from a destroyed
641 	 * buffer later.
642 	 *
643 	 * In the case of enable-after-PSR, we don't need to worry about this
644 	 * case since the buffer is guaranteed to be valid and disabling the
645 	 * window will result in screen glitches on PSR exit.
646 	 */
647 	if (!old_state || !old_state->self_refresh_active) {
648 		for (i = 0; i < vop->data->win_size; i++) {
649 			struct vop_win *vop_win = &vop->win[i];
650 
651 			vop_win_disable(vop, vop_win);
652 		}
653 	}
654 
655 	if (vop->data->afbc) {
656 		struct rockchip_crtc_state *s;
657 		/*
658 		 * Disable AFBC and forget there was a vop window with AFBC
659 		 */
660 		VOP_AFBC_SET(vop, enable, 0);
661 		s = to_rockchip_crtc_state(crtc->state);
662 		s->enable_afbc = false;
663 	}
664 
665 	vop_cfg_done(vop);
666 
667 	spin_unlock(&vop->reg_lock);
668 
669 	/*
670 	 * At here, vop clock & iommu is enable, R/W vop regs would be safe.
671 	 */
672 	vop->is_enabled = true;
673 
674 	spin_lock(&vop->reg_lock);
675 
676 	VOP_REG_SET(vop, common, standby, 1);
677 
678 	spin_unlock(&vop->reg_lock);
679 
680 	drm_crtc_vblank_on(crtc);
681 
682 	return 0;
683 
684 err_disable_dclk:
685 	clk_disable(vop->dclk);
686 err_disable_core:
687 	vop_core_clks_disable(vop);
688 err_put_pm_runtime:
689 	pm_runtime_put_sync(vop->dev);
690 	return ret;
691 }
692 
693 static void rockchip_drm_set_win_enabled(struct drm_crtc *crtc, bool enabled)
694 {
695         struct vop *vop = to_vop(crtc);
696         int i;
697 
698         spin_lock(&vop->reg_lock);
699 
700         for (i = 0; i < vop->data->win_size; i++) {
701                 struct vop_win *vop_win = &vop->win[i];
702                 const struct vop_win_data *win = vop_win->data;
703 
704                 VOP_WIN_SET(vop, win, enable,
705                             enabled && (vop->win_enabled & BIT(i)));
706         }
707         vop_cfg_done(vop);
708 
709         spin_unlock(&vop->reg_lock);
710 }
711 
712 static void vop_crtc_atomic_disable(struct drm_crtc *crtc,
713 				    struct drm_atomic_state *state)
714 {
715 	struct vop *vop = to_vop(crtc);
716 
717 	WARN_ON(vop->event);
718 
719 	if (crtc->state->self_refresh_active)
720 		rockchip_drm_set_win_enabled(crtc, false);
721 
722 	mutex_lock(&vop->vop_lock);
723 
724 	drm_crtc_vblank_off(crtc);
725 
726 	if (crtc->state->self_refresh_active)
727 		goto out;
728 
729 	/*
730 	 * Vop standby will take effect at end of current frame,
731 	 * if dsp hold valid irq happen, it means standby complete.
732 	 *
733 	 * we must wait standby complete when we want to disable aclk,
734 	 * if not, memory bus maybe dead.
735 	 */
736 	reinit_completion(&vop->dsp_hold_completion);
737 	vop_dsp_hold_valid_irq_enable(vop);
738 
739 	spin_lock(&vop->reg_lock);
740 
741 	VOP_REG_SET(vop, common, standby, 1);
742 
743 	spin_unlock(&vop->reg_lock);
744 
745 	if (!wait_for_completion_timeout(&vop->dsp_hold_completion,
746 					 msecs_to_jiffies(200)))
747 		WARN(1, "%s: timed out waiting for DSP hold", crtc->name);
748 
749 	vop_dsp_hold_valid_irq_disable(vop);
750 
751 	vop->is_enabled = false;
752 
753 	/*
754 	 * vop standby complete, so iommu detach is safe.
755 	 */
756 	rockchip_drm_dma_detach_device(vop->drm_dev, vop->dev);
757 
758 	clk_disable(vop->dclk);
759 	vop_core_clks_disable(vop);
760 	pm_runtime_put(vop->dev);
761 
762 out:
763 	mutex_unlock(&vop->vop_lock);
764 
765 	if (crtc->state->event && !crtc->state->active) {
766 		spin_lock_irq(&crtc->dev->event_lock);
767 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
768 		spin_unlock_irq(&crtc->dev->event_lock);
769 
770 		crtc->state->event = NULL;
771 	}
772 }
773 
774 static void vop_plane_destroy(struct drm_plane *plane)
775 {
776 	drm_plane_cleanup(plane);
777 }
778 
779 static inline bool rockchip_afbc(u64 modifier)
780 {
781 	return modifier == ROCKCHIP_AFBC_MOD;
782 }
783 
784 static bool rockchip_mod_supported(struct drm_plane *plane,
785 				   u32 format, u64 modifier)
786 {
787 	if (modifier == DRM_FORMAT_MOD_LINEAR)
788 		return true;
789 
790 	if (!rockchip_afbc(modifier)) {
791 		DRM_DEBUG_KMS("Unsupported format modifier 0x%llx\n", modifier);
792 
793 		return false;
794 	}
795 
796 	return vop_convert_afbc_format(format) >= 0;
797 }
798 
799 static int vop_plane_atomic_check(struct drm_plane *plane,
800 			   struct drm_atomic_state *state)
801 {
802 	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
803 										 plane);
804 	struct drm_crtc *crtc = new_plane_state->crtc;
805 	struct drm_crtc_state *crtc_state;
806 	struct drm_framebuffer *fb = new_plane_state->fb;
807 	struct vop_win *vop_win = to_vop_win(plane);
808 	const struct vop_win_data *win = vop_win->data;
809 	int ret;
810 	int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
811 					DRM_PLANE_NO_SCALING;
812 	int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
813 					DRM_PLANE_NO_SCALING;
814 
815 	if (!crtc || WARN_ON(!fb))
816 		return 0;
817 
818 	crtc_state = drm_atomic_get_existing_crtc_state(state,
819 							crtc);
820 	if (WARN_ON(!crtc_state))
821 		return -EINVAL;
822 
823 	ret = drm_atomic_helper_check_plane_state(new_plane_state, crtc_state,
824 						  min_scale, max_scale,
825 						  true, true);
826 	if (ret)
827 		return ret;
828 
829 	if (!new_plane_state->visible)
830 		return 0;
831 
832 	ret = vop_convert_format(fb->format->format);
833 	if (ret < 0)
834 		return ret;
835 
836 	/*
837 	 * Src.x1 can be odd when do clip, but yuv plane start point
838 	 * need align with 2 pixel.
