1 /*
2  * Copyright (C) Fuzhou Rockchip Electronics Co.Ltd
3  * Author:Mark Yao <mark.yao@rock-chips.com>
4  *
5  * This software is licensed under the terms of the GNU General Public
6  * License version 2, as published by the Free Software Foundation, and
7  * may be copied, distributed, and modified under those terms.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 
15 #include <drm/drm.h>
16 #include <drm/drmP.h>
17 #include <drm/drm_atomic.h>
18 #include <drm/drm_crtc.h>
19 #include <drm/drm_crtc_helper.h>
20 #include <drm/drm_flip_work.h>
21 #include <drm/drm_plane_helper.h>
22 #ifdef CONFIG_DRM_ANALOGIX_DP
23 #include <drm/bridge/analogix_dp.h>
24 #endif
25 
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/clk.h>
30 #include <linux/iopoll.h>
31 #include <linux/of.h>
32 #include <linux/of_device.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/component.h>
35 
36 #include <linux/reset.h>
37 #include <linux/delay.h>
38 
39 #include "rockchip_drm_drv.h"
40 #include "rockchip_drm_gem.h"
41 #include "rockchip_drm_fb.h"
42 #include "rockchip_drm_psr.h"
43 #include "rockchip_drm_vop.h"
44 
45 #define __REG_SET_RELAXED(x, off, mask, shift, v, write_mask) \
46 		vop_mask_write(x, off, mask, shift, v, write_mask, true)
47 
48 #define __REG_SET_NORMAL(x, off, mask, shift, v, write_mask) \
49 		vop_mask_write(x, off, mask, shift, v, write_mask, false)
50 
51 #define REG_SET(x, base, reg, v, mode) \
52 		__REG_SET_##mode(x, base + reg.offset, \
53 				 reg.mask, reg.shift, v, reg.write_mask)
54 #define REG_SET_MASK(x, base, reg, mask, v, mode) \
55 		__REG_SET_##mode(x, base + reg.offset, \
56 				 mask, reg.shift, v, reg.write_mask)
57 
58 #define VOP_WIN_SET(x, win, name, v) \
59 		REG_SET(x, win->base, win->phy->name, v, RELAXED)
60 #define VOP_SCL_SET(x, win, name, v) \
61 		REG_SET(x, win->base, win->phy->scl->name, v, RELAXED)
62 #define VOP_SCL_SET_EXT(x, win, name, v) \
63 		REG_SET(x, win->base, win->phy->scl->ext->name, v, RELAXED)
64 #define VOP_CTRL_SET(x, name, v) \
65 		REG_SET(x, 0, (x)->data->ctrl->name, v, NORMAL)
66 
67 #define VOP_INTR_GET(vop, name) \
68 		vop_read_reg(vop, 0, &vop->data->ctrl->name)
69 
70 #define VOP_INTR_SET(vop, name, mask, v) \
71 		REG_SET_MASK(vop, 0, vop->data->intr->name, mask, v, NORMAL)
72 #define VOP_INTR_SET_TYPE(vop, name, type, v) \
73 	do { \
74 		int i, reg = 0, mask = 0; \
75 		for (i = 0; i < vop->data->intr->nintrs; i++) { \
76 			if (vop->data->intr->intrs[i] & type) { \
77 				reg |= (v) << i; \
78 				mask |= 1 << i; \
79 			} \
80 		} \
81 		VOP_INTR_SET(vop, name, mask, reg); \
82 	} while (0)
83 #define VOP_INTR_GET_TYPE(vop, name, type) \
84 		vop_get_intr_type(vop, &vop->data->intr->name, type)
85 
86 #define VOP_WIN_GET(x, win, name) \
87 		vop_read_reg(x, win->base, &win->phy->name)
88 
89 #define VOP_WIN_GET_YRGBADDR(vop, win) \
90 		vop_readl(vop, win->base + win->phy->yrgb_mst.offset)
91 
92 #define to_vop(x) container_of(x, struct vop, crtc)
93 #define to_vop_win(x) container_of(x, struct vop_win, base)
94 
95 enum vop_pending {
96 	VOP_PENDING_FB_UNREF,
97 };
98 
99 struct vop_win {
100 	struct drm_plane base;
101 	const struct vop_win_data *data;
102 	struct vop *vop;
103 };
104 
105 struct vop {
106 	struct drm_crtc crtc;
107 	struct device *dev;
108 	struct drm_device *drm_dev;
109 	bool is_enabled;
110 
111 	/* mutex vsync_ work */
112 	struct mutex vsync_mutex;
113 	bool vsync_work_pending;
114 	struct completion dsp_hold_completion;
115 
116 	/* protected by dev->event_lock */
117 	struct drm_pending_vblank_event *event;
118 
119 	struct drm_flip_work fb_unref_work;
120 	unsigned long pending;
121 
122 	struct completion line_flag_completion;
123 
124 	const struct vop_data *data;
125 
126 	uint32_t *regsbak;
127 	void __iomem *regs;
128 
129 	/* physical map length of vop register */
130 	uint32_t len;
131 
132 	/* one time only one process allowed to config the register */
133 	spinlock_t reg_lock;
134 	/* lock vop irq reg */
135 	spinlock_t irq_lock;
136 
137 	unsigned int irq;
138 
139 	/* vop AHP clk */
140 	struct clk *hclk;
141 	/* vop dclk */
142 	struct clk *dclk;
143 	/* vop share memory frequency */
144 	struct clk *aclk;
145 
146 	/* vop dclk reset */
147 	struct reset_control *dclk_rst;
148 
149 	struct vop_win win[];
150 };
151 
152 static inline void vop_writel(struct vop *vop, uint32_t offset, uint32_t v)
153 {
154 	writel(v, vop->regs + offset);
155 	vop->regsbak[offset >> 2] = v;
156 }
157 
158 static inline uint32_t vop_readl(struct vop *vop, uint32_t offset)
159 {
160 	return readl(vop->regs + offset);
161 }
162 
163 static inline uint32_t vop_read_reg(struct vop *vop, uint32_t base,
164 				    const struct vop_reg *reg)
165 {
166 	return (vop_readl(vop, base + reg->offset) >> reg->shift) & reg->mask;
167 }
168 
169 static inline void vop_mask_write(struct vop *vop, uint32_t offset,
170 				  uint32_t mask, uint32_t shift, uint32_t v,
171 				  bool write_mask, bool relaxed)
172 {
173 	if (!mask)
174 		return;
175 
176 	if (write_mask) {
177 		v = ((v << shift) & 0xffff) | (mask << (shift + 16));
178 	} else {
179 		uint32_t cached_val = vop->regsbak[offset >> 2];
180 
181 		v = (cached_val & ~(mask << shift)) | ((v & mask) << shift);
182 		vop->regsbak[offset >> 2] = v;
183 	}
184 
185 	if (relaxed)
186 		writel_relaxed(v, vop->regs + offset);
187 	else
188 		writel(v, vop->regs + offset);
189 }
190 
191 static inline uint32_t vop_get_intr_type(struct vop *vop,
192 					 const struct vop_reg *reg, int type)
193 {
194 	uint32_t i, ret = 0;
195 	uint32_t regs = vop_read_reg(vop, 0, reg);
196 
197 	for (i = 0; i < vop->data->intr->nintrs; i++) {
198 		if ((type & vop->data->intr->intrs[i]) && (regs & 1 << i))
199 			ret |= vop->data->intr->intrs[i];
200 	}
201 
202 	return ret;
203 }
204 
205 static inline void vop_cfg_done(struct vop *vop)
206 {
207 	VOP_CTRL_SET(vop, cfg_done, 1);
208 }
209 
210 static bool has_rb_swapped(uint32_t format)
211 {
212 	switch (format) {
213 	case DRM_FORMAT_XBGR8888:
214 	case DRM_FORMAT_ABGR8888:
215 	case DRM_FORMAT_BGR888:
216 	case DRM_FORMAT_BGR565:
217 		return true;
218 	default:
219 		return false;
220 	}
221 }
222 
223 static enum vop_data_format vop_convert_format(uint32_t format)
224 {
225 	switch (format) {
226 	case DRM_FORMAT_XRGB8888:
227 	case DRM_FORMAT_ARGB8888:
228 	case DRM_FORMAT_XBGR8888:
229 	case DRM_FORMAT_ABGR8888:
230 		return VOP_FMT_ARGB8888;
231 	case DRM_FORMAT_RGB888:
232 	case DRM_FORMAT_BGR888:
233 		return VOP_FMT_RGB888;
234 	case DRM_FORMAT_RGB565:
235 	case DRM_FORMAT_BGR565:
236 		return VOP_FMT_RGB565;
237 	case DRM_FORMAT_NV12:
238 		return VOP_FMT_YUV420SP;
239 	case DRM_FORMAT_NV16:
240 		return VOP_FMT_YUV422SP;
241 	case DRM_FORMAT_NV24:
242 		return VOP_FMT_YUV444SP;
243 	default:
244 		DRM_ERROR("unsupported format[%08x]\n", format);
245 		return -EINVAL;
246 	}
247 }
248 
249 static bool is_yuv_support(uint32_t format)
250 {
251 	switch (format) {
252 	case DRM_FORMAT_NV12:
253 	case DRM_FORMAT_NV16:
254 	case DRM_FORMAT_NV24:
255 		return true;
256 	default:
257 		return false;
258 	}
259 }
260 
261 static bool is_alpha_support(uint32_t format)
262 {
263 	switch (format) {
264 	case DRM_FORMAT_ARGB8888:
265 	case DRM_FORMAT_ABGR8888:
266 		return true;
267 	default:
268 		return false;
269 	}
270 }
271 
272 static uint16_t scl_vop_cal_scale(enum scale_mode mode, uint32_t src,
273 				  uint32_t dst, bool is_horizontal,
274 				  int vsu_mode, int *vskiplines)
275 {
276 	uint16_t val = 1 << SCL_FT_DEFAULT_FIXPOINT_SHIFT;
277 
278 	if (is_horizontal) {
279 		if (mode == SCALE_UP)
280 			val = GET_SCL_FT_BIC(src, dst);
281 		else if (mode == SCALE_DOWN)
282 			val = GET_SCL_FT_BILI_DN(src, dst);
283 	} else {
284 		if (mode == SCALE_UP) {
285 			if (vsu_mode == SCALE_UP_BIL)
286 				val = GET_SCL_FT_BILI_UP(src, dst);
287 			else
288 				val = GET_SCL_FT_BIC(src, dst);
289 		} else if (mode == SCALE_DOWN) {
290 			if (vskiplines) {
291 				*vskiplines = scl_get_vskiplines(src, dst);
292 				val = scl_get_bili_dn_vskip(src, dst,
293 							    *vskiplines);
294 			} else {
295 				val = GET_SCL_FT_BILI_DN(src, dst);
296 			}
297 		}
298 	}
299 
300 	return val;
301 }
302 
303 static void scl_vop_cal_scl_fac(struct vop *vop, const struct vop_win_data *win,
304 			     uint32_t src_w, uint32_t src_h, uint32_t dst_w,
305 			     uint32_t dst_h, uint32_t pixel_format)
306 {
307 	uint16_t yrgb_hor_scl_mode, yrgb_ver_scl_mode;
308 	uint16_t cbcr_hor_scl_mode = SCALE_NONE;
309 	uint16_t cbcr_ver_scl_mode = SCALE_NONE;
310 	int hsub = drm_format_horz_chroma_subsampling(pixel_format);
311 	int vsub = drm_format_vert_chroma_subsampling(pixel_format);
312 	bool is_yuv = is_yuv_support(pixel_format);
313 	uint16_t cbcr_src_w = src_w / hsub;
314 	uint16_t cbcr_src_h = src_h / vsub;
315 	uint16_t vsu_mode;
316 	uint16_t lb_mode;
317 	uint32_t val;
318 	int vskiplines = 0;
319 
320 	if (dst_w > 3840) {
321 		DRM_DEV_ERROR(vop->dev, "Maximum dst width (3840) exceeded\n");
322 		return;
323 	}
324 
325 	if (!win->phy->scl->ext) {
326 		VOP_SCL_SET(vop, win, scale_yrgb_x,
327 			    scl_cal_scale2(src_w, dst_w));
328 		VOP_SCL_SET(vop, win, scale_yrgb_y,
329 			    scl_cal_scale2(src_h, dst_h));
330 		if (is_yuv) {
331 			VOP_SCL_SET(vop, win, scale_cbcr_x,
332 				    scl_cal_scale2(cbcr_src_w, dst_w));
333 			VOP_SCL_SET(vop, win, scale_cbcr_y,
334 				    scl_cal_scale2(cbcr_src_h, dst_h));
335 		}
336 		return;
337 	}
338 
339 	yrgb_hor_scl_mode = scl_get_scl_mode(src_w, dst_w);
340 	yrgb_ver_scl_mode = scl_get_scl_mode(src_h, dst_h);
341 
342 	if (is_yuv) {
343 		cbcr_hor_scl_mode = scl_get_scl_mode(cbcr_src_w, dst_w);
344 		cbcr_ver_scl_mode = scl_get_scl_mode(cbcr_src_h, dst_h);
345 		if (cbcr_hor_scl_mode == SCALE_DOWN)
346 			lb_mode = scl_vop_cal_lb_mode(dst_w, true);
347 		else
348 			lb_mode = scl_vop_cal_lb_mode(cbcr_src_w, true);
349 	} else {
350 		if (yrgb_hor_scl_mode == SCALE_DOWN)
351 			lb_mode = scl_vop_cal_lb_mode(dst_w, false);
352 		else
353 			lb_mode = scl_vop_cal_lb_mode(src_w, false);
354 	}
355 
356 	VOP_SCL_SET_EXT(vop, win, lb_mode, lb_mode);
357 	if (lb_mode == LB_RGB_3840X2) {
358 		if (yrgb_ver_scl_mode != SCALE_NONE) {
359 			DRM_DEV_ERROR(vop->dev, "not allow yrgb ver scale\n");
360 			return;
361 		}
362 		if (cbcr_ver_scl_mode != SCALE_NONE) {
363 			DRM_DEV_ERROR(vop->dev, "not allow cbcr ver scale\n");
364 			return;
365 		}
366 		vsu_mode = SCALE_UP_BIL;
367 	} else if (lb_mode == LB_RGB_2560X4) {
368 		vsu_mode = SCALE_UP_BIL;
369 	} else {
370 		vsu_mode = SCALE_UP_BIC;
371 	}
372 
373 	val = scl_vop_cal_scale(yrgb_hor_scl_mode, src_w, dst_w,
374 				true, 0, NULL);
375 	VOP_SCL_SET(vop, win, scale_yrgb_x, val);
376 	val = scl_vop_cal_scale(yrgb_ver_scl_mode, src_h, dst_h,
377 				false, vsu_mode, &vskiplines);
378 	VOP_SCL_SET(vop, win, scale_yrgb_y, val);
379 
380 	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt4, vskiplines == 4);
381 	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt2, vskiplines == 2);
382 
383 	VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, yrgb_hor_scl_mode);
384 	VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, yrgb_ver_scl_mode);
385 	VOP_SCL_SET_EXT(vop, win, yrgb_hsd_mode, SCALE_DOWN_BIL);
386 	VOP_SCL_SET_EXT(vop, win, yrgb_vsd_mode, SCALE_DOWN_BIL);
387 	VOP_SCL_SET_EXT(vop, win, yrgb_vsu_mode, vsu_mode);
388 	if (is_yuv) {
389 		val = scl_vop_cal_scale(cbcr_hor_scl_mode, cbcr_src_w,
390 					dst_w, true, 0, NULL);
391 		VOP_SCL_SET(vop, win, scale_cbcr_x, val);
392 		val = scl_vop_cal_scale(cbcr_ver_scl_mode, cbcr_src_h,
393 					dst_h, false, vsu_mode, &vskiplines);
394 		VOP_SCL_SET(vop, win, scale_cbcr_y, val);
395 
396 		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt4, vskiplines == 4);
397 		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt2, vskiplines == 2);
398 		VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, cbcr_hor_scl_mode);
399 		VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, cbcr_ver_scl_mode);
400 		VOP_SCL_SET_EXT(vop, win, cbcr_hsd_mode, SCALE_DOWN_BIL);
401 		VOP_SCL_SET_EXT(vop, win, cbcr_vsd_mode, SCALE_DOWN_BIL);
402 		VOP_SCL_SET_EXT(vop, win, cbcr_vsu_mode, vsu_mode);
403 	}
404 }
405 
406 static void vop_dsp_hold_valid_irq_enable(struct vop *vop)
407 {
408 	unsigned long flags;
409 
410 	if (WARN_ON(!vop->is_enabled))
411 		return;
412 
413 	spin_lock_irqsave(&vop->irq_lock, flags);
414 
415 	VOP_INTR_SET_TYPE(vop, clear, DSP_HOLD_VALID_INTR, 1);
416 	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 1);
417 
418 	spin_unlock_irqrestore(&vop->irq_lock, flags);
419 }
420 
421 static void vop_dsp_hold_valid_irq_disable(struct vop *vop)
422 {
423 	unsigned long flags;
424 
425 	if (WARN_ON(!vop->is_enabled))
426 		return;
427 
428 	spin_lock_irqsave(&vop->irq_lock, flags);
429 
430 	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 0);
431 
432 	spin_unlock_irqrestore(&vop->irq_lock, flags);
433 }
434 
435 /*
436  * (1) each frame starts at the start of the Vsync pulse which is signaled by
437  *     the "FRAME_SYNC" interrupt.
