1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Fuzhou Rockchip Electronics Co.Ltd 4 * Author:Mark Yao <mark.yao@rock-chips.com> 5 */ 6 7 #include <linux/clk.h> 8 #include <linux/component.h> 9 #include <linux/delay.h> 10 #include <linux/iopoll.h> 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/of.h> 14 #include <linux/of_device.h> 15 #include <linux/overflow.h> 16 #include <linux/platform_device.h> 17 #include <linux/pm_runtime.h> 18 #include <linux/reset.h> 19 20 #include <drm/drm.h> 21 #include <drm/drm_atomic.h> 22 #include <drm/drm_atomic_uapi.h> 23 #include <drm/drm_crtc.h> 24 #include <drm/drm_flip_work.h> 25 #include <drm/drm_fourcc.h> 26 #include <drm/drm_gem_atomic_helper.h> 27 #include <drm/drm_gem_framebuffer_helper.h> 28 #include <drm/drm_plane_helper.h> 29 #include <drm/drm_probe_helper.h> 30 #include <drm/drm_self_refresh_helper.h> 31 #include <drm/drm_vblank.h> 32 33 #ifdef CONFIG_DRM_ANALOGIX_DP 34 #include <drm/bridge/analogix_dp.h> 35 #endif 36 37 #include "rockchip_drm_drv.h" 38 #include "rockchip_drm_gem.h" 39 #include "rockchip_drm_fb.h" 40 #include "rockchip_drm_vop.h" 41 #include "rockchip_rgb.h" 42 43 #define VOP_WIN_SET(vop, win, name, v) \ 44 vop_reg_set(vop, &win->phy->name, win->base, ~0, v, #name) 45 #define VOP_SCL_SET(vop, win, name, v) \ 46 vop_reg_set(vop, &win->phy->scl->name, win->base, ~0, v, #name) 47 #define VOP_SCL_SET_EXT(vop, win, name, v) \ 48 vop_reg_set(vop, &win->phy->scl->ext->name, \ 49 win->base, ~0, v, #name) 50 51 #define VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, name, v) \ 52 do { \ 53 if (win_yuv2yuv && win_yuv2yuv->name.mask) \ 54 vop_reg_set(vop, &win_yuv2yuv->name, 0, ~0, v, #name); \ 55 } while (0) 56 57 #define VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop, win_yuv2yuv, name, v) \ 58 do { \ 59 if (win_yuv2yuv && win_yuv2yuv->phy->name.mask) \ 60 vop_reg_set(vop, &win_yuv2yuv->phy->name, win_yuv2yuv->base, ~0, v, #name); \ 61 } while (0) 62 63 #define VOP_INTR_SET_MASK(vop, name, mask, v) \ 64 vop_reg_set(vop, &vop->data->intr->name, 0, mask, v, #name) 65 66 #define VOP_REG_SET(vop, group, name, v) \ 67 vop_reg_set(vop, &vop->data->group->name, 0, ~0, v, #name) 68 69 #define VOP_INTR_SET_TYPE(vop, name, type, v) \ 70 do { \ 71 int i, reg = 0, mask = 0; \ 72 for (i = 0; i < vop->data->intr->nintrs; i++) { \ 73 if (vop->data->intr->intrs[i] & type) { \ 74 reg |= (v) << i; \ 75 mask |= 1 << i; \ 76 } \ 77 } \ 78 VOP_INTR_SET_MASK(vop, name, mask, reg); \ 79 } while (0) 80 #define VOP_INTR_GET_TYPE(vop, name, type) \ 81 vop_get_intr_type(vop, &vop->data->intr->name, type) 82 83 #define VOP_WIN_GET(vop, win, name) \ 84 vop_read_reg(vop, win->base, &win->phy->name) 85 86 #define VOP_WIN_HAS_REG(win, name) \ 87 (!!(win->phy->name.mask)) 88 89 #define VOP_WIN_GET_YRGBADDR(vop, win) \ 90 vop_readl(vop, win->base + win->phy->yrgb_mst.offset) 91 92 #define VOP_WIN_TO_INDEX(vop_win) \ 93 ((vop_win) - (vop_win)->vop->win) 94 95 #define VOP_AFBC_SET(vop, name, v) \ 96 do { \ 97 if ((vop)->data->afbc) \ 98 vop_reg_set((vop), &(vop)->data->afbc->name, \ 99 0, ~0, v, #name); \ 100 } while (0) 101 102 #define to_vop(x) container_of(x, struct vop, crtc) 103 #define to_vop_win(x) container_of(x, struct vop_win, base) 104 105 #define AFBC_FMT_RGB565 0x0 106 #define AFBC_FMT_U8U8U8U8 0x5 107 #define AFBC_FMT_U8U8U8 0x4 108 109 #define AFBC_TILE_16x16 BIT(4) 110 111 /* 112 * The coefficients of the following matrix are all fixed points. 113 * The format is S2.10 for the 3x3 part of the matrix, and S9.12 for the offsets. 114 * They are all represented in two's complement. 115 */ 116 static const uint32_t bt601_yuv2rgb[] = { 117 0x4A8, 0x0, 0x662, 118 0x4A8, 0x1E6F, 0x1CBF, 119 0x4A8, 0x812, 0x0, 120 0x321168, 0x0877CF, 0x2EB127 121 }; 122 123 enum vop_pending { 124 VOP_PENDING_FB_UNREF, 125 }; 126 127 struct vop_win { 128 struct drm_plane base; 129 const struct vop_win_data *data; 130 const struct vop_win_yuv2yuv_data *yuv2yuv_data; 131 struct vop *vop; 132 }; 133 134 struct rockchip_rgb; 135 struct vop { 136 struct drm_crtc crtc; 137 struct device *dev; 138 struct drm_device *drm_dev; 139 bool is_enabled; 140 141 struct completion dsp_hold_completion; 142 unsigned int win_enabled; 143 144 /* protected by dev->event_lock */ 145 struct drm_pending_vblank_event *event; 146 147 struct drm_flip_work fb_unref_work; 148 unsigned long pending; 149 150 struct completion line_flag_completion; 151 152 const struct vop_data *data; 153 154 uint32_t *regsbak; 155 void __iomem *regs; 156 void __iomem *lut_regs; 157 158 /* physical map length of vop register */ 159 uint32_t len; 160 161 /* one time only one process allowed to config the register */ 162 spinlock_t reg_lock; 163 /* lock vop irq reg */ 164 spinlock_t irq_lock; 165 /* protects crtc enable/disable */ 166 struct mutex vop_lock; 167 168 unsigned int irq; 169 170 /* vop AHP clk */ 171 struct clk *hclk; 172 /* vop dclk */ 173 struct clk *dclk; 174 /* vop share memory frequency */ 175 struct clk *aclk; 176 177 /* vop dclk reset */ 178 struct reset_control *dclk_rst; 179 180 /* optional internal rgb encoder */ 181 struct rockchip_rgb *rgb; 182 183 struct vop_win win[]; 184 }; 185 186 static inline void vop_writel(struct vop *vop, uint32_t offset, uint32_t v) 187 { 188 writel(v, vop->regs + offset); 189 vop->regsbak[offset >> 2] = v; 190 } 191 192 static inline uint32_t vop_readl(struct vop *vop, uint32_t offset) 193 { 194 return readl(vop->regs + offset); 195 } 196 197 static inline uint32_t vop_read_reg(struct vop *vop, uint32_t base, 198 const struct vop_reg *reg) 199 { 200 return (vop_readl(vop, base + reg->offset) >> reg->shift) & reg->mask; 201 } 202 203 static void vop_reg_set(struct vop *vop, const struct vop_reg *reg, 204 uint32_t _offset, uint32_t _mask, uint32_t v, 205 const char *reg_name) 206 { 207 int offset, mask, shift; 208 209 if (!reg || !reg->mask) { 210 DRM_DEV_DEBUG(vop->dev, "Warning: not support %s\n", reg_name); 211 return; 212 } 213 214 offset = reg->offset + _offset; 215 mask = reg->mask & _mask; 216 shift = reg->shift; 217 218 if (reg->write_mask) { 219 v = ((v << shift) & 0xffff) | (mask << (shift + 16)); 220 } else { 221 uint32_t cached_val = vop->regsbak[offset >> 2]; 222 223 v = (cached_val & ~(mask << shift)) | ((v & mask) << shift); 224 vop->regsbak[offset >> 2] = v; 225 } 226 227 if (reg->relaxed) 228 writel_relaxed(v, vop->regs + offset); 229 else 230 writel(v, vop->regs + offset); 231 } 232 233 static inline uint32_t vop_get_intr_type(struct vop *vop, 234 const struct vop_reg *reg, int type) 235 { 236 uint32_t i, ret = 0; 237 uint32_t regs = vop_read_reg(vop, 0, reg); 238 239 for (i = 0; i < vop->data->intr->nintrs; i++) { 240 if ((type & vop->data->intr->intrs[i]) && (regs & 1 << i)) 241 ret |= vop->data->intr->intrs[i]; 242 } 243 244 return ret; 245 } 246 247 static inline void vop_cfg_done(struct vop *vop) 248 { 249 VOP_REG_SET(vop, common, cfg_done, 1); 250 } 251 252 static bool has_rb_swapped(uint32_t format) 253 { 254 switch (format) { 255 case DRM_FORMAT_XBGR8888: 256 case DRM_FORMAT_ABGR8888: 257 case DRM_FORMAT_BGR888: 258 case DRM_FORMAT_BGR565: 259 return true; 260 default: 261 return false; 262 } 263 } 264 265 static enum vop_data_format vop_convert_format(uint32_t format) 266 { 267 switch (format) { 268 case DRM_FORMAT_XRGB8888: 269 case DRM_FORMAT_ARGB8888: 270 case DRM_FORMAT_XBGR8888: 271 case DRM_FORMAT_ABGR8888: 272 return VOP_FMT_ARGB8888; 273 case DRM_FORMAT_RGB888: 274 case DRM_FORMAT_BGR888: 275 return VOP_FMT_RGB888; 276 case DRM_FORMAT_RGB565: 277 case DRM_FORMAT_BGR565: 278 return VOP_FMT_RGB565; 279 case DRM_FORMAT_NV12: 280 return VOP_FMT_YUV420SP; 281 case DRM_FORMAT_NV16: 282 return VOP_FMT_YUV422SP; 283 case DRM_FORMAT_NV24: 284 return VOP_FMT_YUV444SP; 285 default: 286 DRM_ERROR("unsupported format[%08x]\n", format); 287 return -EINVAL; 288 } 289 } 290 291 static int vop_convert_afbc_format(uint32_t format) 292 { 293 switch (format) { 294 case DRM_FORMAT_XRGB8888: 295 case DRM_FORMAT_ARGB8888: 296 case DRM_FORMAT_XBGR8888: 297 case DRM_FORMAT_ABGR8888: 298 return AFBC_FMT_U8U8U8U8; 299 case DRM_FORMAT_RGB888: 300 case DRM_FORMAT_BGR888: 301 return AFBC_FMT_U8U8U8; 302 case DRM_FORMAT_RGB565: 303 case DRM_FORMAT_BGR565: 304 return AFBC_FMT_RGB565; 305 /* either of the below should not be reachable */ 306 default: 307 DRM_WARN_ONCE("unsupported AFBC format[%08x]\n", format); 308 return -EINVAL; 309 } 310 311 return -EINVAL; 312 } 313 314 static uint16_t scl_vop_cal_scale(enum scale_mode mode, uint32_t src, 315 uint32_t dst, bool is_horizontal, 316 int vsu_mode, int *vskiplines) 317 { 318 uint16_t val = 1 << SCL_FT_DEFAULT_FIXPOINT_SHIFT; 319 320 if (vskiplines) 321 *vskiplines = 0; 322 323 if (is_horizontal) { 324 if (mode == SCALE_UP) 325 val = GET_SCL_FT_BIC(src, dst); 326 else if (mode == SCALE_DOWN) 327 val = GET_SCL_FT_BILI_DN(src, dst); 328 } else { 329 if (mode == SCALE_UP) { 330 if (vsu_mode == SCALE_UP_BIL) 331 val = GET_SCL_FT_BILI_UP(src, dst); 332 else 333 val = GET_SCL_FT_BIC(src, dst); 334 } else if (mode == SCALE_DOWN) { 335 if (vskiplines) { 336 *vskiplines = scl_get_vskiplines(src, dst); 337 val = scl_get_bili_dn_vskip(src, dst, 338 *vskiplines); 339 } else { 340 val = GET_SCL_FT_BILI_DN(src, dst); 341 } 342 } 343 } 344 345 return val; 346 } 347 348 static void scl_vop_cal_scl_fac(struct vop *vop, const struct vop_win_data *win, 349 uint32_t src_w, uint32_t src_h, uint32_t dst_w, 350 uint32_t dst_h, const struct drm_format_info *info) 351 { 352 uint16_t yrgb_hor_scl_mode, yrgb_ver_scl_mode; 353 uint16_t cbcr_hor_scl_mode = SCALE_NONE; 354 uint16_t cbcr_ver_scl_mode = SCALE_NONE; 355 bool is_yuv = false; 356 uint16_t cbcr_src_w = src_w / info->hsub; 357 uint16_t cbcr_src_h = src_h / info->vsub; 358 uint16_t vsu_mode; 359 uint16_t lb_mode; 360 uint32_t val; 361 int vskiplines; 362 363 if (info->is_yuv) 364 is_yuv = true; 365 366 if (dst_w > 3840) { 367 DRM_DEV_ERROR(vop->dev, "Maximum dst width (3840) exceeded\n"); 368 return; 369 } 370 371 if (!win->phy->scl->ext) { 372 VOP_SCL_SET(vop, win, scale_yrgb_x, 373 scl_cal_scale2(src_w, dst_w)); 374 VOP_SCL_SET(vop, win, scale_yrgb_y, 375 scl_cal_scale2(src_h, dst_h)); 376 if (is_yuv) { 377 VOP_SCL_SET(vop, win, scale_cbcr_x, 378 scl_cal_scale2(cbcr_src_w, dst_w)); 379 VOP_SCL_SET(vop, win, scale_cbcr_y, 380 scl_cal_scale2(cbcr_src_h, dst_h)); 381 } 382 return; 383 } 384 385 yrgb_hor_scl_mode = scl_get_scl_mode(src_w, dst_w); 386 yrgb_ver_scl_mode = scl_get_scl_mode(src_h, dst_h); 387 388 if (is_yuv) { 389 cbcr_hor_scl_mode = scl_get_scl_mode(cbcr_src_w, dst_w); 390 cbcr_ver_scl_mode = scl_get_scl_mode(cbcr_src_h, dst_h); 391 if (cbcr_hor_scl_mode == SCALE_DOWN) 392 lb_mode = scl_vop_cal_lb_mode(dst_w, true); 393 else 394 lb_mode = scl_vop_cal_lb_mode(cbcr_src_w, true); 395 } else { 396 if (yrgb_hor_scl_mode == SCALE_DOWN) 397 lb_mode = scl_vop_cal_lb_mode(dst_w, false); 398 else 399 lb_mode = scl_vop_cal_lb_mode(src_w, false); 400 } 401 402 VOP_SCL_SET_EXT(vop, win, lb_mode, lb_mode); 403 if (lb_mode == LB_RGB_3840X2) { 404 if (yrgb_ver_scl_mode != SCALE_NONE) { 405 DRM_DEV_ERROR(vop->dev, "not allow yrgb ver scale\n"); 406 return; 407 } 408 if (cbcr_ver_scl_mode != SCALE_NONE) { 409 DRM_DEV_ERROR(vop->dev, "not allow cbcr ver scale\n"); 410 return; 411 } 412 vsu_mode = SCALE_UP_BIL; 413 } else if (lb_mode == LB_RGB_2560X4) { 414 vsu_mode = SCALE_UP_BIL; 415 } else { 416 vsu_mode = SCALE_UP_BIC; 417 } 418 419 val = scl_vop_cal_scale(yrgb_hor_scl_mode, src_w, dst_w, 420 true, 0, NULL); 421 VOP_SCL_SET(vop, win, scale_yrgb_x, val); 422 val = scl_vop_cal_scale(yrgb_ver_scl_mode, src_h, dst_h, 423 false, vsu_mode, &vskiplines); 424 VOP_SCL_SET(vop, win, scale_yrgb_y, val); 425 426 VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt4, vskiplines == 4); 427 VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt2, vskiplines == 2); 428 429 VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, yrgb_hor_scl_mode); 430 VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, yrgb_ver_scl_mode); 431 VOP_SCL_SET_EXT(vop, win, yrgb_hsd_mode, SCALE_DOWN_BIL); 432 VOP_SCL_SET_EXT(vop, win, yrgb_vsd_mode, SCALE_DOWN_BIL); 433 VOP_SCL_SET_EXT(vop, win, yrgb_vsu_mode, vsu_mode); 434 if (is_yuv) { 435 val = scl_vop_cal_scale(cbcr_hor_scl_mode, cbcr_src_w, 436 dst_w, true, 0, NULL); 437 VOP_SCL_SET(vop, win, scale_cbcr_x, val); 438 val = scl_vop_cal_scale(cbcr_ver_scl_mode, cbcr_src_h, 439 dst_h, false, vsu_mode, &vskiplines); 440 VOP_SCL_SET(vop, win, scale_cbcr_y, val); 441 442 VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt4, vskiplines == 4); 443 VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt2, vskiplines == 2); 444 VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, cbcr_hor_scl_mode); 445 VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, cbcr_ver_scl_mode); 446 VOP_SCL_SET_EXT(vop, win, cbcr_hsd_mode, SCALE_DOWN_BIL); 447 VOP_SCL_SET_EXT(vop, win, cbcr_vsd_mode, SCALE_DOWN_BIL); 448 VOP_SCL_SET_EXT(vop, win, cbcr_vsu_mode, vsu_mode); 449 } 450 } 451 452 static void vop_dsp_hold_valid_irq_enable(struct vop *vop) 453 { 454 unsigned long flags; 455 456 if (WARN_ON(!vop->is_enabled)) 457 return; 458 459 spin_lock_irqsave(&vop->irq_lock, flags); 460 461 VOP_INTR_SET_TYPE(vop, clear, DSP_HOLD_VALID_INTR, 1); 462 VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 1); 463 464 spin_unlock_irqrestore(&vop->irq_lock, flags); 465 } 466 467 static void vop_dsp_hold_valid_irq_disable(struct vop *vop) 468 { 469 unsigned long flags; 470 471 if (WARN_ON(!vop->is_enabled)) 472 return; 473 474 spin_lock_irqsave(&vop->irq_lock, flags); 475 476 VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 0); 477 478 spin_unlock_irqrestore(&vop->irq_lock, flags); 479 } 480 481 /* 482 * (1) each frame starts at the start of the Vsync pulse which is signaled by 483 * the "FRAME_SYNC" interrupt. 484 * (2) the active data region of each frame ends at dsp_vact_end 485 * (3) we should program this same number (dsp_vact_end) into dsp_line_frag_num, 486 * to get "LINE_FLAG" interrupt at the end of the active on screen data. 487 * 488 * VOP_INTR_CTRL0.dsp_line_frag_num = VOP_DSP_VACT_ST_END.dsp_vact_end 489 * Interrupts 490 * LINE_FLAG -------------------------------+ 491 * FRAME_SYNC ----+ | 492 * | | 493 * v v 494 * | Vsync | Vbp | Vactive | Vfp | 495 * ^ ^ ^ ^ 496 * | | | | 497 * | | | | 498 * dsp_vs_end ------------+ | | | VOP_DSP_VTOTAL_VS_END 499 * dsp_vact_start --------------+ | | VOP_DSP_VACT_ST_END 500 * dsp_vact_end ----------------------------+ | VOP_DSP_VACT_ST_END 501 * dsp_total -------------------------------------+ VOP_DSP_VTOTAL_VS_END 502 */ 503 static bool vop_line_flag_irq_is_enabled(struct vop *vop) 504 { 505 uint32_t line_flag_irq; 506 unsigned long flags; 507 508 spin_lock_irqsave(&vop->irq_lock, flags); 509 510 line_flag_irq = VOP_INTR_GET_TYPE(vop, enable, LINE_FLAG_INTR); 511 512 spin_unlock_irqrestore(&vop->irq_lock, flags); 513 514 return !!line_flag_irq; 515 } 516 517 static void vop_line_flag_irq_enable(struct vop *vop) 518 { 519 unsigned long flags; 520 521 if (WARN_ON(!vop->is_enabled)) 522 return; 523 524 spin_lock_irqsave(&vop->irq_lock, flags); 525 526 VOP_INTR_SET_TYPE(vop, clear, LINE_FLAG_INTR, 1); 527 VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 1); 528 529 spin_unlock_irqrestore(&vop->irq_lock, flags); 530 } 531 532 static void vop_line_flag_irq_disable(struct vop *vop) 533 { 534 unsigned long flags; 535 536 if (WARN_ON(!vop->is_enabled)) 537 return; 538 539 spin_lock_irqsave(&vop->irq_lock, flags); 540 541 VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 0); 542 543 spin_unlock_irqrestore(&vop->irq_lock, flags); 544 } 545 546 static int vop_core_clks_enable(struct vop *vop) 547 { 548 int ret; 549 550 ret = clk_enable(vop->hclk); 551 if (ret < 0) 552 return ret; 553 554 ret = clk_enable(vop->aclk); 555 if (ret < 0) 556 goto err_disable_hclk; 557 558 return 0; 559 560 err_disable_hclk: 561 clk_disable(vop->hclk); 562 return ret; 563 } 564 565 static void vop_core_clks_disable(struct vop *vop) 566 { 567 clk_disable(vop->aclk); 568 clk_disable(vop->hclk); 569 } 570 571 static void vop_win_disable(struct vop *vop, const struct vop_win *vop_win) 572 { 573 const struct vop_win_data *win = vop_win->data; 574 575 if (win->phy->scl && win->phy->scl->ext) { 576 VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, SCALE_NONE); 577 VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, SCALE_NONE); 578 VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, SCALE_NONE); 579 VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, SCALE_NONE); 580 } 581 582 VOP_WIN_SET(vop, win, enable, 0); 583 vop->win_enabled &= ~BIT(VOP_WIN_TO_INDEX(vop_win)); 584 } 585 586 static int vop_enable(struct drm_crtc *crtc, struct drm_crtc_state *old_state) 587 { 588 struct vop *vop = to_vop(crtc); 589 int ret, i; 590 591 ret = pm_runtime_get_sync(vop->dev); 592 if (ret < 0) { 593 DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret); 594 return ret; 595 } 596 597 ret = vop_core_clks_enable(vop); 598 if (WARN_ON(ret < 0)) 599 goto err_put_pm_runtime; 600 601 ret = clk_enable(vop->dclk); 602 if (WARN_ON(ret < 0)) 603 goto err_disable_core; 604 605 /* 606 * Slave iommu shares power, irq and clock with vop. It was associated 607 * automatically with this master device via common driver code. 608 * Now that we have enabled the clock we attach it to the shared drm 609 * mapping. 