839 	 */
840 	if (fb->format->is_yuv && ((new_plane_state->src.x1 >> 16) % 2)) {
841 		DRM_ERROR("Invalid Source: Yuv format not support odd xpos\n");
842 		return -EINVAL;
843 	}
844 
845 	if (fb->format->is_yuv && new_plane_state->rotation & DRM_MODE_REFLECT_Y) {
846 		DRM_ERROR("Invalid Source: Yuv format does not support this rotation\n");
847 		return -EINVAL;
848 	}
849 
850 	if (rockchip_afbc(fb->modifier)) {
851 		struct vop *vop = to_vop(crtc);
852 
853 		if (!vop->data->afbc) {
854 			DRM_ERROR("vop does not support AFBC\n");
855 			return -EINVAL;
856 		}
857 
858 		ret = vop_convert_afbc_format(fb->format->format);
859 		if (ret < 0)
860 			return ret;
861 
862 		if (new_plane_state->src.x1 || new_plane_state->src.y1) {
863 			DRM_ERROR("AFBC does not support offset display, xpos=%d, ypos=%d, offset=%d\n",
864 				  new_plane_state->src.x1,
865 				  new_plane_state->src.y1, fb->offsets[0]);
866 			return -EINVAL;
867 		}
868 
869 		if (new_plane_state->rotation && new_plane_state->rotation != DRM_MODE_ROTATE_0) {
870 			DRM_ERROR("No rotation support in AFBC, rotation=%d\n",
871 				  new_plane_state->rotation);
872 			return -EINVAL;
873 		}
874 	}
875 
876 	return 0;
877 }
878 
879 static void vop_plane_atomic_disable(struct drm_plane *plane,
880 				     struct drm_atomic_state *state)
881 {
882 	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
883 									   plane);
884 	struct vop_win *vop_win = to_vop_win(plane);
885 	struct vop *vop = to_vop(old_state->crtc);
886 
887 	if (!old_state->crtc)
888 		return;
889 
890 	spin_lock(&vop->reg_lock);
891 
892 	vop_win_disable(vop, vop_win);
893 
894 	spin_unlock(&vop->reg_lock);
895 }
896 
897 static void vop_plane_atomic_update(struct drm_plane *plane,
898 		struct drm_atomic_state *state)
899 {
900 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
901 									   plane);
902 	struct drm_crtc *crtc = new_state->crtc;
903 	struct vop_win *vop_win = to_vop_win(plane);
904 	const struct vop_win_data *win = vop_win->data;
905 	const struct vop_win_yuv2yuv_data *win_yuv2yuv = vop_win->yuv2yuv_data;
906 	struct vop *vop = to_vop(new_state->crtc);
907 	struct drm_framebuffer *fb = new_state->fb;
908 	unsigned int actual_w, actual_h;
909 	unsigned int dsp_stx, dsp_sty;
910 	uint32_t act_info, dsp_info, dsp_st;
911 	struct drm_rect *src = &new_state->src;
912 	struct drm_rect *dest = &new_state->dst;
913 	struct drm_gem_object *obj, *uv_obj;
914 	struct rockchip_gem_object *rk_obj, *rk_uv_obj;
915 	unsigned long offset;
916 	dma_addr_t dma_addr;
917 	uint32_t val;
918 	bool rb_swap, uv_swap;
919 	int win_index = VOP_WIN_TO_INDEX(vop_win);
920 	int format;
921 	int is_yuv = fb->format->is_yuv;
922 	int i;
923 
924 	/*
925 	 * can't update plane when vop is disabled.
926 	 */
927 	if (WARN_ON(!crtc))
928 		return;
929 
930 	if (WARN_ON(!vop->is_enabled))
931 		return;
932 
933 	if (!new_state->visible) {
934 		vop_plane_atomic_disable(plane, state);
935 		return;
936 	}
937 
938 	obj = fb->obj[0];
939 	rk_obj = to_rockchip_obj(obj);
940 
941 	actual_w = drm_rect_width(src) >> 16;
942 	actual_h = drm_rect_height(src) >> 16;
943 	act_info = (actual_h - 1) << 16 | ((actual_w - 1) & 0xffff);
944 
945 	dsp_info = (drm_rect_height(dest) - 1) << 16;
946 	dsp_info |= (drm_rect_width(dest) - 1) & 0xffff;
947 
948 	dsp_stx = dest->x1 + crtc->mode.htotal - crtc->mode.hsync_start;
949 	dsp_sty = dest->y1 + crtc->mode.vtotal - crtc->mode.vsync_start;
950 	dsp_st = dsp_sty << 16 | (dsp_stx & 0xffff);
951 
952 	offset = (src->x1 >> 16) * fb->format->cpp[0];
953 	offset += (src->y1 >> 16) * fb->pitches[0];
954 	dma_addr = rk_obj->dma_addr + offset + fb->offsets[0];
955 
956 	/*
957 	 * For y-mirroring we need to move address
958 	 * to the beginning of the last line.
959 	 */
960 	if (new_state->rotation & DRM_MODE_REFLECT_Y)
961 		dma_addr += (actual_h - 1) * fb->pitches[0];
962 
963 	format = vop_convert_format(fb->format->format);
964 
965 	spin_lock(&vop->reg_lock);
966 
967 	if (rockchip_afbc(fb->modifier)) {
968 		int afbc_format = vop_convert_afbc_format(fb->format->format);
969 
970 		VOP_AFBC_SET(vop, format, afbc_format | AFBC_TILE_16x16);
971 		VOP_AFBC_SET(vop, hreg_block_split, 0);
972 		VOP_AFBC_SET(vop, win_sel, VOP_WIN_TO_INDEX(vop_win));
973 		VOP_AFBC_SET(vop, hdr_ptr, dma_addr);
974 		VOP_AFBC_SET(vop, pic_size, act_info);
975 	}
976 
977 	VOP_WIN_SET(vop, win, format, format);
978 	VOP_WIN_SET(vop, win, yrgb_vir, DIV_ROUND_UP(fb->pitches[0], 4));
979 	VOP_WIN_SET(vop, win, yrgb_mst, dma_addr);
980 	VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, y2r_en, is_yuv);
981 	VOP_WIN_SET(vop, win, y_mir_en,
982 		    (new_state->rotation & DRM_MODE_REFLECT_Y) ? 1 : 0);
983 	VOP_WIN_SET(vop, win, x_mir_en,
984 		    (new_state->rotation & DRM_MODE_REFLECT_X) ? 1 : 0);
985 
986 	if (is_yuv) {
987 		int hsub = fb->format->hsub;
988 		int vsub = fb->format->vsub;
989 		int bpp = fb->format->cpp[1];
990 
991 		uv_obj = fb->obj[1];
992 		rk_uv_obj = to_rockchip_obj(uv_obj);
993 
994 		offset = (src->x1 >> 16) * bpp / hsub;
995 		offset += (src->y1 >> 16) * fb->pitches[1] / vsub;
996 
997 		dma_addr = rk_uv_obj->dma_addr + offset + fb->offsets[1];
998 		VOP_WIN_SET(vop, win, uv_vir, DIV_ROUND_UP(fb->pitches[1], 4));
999 		VOP_WIN_SET(vop, win, uv_mst, dma_addr);
1000 
1001 		for (i = 0; i < NUM_YUV2YUV_COEFFICIENTS; i++) {
1002 			VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop,
1003 							win_yuv2yuv,
1004 							y2r_coefficients[i],
1005 							bt601_yuv2rgb[i]);
1006 		}
1007 
1008 		uv_swap = has_uv_swapped(fb->format->format);
1009 		VOP_WIN_SET(vop, win, uv_swap, uv_swap);
1010 	}
1011 
1012 	if (win->phy->scl)
1013 		scl_vop_cal_scl_fac(vop, win, actual_w, actual_h,
1014 				    drm_rect_width(dest), drm_rect_height(dest),
1015 				    fb->format);
1016 
1017 	VOP_WIN_SET(vop, win, act_info, act_info);
1018 	VOP_WIN_SET(vop, win, dsp_info, dsp_info);
1019 	VOP_WIN_SET(vop, win, dsp_st, dsp_st);
1020 
1021 	rb_swap = has_rb_swapped(fb->format->format);
1022 	VOP_WIN_SET(vop, win, rb_swap, rb_swap);
1023 
1024 	/*
1025 	 * Blending win0 with the background color doesn't seem to work
1026 	 * correctly. We only get the background color, no matter the contents
1027 	 * of the win0 framebuffer.  However, blending pre-multiplied color
1028 	 * with the default opaque black default background color is a no-op,
1029 	 * so we can just disable blending to get the correct result.