438  * (2) the active data region of each frame ends at dsp_vact_end
439  * (3) we should program this same number (dsp_vact_end) into dsp_line_frag_num,
440  *      to get "LINE_FLAG" interrupt at the end of the active on screen data.
441  *
442  * VOP_INTR_CTRL0.dsp_line_frag_num = VOP_DSP_VACT_ST_END.dsp_vact_end
443  * Interrupts
444  * LINE_FLAG -------------------------------+
445  * FRAME_SYNC ----+                         |
446  *                |                         |
447  *                v                         v
448  *                | Vsync | Vbp |  Vactive  | Vfp |
449  *                        ^     ^           ^     ^
450  *                        |     |           |     |
451  *                        |     |           |     |
452  * dsp_vs_end ------------+     |           |     |   VOP_DSP_VTOTAL_VS_END
453  * dsp_vact_start --------------+           |     |   VOP_DSP_VACT_ST_END
454  * dsp_vact_end ----------------------------+     |   VOP_DSP_VACT_ST_END
455  * dsp_total -------------------------------------+   VOP_DSP_VTOTAL_VS_END
456  */
457 static bool vop_line_flag_irq_is_enabled(struct vop *vop)
458 {
459 	uint32_t line_flag_irq;
460 	unsigned long flags;
461 
462 	spin_lock_irqsave(&vop->irq_lock, flags);
463 
464 	line_flag_irq = VOP_INTR_GET_TYPE(vop, enable, LINE_FLAG_INTR);
465 
466 	spin_unlock_irqrestore(&vop->irq_lock, flags);
467 
468 	return !!line_flag_irq;
469 }
470 
471 static void vop_line_flag_irq_enable(struct vop *vop)
472 {
473 	unsigned long flags;
474 
475 	if (WARN_ON(!vop->is_enabled))
476 		return;
477 
478 	spin_lock_irqsave(&vop->irq_lock, flags);
479 
480 	VOP_INTR_SET_TYPE(vop, clear, LINE_FLAG_INTR, 1);
481 	VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 1);
482 
483 	spin_unlock_irqrestore(&vop->irq_lock, flags);
484 }
485 
486 static void vop_line_flag_irq_disable(struct vop *vop)
487 {
488 	unsigned long flags;
489 
490 	if (WARN_ON(!vop->is_enabled))
491 		return;
492 
493 	spin_lock_irqsave(&vop->irq_lock, flags);
494 
495 	VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 0);
496 
497 	spin_unlock_irqrestore(&vop->irq_lock, flags);
498 }
499 
500 static int vop_enable(struct drm_crtc *crtc)
501 {
502 	struct vop *vop = to_vop(crtc);
503 	int ret;
504 
505 	ret = pm_runtime_get_sync(vop->dev);
506 	if (ret < 0) {
507 		dev_err(vop->dev, "failed to get pm runtime: %d\n", ret);
508 		return ret;
509 	}
510 
511 	ret = clk_enable(vop->hclk);
512 	if (WARN_ON(ret < 0))
513 		goto err_put_pm_runtime;
514 
515 	ret = clk_enable(vop->dclk);
516 	if (WARN_ON(ret < 0))
517 		goto err_disable_hclk;
518 
519 	ret = clk_enable(vop->aclk);
520 	if (WARN_ON(ret < 0))
521 		goto err_disable_dclk;
522 
523 	/*
524 	 * Slave iommu shares power, irq and clock with vop.  It was associated
525 	 * automatically with this master device via common driver code.
526 	 * Now that we have enabled the clock we attach it to the shared drm
527 	 * mapping.
528 	 */
529 	ret = rockchip_drm_dma_attach_device(vop->drm_dev, vop->dev);
530 	if (ret) {
531 		dev_err(vop->dev, "failed to attach dma mapping, %d\n", ret);
532 		goto err_disable_aclk;
533 	}
534 
535 	memcpy(vop->regs, vop->regsbak, vop->len);
536 	vop_cfg_done(vop);
537 
538 	/*
539 	 * At here, vop clock & iommu is enable, R/W vop regs would be safe.
540 	 */
541 	vop->is_enabled = true;
542 
543 	spin_lock(&vop->reg_lock);
544 
545 	VOP_CTRL_SET(vop, standby, 0);
546 
547 	spin_unlock(&vop->reg_lock);
548 
549 	enable_irq(vop->irq);
550 
551 	drm_crtc_vblank_on(crtc);
552 
553 	return 0;
554 
555 err_disable_aclk:
556 	clk_disable(vop->aclk);
557 err_disable_dclk:
558 	clk_disable(vop->dclk);
559 err_disable_hclk:
560 	clk_disable(vop->hclk);
561 err_put_pm_runtime:
562 	pm_runtime_put_sync(vop->dev);
563 	return ret;
564 }
565 
566 static void vop_crtc_disable(struct drm_crtc *crtc)
567 {
568 	struct vop *vop = to_vop(crtc);
569 	int i;
570 
571 	WARN_ON(vop->event);
572 
573 	rockchip_drm_psr_deactivate(&vop->crtc);
574 
575 	/*
576 	 * We need to make sure that all windows are disabled before we
577 	 * disable that crtc. Otherwise we might try to scan from a destroyed
578 	 * buffer later.
579 	 */
580 	for (i = 0; i < vop->data->win_size; i++) {
581 		struct vop_win *vop_win = &vop->win[i];
582 		const struct vop_win_data *win = vop_win->data;
583 
584 		spin_lock(&vop->reg_lock);
585 		VOP_WIN_SET(vop, win, enable, 0);
586 		spin_unlock(&vop->reg_lock);
587 	}
588 
589 	vop_cfg_done(vop);
590 
591 	drm_crtc_vblank_off(crtc);
592 
593 	/*
594 	 * Vop standby will take effect at end of current frame,
595 	 * if dsp hold valid irq happen, it means standby complete.
596 	 *
597 	 * we must wait standby complete when we want to disable aclk,
598 	 * if not, memory bus maybe dead.
599 	 */
600 	reinit_completion(&vop->dsp_hold_completion);
601 	vop_dsp_hold_valid_irq_enable(vop);
602 
603 	spin_lock(&vop->reg_lock);
604 
605 	VOP_CTRL_SET(vop, standby, 1);
606 
607 	spin_unlock(&vop->reg_lock);
608 
609 	wait_for_completion(&vop->dsp_hold_completion);
610 
611 	vop_dsp_hold_valid_irq_disable(vop);
612 
613 	disable_irq(vop->irq);
614 
615 	vop->is_enabled = false;
616 
617 	/*
618 	 * vop standby complete, so iommu detach is safe.