610 */ 611 ret = rockchip_drm_dma_attach_device(vop->drm_dev, vop->dev); 612 if (ret) { 613 DRM_DEV_ERROR(vop->dev, 614 "failed to attach dma mapping, %d\n", ret); 615 goto err_disable_dclk; 616 } 617 618 spin_lock(&vop->reg_lock); 619 for (i = 0; i < vop->len; i += 4) 620 writel_relaxed(vop->regsbak[i / 4], vop->regs + i); 621 622 /* 623 * We need to make sure that all windows are disabled before we 624 * enable the crtc. Otherwise we might try to scan from a destroyed 625 * buffer later. 626 * 627 * In the case of enable-after-PSR, we don't need to worry about this 628 * case since the buffer is guaranteed to be valid and disabling the 629 * window will result in screen glitches on PSR exit. 630 */ 631 if (!old_state || !old_state->self_refresh_active) { 632 for (i = 0; i < vop->data->win_size; i++) { 633 struct vop_win *vop_win = &vop->win[i]; 634 635 vop_win_disable(vop, vop_win); 636 } 637 } 638 639 if (vop->data->afbc) { 640 struct rockchip_crtc_state *s; 641 /* 642 * Disable AFBC and forget there was a vop window with AFBC 643 */ 644 VOP_AFBC_SET(vop, enable, 0); 645 s = to_rockchip_crtc_state(crtc->state); 646 s->enable_afbc = false; 647 } 648 649 vop_cfg_done(vop); 650 651 spin_unlock(&vop->reg_lock); 652 653 /* 654 * At here, vop clock & iommu is enable, R/W vop regs would be safe. 655 */ 656 vop->is_enabled = true; 657 658 spin_lock(&vop->reg_lock); 659 660 VOP_REG_SET(vop, common, standby, 1); 661 662 spin_unlock(&vop->reg_lock); 663 664 drm_crtc_vblank_on(crtc); 665 666 return 0; 667 668 err_disable_dclk: 669 clk_disable(vop->dclk); 670 err_disable_core: 671 vop_core_clks_disable(vop); 672 err_put_pm_runtime: 673 pm_runtime_put_sync(vop->dev); 674 return ret; 675 } 676 677 static void rockchip_drm_set_win_enabled(struct drm_crtc *crtc, bool enabled) 678 { 679 struct vop *vop = to_vop(crtc); 680 int i; 681 682 spin_lock(&vop->reg_lock); 683 684 for (i = 0; i < vop->data->win_size; i++) { 685 struct vop_win *vop_win = &vop->win[i]; 686 const struct vop_win_data *win = vop_win->data; 687 688 VOP_WIN_SET(vop, win, enable, 689 enabled && (vop->win_enabled & BIT(i))); 690 } 691 vop_cfg_done(vop); 692 693 spin_unlock(&vop->reg_lock); 694 } 695 696 static void vop_crtc_atomic_disable(struct drm_crtc *crtc, 697 struct drm_atomic_state *state) 698 { 699 struct vop *vop = to_vop(crtc); 700 701 WARN_ON(vop->event); 702 703 if (crtc->state->self_refresh_active) 704 rockchip_drm_set_win_enabled(crtc, false); 705 706 mutex_lock(&vop->vop_lock); 707 708 drm_crtc_vblank_off(crtc); 709 710 if (crtc->state->self_refresh_active) 711 goto out; 712 713 /* 714 * Vop standby will take effect at end of current frame, 715 * if dsp hold valid irq happen, it means standby complete. 716 * 717 * we must wait standby complete when we want to disable aclk, 718 * if not, memory bus maybe dead. 719 */ 720 reinit_completion(&vop->dsp_hold_completion); 721 vop_dsp_hold_valid_irq_enable(vop); 722 723 spin_lock(&vop->reg_lock); 724 725 VOP_REG_SET(vop, common, standby, 1); 726 727 spin_unlock(&vop->reg_lock); 728 729 wait_for_completion(&vop->dsp_hold_completion); 730 731 vop_dsp_hold_valid_irq_disable(vop); 732 733 vop->is_enabled = false; 734 735 /* 736 * vop standby complete, so iommu detach is safe. 737 */ 738 rockchip_drm_dma_detach_device(vop->drm_dev, vop->dev); 739 740 clk_disable(vop->dclk); 741 vop_core_clks_disable(vop); 742 pm_runtime_put(vop->dev); 743 744 out: 745 mutex_unlock(&vop->vop_lock); 746 747 if (crtc->state->event && !crtc->state->active) { 748 spin_lock_irq(&crtc->dev->event_lock); 749 drm_crtc_send_vblank_event(crtc, crtc->state->event); 750 spin_unlock_irq(&crtc->dev->event_lock); 751 752 crtc->state->event = NULL; 753 } 754 } 755 756 static void vop_plane_destroy(struct drm_plane *plane) 757 { 758 drm_plane_cleanup(plane); 759 } 760 761 static inline bool rockchip_afbc(u64 modifier) 762 { 763 return modifier == ROCKCHIP_AFBC_MOD; 764 } 765 766 static bool rockchip_mod_supported(struct drm_plane *plane, 767 u32 format, u64 modifier) 768 { 769 if (modifier == DRM_FORMAT_MOD_LINEAR) 770 return true; 771 772 if (!rockchip_afbc(modifier)) { 773 DRM_DEBUG_KMS("Unsupported format modifier 0x%llx\n", modifier); 774 775 return false; 776 } 777 778 return vop_convert_afbc_format(format) >= 0; 779 } 780 781 static int vop_plane_atomic_check(struct drm_plane *plane, 782 struct drm_atomic_state *state) 783 { 784 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state, 785 plane); 786 struct drm_crtc *crtc = new_plane_state->crtc; 787 struct drm_crtc_state *crtc_state; 788 struct drm_framebuffer *fb = new_plane_state->fb; 789 struct vop_win *vop_win = to_vop_win(plane); 790 const struct vop_win_data *win = vop_win->data; 791 int ret; 792 int min_scale = win->phy->scl ? FRAC_16_16(1, 8) : 793 DRM_PLANE_HELPER_NO_SCALING; 794 int max_scale = win->phy->scl ? FRAC_16_16(8, 1) : 795 DRM_PLANE_HELPER_NO_SCALING; 796 797 if (!crtc || WARN_ON(!fb)) 798 return 0; 799 800 crtc_state = drm_atomic_get_existing_crtc_state(state, 801 crtc); 802 if (WARN_ON(!crtc_state)) 803 return -EINVAL; 804 805 ret = drm_atomic_helper_check_plane_state(new_plane_state, crtc_state, 806 min_scale, max_scale, 807 true, true); 808 if (ret) 809 return ret; 810 811 if (!new_plane_state->visible) 812 return 0; 813 814 ret = vop_convert_format(fb->format->format); 815 if (ret < 0) 816 return ret; 817 818 /* 819 * Src.x1 can be odd when do clip, but yuv plane start point 820 * need align with 2 pixel. 