1030 	 */
1031 	if (fb->format->has_alpha && win_index > 0) {
1032 		VOP_WIN_SET(vop, win, dst_alpha_ctl,
1033 			    DST_FACTOR_M0(ALPHA_SRC_INVERSE));
1034 		val = SRC_ALPHA_EN(1) | SRC_COLOR_M0(ALPHA_SRC_PRE_MUL) |
1035 			SRC_ALPHA_M0(ALPHA_STRAIGHT) |
1036 			SRC_BLEND_M0(ALPHA_PER_PIX) |
1037 			SRC_ALPHA_CAL_M0(ALPHA_NO_SATURATION) |
1038 			SRC_FACTOR_M0(ALPHA_ONE);
1039 		VOP_WIN_SET(vop, win, src_alpha_ctl, val);
1040 
1041 		VOP_WIN_SET(vop, win, alpha_pre_mul, ALPHA_SRC_PRE_MUL);
1042 		VOP_WIN_SET(vop, win, alpha_mode, ALPHA_PER_PIX);
1043 		VOP_WIN_SET(vop, win, alpha_en, 1);
1044 	} else {
1045 		VOP_WIN_SET(vop, win, src_alpha_ctl, SRC_ALPHA_EN(0));
1046 		VOP_WIN_SET(vop, win, alpha_en, 0);
1047 	}
1048 
1049 	VOP_WIN_SET(vop, win, enable, 1);
1050 	vop->win_enabled |= BIT(win_index);
1051 	spin_unlock(&vop->reg_lock);
1052 }
1053 
1054 static int vop_plane_atomic_async_check(struct drm_plane *plane,
1055 					struct drm_atomic_state *state)
1056 {
1057 	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1058 										 plane);
1059 	struct vop_win *vop_win = to_vop_win(plane);
1060 	const struct vop_win_data *win = vop_win->data;
1061 	int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
1062 					DRM_PLANE_NO_SCALING;
1063 	int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
1064 					DRM_PLANE_NO_SCALING;
1065 	struct drm_crtc_state *crtc_state;
1066 
1067 	if (plane != new_plane_state->crtc->cursor)
1068 		return -EINVAL;
1069 
1070 	if (!plane->state)
1071 		return -EINVAL;
1072 
1073 	if (!plane->state->fb)
1074 		return -EINVAL;
1075 
1076 	if (state)
1077 		crtc_state = drm_atomic_get_existing_crtc_state(state,
1078 								new_plane_state->crtc);
1079 	else /* Special case for asynchronous cursor updates. */
1080 		crtc_state = plane->crtc->state;
1081 
1082 	return drm_atomic_helper_check_plane_state(plane->state, crtc_state,
1083 						   min_scale, max_scale,
1084 						   true, true);
1085 }
1086 
1087 static void vop_plane_atomic_async_update(struct drm_plane *plane,
1088 					  struct drm_atomic_state *state)
1089 {
1090 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
1091 									   plane);
1092 	struct vop *vop = to_vop(plane->state->crtc);
1093 	struct drm_framebuffer *old_fb = plane->state->fb;
1094 
1095 	plane->state->crtc_x = new_state->crtc_x;
1096 	plane->state->crtc_y = new_state->crtc_y;
1097 	plane->state->crtc_h = new_state->crtc_h;
1098 	plane->state->crtc_w = new_state->crtc_w;
1099 	plane->state->src_x = new_state->src_x;
1100 	plane->state->src_y = new_state->src_y;
1101 	plane->state->src_h = new_state->src_h;
1102 	plane->state->src_w = new_state->src_w;
1103 	swap(plane->state->fb, new_state->fb);
1104 
1105 	if (vop->is_enabled) {
1106 		vop_plane_atomic_update(plane, state);
1107 		spin_lock(&vop->reg_lock);
1108 		vop_cfg_done(vop);
1109 		spin_unlock(&vop->reg_lock);
1110 
1111 		/*
1112 		 * A scanout can still be occurring, so we can't drop the
1113 		 * reference to the old framebuffer. To solve this we get a
1114 		 * reference to old_fb and set a worker to release it later.
1115 		 * FIXME: if we perform 500 async_update calls before the
1116 		 * vblank, then we can have 500 different framebuffers waiting
1117 		 * to be released.
1118 		 */
1119 		if (old_fb && plane->state->fb != old_fb) {
1120 			drm_framebuffer_get(old_fb);
1121 			WARN_ON(drm_crtc_vblank_get(plane->state->crtc) != 0);
1122 			drm_flip_work_queue(&vop->fb_unref_work, old_fb);
1123 			set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1124 		}
1125 	}
1126 }
1127 
1128 static const struct drm_plane_helper_funcs plane_helper_funcs = {
1129 	.atomic_check = vop_plane_atomic_check,
1130 	.atomic_update = vop_plane_atomic_update,
1131 	.atomic_disable = vop_plane_atomic_disable,
1132 	.atomic_async_check = vop_plane_atomic_async_check,
1133 	.atomic_async_update = vop_plane_atomic_async_update,
1134 };
1135 
1136 static const struct drm_plane_funcs vop_plane_funcs = {
1137 	.update_plane	= drm_atomic_helper_update_plane,
1138 	.disable_plane	= drm_atomic_helper_disable_plane,
1139 	.destroy = vop_plane_destroy,
1140 	.reset = drm_atomic_helper_plane_reset,
1141 	.atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state,
1142 	.atomic_destroy_state = drm_atomic_helper_plane_destroy_state,
1143 	.format_mod_supported = rockchip_mod_supported,
1144 };
1145 
1146 static int vop_crtc_enable_vblank(struct drm_crtc *crtc)
1147 {
1148 	struct vop *vop = to_vop(crtc);
1149 	unsigned long flags;
1150 
1151 	if (WARN_ON(!vop->is_enabled))
1152 		return -EPERM;
1153 
1154 	spin_lock_irqsave(&vop->irq_lock, flags);
1155 
1156 	VOP_INTR_SET_TYPE(vop, clear, FS_INTR, 1);
1157 	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 1);
1158 
1159 	spin_unlock_irqrestore(&vop->irq_lock, flags);
1160 
1161 	return 0;
1162 }
1163 
1164 static void vop_crtc_disable_vblank(struct drm_crtc *crtc)
1165 {
1166 	struct vop *vop = to_vop(crtc);
1167 	unsigned long flags;
1168 
1169 	if (WARN_ON(!vop->is_enabled))
1170 		return;
1171 
1172 	spin_lock_irqsave(&vop->irq_lock, flags);
1173 
1174 	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 0);
1175 
1176 	spin_unlock_irqrestore(&vop->irq_lock, flags);
1177 }
1178 
1179 static bool vop_crtc_mode_fixup(struct drm_crtc *crtc,
1180 				const struct drm_display_mode *mode,
1181 				struct drm_display_mode *adjusted_mode)
1182 {
1183 	struct vop *vop = to_vop(crtc);
1184 	unsigned long rate;
1185 
1186 	/*
1187 	 * Clock craziness.
1188 	 *
1189 	 * Key points:
1190 	 *
1191 	 * - DRM works in in kHz.
1192 	 * - Clock framework works in Hz.
1193 	 * - Rockchip's clock driver picks the clock rate that is the
1194 	 *   same _OR LOWER_ than the one requested.
1195 	 *
1196 	 * Action plan:
1197 	 *
1198 	 * 1. Try to set the exact rate first, and confirm the clock framework
1199 	 *    can provide it.
1200 	 *
1201 	 * 2. If the clock framework cannot provide the exact rate, we should
1202 	 *    add 999 Hz to the requested rate.  That way if the clock we need
1203 	 *    is 60000001 Hz (~60 MHz) and DRM tells us to make 60000 kHz then
1204 	 *    the clock framework will actually give us the right clock.
1205 	 *
1206 	 * 3. Get the clock framework to round the rate for us to tell us
1207 	 *    what it will actually make.
1208 	 *
1209 	 * 4. Store the rounded up rate so that we don't need to worry about
1210 	 *    this in the actual clk_set_rate().
1211 	 */
1212 	rate = clk_round_rate(vop->dclk, adjusted_mode->clock * 1000);
1213 	if (rate / 1000 != adjusted_mode->clock)
1214 		rate = clk_round_rate(vop->dclk,
1215 				      adjusted_mode->clock * 1000 + 999);
1216 	adjusted_mode->clock = DIV_ROUND_UP(rate, 1000);
1217 
1218 	return true;
1219 }
1220 
1221 static bool vop_dsp_lut_is_enabled(struct vop *vop)
1222 {
1223 	return vop_read_reg(vop, 0, &vop->data->common->dsp_lut_en);
1224 }
1225 
1226 static void vop_crtc_write_gamma_lut(struct vop *vop, struct drm_crtc *crtc)
1227 {
1228 	struct drm_color_lut *lut = crtc->state->gamma_lut->data;
1229 	unsigned int i;
1230 
1231 	for (i = 0; i < crtc->gamma_size; i++) {
1232 		u32 word;
1233 
1234 		word = (drm_color_lut_extract(lut[i].red, 10) << 20) |
1235 		       (drm_color_lut_extract(lut[i].green, 10) << 10) |
1236 			drm_color_lut_extract(lut[i].blue, 10);
1237 		writel(word, vop->lut_regs + i * 4);
1238 	}
1239 }
1240 
1241 static void vop_crtc_gamma_set(struct vop *vop, struct drm_crtc *crtc,
1242 			       struct drm_crtc_state *old_state)
1243 {
1244 	struct drm_crtc_state *state = crtc->state;
1245 	unsigned int idle;
1246 	int ret;
1247 
1248 	if (!vop->lut_regs)
1249 		return;
1250 	/*
1251 	 * To disable gamma (gamma_lut is null) or to write
1252 	 * an update to the LUT, clear dsp_lut_en.