619 	 */
620 	rockchip_drm_dma_detach_device(vop->drm_dev, vop->dev);
621 
622 	clk_disable(vop->dclk);
623 	clk_disable(vop->aclk);
624 	clk_disable(vop->hclk);
625 	pm_runtime_put(vop->dev);
626 
627 	if (crtc->state->event && !crtc->state->active) {
628 		spin_lock_irq(&crtc->dev->event_lock);
629 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
630 		spin_unlock_irq(&crtc->dev->event_lock);
631 
632 		crtc->state->event = NULL;
633 	}
634 }
635 
636 static void vop_plane_destroy(struct drm_plane *plane)
637 {
638 	drm_plane_cleanup(plane);
639 }
640 
641 static int vop_plane_atomic_check(struct drm_plane *plane,
642 			   struct drm_plane_state *state)
643 {
644 	struct drm_crtc *crtc = state->crtc;
645 	struct drm_crtc_state *crtc_state;
646 	struct drm_framebuffer *fb = state->fb;
647 	struct vop_win *vop_win = to_vop_win(plane);
648 	const struct vop_win_data *win = vop_win->data;
649 	int ret;
650 	struct drm_rect clip;
651 	int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
652 					DRM_PLANE_HELPER_NO_SCALING;
653 	int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
654 					DRM_PLANE_HELPER_NO_SCALING;
655 
656 	if (!crtc || !fb)
657 		return 0;
658 
659 	crtc_state = drm_atomic_get_existing_crtc_state(state->state, crtc);
660 	if (WARN_ON(!crtc_state))
661 		return -EINVAL;
662 
663 	clip.x1 = 0;
664 	clip.y1 = 0;
665 	clip.x2 = crtc_state->adjusted_mode.hdisplay;
666 	clip.y2 = crtc_state->adjusted_mode.vdisplay;
667 
668 	ret = drm_plane_helper_check_state(state, &clip,
669 					   min_scale, max_scale,
670 					   true, true);
671 	if (ret)
672 		return ret;
673 
674 	if (!state->visible)
675 		return 0;
676 
677 	ret = vop_convert_format(fb->format->format);
678 	if (ret < 0)
679 		return ret;
680 
681 	/*
682 	 * Src.x1 can be odd when do clip, but yuv plane start point
683 	 * need align with 2 pixel.
684 	 */
685 	if (is_yuv_support(fb->format->format) && ((state->src.x1 >> 16) % 2))
686 		return -EINVAL;
687 
688 	return 0;
689 }
690 
691 static void vop_plane_atomic_disable(struct drm_plane *plane,
692 				     struct drm_plane_state *old_state)
693 {
694 	struct vop_win *vop_win = to_vop_win(plane);
695 	const struct vop_win_data *win = vop_win->data;
696 	struct vop *vop = to_vop(old_state->crtc);
697 
698 	if (!old_state->crtc)
699 		return;
700 
701 	spin_lock(&vop->reg_lock);
702 
703 	VOP_WIN_SET(vop, win, enable, 0);
704 
705 	spin_unlock(&vop->reg_lock);
706 }
707 
708 static void vop_plane_atomic_update(struct drm_plane *plane,
709 		struct drm_plane_state *old_state)
710 {
711 	struct drm_plane_state *state = plane->state;
712 	struct drm_crtc *crtc = state->crtc;
713 	struct vop_win *vop_win = to_vop_win(plane);
714 	const struct vop_win_data *win = vop_win->data;
715 	struct vop *vop = to_vop(state->crtc);
716 	struct drm_framebuffer *fb = state->fb;
717 	unsigned int actual_w, actual_h;
718 	unsigned int dsp_stx, dsp_sty;
719 	uint32_t act_info, dsp_info, dsp_st;
720 	struct drm_rect *src = &state->src;
721 	struct drm_rect *dest = &state->dst;
722 	struct drm_gem_object *obj, *uv_obj;
723 	struct rockchip_gem_object *rk_obj, *rk_uv_obj;
724 	unsigned long offset;
725 	dma_addr_t dma_addr;
726 	uint32_t val;
727 	bool rb_swap;
728 	int format;
729 
730 	/*
731 	 * can't update plane when vop is disabled.
732 	 */
733 	if (WARN_ON(!crtc))
734 		return;
735 
736 	if (WARN_ON(!vop->is_enabled))
737 		return;
738 
739 	if (!state->visible) {
740 		vop_plane_atomic_disable(plane, old_state);
741 		return;
742 	}
743 
744 	obj = rockchip_fb_get_gem_obj(fb, 0);
745 	rk_obj = to_rockchip_obj(obj);
746 
747 	actual_w = drm_rect_width(src) >> 16;
748 	actual_h = drm_rect_height(src) >> 16;
749 	act_info = (actual_h - 1) << 16 | ((actual_w - 1) & 0xffff);
750 
751 	dsp_info = (drm_rect_height(dest) - 1) << 16;
752 	dsp_info |= (drm_rect_width(dest) - 1) & 0xffff;
753 
754 	dsp_stx = dest->x1 + crtc->mode.htotal - crtc->mode.hsync_start;
755 	dsp_sty = dest->y1 + crtc->mode.vtotal - crtc->mode.vsync_start;
756 	dsp_st = dsp_sty << 16 | (dsp_stx & 0xffff);
757 
758 	offset = (src->x1 >> 16) * fb->format->cpp[0];
759 	offset += (src->y1 >> 16) * fb->pitches[0];
760 	dma_addr = rk_obj->dma_addr + offset + fb->offsets[0];
761 
762 	format = vop_convert_format(fb->format->format);
763 
764 	spin_lock(&vop->reg_lock);
765 
766 	VOP_WIN_SET(vop, win, format, format);
767 	VOP_WIN_SET(vop, win, yrgb_vir, fb->pitches[0] >> 2);
768 	VOP_WIN_SET(vop, win, yrgb_mst, dma_addr);
769 	if (is_yuv_support(fb->format->format)) {
770 		int hsub = drm_format_horz_chroma_subsampling(fb->format->format);
771 		int vsub = drm_format_vert_chroma_subsampling(fb->format->format);
772 		int bpp = fb->format->cpp[1];
773 
774 		uv_obj = rockchip_fb_get_gem_obj(fb, 1);
775 		rk_uv_obj = to_rockchip_obj(uv_obj);
776 
777 		offset = (src->x1 >> 16) * bpp / hsub;
778 		offset += (src->y1 >> 16) * fb->pitches[1] / vsub;
779 
780 		dma_addr = rk_uv_obj->dma_addr + offset + fb->offsets[1];
781 		VOP_WIN_SET(vop, win, uv_vir, fb->pitches[1] >> 2);
782 		VOP_WIN_SET(vop, win, uv_mst, dma_addr);
783 	}
784 
785 	if (win->phy->scl)
786 		scl_vop_cal_scl_fac(vop, win, actual_w, actual_h,
787 				    drm_rect_width(dest), drm_rect_height(dest),
788 				    fb->format->format);
789 
790 	VOP_WIN_SET(vop, win, act_info, act_info);
791 	VOP_WIN_SET(vop, win, dsp_info, dsp_info);
792 	VOP_WIN_SET(vop, win, dsp_st, dsp_st);
793 
794 	rb_swap = has_rb_swapped(fb->format->format);
795 	VOP_WIN_SET(vop, win, rb_swap, rb_swap);
796 
797 	if (is_alpha_support(fb->format->format)) {
798 		VOP_WIN_SET(vop, win, dst_alpha_ctl,
799 			    DST_FACTOR_M0(ALPHA_SRC_INVERSE));
800 		val = SRC_ALPHA_EN(1) | SRC_COLOR_M0(ALPHA_SRC_PRE_MUL) |
801 			SRC_ALPHA_M0(ALPHA_STRAIGHT) |
802 			SRC_BLEND_M0(ALPHA_PER_PIX) |
803 			SRC_ALPHA_CAL_M0(ALPHA_NO_SATURATION) |
804 			SRC_FACTOR_M0(ALPHA_ONE);
805 		VOP_WIN_SET(vop, win, src_alpha_ctl, val);
806 	} else {
807 		VOP_WIN_SET(vop, win, src_alpha_ctl, SRC_ALPHA_EN(0));
808 	}
809 
810 	VOP_WIN_SET(vop, win, enable, 1);
811 	spin_unlock(&vop->reg_lock);
812 }
813 
814 static const struct drm_plane_helper_funcs plane_helper_funcs = {
815 	.atomic_check = vop_plane_atomic_check,
816 	.atomic_update = vop_plane_atomic_update,
817 	.atomic_disable = vop_plane_atomic_disable,
818 };
819 
820 static const struct drm_plane_funcs vop_plane_funcs = {