821 */ 822 if (fb->format->is_yuv && ((new_plane_state->src.x1 >> 16) % 2)) { 823 DRM_ERROR("Invalid Source: Yuv format not support odd xpos\n"); 824 return -EINVAL; 825 } 826 827 if (fb->format->is_yuv && new_plane_state->rotation & DRM_MODE_REFLECT_Y) { 828 DRM_ERROR("Invalid Source: Yuv format does not support this rotation\n"); 829 return -EINVAL; 830 } 831 832 if (rockchip_afbc(fb->modifier)) { 833 struct vop *vop = to_vop(crtc); 834 835 if (!vop->data->afbc) { 836 DRM_ERROR("vop does not support AFBC\n"); 837 return -EINVAL; 838 } 839 840 ret = vop_convert_afbc_format(fb->format->format); 841 if (ret < 0) 842 return ret; 843 844 if (new_plane_state->src.x1 || new_plane_state->src.y1) { 845 DRM_ERROR("AFBC does not support offset display, xpos=%d, ypos=%d, offset=%d\n", 846 new_plane_state->src.x1, 847 new_plane_state->src.y1, fb->offsets[0]); 848 return -EINVAL; 849 } 850 851 if (new_plane_state->rotation && new_plane_state->rotation != DRM_MODE_ROTATE_0) { 852 DRM_ERROR("No rotation support in AFBC, rotation=%d\n", 853 new_plane_state->rotation); 854 return -EINVAL; 855 } 856 } 857 858 return 0; 859 } 860 861 static void vop_plane_atomic_disable(struct drm_plane *plane, 862 struct drm_atomic_state *state) 863 { 864 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state, 865 plane); 866 struct vop_win *vop_win = to_vop_win(plane); 867 struct vop *vop = to_vop(old_state->crtc); 868 869 if (!old_state->crtc) 870 return; 871 872 spin_lock(&vop->reg_lock); 873 874 vop_win_disable(vop, vop_win); 875 876 spin_unlock(&vop->reg_lock); 877 } 878 879 static void vop_plane_atomic_update(struct drm_plane *plane, 880 struct drm_atomic_state *state) 881 { 882 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, 883 plane); 884 struct drm_crtc *crtc = new_state->crtc; 885 struct vop_win *vop_win = to_vop_win(plane); 886 const struct vop_win_data *win = vop_win->data; 887 const struct vop_win_yuv2yuv_data *win_yuv2yuv = vop_win->yuv2yuv_data; 888 struct vop *vop = to_vop(new_state->crtc); 889 struct drm_framebuffer *fb = new_state->fb; 890 unsigned int actual_w, actual_h; 891 unsigned int dsp_stx, dsp_sty; 892 uint32_t act_info, dsp_info, dsp_st; 893 struct drm_rect *src = &new_state->src; 894 struct drm_rect *dest = &new_state->dst; 895 struct drm_gem_object *obj, *uv_obj; 896 struct rockchip_gem_object *rk_obj, *rk_uv_obj; 897 unsigned long offset; 898 dma_addr_t dma_addr; 899 uint32_t val; 900 bool rb_swap; 901 int win_index = VOP_WIN_TO_INDEX(vop_win); 902 int format; 903 int is_yuv = fb->format->is_yuv; 904 int i; 905 906 /* 907 * can't update plane when vop is disabled. 908 */ 909 if (WARN_ON(!crtc)) 910 return; 911 912 if (WARN_ON(!vop->is_enabled)) 913 return; 914 915 if (!new_state->visible) { 916 vop_plane_atomic_disable(plane, state); 917 return; 918 } 919 920 obj = fb->obj[0]; 921 rk_obj = to_rockchip_obj(obj); 922 923 actual_w = drm_rect_width(src) >> 16; 924 actual_h = drm_rect_height(src) >> 16; 925 act_info = (actual_h - 1) << 16 | ((actual_w - 1) & 0xffff); 926 927 dsp_info = (drm_rect_height(dest) - 1) << 16; 928 dsp_info |= (drm_rect_width(dest) - 1) & 0xffff; 929 930 dsp_stx = dest->x1 + crtc->mode.htotal - crtc->mode.hsync_start; 931 dsp_sty = dest->y1 + crtc->mode.vtotal - crtc->mode.vsync_start; 932 dsp_st = dsp_sty << 16 | (dsp_stx & 0xffff); 933 934 offset = (src->x1 >> 16) * fb->format->cpp[0]; 935 offset += (src->y1 >> 16) * fb->pitches[0]; 936 dma_addr = rk_obj->dma_addr + offset + fb->offsets[0]; 937 938 /* 939 * For y-mirroring we need to move address 940 * to the beginning of the last line. 941 */ 942 if (new_state->rotation & DRM_MODE_REFLECT_Y) 943 dma_addr += (actual_h - 1) * fb->pitches[0]; 944 945 format = vop_convert_format(fb->format->format); 946 947 spin_lock(&vop->reg_lock); 948 949 if (rockchip_afbc(fb->modifier)) { 950 int afbc_format = vop_convert_afbc_format(fb->format->format); 951 952 VOP_AFBC_SET(vop, format, afbc_format | AFBC_TILE_16x16); 953 VOP_AFBC_SET(vop, hreg_block_split, 0); 954 VOP_AFBC_SET(vop, win_sel, VOP_WIN_TO_INDEX(vop_win)); 955 VOP_AFBC_SET(vop, hdr_ptr, dma_addr); 956 VOP_AFBC_SET(vop, pic_size, act_info); 957 } 958 959 VOP_WIN_SET(vop, win, format, format); 960 VOP_WIN_SET(vop, win, yrgb_vir, DIV_ROUND_UP(fb->pitches[0], 4)); 961 VOP_WIN_SET(vop, win, yrgb_mst, dma_addr); 962 VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, y2r_en, is_yuv); 963 VOP_WIN_SET(vop, win, y_mir_en, 964 (new_state->rotation & DRM_MODE_REFLECT_Y) ? 1 : 0); 965 VOP_WIN_SET(vop, win, x_mir_en, 966 (new_state->rotation & DRM_MODE_REFLECT_X) ? 1 : 0); 967 968 if (is_yuv) { 969 int hsub = fb->format->hsub; 970 int vsub = fb->format->vsub; 971 int bpp = fb->format->cpp[1]; 972 973 uv_obj = fb->obj[1]; 974 rk_uv_obj = to_rockchip_obj(uv_obj); 975 976 offset = (src->x1 >> 16) * bpp / hsub; 977 offset += (src->y1 >> 16) * fb->pitches[1] / vsub; 978 979 dma_addr = rk_uv_obj->dma_addr + offset + fb->offsets[1]; 980 VOP_WIN_SET(vop, win, uv_vir, DIV_ROUND_UP(fb->pitches[1], 4)); 981 VOP_WIN_SET(vop, win, uv_mst, dma_addr); 982 983 for (i = 0; i < NUM_YUV2YUV_COEFFICIENTS; i++) { 984 VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop, 985 win_yuv2yuv, 986 y2r_coefficients[i], 987 bt601_yuv2rgb[i]); 988 } 989 } 990 991 if (win->phy->scl) 992 scl_vop_cal_scl_fac(vop, win, actual_w, actual_h, 993 drm_rect_width(dest), drm_rect_height(dest), 994 fb->format); 995 996 VOP_WIN_SET(vop, win, act_info, act_info); 997 VOP_WIN_SET(vop, win, dsp_info, dsp_info); 998 VOP_WIN_SET(vop, win, dsp_st, dsp_st); 999 1000 rb_swap = has_rb_swapped(fb->format->format); 1001 VOP_WIN_SET(vop, win, rb_swap, rb_swap); 1002 1003 /* 1004 * Blending win0 with the background color doesn't seem to work 1005 * correctly. We only get the background color, no matter the contents 1006 * of the win0 framebuffer. However, blending pre-multiplied color 1007 * with the default opaque black default background color is a no-op, 1008 * so we can just disable blending to get the correct result. 