1253 	 */
1254 	spin_lock(&vop->reg_lock);
1255 	VOP_REG_SET(vop, common, dsp_lut_en, 0);
1256 	vop_cfg_done(vop);
1257 	spin_unlock(&vop->reg_lock);
1258 
1259 	/*
1260 	 * In order to write the LUT to the internal memory,
1261 	 * we need to first make sure the dsp_lut_en bit is cleared.
1262 	 */
1263 	ret = readx_poll_timeout(vop_dsp_lut_is_enabled, vop,
1264 				 idle, !idle, 5, 30 * 1000);
1265 	if (ret) {
1266 		DRM_DEV_ERROR(vop->dev, "display LUT RAM enable timeout!\n");
1267 		return;
1268 	}
1269 
1270 	if (!state->gamma_lut)
1271 		return;
1272 
1273 	spin_lock(&vop->reg_lock);
1274 	vop_crtc_write_gamma_lut(vop, crtc);
1275 	VOP_REG_SET(vop, common, dsp_lut_en, 1);
1276 	vop_cfg_done(vop);
1277 	spin_unlock(&vop->reg_lock);
1278 }
1279 
1280 static void vop_crtc_atomic_begin(struct drm_crtc *crtc,
1281 				  struct drm_atomic_state *state)
1282 {
1283 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1284 									  crtc);
1285 	struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1286 									      crtc);
1287 	struct vop *vop = to_vop(crtc);
1288 
1289 	/*
1290 	 * Only update GAMMA if the 'active' flag is not changed,
1291 	 * otherwise it's updated by .atomic_enable.
1292 	 */
1293 	if (crtc_state->color_mgmt_changed &&
1294 	    !crtc_state->active_changed)
1295 		vop_crtc_gamma_set(vop, crtc, old_crtc_state);
1296 }
1297 
1298 static void vop_crtc_atomic_enable(struct drm_crtc *crtc,
1299 				   struct drm_atomic_state *state)
1300 {
1301 	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
1302 									 crtc);
1303 	struct vop *vop = to_vop(crtc);
1304 	const struct vop_data *vop_data = vop->data;
1305 	struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc->state);
1306 	struct drm_display_mode *adjusted_mode = &crtc->state->adjusted_mode;
1307 	u16 hsync_len = adjusted_mode->hsync_end - adjusted_mode->hsync_start;
1308 	u16 hdisplay = adjusted_mode->hdisplay;
1309 	u16 htotal = adjusted_mode->htotal;
1310 	u16 hact_st = adjusted_mode->htotal - adjusted_mode->hsync_start;
1311 	u16 hact_end = hact_st + hdisplay;
1312 	u16 vdisplay = adjusted_mode->vdisplay;
1313 	u16 vtotal = adjusted_mode->vtotal;
1314 	u16 vsync_len = adjusted_mode->vsync_end - adjusted_mode->vsync_start;
1315 	u16 vact_st = adjusted_mode->vtotal - adjusted_mode->vsync_start;
1316 	u16 vact_end = vact_st + vdisplay;
1317 	uint32_t pin_pol, val;
1318 	int dither_bpc = s->output_bpc ? s->output_bpc : 10;
1319 	int ret;
1320 
1321 	if (old_state && old_state->self_refresh_active) {
1322 		drm_crtc_vblank_on(crtc);
1323 		rockchip_drm_set_win_enabled(crtc, true);
1324 		return;
1325 	}
1326 
1327 	/*
1328 	 * If we have a GAMMA LUT in the state, then let's make sure
1329 	 * it's updated. We might be coming out of suspend,
1330 	 * which means the LUT internal memory needs to be re-written.
1331 	 */
1332 	if (crtc->state->gamma_lut)
1333 		vop_crtc_gamma_set(vop, crtc, old_state);
1334 
1335 	mutex_lock(&vop->vop_lock);
1336 
1337 	WARN_ON(vop->event);
1338 
1339 	ret = vop_enable(crtc, old_state);
1340 	if (ret) {
1341 		mutex_unlock(&vop->vop_lock);
1342 		DRM_DEV_ERROR(vop->dev, "Failed to enable vop (%d)\n", ret);
1343 		return;
1344 	}
1345 	pin_pol = (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) ?
1346 		   BIT(HSYNC_POSITIVE) : 0;
1347 	pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) ?
1348 		   BIT(VSYNC_POSITIVE) : 0;
1349 	VOP_REG_SET(vop, output, pin_pol, pin_pol);
1350 	VOP_REG_SET(vop, output, mipi_dual_channel_en, 0);
1351 
1352 	switch (s->output_type) {
1353 	case DRM_MODE_CONNECTOR_LVDS:
1354 		VOP_REG_SET(vop, output, rgb_dclk_pol, 1);
1355 		VOP_REG_SET(vop, output, rgb_pin_pol, pin_pol);
1356 		VOP_REG_SET(vop, output, rgb_en, 1);
1357 		break;
1358 	case DRM_MODE_CONNECTOR_eDP:
1359 		VOP_REG_SET(vop, output, edp_dclk_pol, 1);
1360 		VOP_REG_SET(vop, output, edp_pin_pol, pin_pol);
1361 		VOP_REG_SET(vop, output, edp_en, 1);
1362 		break;
1363 	case DRM_MODE_CONNECTOR_HDMIA:
1364 		VOP_REG_SET(vop, output, hdmi_dclk_pol, 1);
1365 		VOP_REG_SET(vop, output, hdmi_pin_pol, pin_pol);
1366 		VOP_REG_SET(vop, output, hdmi_en, 1);
1367 		break;
1368 	case DRM_MODE_CONNECTOR_DSI:
1369 		VOP_REG_SET(vop, output, mipi_dclk_pol, 1);
1370 		VOP_REG_SET(vop, output, mipi_pin_pol, pin_pol);
1371 		VOP_REG_SET(vop, output, mipi_en, 1);
1372 		VOP_REG_SET(vop, output, mipi_dual_channel_en,
1373 			    !!(s->output_flags & ROCKCHIP_OUTPUT_DSI_DUAL));
1374 		break;
1375 	case DRM_MODE_CONNECTOR_DisplayPort:
1376 		VOP_REG_SET(vop, output, dp_dclk_pol, 0);
1377 		VOP_REG_SET(vop, output, dp_pin_pol, pin_pol);
1378 		VOP_REG_SET(vop, output, dp_en, 1);
1379 		break;
1380 	default:
1381 		DRM_DEV_ERROR(vop->dev, "unsupported connector_type [%d]\n",
1382 			      s->output_type);
1383 	}
1384 
1385 	/*
1386 	 * if vop is not support RGB10 output, need force RGB10 to RGB888.