821 	.update_plane	= drm_atomic_helper_update_plane,
822 	.disable_plane	= drm_atomic_helper_disable_plane,
823 	.destroy = vop_plane_destroy,
824 	.reset = drm_atomic_helper_plane_reset,
825 	.atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state,
826 	.atomic_destroy_state = drm_atomic_helper_plane_destroy_state,
827 };
828 
829 static int vop_crtc_enable_vblank(struct drm_crtc *crtc)
830 {
831 	struct vop *vop = to_vop(crtc);
832 	unsigned long flags;
833 
834 	if (WARN_ON(!vop->is_enabled))
835 		return -EPERM;
836 
837 	spin_lock_irqsave(&vop->irq_lock, flags);
838 
839 	VOP_INTR_SET_TYPE(vop, clear, FS_INTR, 1);
840 	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 1);
841 
842 	spin_unlock_irqrestore(&vop->irq_lock, flags);
843 
844 	return 0;
845 }
846 
847 static void vop_crtc_disable_vblank(struct drm_crtc *crtc)
848 {
849 	struct vop *vop = to_vop(crtc);
850 	unsigned long flags;
851 
852 	if (WARN_ON(!vop->is_enabled))
853 		return;
854 
855 	spin_lock_irqsave(&vop->irq_lock, flags);
856 
857 	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 0);
858 
859 	spin_unlock_irqrestore(&vop->irq_lock, flags);
860 }
861 
862 static bool vop_crtc_mode_fixup(struct drm_crtc *crtc,
863 				const struct drm_display_mode *mode,
864 				struct drm_display_mode *adjusted_mode)
865 {
866 	struct vop *vop = to_vop(crtc);
867 
868 	adjusted_mode->clock =
869 		clk_round_rate(vop->dclk, mode->clock * 1000) / 1000;
870 
871 	return true;
872 }
873 
874 static void vop_crtc_enable(struct drm_crtc *crtc)
875 {
876 	struct vop *vop = to_vop(crtc);
877 	const struct vop_data *vop_data = vop->data;
878 	struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc->state);
879 	struct drm_display_mode *adjusted_mode = &crtc->state->adjusted_mode;
880 	u16 hsync_len = adjusted_mode->hsync_end - adjusted_mode->hsync_start;
881 	u16 hdisplay = adjusted_mode->hdisplay;
882 	u16 htotal = adjusted_mode->htotal;
883 	u16 hact_st = adjusted_mode->htotal - adjusted_mode->hsync_start;
884 	u16 hact_end = hact_st + hdisplay;
885 	u16 vdisplay = adjusted_mode->vdisplay;
886 	u16 vtotal = adjusted_mode->vtotal;
887 	u16 vsync_len = adjusted_mode->vsync_end - adjusted_mode->vsync_start;
888 	u16 vact_st = adjusted_mode->vtotal - adjusted_mode->vsync_start;
889 	u16 vact_end = vact_st + vdisplay;
890 	uint32_t pin_pol, val;
891 	int ret;
892 
893 	WARN_ON(vop->event);
894 
895 	ret = vop_enable(crtc);
896 	if (ret) {
897 		DRM_DEV_ERROR(vop->dev, "Failed to enable vop (%d)\n", ret);
898 		return;
899 	}
900 
901 	/*
902 	 * If dclk rate is zero, mean that scanout is stop,
903 	 * we don't need wait any more.
904 	 */
905 	if (clk_get_rate(vop->dclk)) {
906 		/*
907 		 * Rk3288 vop timing register is immediately, when configure
908 		 * display timing on display time, may cause tearing.
909 		 *
910 		 * Vop standby will take effect at end of current frame,
911 		 * if dsp hold valid irq happen, it means standby complete.
912 		 *
913 		 * mode set:
914 		 *    standby and wait complete --> |----
915 		 *                                  | display time
916 		 *                                  |----
917 		 *                                  |---> dsp hold irq
918 		 *     configure display timing --> |
919 		 *         standby exit             |
920 		 *                                  | new frame start.
921 		 */
922 
923 		reinit_completion(&vop->dsp_hold_completion);
924 		vop_dsp_hold_valid_irq_enable(vop);
925 
926 		spin_lock(&vop->reg_lock);
927 
928 		VOP_CTRL_SET(vop, standby, 1);
929 
930 		spin_unlock(&vop->reg_lock);
931 
932 		wait_for_completion(&vop->dsp_hold_completion);
933 
934 		vop_dsp_hold_valid_irq_disable(vop);
935 	}
936 
937 	pin_pol = BIT(DCLK_INVERT);
938 	pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) ?
939 		   BIT(HSYNC_POSITIVE) : 0;
940 	pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) ?
941 		   BIT(VSYNC_POSITIVE) : 0;
942 	VOP_CTRL_SET(vop, pin_pol, pin_pol);
943 
944 	switch (s->output_type) {
945 	case DRM_MODE_CONNECTOR_LVDS:
946 		VOP_CTRL_SET(vop, rgb_en, 1);
947 		VOP_CTRL_SET(vop, rgb_pin_pol, pin_pol);
948 		break;
949 	case DRM_MODE_CONNECTOR_eDP:
950 		VOP_CTRL_SET(vop, edp_pin_pol, pin_pol);
951 		VOP_CTRL_SET(vop, edp_en, 1);
952 		break;
953 	case DRM_MODE_CONNECTOR_HDMIA:
954 		VOP_CTRL_SET(vop, hdmi_pin_pol, pin_pol);
955 		VOP_CTRL_SET(vop, hdmi_en, 1);
956 		break;
957 	case DRM_MODE_CONNECTOR_DSI:
958 		VOP_CTRL_SET(vop, mipi_pin_pol, pin_pol);
959 		VOP_CTRL_SET(vop, mipi_en, 1);
960 		break;
961 	case DRM_MODE_CONNECTOR_DisplayPort:
962 		pin_pol &= ~BIT(DCLK_INVERT);
963 		VOP_CTRL_SET(vop, dp_pin_pol, pin_pol);
964 		VOP_CTRL_SET(vop, dp_en, 1);
965 		break;
966 	default:
967 		DRM_DEV_ERROR(vop->dev, "unsupported connector_type [%d]\n",
968 			      s->output_type);
969 	}
970 
971 	/*
972 	 * if vop is not support RGB10 output, need force RGB10 to RGB888.
973 	 */
974 	if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA &&
975 	    !(vop_data->feature & VOP_FEATURE_OUTPUT_RGB10))
976 		s->output_mode = ROCKCHIP_OUT_MODE_P888;
977 	VOP_CTRL_SET(vop, out_mode, s->output_mode);
978 
979 	VOP_CTRL_SET(vop, htotal_pw, (htotal << 16) | hsync_len);
980 	val = hact_st << 16;
981 	val |= hact_end;
982 	VOP_CTRL_SET(vop, hact_st_end, val);
983 	VOP_CTRL_SET(vop, hpost_st_end, val);
984 
985 	VOP_CTRL_SET(vop, vtotal_pw, (vtotal << 16) | vsync_len);
986 	val = vact_st << 16;
987 	val |= vact_end;
988 	VOP_CTRL_SET(vop, vact_st_end, val);
989 	VOP_CTRL_SET(vop, vpost_st_end, val);
990 
991 	VOP_CTRL_SET(vop, line_flag_num[0], vact_end);
992 
993 	clk_set_rate(vop->dclk, adjusted_mode->clock * 1000);
994 
995 	VOP_CTRL_SET(vop, standby, 0);
996 
997 	rockchip_drm_psr_activate(&vop->crtc);
998 }
999 
1000 static bool vop_fs_irq_is_pending(struct vop *vop)
1001 {
1002 	return VOP_INTR_GET_TYPE(vop, status, FS_INTR);
1003 }
1004 
1005 static void vop_wait_for_irq_handler(struct vop *vop)
1006 {
1007 	bool pending;
1008 	int ret;
1009 
1010 	/*
1011 	 * Spin until frame start interrupt status bit goes low, which means
1012 	 * that interrupt handler was invoked and cleared it. The timeout of
1013 	 * 10 msecs is really too long, but it is just a safety measure if
1014 	 * something goes really wrong. The wait will only happen in the very
1015 	 * unlikely case of a vblank happening exactly at the same time and
1016 	 * shouldn't exceed microseconds range.