1009 */ 1010 if (fb->format->has_alpha && win_index > 0) { 1011 VOP_WIN_SET(vop, win, dst_alpha_ctl, 1012 DST_FACTOR_M0(ALPHA_SRC_INVERSE)); 1013 val = SRC_ALPHA_EN(1) | SRC_COLOR_M0(ALPHA_SRC_PRE_MUL) | 1014 SRC_ALPHA_M0(ALPHA_STRAIGHT) | 1015 SRC_BLEND_M0(ALPHA_PER_PIX) | 1016 SRC_ALPHA_CAL_M0(ALPHA_NO_SATURATION) | 1017 SRC_FACTOR_M0(ALPHA_ONE); 1018 VOP_WIN_SET(vop, win, src_alpha_ctl, val); 1019 1020 VOP_WIN_SET(vop, win, alpha_pre_mul, ALPHA_SRC_PRE_MUL); 1021 VOP_WIN_SET(vop, win, alpha_mode, ALPHA_PER_PIX); 1022 VOP_WIN_SET(vop, win, alpha_en, 1); 1023 } else { 1024 VOP_WIN_SET(vop, win, src_alpha_ctl, SRC_ALPHA_EN(0)); 1025 VOP_WIN_SET(vop, win, alpha_en, 0); 1026 } 1027 1028 VOP_WIN_SET(vop, win, enable, 1); 1029 vop->win_enabled |= BIT(win_index); 1030 spin_unlock(&vop->reg_lock); 1031 } 1032 1033 static int vop_plane_atomic_async_check(struct drm_plane *plane, 1034 struct drm_atomic_state *state) 1035 { 1036 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state, 1037 plane); 1038 struct vop_win *vop_win = to_vop_win(plane); 1039 const struct vop_win_data *win = vop_win->data; 1040 int min_scale = win->phy->scl ? FRAC_16_16(1, 8) : 1041 DRM_PLANE_HELPER_NO_SCALING; 1042 int max_scale = win->phy->scl ? FRAC_16_16(8, 1) : 1043 DRM_PLANE_HELPER_NO_SCALING; 1044 struct drm_crtc_state *crtc_state; 1045 1046 if (plane != new_plane_state->crtc->cursor) 1047 return -EINVAL; 1048 1049 if (!plane->state) 1050 return -EINVAL; 1051 1052 if (!plane->state->fb) 1053 return -EINVAL; 1054 1055 if (state) 1056 crtc_state = drm_atomic_get_existing_crtc_state(state, 1057 new_plane_state->crtc); 1058 else /* Special case for asynchronous cursor updates. */ 1059 crtc_state = plane->crtc->state; 1060 1061 return drm_atomic_helper_check_plane_state(plane->state, crtc_state, 1062 min_scale, max_scale, 1063 true, true); 1064 } 1065 1066 static void vop_plane_atomic_async_update(struct drm_plane *plane, 1067 struct drm_atomic_state *state) 1068 { 1069 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, 1070 plane); 1071 struct vop *vop = to_vop(plane->state->crtc); 1072 struct drm_framebuffer *old_fb = plane->state->fb; 1073 1074 plane->state->crtc_x = new_state->crtc_x; 1075 plane->state->crtc_y = new_state->crtc_y; 1076 plane->state->crtc_h = new_state->crtc_h; 1077 plane->state->crtc_w = new_state->crtc_w; 1078 plane->state->src_x = new_state->src_x; 1079 plane->state->src_y = new_state->src_y; 1080 plane->state->src_h = new_state->src_h; 1081 plane->state->src_w = new_state->src_w; 1082 swap(plane->state->fb, new_state->fb); 1083 1084 if (vop->is_enabled) { 1085 vop_plane_atomic_update(plane, state); 1086 spin_lock(&vop->reg_lock); 1087 vop_cfg_done(vop); 1088 spin_unlock(&vop->reg_lock); 1089 1090 /* 1091 * A scanout can still be occurring, so we can't drop the 1092 * reference to the old framebuffer. To solve this we get a 1093 * reference to old_fb and set a worker to release it later. 1094 * FIXME: if we perform 500 async_update calls before the 1095 * vblank, then we can have 500 different framebuffers waiting 1096 * to be released. 1097 */ 1098 if (old_fb && plane->state->fb != old_fb) { 1099 drm_framebuffer_get(old_fb); 1100 WARN_ON(drm_crtc_vblank_get(plane->state->crtc) != 0); 1101 drm_flip_work_queue(&vop->fb_unref_work, old_fb); 1102 set_bit(VOP_PENDING_FB_UNREF, &vop->pending); 1103 } 1104 } 1105 } 1106 1107 static const struct drm_plane_helper_funcs plane_helper_funcs = { 1108 .atomic_check = vop_plane_atomic_check, 1109 .atomic_update = vop_plane_atomic_update, 1110 .atomic_disable = vop_plane_atomic_disable, 1111 .atomic_async_check = vop_plane_atomic_async_check, 1112 .atomic_async_update = vop_plane_atomic_async_update, 1113 }; 1114 1115 static const struct drm_plane_funcs vop_plane_funcs = { 1116 .update_plane = drm_atomic_helper_update_plane, 1117 .disable_plane = drm_atomic_helper_disable_plane, 1118 .destroy = vop_plane_destroy, 1119 .reset = drm_atomic_helper_plane_reset, 1120 .atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state, 1121 .atomic_destroy_state = drm_atomic_helper_plane_destroy_state, 1122 .format_mod_supported = rockchip_mod_supported, 1123 }; 1124 1125 static int vop_crtc_enable_vblank(struct drm_crtc *crtc) 1126 { 1127 struct vop *vop = to_vop(crtc); 1128 unsigned long flags; 1129 1130 if (WARN_ON(!vop->is_enabled)) 1131 return -EPERM; 1132 1133 spin_lock_irqsave(&vop->irq_lock, flags); 1134 1135 VOP_INTR_SET_TYPE(vop, clear, FS_INTR, 1); 1136 VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 1); 1137 1138 spin_unlock_irqrestore(&vop->irq_lock, flags); 1139 1140 return 0; 1141 } 1142 1143 static void vop_crtc_disable_vblank(struct drm_crtc *crtc) 1144 { 1145 struct vop *vop = to_vop(crtc); 1146 unsigned long flags; 1147 1148 if (WARN_ON(!vop->is_enabled)) 1149 return; 1150 1151 spin_lock_irqsave(&vop->irq_lock, flags); 1152 1153 VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 0); 1154 1155 spin_unlock_irqrestore(&vop->irq_lock, flags); 1156 } 1157 1158 static bool vop_crtc_mode_fixup(struct drm_crtc *crtc, 1159 const struct drm_display_mode *mode, 1160 struct drm_display_mode *adjusted_mode) 1161 { 1162 struct vop *vop = to_vop(crtc); 1163 unsigned long rate; 1164 1165 /* 1166 * Clock craziness. 1167 * 1168 * Key points: 1169 * 1170 * - DRM works in in kHz. 1171 * - Clock framework works in Hz. 1172 * - Rockchip's clock driver picks the clock rate that is the 1173 * same _OR LOWER_ than the one requested. 1174 * 1175 * Action plan: 1176 * 1177 * 1. Try to set the exact rate first, and confirm the clock framework 1178 * can provide it. 1179 * 1180 * 2. If the clock framework cannot provide the exact rate, we should 1181 * add 999 Hz to the requested rate. That way if the clock we need 1182 * is 60000001 Hz (~60 MHz) and DRM tells us to make 60000 kHz then 1183 * the clock framework will actually give us the right clock. 1184 * 1185 * 3. Get the clock framework to round the rate for us to tell us 1186 * what it will actually make. 1187 * 1188 * 4. Store the rounded up rate so that we don't need to worry about 1189 * this in the actual clk_set_rate(). 