1387 	 */
1388 	if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA &&
1389 	    !(vop_data->feature & VOP_FEATURE_OUTPUT_RGB10))
1390 		s->output_mode = ROCKCHIP_OUT_MODE_P888;
1391 
1392 	if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA && dither_bpc <= 8)
1393 		VOP_REG_SET(vop, common, pre_dither_down, 1);
1394 	else
1395 		VOP_REG_SET(vop, common, pre_dither_down, 0);
1396 
1397 	if (dither_bpc == 6) {
1398 		VOP_REG_SET(vop, common, dither_down_sel, DITHER_DOWN_ALLEGRO);
1399 		VOP_REG_SET(vop, common, dither_down_mode, RGB888_TO_RGB666);
1400 		VOP_REG_SET(vop, common, dither_down_en, 1);
1401 	} else {
1402 		VOP_REG_SET(vop, common, dither_down_en, 0);
1403 	}
1404 
1405 	VOP_REG_SET(vop, common, out_mode, s->output_mode);
1406 
1407 	VOP_REG_SET(vop, modeset, htotal_pw, (htotal << 16) | hsync_len);
1408 	val = hact_st << 16;
1409 	val |= hact_end;
1410 	VOP_REG_SET(vop, modeset, hact_st_end, val);
1411 	VOP_REG_SET(vop, modeset, hpost_st_end, val);
1412 
1413 	VOP_REG_SET(vop, modeset, vtotal_pw, (vtotal << 16) | vsync_len);
1414 	val = vact_st << 16;
1415 	val |= vact_end;
1416 	VOP_REG_SET(vop, modeset, vact_st_end, val);
1417 	VOP_REG_SET(vop, modeset, vpost_st_end, val);
1418 
1419 	VOP_REG_SET(vop, intr, line_flag_num[0], vact_end);
1420 
1421 	clk_set_rate(vop->dclk, adjusted_mode->clock * 1000);
1422 
1423 	VOP_REG_SET(vop, common, standby, 0);
1424 	mutex_unlock(&vop->vop_lock);
1425 }
1426 
1427 static bool vop_fs_irq_is_pending(struct vop *vop)
1428 {
1429 	return VOP_INTR_GET_TYPE(vop, status, FS_INTR);
1430 }
1431 
1432 static void vop_wait_for_irq_handler(struct vop *vop)
1433 {
1434 	bool pending;
1435 	int ret;
1436 
1437 	/*
1438 	 * Spin until frame start interrupt status bit goes low, which means
1439 	 * that interrupt handler was invoked and cleared it. The timeout of
1440 	 * 10 msecs is really too long, but it is just a safety measure if
1441 	 * something goes really wrong. The wait will only happen in the very
1442 	 * unlikely case of a vblank happening exactly at the same time and
1443 	 * shouldn't exceed microseconds range.
1444 	 */
1445 	ret = readx_poll_timeout_atomic(vop_fs_irq_is_pending, vop, pending,
1446 					!pending, 0, 10 * 1000);
1447 	if (ret)
1448 		DRM_DEV_ERROR(vop->dev, "VOP vblank IRQ stuck for 10 ms\n");
1449 
1450 	synchronize_irq(vop->irq);
1451 }
1452 
1453 static int vop_crtc_atomic_check(struct drm_crtc *crtc,
1454 				 struct drm_atomic_state *state)
1455 {
1456 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1457 									  crtc);
1458 	struct vop *vop = to_vop(crtc);
1459 	struct drm_plane *plane;
1460 	struct drm_plane_state *plane_state;
1461 	struct rockchip_crtc_state *s;
1462 	int afbc_planes = 0;
1463 
1464 	if (vop->lut_regs && crtc_state->color_mgmt_changed &&
1465 	    crtc_state->gamma_lut) {
1466 		unsigned int len;
1467 
1468 		len = drm_color_lut_size(crtc_state->gamma_lut);
1469 		if (len != crtc->gamma_size) {
1470 			DRM_DEBUG_KMS("Invalid LUT size; got %d, expected %d\n",
1471 				      len, crtc->gamma_size);
1472 			return -EINVAL;
1473 		}
1474 	}
1475 
1476 	drm_atomic_crtc_state_for_each_plane(plane, crtc_state) {
1477 		plane_state =
1478 			drm_atomic_get_plane_state(crtc_state->state, plane);
1479 		if (IS_ERR(plane_state)) {
1480 			DRM_DEBUG_KMS("Cannot get plane state for plane %s\n",
1481 				      plane->name);
1482 			return PTR_ERR(plane_state);
1483 		}
1484 
1485 		if (drm_is_afbc(plane_state->fb->modifier))
1486 			++afbc_planes;
1487 	}
1488 
1489 	if (afbc_planes > 1) {
1490 		DRM_DEBUG_KMS("Invalid number of AFBC planes; got %d, expected at most 1\n", afbc_planes);
1491 		return -EINVAL;
1492 	}
1493 
1494 	s = to_rockchip_crtc_state(crtc_state);
1495 	s->enable_afbc = afbc_planes > 0;
1496 
1497 	return 0;
1498 }
1499 
1500 static void vop_crtc_atomic_flush(struct drm_crtc *crtc,
1501 				  struct drm_atomic_state *state)
1502 {
1503 	struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1504 									      crtc);
1505 	struct drm_atomic_state *old_state = old_crtc_state->state;
1506 	struct drm_plane_state *old_plane_state, *new_plane_state;
1507 	struct vop *vop = to_vop(crtc);
1508 	struct drm_plane *plane;
1509 	struct rockchip_crtc_state *s;
1510 	int i;
1511 
1512 	if (WARN_ON(!vop->is_enabled))
1513 		return;
1514 
1515 	spin_lock(&vop->reg_lock);
1516 
1517 	/* Enable AFBC if there is some AFBC window, disable otherwise. */
1518 	s = to_rockchip_crtc_state(crtc->state);
1519 	VOP_AFBC_SET(vop, enable, s->enable_afbc);
1520 	vop_cfg_done(vop);
1521 
1522 	spin_unlock(&vop->reg_lock);
1523 
1524 	/*
1525 	 * There is a (rather unlikely) possiblity that a vblank interrupt
1526 	 * fired before we set the cfg_done bit. To avoid spuriously
1527 	 * signalling flip completion we need to wait for it to finish.
1528 	 */
1529 	vop_wait_for_irq_handler(vop);
1530 
1531 	spin_lock_irq(&crtc->dev->event_lock);
1532 	if (crtc->state->event) {
1533 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1534 		WARN_ON(vop->event);
1535 
1536 		vop->event = crtc->state->event;
1537 		crtc->state->event = NULL;
1538 	}
1539 	spin_unlock_irq(&crtc->dev->event_lock);
1540 
1541 	for_each_oldnew_plane_in_state(old_state, plane, old_plane_state,
1542 				       new_plane_state, i) {
1543 		if (!old_plane_state->fb)
1544 			continue;
1545 
1546 		if (old_plane_state->fb == new_plane_state->fb)
1547 			continue;
1548 
1549 		drm_framebuffer_get(old_plane_state->fb);
1550 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1551 		drm_flip_work_queue(&vop->fb_unref_work, old_plane_state->fb);
1552 		set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1553 	}
1554 }
1555 
1556 static const struct drm_crtc_helper_funcs vop_crtc_helper_funcs = {
1557 	.mode_fixup = vop_crtc_mode_fixup,
1558 	.atomic_check = vop_crtc_atomic_check,
1559 	.atomic_begin = vop_crtc_atomic_begin,
1560 	.atomic_flush = vop_crtc_atomic_flush,
1561 	.atomic_enable = vop_crtc_atomic_enable,
1562 	.atomic_disable = vop_crtc_atomic_disable,
1563 };
1564 
1565 static void vop_crtc_destroy(struct drm_crtc *crtc)
1566 {
1567 	drm_crtc_cleanup(crtc);
1568 }
1569 
1570 static struct drm_crtc_state *vop_crtc_duplicate_state(struct drm_crtc *crtc)
1571 {
1572 	struct rockchip_crtc_state *rockchip_state;
1573 
1574 	if (WARN_ON(!crtc->state))
1575 		return NULL;
1576 
1577 	rockchip_state = kzalloc(sizeof(*rockchip_state), GFP_KERNEL);
1578 	if (!rockchip_state)
1579 		return NULL;
1580 
1581 	__drm_atomic_helper_crtc_duplicate_state(crtc, &rockchip_state->base);
1582 	return &rockchip_state->base;
1583 }
1584 