1017 	 */
1018 	ret = readx_poll_timeout_atomic(vop_fs_irq_is_pending, vop, pending,
1019 					!pending, 0, 10 * 1000);
1020 	if (ret)
1021 		DRM_DEV_ERROR(vop->dev, "VOP vblank IRQ stuck for 10 ms\n");
1022 
1023 	synchronize_irq(vop->irq);
1024 }
1025 
1026 static void vop_crtc_atomic_flush(struct drm_crtc *crtc,
1027 				  struct drm_crtc_state *old_crtc_state)
1028 {
1029 	struct drm_atomic_state *old_state = old_crtc_state->state;
1030 	struct drm_plane_state *old_plane_state;
1031 	struct vop *vop = to_vop(crtc);
1032 	struct drm_plane *plane;
1033 	int i;
1034 
1035 	if (WARN_ON(!vop->is_enabled))
1036 		return;
1037 
1038 	spin_lock(&vop->reg_lock);
1039 
1040 	vop_cfg_done(vop);
1041 
1042 	spin_unlock(&vop->reg_lock);
1043 
1044 	/*
1045 	 * There is a (rather unlikely) possiblity that a vblank interrupt
1046 	 * fired before we set the cfg_done bit. To avoid spuriously
1047 	 * signalling flip completion we need to wait for it to finish.
1048 	 */
1049 	vop_wait_for_irq_handler(vop);
1050 
1051 	spin_lock_irq(&crtc->dev->event_lock);
1052 	if (crtc->state->event) {
1053 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1054 		WARN_ON(vop->event);
1055 
1056 		vop->event = crtc->state->event;
1057 		crtc->state->event = NULL;
1058 	}
1059 	spin_unlock_irq(&crtc->dev->event_lock);
1060 
1061 	for_each_plane_in_state(old_state, plane, old_plane_state, i) {
1062 		if (!old_plane_state->fb)
1063 			continue;
1064 
1065 		if (old_plane_state->fb == plane->state->fb)
1066 			continue;
1067 
1068 		drm_framebuffer_reference(old_plane_state->fb);
1069 		drm_flip_work_queue(&vop->fb_unref_work, old_plane_state->fb);
1070 		set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1071 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1072 	}
1073 }
1074 
1075 static void vop_crtc_atomic_begin(struct drm_crtc *crtc,
1076 				  struct drm_crtc_state *old_crtc_state)
1077 {
1078 	rockchip_drm_psr_flush(crtc);
1079 }
1080 
1081 static const struct drm_crtc_helper_funcs vop_crtc_helper_funcs = {
1082 	.enable = vop_crtc_enable,
1083 	.disable = vop_crtc_disable,
1084 	.mode_fixup = vop_crtc_mode_fixup,
1085 	.atomic_flush = vop_crtc_atomic_flush,
1086 	.atomic_begin = vop_crtc_atomic_begin,
1087 };
1088 
1089 static void vop_crtc_destroy(struct drm_crtc *crtc)
1090 {
1091 	drm_crtc_cleanup(crtc);
1092 }
1093 
1094 static void vop_crtc_reset(struct drm_crtc *crtc)
1095 {
1096 	if (crtc->state)
1097 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
1098 	kfree(crtc->state);
1099 
1100 	crtc->state = kzalloc(sizeof(struct rockchip_crtc_state), GFP_KERNEL);
1101 	if (crtc->state)
1102 		crtc->state->crtc = crtc;
1103 }
1104 
1105 static struct drm_crtc_state *vop_crtc_duplicate_state(struct drm_crtc *crtc)
1106 {
1107 	struct rockchip_crtc_state *rockchip_state;
1108 
1109 	rockchip_state = kzalloc(sizeof(*rockchip_state), GFP_KERNEL);
1110 	if (!rockchip_state)
1111 		return NULL;
1112 
1113 	__drm_atomic_helper_crtc_duplicate_state(crtc, &rockchip_state->base);
1114 	return &rockchip_state->base;
1115 }
1116 
1117 static void vop_crtc_destroy_state(struct drm_crtc *crtc,
1118 				   struct drm_crtc_state *state)
1119 {
1120 	struct rockchip_crtc_state *s = to_rockchip_crtc_state(state);
1121 
1122 	__drm_atomic_helper_crtc_destroy_state(&s->base);
1123 	kfree(s);
1124 }
1125 
1126 #ifdef CONFIG_DRM_ANALOGIX_DP
1127 static struct drm_connector *vop_get_edp_connector(struct vop *vop)
1128 {
1129 	struct drm_connector *connector;
1130 	struct drm_connector_list_iter conn_iter;
1131 
1132 	drm_connector_list_iter_begin(vop->drm_dev, &conn_iter);
1133 	drm_for_each_connector_iter(connector, &conn_iter) {
1134 		if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) {
1135 			drm_connector_list_iter_end(&conn_iter);
1136 			return connector;
1137 		}
1138 	}
1139 	drm_connector_list_iter_end(&conn_iter);
1140 
1141 	return NULL;
1142 }
1143 
1144 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1145 				   const char *source_name, size_t *values_cnt)
1146 {
1147 	struct vop *vop = to_vop(crtc);
1148 	struct drm_connector *connector;
1149 	int ret;
1150 
1151 	connector = vop_get_edp_connector(vop);
1152 	if (!connector)
1153 		return -EINVAL;
1154 
1155 	*values_cnt = 3;
1156 
1157 	if (source_name && strcmp(source_name, "auto") == 0)
1158 		ret = analogix_dp_start_crc(connector);
1159 	else if (!source_name)
1160 		ret = analogix_dp_stop_crc(connector);
1161 	else
1162 		ret = -EINVAL;
1163 
1164 	return ret;
1165 }
1166 #else
1167 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1168 				   const char *source_name, size_t *values_cnt)
1169 {
1170 	return -ENODEV;
1171 }
1172 #endif
1173 
1174 static const struct drm_crtc_funcs vop_crtc_funcs = {
1175 	.set_config = drm_atomic_helper_set_config,
1176 	.page_flip = drm_atomic_helper_page_flip,
1177 	.destroy = vop_crtc_destroy,
1178 	.reset = vop_crtc_reset,
1179 	.atomic_duplicate_state = vop_crtc_duplicate_state,
1180 	.atomic_destroy_state = vop_crtc_destroy_state,
1181 	.enable_vblank = vop_crtc_enable_vblank,
1182 	.disable_vblank = vop_crtc_disable_vblank,
1183 	.set_crc_source = vop_crtc_set_crc_source,
1184 };
1185 
1186 static void vop_fb_unref_worker(struct drm_flip_work *work, void *val)
1187 {
1188 	struct vop *vop = container_of(work, struct vop, fb_unref_work);
1189 	struct drm_framebuffer *fb = val;
1190 
1191 	drm_crtc_vblank_put(&vop->crtc);
1192 	drm_framebuffer_unreference(fb);
1193 }
1194 
1195 static void vop_handle_vblank(struct vop *vop)
1196 {
1197 	struct drm_device *drm = vop->drm_dev;
1198 	struct drm_crtc *crtc = &vop->crtc;
1199 	unsigned long flags;
1200 
1201 	spin_lock_irqsave(&drm->event_lock, flags);
1202 	if (vop->event) {
1203 		drm_crtc_send_vblank_event(crtc, vop->event);
1204 		drm_crtc_vblank_put(crtc);
1205 		vop->event = NULL;
1206 	}
1207 	spin_unlock_irqrestore(&drm->event_lock, flags);
1208 
1209 	if (test_and_clear_bit(VOP_PENDING_FB_UNREF, &vop->pending))
1210 		drm_flip_work_commit(&vop->fb_unref_work, system_unbound_wq);
1211 }
1212 
1213 static irqreturn_t vop_isr(int irq, void *data)
1214 {
1215 	struct vop *vop = data;
1216 	struct drm_crtc *crtc = &vop->crtc;
1217 	uint32_t active_irqs;
1218 	unsigned long flags;
1219 	int ret = IRQ_NONE;
1220 
1221 	/*
1222 	 * interrupt register has interrupt status, enable and clear bits, we
1223 	 * must hold irq_lock to avoid a race with enable/disable_vblank().