1190 */ 1191 rate = clk_round_rate(vop->dclk, adjusted_mode->clock * 1000); 1192 if (rate / 1000 != adjusted_mode->clock) 1193 rate = clk_round_rate(vop->dclk, 1194 adjusted_mode->clock * 1000 + 999); 1195 adjusted_mode->clock = DIV_ROUND_UP(rate, 1000); 1196 1197 return true; 1198 } 1199 1200 static bool vop_dsp_lut_is_enabled(struct vop *vop) 1201 { 1202 return vop_read_reg(vop, 0, &vop->data->common->dsp_lut_en); 1203 } 1204 1205 static void vop_crtc_write_gamma_lut(struct vop *vop, struct drm_crtc *crtc) 1206 { 1207 struct drm_color_lut *lut = crtc->state->gamma_lut->data; 1208 unsigned int i; 1209 1210 for (i = 0; i < crtc->gamma_size; i++) { 1211 u32 word; 1212 1213 word = (drm_color_lut_extract(lut[i].red, 10) << 20) | 1214 (drm_color_lut_extract(lut[i].green, 10) << 10) | 1215 drm_color_lut_extract(lut[i].blue, 10); 1216 writel(word, vop->lut_regs + i * 4); 1217 } 1218 } 1219 1220 static void vop_crtc_gamma_set(struct vop *vop, struct drm_crtc *crtc, 1221 struct drm_crtc_state *old_state) 1222 { 1223 struct drm_crtc_state *state = crtc->state; 1224 unsigned int idle; 1225 int ret; 1226 1227 if (!vop->lut_regs) 1228 return; 1229 /* 1230 * To disable gamma (gamma_lut is null) or to write 1231 * an update to the LUT, clear dsp_lut_en. 1232 */ 1233 spin_lock(&vop->reg_lock); 1234 VOP_REG_SET(vop, common, dsp_lut_en, 0); 1235 vop_cfg_done(vop); 1236 spin_unlock(&vop->reg_lock); 1237 1238 /* 1239 * In order to write the LUT to the internal memory, 1240 * we need to first make sure the dsp_lut_en bit is cleared. 1241 */ 1242 ret = readx_poll_timeout(vop_dsp_lut_is_enabled, vop, 1243 idle, !idle, 5, 30 * 1000); 1244 if (ret) { 1245 DRM_DEV_ERROR(vop->dev, "display LUT RAM enable timeout!\n"); 1246 return; 1247 } 1248 1249 if (!state->gamma_lut) 1250 return; 1251 1252 spin_lock(&vop->reg_lock); 1253 vop_crtc_write_gamma_lut(vop, crtc); 1254 VOP_REG_SET(vop, common, dsp_lut_en, 1); 1255 vop_cfg_done(vop); 1256 spin_unlock(&vop->reg_lock); 1257 } 1258 1259 static void vop_crtc_atomic_begin(struct drm_crtc *crtc, 1260 struct drm_atomic_state *state) 1261 { 1262 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, 1263 crtc); 1264 struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state, 1265 crtc); 1266 struct vop *vop = to_vop(crtc); 1267 1268 /* 1269 * Only update GAMMA if the 'active' flag is not changed, 1270 * otherwise it's updated by .atomic_enable. 1271 */ 1272 if (crtc_state->color_mgmt_changed && 1273 !crtc_state->active_changed) 1274 vop_crtc_gamma_set(vop, crtc, old_crtc_state); 1275 } 1276 1277 static void vop_crtc_atomic_enable(struct drm_crtc *crtc, 1278 struct drm_atomic_state *state) 1279 { 1280 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, 1281 crtc); 1282 struct vop *vop = to_vop(crtc); 1283 const struct vop_data *vop_data = vop->data; 1284 struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc->state); 1285 struct drm_display_mode *adjusted_mode = &crtc->state->adjusted_mode; 1286 u16 hsync_len = adjusted_mode->hsync_end - adjusted_mode->hsync_start; 1287 u16 hdisplay = adjusted_mode->hdisplay; 1288 u16 htotal = adjusted_mode->htotal; 1289 u16 hact_st = adjusted_mode->htotal - adjusted_mode->hsync_start; 1290 u16 hact_end = hact_st + hdisplay; 1291 u16 vdisplay = adjusted_mode->vdisplay; 1292 u16 vtotal = adjusted_mode->vtotal; 1293 u16 vsync_len = adjusted_mode->vsync_end - adjusted_mode->vsync_start; 1294 u16 vact_st = adjusted_mode->vtotal - adjusted_mode->vsync_start; 1295 u16 vact_end = vact_st + vdisplay; 1296 uint32_t pin_pol, val; 1297 int dither_bpc = s->output_bpc ? s->output_bpc : 10; 1298 int ret; 1299 1300 if (old_state && old_state->self_refresh_active) { 1301 drm_crtc_vblank_on(crtc); 1302 rockchip_drm_set_win_enabled(crtc, true); 1303 return; 1304 } 1305 1306 /* 1307 * If we have a GAMMA LUT in the state, then let's make sure 1308 * it's updated. We might be coming out of suspend, 1309 * which means the LUT internal memory needs to be re-written. 1310 */ 1311 if (crtc->state->gamma_lut) 1312 vop_crtc_gamma_set(vop, crtc, old_state); 1313 1314 mutex_lock(&vop->vop_lock); 1315 1316 WARN_ON(vop->event); 1317 1318 ret = vop_enable(crtc, old_state); 1319 if (ret) { 1320 mutex_unlock(&vop->vop_lock); 1321 DRM_DEV_ERROR(vop->dev, "Failed to enable vop (%d)\n", ret); 1322 return; 1323 } 1324 pin_pol = (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) ? 1325 BIT(HSYNC_POSITIVE) : 0; 1326 pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) ? 1327 BIT(VSYNC_POSITIVE) : 0; 1328 VOP_REG_SET(vop, output, pin_pol, pin_pol); 1329 VOP_REG_SET(vop, output, mipi_dual_channel_en, 0); 1330 1331 switch (s->output_type) { 1332 case DRM_MODE_CONNECTOR_LVDS: 1333 VOP_REG_SET(vop, output, rgb_dclk_pol, 1); 1334 VOP_REG_SET(vop, output, rgb_pin_pol, pin_pol); 1335 VOP_REG_SET(vop, output, rgb_en, 1); 1336 break; 1337 case DRM_MODE_CONNECTOR_eDP: 1338 VOP_REG_SET(vop, output, edp_dclk_pol, 1); 1339 VOP_REG_SET(vop, output, edp_pin_pol, pin_pol); 1340 VOP_REG_SET(vop, output, edp_en, 1); 1341 break; 1342 case DRM_MODE_CONNECTOR_HDMIA: 1343 VOP_REG_SET(vop, output, hdmi_dclk_pol, 1); 1344 VOP_REG_SET(vop, output, hdmi_pin_pol, pin_pol); 1345 VOP_REG_SET(vop, output, hdmi_en, 1); 1346 break; 1347 case DRM_MODE_CONNECTOR_DSI: 1348 VOP_REG_SET(vop, output, mipi_dclk_pol, 1); 1349 VOP_REG_SET(vop, output, mipi_pin_pol, pin_pol); 1350 VOP_REG_SET(vop, output, mipi_en, 1); 1351 VOP_REG_SET(vop, output, mipi_dual_channel_en, 1352 !!(s->output_flags & ROCKCHIP_OUTPUT_DSI_DUAL)); 1353 break; 1354 case DRM_MODE_CONNECTOR_DisplayPort: 1355 VOP_REG_SET(vop, output, dp_dclk_pol, 0); 1356 VOP_REG_SET(vop, output, dp_pin_pol, pin_pol); 1357 VOP_REG_SET(vop, output, dp_en, 1); 1358 break; 1359 default: 1360 DRM_DEV_ERROR(vop->dev, "unsupported connector_type [%d]\n", 1361 s->output_type); 1362 } 1363 1364 /* 1365 * if vop is not support RGB10 output, need force RGB10 to RGB888. 1366 */ 1367 if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA && 1368 !