1585 static void vop_crtc_destroy_state(struct drm_crtc *crtc,
1586 				   struct drm_crtc_state *state)
1587 {
1588 	struct rockchip_crtc_state *s = to_rockchip_crtc_state(state);
1589 
1590 	__drm_atomic_helper_crtc_destroy_state(&s->base);
1591 	kfree(s);
1592 }
1593 
1594 static void vop_crtc_reset(struct drm_crtc *crtc)
1595 {
1596 	struct rockchip_crtc_state *crtc_state =
1597 		kzalloc(sizeof(*crtc_state), GFP_KERNEL);
1598 
1599 	if (crtc->state)
1600 		vop_crtc_destroy_state(crtc, crtc->state);
1601 
1602 	__drm_atomic_helper_crtc_reset(crtc, &crtc_state->base);
1603 }
1604 
1605 #ifdef CONFIG_DRM_ANALOGIX_DP
1606 static struct drm_connector *vop_get_edp_connector(struct vop *vop)
1607 {
1608 	struct drm_connector *connector;
1609 	struct drm_connector_list_iter conn_iter;
1610 
1611 	drm_connector_list_iter_begin(vop->drm_dev, &conn_iter);
1612 	drm_for_each_connector_iter(connector, &conn_iter) {
1613 		if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) {
1614 			drm_connector_list_iter_end(&conn_iter);
1615 			return connector;
1616 		}
1617 	}
1618 	drm_connector_list_iter_end(&conn_iter);
1619 
1620 	return NULL;
1621 }
1622 
1623 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1624 				   const char *source_name)
1625 {
1626 	struct vop *vop = to_vop(crtc);
1627 	struct drm_connector *connector;
1628 	int ret;
1629 
1630 	connector = vop_get_edp_connector(vop);
1631 	if (!connector)
1632 		return -EINVAL;
1633 
1634 	if (source_name && strcmp(source_name, "auto") == 0)
1635 		ret = analogix_dp_start_crc(connector);
1636 	else if (!source_name)
1637 		ret = analogix_dp_stop_crc(connector);
1638 	else
1639 		ret = -EINVAL;
1640 
1641 	return ret;
1642 }
1643 
1644 static int
1645 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1646 			   size_t *values_cnt)
1647 {
1648 	if (source_name && strcmp(source_name, "auto") != 0)
1649 		return -EINVAL;
1650 
1651 	*values_cnt = 3;
1652 	return 0;
1653 }
1654 
1655 #else
1656 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1657 				   const char *source_name)
1658 {
1659 	return -ENODEV;
1660 }
1661 
1662 static int
1663 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1664 			   size_t *values_cnt)
1665 {
1666 	return -ENODEV;
1667 }
1668 #endif
1669 
1670 static const struct drm_crtc_funcs vop_crtc_funcs = {
1671 	.set_config = drm_atomic_helper_set_config,
1672 	.page_flip = drm_atomic_helper_page_flip,
1673 	.destroy = vop_crtc_destroy,
1674 	.reset = vop_crtc_reset,
1675 	.atomic_duplicate_state = vop_crtc_duplicate_state,
1676 	.atomic_destroy_state = vop_crtc_destroy_state,
1677 	.enable_vblank = vop_crtc_enable_vblank,
1678 	.disable_vblank = vop_crtc_disable_vblank,
1679 	.set_crc_source = vop_crtc_set_crc_source,
1680 	.verify_crc_source = vop_crtc_verify_crc_source,
1681 };
1682 
1683 static void vop_fb_unref_worker(struct drm_flip_work *work, void *val)
1684 {
1685 	struct vop *vop = container_of(work, struct vop, fb_unref_work);
1686 	struct drm_framebuffer *fb = val;
1687 
1688 	drm_crtc_vblank_put(&vop->crtc);
1689 	drm_framebuffer_put(fb);
1690 }
1691 
1692 static void vop_handle_vblank(struct vop *vop)
1693 {
1694 	struct drm_device *drm = vop->drm_dev;
1695 	struct drm_crtc *crtc = &vop->crtc;
1696 
1697 	spin_lock(&drm->event_lock);
1698 	if (vop->event) {
1699 		drm_crtc_send_vblank_event(crtc, vop->event);
1700 		drm_crtc_vblank_put(crtc);
1701 		vop->event = NULL;
1702 	}
1703 	spin_unlock(&drm->event_lock);
1704 
1705 	if (test_and_clear_bit(VOP_PENDING_FB_UNREF, &vop->pending))
1706 		drm_flip_work_commit(&vop->fb_unref_work, system_unbound_wq);
1707 }
1708 
1709 static irqreturn_t vop_isr(int irq, void *data)
1710 {
1711 	struct vop *vop = data;
1712 	struct drm_crtc *crtc = &vop->crtc;
1713 	uint32_t active_irqs;
1714 	int ret = IRQ_NONE;
1715 
1716 	/*
1717 	 * The irq is shared with the iommu. If the runtime-pm state of the
1718 	 * vop-device is disabled the irq has to be targeted at the iommu.
1719 	 */
1720 	if (!pm_runtime_get_if_in_use(vop->dev))
1721 		return IRQ_NONE;
1722 
1723 	if (vop_core_clks_enable(vop)) {
1724 		DRM_DEV_ERROR_RATELIMITED(vop->dev, "couldn't enable clocks\n");
1725 		goto out;
1726 	}
1727 
1728 	/*
1729 	 * interrupt register has interrupt status, enable and clear bits, we
1730 	 * must hold irq_lock to avoid a race with enable/disable_vblank().
1731 	*/
1732 	spin_lock(&vop->irq_lock);
1733 
1734 	active_irqs = VOP_INTR_GET_TYPE(vop, status, INTR_MASK);
1735 	/* Clear all active interrupt sources */
1736 	if (active_irqs)
1737 		VOP_INTR_SET_TYPE(vop, clear, active_irqs, 1);
1738 
1739 	spin_unlock(&vop->irq_lock);
1740 
1741 	/* This is expected for vop iommu irqs, since the irq is shared */
1742 	if (!active_irqs)
1743 		goto out_disable;
1744 
1745 	if (active_irqs & DSP_HOLD_VALID_INTR) {
1746 		complete(&vop->dsp_hold_completion);
1747 		active_irqs &= ~DSP_HOLD_VALID_INTR;
1748 		ret = IRQ_HANDLED;
1749 	}
1750 
1751 	if (active_irqs & LINE_FLAG_INTR) {
1752 		complete(&vop->line_flag_completion);
1753 		active_irqs &= ~LINE_FLAG_INTR;
1754 		ret = IRQ_HANDLED;
1755 	}
1756 
1757 	if (active_irqs & FS_INTR) {
1758 		drm_crtc_handle_vblank(crtc);
1759 		vop_handle_vblank(vop);
1760 		active_irqs &= ~FS_INTR;
1761 		ret = IRQ_HANDLED;
1762 	}
1763 
1764 	/* Unhandled irqs are spurious. */
1765 	if (active_irqs)
1766 		DRM_DEV_ERROR(vop->dev, "Unknown VOP IRQs: %#02x\n",
1767 			      active_irqs);
1768 
1769 out_disable:
1770 	vop_core_clks_disable(vop);
1771 out:
1772 	pm_runtime_put(vop->dev);
1773 	return ret;
1774 }
1775 
1776 static void vop_plane_add_properties(struct drm_plane *plane,
1777 				     const struct vop_win_data *win_data)
1778 {
1779 	unsigned int flags = 0;
1780 
1781 	flags |= VOP_WIN_HAS_REG(win_data, x_mir_en) ? DRM_MODE_REFLECT_X : 0;
1782 	flags |= VOP_WIN_HAS_REG(win_data, y_mir_en) ? DRM_MODE_REFLECT_Y : 0;
1783 	if (flags)
1784 		drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
1785 						   DRM_MODE_ROTATE_0 | flags);
1786 }
1787 
1788 static int vop_create_crtc(struct vop *vop)
1789 {
1790 	const struct vop_data *vop_data = vop->data;
1791 	struct device *dev = vop->dev;
1792 	struct drm_device *drm_dev = vop->drm_dev;
1793 	struct drm_plane *primary = NULL, *cursor = NULL, *plane, *tmp;
1794 	struct drm_crtc *crtc = &vop->crtc;
1795 	struct device_node *port;
1796 	int ret;
1797 	int i;
1798 
1799 	/*
1800 	 * Create drm_plane for primary and cursor planes first, since we need
1801 	 * to pass them to drm_crtc_init_with_planes, which sets the
1802 	 * "possible_crtcs" to the newly initialized crtc.