1224 	*/
1225 	spin_lock_irqsave(&vop->irq_lock, flags);
1226 
1227 	active_irqs = VOP_INTR_GET_TYPE(vop, status, INTR_MASK);
1228 	/* Clear all active interrupt sources */
1229 	if (active_irqs)
1230 		VOP_INTR_SET_TYPE(vop, clear, active_irqs, 1);
1231 
1232 	spin_unlock_irqrestore(&vop->irq_lock, flags);
1233 
1234 	/* This is expected for vop iommu irqs, since the irq is shared */
1235 	if (!active_irqs)
1236 		return IRQ_NONE;
1237 
1238 	if (active_irqs & DSP_HOLD_VALID_INTR) {
1239 		complete(&vop->dsp_hold_completion);
1240 		active_irqs &= ~DSP_HOLD_VALID_INTR;
1241 		ret = IRQ_HANDLED;
1242 	}
1243 
1244 	if (active_irqs & LINE_FLAG_INTR) {
1245 		complete(&vop->line_flag_completion);
1246 		active_irqs &= ~LINE_FLAG_INTR;
1247 		ret = IRQ_HANDLED;
1248 	}
1249 
1250 	if (active_irqs & FS_INTR) {
1251 		drm_crtc_handle_vblank(crtc);
1252 		vop_handle_vblank(vop);
1253 		active_irqs &= ~FS_INTR;
1254 		ret = IRQ_HANDLED;
1255 	}
1256 
1257 	/* Unhandled irqs are spurious. */
1258 	if (active_irqs)
1259 		DRM_DEV_ERROR(vop->dev, "Unknown VOP IRQs: %#02x\n",
1260 			      active_irqs);
1261 
1262 	return ret;
1263 }
1264 
1265 static int vop_create_crtc(struct vop *vop)
1266 {
1267 	const struct vop_data *vop_data = vop->data;
1268 	struct device *dev = vop->dev;
1269 	struct drm_device *drm_dev = vop->drm_dev;
1270 	struct drm_plane *primary = NULL, *cursor = NULL, *plane, *tmp;
1271 	struct drm_crtc *crtc = &vop->crtc;
1272 	struct device_node *port;
1273 	int ret;
1274 	int i;
1275 
1276 	/*
1277 	 * Create drm_plane for primary and cursor planes first, since we need
1278 	 * to pass them to drm_crtc_init_with_planes, which sets the
1279 	 * "possible_crtcs" to the newly initialized crtc.
1280 	 */
1281 	for (i = 0; i < vop_data->win_size; i++) {
1282 		struct vop_win *vop_win = &vop->win[i];
1283 		const struct vop_win_data *win_data = vop_win->data;
1284 
1285 		if (win_data->type != DRM_PLANE_TYPE_PRIMARY &&
1286 		    win_data->type != DRM_PLANE_TYPE_CURSOR)
1287 			continue;
1288 
1289 		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1290 					       0, &vop_plane_funcs,
1291 					       win_data->phy->data_formats,
1292 					       win_data->phy->nformats,
1293 					       win_data->type, NULL);
1294 		if (ret) {
1295 			DRM_DEV_ERROR(vop->dev, "failed to init plane %d\n",
1296 				      ret);
1297 			goto err_cleanup_planes;
1298 		}
1299 
1300 		plane = &vop_win->base;
1301 		drm_plane_helper_add(plane, &plane_helper_funcs);
1302 		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
1303 			primary = plane;
1304 		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
1305 			cursor = plane;
1306 	}
1307 
1308 	ret = drm_crtc_init_with_planes(drm_dev, crtc, primary, cursor,
1309 					&vop_crtc_funcs, NULL);
1310 	if (ret)
1311 		goto err_cleanup_planes;
1312 
1313 	drm_crtc_helper_add(crtc, &vop_crtc_helper_funcs);
1314 
1315 	/*
1316 	 * Create drm_planes for overlay windows with possible_crtcs restricted
1317 	 * to the newly created crtc.
1318 	 */
1319 	for (i = 0; i < vop_data->win_size; i++) {
1320 		struct vop_win *vop_win = &vop->win[i];
1321 		const struct vop_win_data *win_data = vop_win->data;
1322 		unsigned long possible_crtcs = 1 << drm_crtc_index(crtc);
1323 
1324 		if (win_data->type != DRM_PLANE_TYPE_OVERLAY)
1325 			continue;
1326 
1327 		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1328 					       possible_crtcs,
1329 					       &vop_plane_funcs,
1330 					       win_data->phy->data_formats,
1331 					       win_data->phy->nformats,
1332 					       win_data->type, NULL);
1333 		if (ret) {
1334 			DRM_DEV_ERROR(vop->dev, "failed to init overlay %d\n",
1335 				      ret);
1336 			goto err_cleanup_crtc;
1337 		}
1338 		drm_plane_helper_add(&vop_win->base, &plane_helper_funcs);
1339 	}
1340 
1341 	port = of_get_child_by_name(dev->of_node, "port");
1342 	if (!port) {
1343 		DRM_DEV_ERROR(vop->dev, "no port node found in %s\n",
1344 			      dev->of_node->full_name);
1345 		ret = -ENOENT;
1346 		goto err_cleanup_crtc;
1347 	}
1348 
1349 	drm_flip_work_init(&vop->fb_unref_work, "fb_unref",
1350 			   vop_fb_unref_worker);
1351 
1352 	init_completion(&vop->dsp_hold_completion);
1353 	init_completion(&vop->line_flag_completion);
1354 	crtc->port = port;
1355 
1356 	return 0;
1357 
1358 err_cleanup_crtc:
1359 	drm_crtc_cleanup(crtc);
1360 err_cleanup_planes:
1361 	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1362 				 head)
1363 		drm_plane_cleanup(plane);
1364 	return ret;
1365 }
1366 
1367 static void vop_destroy_crtc(struct vop *vop)
1368 {
1369 	struct drm_crtc *crtc = &vop->crtc;
1370 	struct drm_device *drm_dev = vop->drm_dev;
1371 	struct drm_plane *plane, *tmp;
1372 
1373 	of_node_put(crtc->port);
1374 
1375 	/*
1376 	 * We need to cleanup the planes now.  Why?
1377 	 *
1378 	 * The planes are "&vop->win[i].base".  That means the memory is
1379 	 * all part of the big "struct vop" chunk of memory.  That memory
1380 	 * was devm allocated and associated with this component.  We need to
1381 	 * free it ourselves before vop_unbind() finishes.
1382 	 */
1383 	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1384 				 head)
1385 		vop_plane_destroy(plane);
1386 
1387 	/*
1388 	 * Destroy CRTC after vop_plane_destroy() since vop_disable_plane()
1389 	 * references the CRTC.
1390 	 */
1391 	drm_crtc_cleanup(crtc);
1392 	drm_flip_work_cleanup(&vop->fb_unref_work);
1393 }
1394 
1395 static int vop_initial(struct vop *vop)
1396 {
1397 	const struct vop_data *vop_data = vop->data;
1398 	const struct vop_reg_data *init_table = vop_data->init_table;
1399 	struct reset_control *ahb_rst;
1400 	int i, ret;
1401 
1402 	vop->hclk = devm_clk_get(vop->dev, "hclk_vop");
1403 	if (IS_ERR(vop->hclk)) {
1404 		dev_err(vop->dev, "failed to get hclk source\n");
1405 		return PTR_ERR(vop->hclk);
1406 	}
1407 	vop->aclk = devm_clk_get(vop->dev, "aclk_vop");
1408 	if (IS_ERR(vop->aclk)) {
1409 		dev_err(vop->dev, "failed to get aclk source\n");
1410 		return PTR_ERR(vop->aclk);
1411 	}
1412 	vop->dclk = devm_clk_get(vop->dev, "dclk_vop");
1413 	if (IS_ERR(vop->dclk)) {
1414 		dev_err(vop->dev, "failed to get dclk source\n");
1415 		return PTR_ERR(vop->dclk);
1416 	}
1417 
1418 	ret = pm_runtime_get_sync(vop->dev);
1419 	if (ret < 0) {
1420 		dev_err(vop->dev, "failed to get pm runtime: %d\n", ret);
1421 		return ret;
1422 	}
1423 
1424 	ret = clk_prepare(vop->dclk);
1425 	if (ret < 0) {
1426 		dev_err(vop->dev, "failed to prepare dclk\n");
1427 		goto err_put_pm_runtime;
1428 	}
1429 
1430 	/* Enable both the hclk and aclk to setup the vop */
1431 	ret = clk_prepare_enable(vop->hclk);
1432 	if (ret < 0) {
1433 		dev_err(vop->dev, "failed to prepare/enable hclk\n");
1434 		goto err_unprepare_dclk;
1435 	}
1436 
1437 	ret = clk_prepare_enable(vop->aclk);
1438 	if (ret < 0) {
1439 		dev_err(vop->dev, "failed to prepare/enable aclk\n");
1440 		goto err_disable_hclk;
1441 	}
1442 
1443 	/*
1444 	 * do hclk_reset, reset all vop registers.
1445 	 */
1446 	ahb_rst = devm_reset_control_get(vop->dev, "ahb");
1447 	if (IS_ERR(ahb_rst)) {
1448 		dev_err(vop->dev, "failed to get ahb reset\n");
1449 		ret = PTR_ERR(ahb_rst);
1450 		goto err_disable_aclk;
1451 	}
1452 	reset_control_assert(ahb_rst);
1453 	usleep_range(10, 20);
1454 	reset_control_deassert(ahb_rst);
1455 
1456 	memcpy(vop->regsbak, vop->regs, vop->len);
1457 
1458 	for (i = 0; i < vop_data->table_size; i++)
1459 		vop_writel(vop, init_table[i].offset, init_table[i].value);
1460 
1461 	for (i = 0; i < vop_data->win_size; i++) {
1462 		const struct vop_win_data *win = &vop_data->win[i];
1463 
1464 		VOP_WIN_SET(vop, win, enable, 0);
1465 	}
1466 
1467 	vop_cfg_done(vop);
1468 
1469 	/*
1470 	 * do dclk_reset, let all config take affect.
1471 	 */
1472 	vop->dclk_rst = devm_reset_control_get(vop->dev, "dclk");
1473 	if (IS_ERR(vop->dclk_rst)) {
1474 		dev_err(vop->dev, "failed to get dclk reset\n");
1475 		ret = PTR_ERR(vop->dclk_rst);
1476 		goto err_disable_aclk;
1477 	}
1478 	reset_control_assert(vop->dclk_rst);
1479 	usleep_range(10, 20);
1480 	reset_control_deassert(vop->dclk_rst);
1481 
1482 	clk_disable(vop->hclk);
1483 	clk_disable(vop->aclk);
1484 
1485 	vop->is_enabled = false;
1486 
1487 	pm_runtime_put_sync(vop->dev);
1488 
1489 	return 0;
1490 
1491 err_disable_aclk:
1492 	clk_disable_unprepare(vop->aclk);
1493 err_disable_hclk:
1494 	clk_disable_unprepare(vop->hclk);
1495 err_unprepare_dclk:
1496 	clk_unprepare(vop->dclk);
1497 err_put_pm_runtime:
1498 	pm_runtime_put_sync(vop->dev);
1499 	return ret;
1500 }
1501 
1502 /*
1503  * Initialize the vop->win array elements.
1504  */
1505 static void vop_win_init(struct vop *vop)
1506 {
1507 	const struct vop_data *vop_data = vop->data;
1508 	unsigned int i;
1509 
1510 	for (i = 0; i < vop_data->win_size; i++) {
1511 		struct vop_win *vop_win = &vop->win[i];
1512 		const struct vop_win_data *win_data = &vop_data->win[i];
1513 
1514 		vop_win->data = win_data;
1515 		vop_win->vop = vop;
1516 	}
1517 }
1518 
1519 /**
1520  * rockchip_drm_wait_vact_end
1521  * @crtc: CRTC to enable line flag
1522  * @mstimeout: millisecond for timeout
1523  *
1524  * Wait for vact_end line flag irq or timeout.
1525  *
1526  * Returns:
1527  * Zero on success, negative errno on failure.
1528  */
1529 int rockchip_drm_wait_vact_end(struct drm_crtc *crtc, unsigned int mstimeout)
1530 {
1531 	struct vop *vop = to_vop(crtc);
1532 	unsigned long jiffies_left;
1533 
1534 	if (!crtc || !vop->is_enabled)
1535 		return -ENODEV;
1536 
1537 	if (mstimeout <= 0)
1538 		return -EINVAL;
1539 
1540 	if (vop_line_flag_irq_is_enabled(vop))
1541 		return -EBUSY;
1542 
1543 	reinit_completion(&vop->line_flag_completion);
1544 	vop_line_flag_irq_enable(vop);
1545 
1546 	jiffies_left = wait_for_completion_timeout(&vop->line_flag_completion,
1547 						   msecs_to_jiffies(mstimeout));
1548 	vop_line_flag_irq_disable(vop);
1549 
1550 	if (jiffies_left == 0) {
1551 		dev_err(vop->dev, "Timeout waiting for IRQ\n");
1552 		return -ETIMEDOUT;
1553 	}
1554 
1555 	return 0;
1556 }
1557 EXPORT_SYMBOL(rockchip_drm_wait_vact_end);
1558 
1559 static int vop_bind(struct device *dev, struct device *master, void *data)
1560 {
1561 	struct platform_device *pdev = to_platform_device(dev);
1562 	const struct vop_data *vop_data;
1563 	struct drm_device *drm_dev = data;
1564 	struct vop *vop;
1565 	struct resource *res;
1566 	size_t alloc_size;
1567 	int ret, irq;
1568 
1569 	vop_data = of_device_get_match_data(dev);
1570 	if (!vop_data)
1571 		return -ENODEV;
1572 
1573 	/* Allocate vop struct and its vop_win array */
1574 	alloc_size = sizeof(*vop) + sizeof(*vop->win) * vop_data->win_size;
1575 	vop = devm_kzalloc(dev, alloc_size, GFP_KERNEL);
1576 	if (!vop)
1577 		return -ENOMEM;
1578 
1579 	vop->dev = dev;
1580 	vop->data = vop_data;
1581 	vop->drm_dev = drm_dev;
1582 	dev_set_drvdata(dev, vop);
1583 
1584 	vop_win_init(vop);
1585 
1586 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1587 	vop->len = resource_size(res);
1588 	vop->regs = devm_ioremap_resource(dev, res);
1589 	if (IS_ERR(vop->regs))
1590 		return PTR_ERR(vop->regs);
1591 
1592 	vop->regsbak = devm_kzalloc(dev, vop->len, GFP_KERNEL);
1593 	if (!vop->regsbak)
1594 		return -ENOMEM;
1595 
1596 	irq = platform_get_irq(pdev, 0);
1597 	if (irq < 0) {
1598 		dev_err(dev, "cannot find irq for vop\n");
1599 		return irq;
1600 	}
1601 	vop->irq = (unsigned int)irq;
1602 
1603 	spin_lock_init(&vop->reg_lock);
1604 	spin_lock_init(&vop->irq_lock);
1605 
1606 	mutex_init(&vop->vsync_mutex);
1607 
1608 	ret = devm_request_irq(dev, vop->irq, vop_isr,
1609 			       IRQF_SHARED, dev_name(dev), vop);
1610 	if (ret)
1611 		return ret;
1612 
1613 	/* IRQ is initially disabled; it gets enabled in power_on */
1614 	disable_irq(vop->irq);
1615 
1616 	ret = vop_create_crtc(vop);
1617 	if (ret)
1618 		goto err_enable_irq;
1619 
1620 	pm_runtime_enable(&pdev->dev);
1621 
1622 	ret = vop_initial(vop);
1623 	if (ret < 0) {
1624 		dev_err(&pdev->dev, "cannot initial vop dev - err %d\n", ret);
1625 		goto err_disable_pm_runtime;
1626 	}
1627 
1628 	return 0;
1629 
1630 err_disable_pm_runtime:
1631 	pm_runtime_disable(&pdev->dev);
1632 	vop_destroy_crtc(vop);
1633 err_enable_irq:
1634 	enable_irq(vop->irq); /* To balance out the disable_irq above */
1635 	return ret;
1636 }
1637 
1638 static void vop_unbind(struct device *dev, struct device *master, void *data)
1639 {
1640 	struct vop *vop = dev_get_drvdata(dev);
1641 
1642 	pm_runtime_disable(dev);
1643 	vop_destroy_crtc(vop);
1644 
1645 	clk_unprepare(vop->aclk);
1646 	clk_unprepare(vop->hclk);
1647 	clk_unprepare(vop->dclk);
1648 }
1649 
1650 const struct component_ops vop_component_ops = {
1651 	.bind = vop_bind,
1652 	.unbind = vop_unbind,
1653 };
1654 EXPORT_SYMBOL_GPL(vop_component_ops);
1655