1803 	 */
1804 	for (i = 0; i < vop_data->win_size; i++) {
1805 		struct vop_win *vop_win = &vop->win[i];
1806 		const struct vop_win_data *win_data = vop_win->data;
1807 
1808 		if (win_data->type != DRM_PLANE_TYPE_PRIMARY &&
1809 		    win_data->type != DRM_PLANE_TYPE_CURSOR)
1810 			continue;
1811 
1812 		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1813 					       0, &vop_plane_funcs,
1814 					       win_data->phy->data_formats,
1815 					       win_data->phy->nformats,
1816 					       win_data->phy->format_modifiers,
1817 					       win_data->type, NULL);
1818 		if (ret) {
1819 			DRM_DEV_ERROR(vop->dev, "failed to init plane %d\n",
1820 				      ret);
1821 			goto err_cleanup_planes;
1822 		}
1823 
1824 		plane = &vop_win->base;
1825 		drm_plane_helper_add(plane, &plane_helper_funcs);
1826 		vop_plane_add_properties(plane, win_data);
1827 		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
1828 			primary = plane;
1829 		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
1830 			cursor = plane;
1831 	}
1832 
1833 	ret = drm_crtc_init_with_planes(drm_dev, crtc, primary, cursor,
1834 					&vop_crtc_funcs, NULL);
1835 	if (ret)
1836 		goto err_cleanup_planes;
1837 
1838 	drm_crtc_helper_add(crtc, &vop_crtc_helper_funcs);
1839 	if (vop->lut_regs) {
1840 		drm_mode_crtc_set_gamma_size(crtc, vop_data->lut_size);
1841 		drm_crtc_enable_color_mgmt(crtc, 0, false, vop_data->lut_size);
1842 	}
1843 
1844 	/*
1845 	 * Create drm_planes for overlay windows with possible_crtcs restricted
1846 	 * to the newly created crtc.
1847 	 */
1848 	for (i = 0; i < vop_data->win_size; i++) {
1849 		struct vop_win *vop_win = &vop->win[i];
1850 		const struct vop_win_data *win_data = vop_win->data;
1851 		unsigned long possible_crtcs = drm_crtc_mask(crtc);
1852 
1853 		if (win_data->type != DRM_PLANE_TYPE_OVERLAY)
1854 			continue;
1855 
1856 		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1857 					       possible_crtcs,
1858 					       &vop_plane_funcs,
1859 					       win_data->phy->data_formats,
1860 					       win_data->phy->nformats,
1861 					       win_data->phy->format_modifiers,
1862 					       win_data->type, NULL);
1863 		if (ret) {
1864 			DRM_DEV_ERROR(vop->dev, "failed to init overlay %d\n",
1865 				      ret);
1866 			goto err_cleanup_crtc;
1867 		}
1868 		drm_plane_helper_add(&vop_win->base, &plane_helper_funcs);
1869 		vop_plane_add_properties(&vop_win->base, win_data);
1870 	}
1871 
1872 	port = of_get_child_by_name(dev->of_node, "port");
1873 	if (!port) {
1874 		DRM_DEV_ERROR(vop->dev, "no port node found in %pOF\n",
1875 			      dev->of_node);
1876 		ret = -ENOENT;
1877 		goto err_cleanup_crtc;
1878 	}
1879 
1880 	drm_flip_work_init(&vop->fb_unref_work, "fb_unref",
1881 			   vop_fb_unref_worker);
1882 
1883 	init_completion(&vop->dsp_hold_completion);
1884 	init_completion(&vop->line_flag_completion);
1885 	crtc->port = port;
1886 
1887 	ret = drm_self_refresh_helper_init(crtc);
1888 	if (ret)
1889 		DRM_DEV_DEBUG_KMS(vop->dev,
1890 			"Failed to init %s with SR helpers %d, ignoring\n",
1891 			crtc->name, ret);
1892 
1893 	return 0;
1894 
1895 err_cleanup_crtc:
1896 	drm_crtc_cleanup(crtc);
1897 err_cleanup_planes:
1898 	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1899 				 head)
1900 		drm_plane_cleanup(plane);
1901 	return ret;
1902 }
1903 
1904 static void vop_destroy_crtc(struct vop *vop)
1905 {
1906 	struct drm_crtc *crtc = &vop->crtc;
1907 	struct drm_device *drm_dev = vop->drm_dev;
1908 	struct drm_plane *plane, *tmp;
1909 
1910 	drm_self_refresh_helper_cleanup(crtc);
1911 
1912 	of_node_put(crtc->port);
1913 
1914 	/*
1915 	 * We need to cleanup the planes now.  Why?
1916 	 *
1917 	 * The planes are "&vop->win[i].base".  That means the memory is
1918 	 * all part of the big "struct vop" chunk of memory.  That memory
1919 	 * was devm allocated and associated with this component.  We need to
1920 	 * free it ourselves before vop_unbind() finishes.
1921 	 */
1922 	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1923 				 head)
1924 		vop_plane_destroy(plane);
1925 
1926 	/*
1927 	 * Destroy CRTC after vop_plane_destroy() since vop_disable_plane()
1928 	 * references the CRTC.
1929 	 */
1930 	drm_crtc_cleanup(crtc);
1931 	drm_flip_work_cleanup(&vop->fb_unref_work);
1932 }
1933 
1934 static int vop_initial(struct vop *vop)
1935 {
1936 	struct reset_control *ahb_rst;
1937 	int i, ret;
1938 
1939 	vop->hclk = devm_clk_get(vop->dev, "hclk_vop");
1940 	if (IS_ERR(vop->hclk)) {
1941 		DRM_DEV_ERROR(vop->dev, "failed to get hclk source\n");
1942 		return PTR_ERR(vop->hclk);
1943 	}
1944 	vop->aclk = devm_clk_get(vop->dev, "aclk_vop");
1945 	if (IS_ERR(vop->aclk)) {
1946 		DRM_DEV_ERROR(vop->dev, "failed to get aclk source\n");
1947 		return PTR_ERR(vop->aclk);
1948 	}
1949 	vop->dclk = devm_clk_get(vop->dev, "dclk_vop");
1950 	if (IS_ERR(vop->dclk)) {
1951 		DRM_DEV_ERROR(vop->dev, "failed to get dclk source\n");
1952 		return PTR_ERR(vop->dclk);
1953 	}
1954 
1955 	ret = pm_runtime_get_sync(vop->dev);
1956 	if (ret < 0) {
1957 		DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
1958 		return ret;
1959 	}
1960 
1961 	ret = clk_prepare(vop->dclk);
1962 	if (ret < 0) {
1963 		DRM_DEV_ERROR(vop->dev, "failed to prepare dclk\n");
1964 		goto err_put_pm_runtime;
1965 	}
1966 
1967 	/* Enable both the hclk and aclk to setup the vop */
1968 	ret = clk_prepare_enable(vop->hclk);
1969 	if (ret < 0) {
1970 		DRM_DEV_ERROR(vop->dev, "failed to prepare/enable hclk\n");
1971 		goto err_unprepare_dclk;
1972 	}
1973 
1974 	ret = clk_prepare_enable(vop->aclk);
1975 	if (ret < 0) {
1976 		DRM_DEV_ERROR(vop->dev, "failed to prepare/enable aclk\n");
1977 		goto err_disable_hclk;
1978 	}
1979 
1980 	/*
1981 	 * do hclk_reset, reset all vop registers.
1982 	 */
1983 	ahb_rst = devm_reset_control_get(vop->dev, "ahb");
1984 	if (IS_ERR(ahb_rst)) {
1985 		DRM_DEV_ERROR(vop->dev, "failed to get ahb reset\n");
1986 		ret = PTR_ERR(ahb_rst);
1987 		goto err_disable_aclk;
1988 	}
1989 	reset_control_assert(ahb_rst);
1990 	usleep_range(10, 20);
1991 	reset_control_deassert(ahb_rst);
1992 
1993 	VOP_INTR_SET_TYPE(vop, clear, INTR_MASK, 1);
1994 	VOP_INTR_SET_TYPE(vop, enable, INTR_MASK, 0);
1995 
1996 	for (i = 0; i < vop->len; i += sizeof(u32))
1997 		vop->regsbak[i / 4] = readl_relaxed(vop->regs + i);
1998 
1999 	VOP_REG_SET(vop, misc, global_regdone_en, 1);
2000 	VOP_REG_SET(vop, common, dsp_blank, 0);
2001 
2002 	for (i = 0; i < vop->data->win_size; i++) {
2003 		struct vop_win *vop_win = &vop->win[i];
2004 		const struct vop_win_data *win = vop_win->data;
2005 		int channel = i * 2 + 1;
2006 
2007 		VOP_WIN_SET(vop, win, channel, (channel + 1) << 4 | channel);
2008 		vop_win_disable(vop, vop_win);
2009 		VOP_WIN_SET(vop, win, gate, 1);
2010 	}
2011 
2012 	vop_cfg_done(vop);
2013 
2014 	/*
2015 	 * do dclk_reset, let all config take affect.
2016 	 */
2017 	vop->dclk_rst = devm_reset_control_get(vop->dev, "dclk");
2018 	if (IS_ERR(vop->dclk_rst)) {
2019 		DRM_DEV_ERROR(vop->dev, "failed to get dclk reset\n");
2020 		ret = PTR_ERR(vop->dclk_rst);
2021 		goto err_disable_aclk;
2022 	}
2023 	reset_control_assert(vop->dclk_rst);
2024 	usleep_range(10, 20);
2025 	reset_control_deassert(vop->dclk_rst);
2026 
2027 	clk_disable(vop->hclk);
2028 	clk_disable(vop->aclk);
2029 
2030 	vop->is_enabled = false;
2031 
2032 	pm_runtime_put_sync(vop->dev);
2033 
2034 	return 0;
2035 
2036 err_disable_aclk:
2037 	clk_disable_unprepare(vop->aclk);
2038 err_disable_hclk:
2039 	clk_disable_unprepare(vop->hclk);
2040 err_unprepare_dclk:
2041 	clk_unprepare(vop->dclk);
2042 err_put_pm_runtime:
2043 	pm_runtime_put_sync(vop->dev);
2044 	return ret;
2045 }
2046 
2047 /*
2048  * Initialize the vop->win array elements.
2049  */
2050 static void vop_win_init(struct vop *vop)
2051 {
2052 	const struct vop_data *vop_data = vop->data;
2053 	unsigned int i;
2054 
2055 	for (i = 0; i < vop_data->win_size; i++) {
2056 		struct vop_win *vop_win = &vop->win[i];
2057 		const struct vop_win_data *win_data = &vop_data->win[i];
2058 
2059 		vop_win->data = win_data;
2060 		vop_win->vop = vop;
2061 
2062 		if (vop_data->win_yuv2yuv)
2063 			vop_win->yuv2yuv_data = &vop_data->win_yuv2yuv[i];
2064 	}
2065 }
2066 
2067 /**
2068  * rockchip_drm_wait_vact_end
2069  * @crtc: CRTC to enable line flag
2070  * @mstimeout: millisecond for timeout
2071  *
2072  * Wait for vact_end line flag irq or timeout.
2073  *
2074  * Returns:
2075  * Zero on success, negative errno on failure.
2076  */
2077 int rockchip_drm_wait_vact_end(struct drm_crtc *crtc, unsigned int mstimeout)
2078 {
2079 	struct vop *vop = to_vop(crtc);
2080 	unsigned long jiffies_left;
2081 	int ret = 0;
2082 
2083 	if (!crtc || !vop->is_enabled)
2084 		return -ENODEV;
2085 
2086 	mutex_lock(&vop->vop_lock);
2087 	if (mstimeout <= 0) {
2088 		ret = -EINVAL;
2089 		goto out;
2090 	}
2091 
2092 	if (vop_line_flag_irq_is_enabled(vop)) {
2093 		ret = -EBUSY;
2094 		goto out;
2095 	}
2096 
2097 	reinit_completion(&vop->line_flag_completion);
2098 	vop_line_flag_irq_enable(vop);
2099 
2100 	jiffies_left = wait_for_completion_timeout(&vop->line_flag_completion,
2101 						   msecs_to_jiffies(mstimeout));
2102 	vop_line_flag_irq_disable(vop);
2103 
2104 	if (jiffies_left == 0) {
2105 		DRM_DEV_ERROR(vop->dev, "Timeout waiting for IRQ\n");
2106 		ret = -ETIMEDOUT;
2107 		goto out;
2108 	}
2109 
2110 out:
2111 	mutex_unlock(&vop->vop_lock);
2112 	return ret;
2113 }
2114 EXPORT_SYMBOL(rockchip_drm_wait_vact_end);
2115 
2116 static int vop_bind(struct device *dev, struct device *master, void *data)
2117 {
2118 	struct platform_device *pdev = to_platform_device(dev);
2119 	const struct vop_data *vop_data;
2120 	struct drm_device *drm_dev = data;
2121 	struct vop *vop;
2122 	struct resource *res;
2123 	int ret, irq;
2124 
2125 	vop_data = of_device_get_match_data(dev);
2126 	if (!vop_data)
2127 		return -ENODEV;
2128 
2129 	/* Allocate vop struct and its vop_win array */
2130 	vop = devm_kzalloc(dev, struct_size(vop, win, vop_data->win_size),
2131 			   GFP_KERNEL);
2132 	if (!vop)
2133 		return -ENOMEM;
2134 
2135 	vop->dev = dev;
2136 	vop->data = vop_data;
2137 	vop->drm_dev = drm_dev;
2138 	dev_set_drvdata(dev, vop);
2139 
2140 	vop_win_init(vop);
2141 
2142 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2143 	vop->regs = devm_ioremap_resource(dev, res);
2144 	if (IS_ERR(vop->regs))
2145 		return PTR_ERR(vop->regs);
2146 	vop->len = resource_size(res);
2147 
2148 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2149 	if (res) {
2150 		if (!vop_data->lut_size) {
2151 			DRM_DEV_ERROR(dev, "no gamma LUT size defined\n");
2152 			return -EINVAL;
2153 		}
2154 		vop->lut_regs = devm_ioremap_resource(dev, res);
2155 		if (IS_ERR(vop->lut_regs))
2156 			return PTR_ERR(vop->lut_regs);
2157 	}
2158 
2159 	vop->regsbak = devm_kzalloc(dev, vop->len, GFP_KERNEL);
2160 	if (!vop->regsbak)
2161 		return -ENOMEM;
2162 
2163 	irq = platform_get_irq(pdev, 0);
2164 	if (irq < 0) {
2165 		DRM_DEV_ERROR(dev, "cannot find irq for vop\n");
2166 		return irq;
2167 	}
2168 	vop->irq = (unsigned int)irq;
2169 
2170 	spin_lock_init(&vop->reg_lock);
2171 	spin_lock_init(&vop->irq_lock);
2172 	mutex_init(&vop->vop_lock);
2173 
2174 	ret = vop_create_crtc(vop);
2175 	if (ret)
2176 		return ret;
2177 
2178 	pm_runtime_enable(&pdev->dev);
2179 
2180 	ret = vop_initial(vop);
2181 	if (ret < 0) {
2182 		DRM_DEV_ERROR(&pdev->dev,
2183 			      "cannot initial vop dev - err %d\n", ret);
2184 		goto err_disable_pm_runtime;
2185 	}
2186 
2187 	ret = devm_request_irq(dev, vop->irq, vop_isr,
2188 			       IRQF_SHARED, dev_name(dev), vop);
2189 	if (ret)
2190 		goto err_disable_pm_runtime;
2191 
2192 	if (vop->data->feature & VOP_FEATURE_INTERNAL_RGB) {
2193 		vop->rgb = rockchip_rgb_init(dev, &vop->crtc, vop->drm_dev);
2194 		if (IS_ERR(vop->rgb)) {
2195 			ret = PTR_ERR(vop->rgb);
2196 			goto err_disable_pm_runtime;
2197 		}
2198 	}
2199 
2200 	rockchip_drm_dma_init_device(drm_dev, dev);
2201 
2202 	return 0;
2203 
2204 err_disable_pm_runtime:
2205 	pm_runtime_disable(&pdev->dev);
2206 	vop_destroy_crtc(vop);
2207 	return ret;
2208 }
2209 
2210 static void vop_unbind(struct device *dev, struct device *master, void *data)
2211 {
2212 	struct vop *vop = dev_get_drvdata(dev);
2213 
2214 	if (vop->rgb)
2215 		rockchip_rgb_fini(vop->rgb);
2216 
2217 	pm_runtime_disable(dev);
2218 	vop_destroy_crtc(vop);
2219 
2220 	clk_unprepare(vop->aclk);
2221 	clk_unprepare(vop->hclk);
2222 	clk_unprepare(vop->dclk);
2223 }
2224 
2225 const struct component_ops vop_component_ops = {
2226 	.bind = vop_bind,
2227 	.unbind = vop_unbind,
2228 };
2229 EXPORT_SYMBOL_GPL(vop_component_ops);
2230