(vop_data->feature & VOP_FEATURE_OUTPUT_RGB10)) 1369 s->output_mode = ROCKCHIP_OUT_MODE_P888; 1370 1371 if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA && dither_bpc <= 8) 1372 VOP_REG_SET(vop, common, pre_dither_down, 1); 1373 else 1374 VOP_REG_SET(vop, common, pre_dither_down, 0); 1375 1376 if (dither_bpc == 6) { 1377 VOP_REG_SET(vop, common, dither_down_sel, DITHER_DOWN_ALLEGRO); 1378 VOP_REG_SET(vop, common, dither_down_mode, RGB888_TO_RGB666); 1379 VOP_REG_SET(vop, common, dither_down_en, 1); 1380 } else { 1381 VOP_REG_SET(vop, common, dither_down_en, 0); 1382 } 1383 1384 VOP_REG_SET(vop, common, out_mode, s->output_mode); 1385 1386 VOP_REG_SET(vop, modeset, htotal_pw, (htotal << 16) | hsync_len); 1387 val = hact_st << 16; 1388 val |= hact_end; 1389 VOP_REG_SET(vop, modeset, hact_st_end, val); 1390 VOP_REG_SET(vop, modeset, hpost_st_end, val); 1391 1392 VOP_REG_SET(vop, modeset, vtotal_pw, (vtotal << 16) | vsync_len); 1393 val = vact_st << 16; 1394 val |= vact_end; 1395 VOP_REG_SET(vop, modeset, vact_st_end, val); 1396 VOP_REG_SET(vop, modeset, vpost_st_end, val); 1397 1398 VOP_REG_SET(vop, intr, line_flag_num[0], vact_end); 1399 1400 clk_set_rate(vop->dclk, adjusted_mode->clock * 1000); 1401 1402 VOP_REG_SET(vop, common, standby, 0); 1403 mutex_unlock(&vop->vop_lock); 1404 } 1405 1406 static bool vop_fs_irq_is_pending(struct vop *vop) 1407 { 1408 return VOP_INTR_GET_TYPE(vop, status, FS_INTR); 1409 } 1410 1411 static void vop_wait_for_irq_handler(struct vop *vop) 1412 { 1413 bool pending; 1414 int ret; 1415 1416 /* 1417 * Spin until frame start interrupt status bit goes low, which means 1418 * that interrupt handler was invoked and cleared it. The timeout of 1419 * 10 msecs is really too long, but it is just a safety measure if 1420 * something goes really wrong. The wait will only happen in the very 1421 * unlikely case of a vblank happening exactly at the same time and 1422 * shouldn't exceed microseconds range. 1423 */ 1424 ret = readx_poll_timeout_atomic(vop_fs_irq_is_pending, vop, pending, 1425 !pending, 0, 10 * 1000); 1426 if (ret) 1427 DRM_DEV_ERROR(vop->dev, "VOP vblank IRQ stuck for 10 ms\n"); 1428 1429 synchronize_irq(vop->irq); 1430 } 1431 1432 static int vop_crtc_atomic_check(struct drm_crtc *crtc, 1433 struct drm_atomic_state *state) 1434 { 1435 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, 1436 crtc); 1437 struct vop *vop = to_vop(crtc); 1438 struct drm_plane *plane; 1439 struct drm_plane_state *plane_state; 1440 struct rockchip_crtc_state *s; 1441 int afbc_planes = 0; 1442 1443 if (vop->lut_regs && crtc_state->color_mgmt_changed && 1444 crtc_state->gamma_lut) { 1445 unsigned int len; 1446 1447 len = drm_color_lut_size(crtc_state->gamma_lut); 1448 if (len != crtc->gamma_size) { 1449 DRM_DEBUG_KMS("Invalid LUT size; got %d, expected %d\n", 1450 len, crtc->gamma_size); 1451 return -EINVAL; 1452 } 1453 } 1454 1455 drm_atomic_crtc_state_for_each_plane(plane, crtc_state) { 1456 plane_state = 1457 drm_atomic_get_plane_state(crtc_state->state, plane); 1458 if (IS_ERR(plane_state)) { 1459 DRM_DEBUG_KMS("Cannot get plane state for plane %s\n", 1460 plane->name); 1461 return PTR_ERR(plane_state); 1462 } 1463 1464 if (drm_is_afbc(plane_state->fb->modifier)) 1465 ++afbc_planes; 1466 } 1467 1468 if (afbc_planes > 1) { 1469 DRM_DEBUG_KMS("Invalid number of AFBC planes; got %d, expected at most 1\n", afbc_planes); 1470 return -EINVAL; 1471 } 1472 1473 s = to_rockchip_crtc_state(crtc_state); 1474 s->enable_afbc = afbc_planes > 0; 1475 1476 return 0; 1477 } 1478 1479 static void vop_crtc_atomic_flush(struct drm_crtc *crtc, 1480 struct drm_atomic_state *state) 1481 { 1482 struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state, 1483 crtc); 1484 struct drm_atomic_state *old_state = old_crtc_state->state; 1485 struct drm_plane_state *old_plane_state, *new_plane_state; 1486 struct vop *vop = to_vop(crtc); 1487 struct drm_plane *plane; 1488 struct rockchip_crtc_state *s; 1489 int i; 1490 1491 if (WARN_ON(!vop->is_enabled)) 1492 return; 1493 1494 spin_lock(&vop->reg_lock); 1495 1496 /* Enable AFBC if there is some AFBC window, disable otherwise. */ 1497 s = to_rockchip_crtc_state(crtc->state); 1498 VOP_AFBC_SET(vop, enable, s->enable_afbc); 1499 vop_cfg_done(vop); 1500 1501 spin_unlock(&vop->reg_lock); 1502 1503 /* 1504 * There is a (rather unlikely) possiblity that a vblank interrupt 1505 * fired before we set the cfg_done bit. To avoid spuriously 1506 * signalling flip completion we need to wait for it to finish. 1507 */ 1508 vop_wait_for_irq_handler(vop); 1509 1510 spin_lock_irq(&crtc->dev->event_lock); 1511 if (crtc->state->event) { 1512 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 1513 WARN_ON(vop->event); 1514 1515 vop->event = crtc->state->event; 1516 crtc->state->event = NULL; 1517 } 1518 spin_unlock_irq(&crtc->dev->event_lock); 1519 1520 for_each_oldnew_plane_in_state(old_state, plane, old_plane_state, 1521 new_plane_state, i) { 1522 if (!old_plane_state->fb) 1523 continue; 1524 1525 if (old_plane_state->fb == new_plane_state->fb) 1526 continue; 1527 1528 drm_framebuffer_get(old_plane_state->fb); 1529 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 1530 drm_flip_work_queue(&vop->fb_unref_work, old_plane_state->fb); 1531 set_bit(VOP_PENDING_FB_UNREF, &vop->pending); 1532 } 1533 } 1534 1535 static const struct drm_crtc_helper_funcs vop_crtc_helper_funcs = { 1536 .mode_fixup = vop_crtc_mode_fixup, 1537 .atomic_check = vop_crtc_atomic_check, 1538 .atomic_begin = vop_crtc_atomic_begin, 1539 .atomic_flush = vop_crtc_atomic_flush, 1540 .atomic_enable = vop_crtc_atomic_enable, 1541 .atomic_disable = vop_crtc_atomic_disable, 1542 }; 1543 1544 static void vop_crtc_destroy(struct drm_crtc *crtc) 1545 { 1546 drm_crtc_cleanup(crtc); 1547 } 1548 1549 static struct drm_crtc_state *vop_crtc_duplicate_state(struct drm_crtc *crtc) 1550 { 1551 struct rockchip_crtc_state *rockchip_state; 1552 1553 rockchip_state = kzalloc(sizeof(*rockchip_state), GFP_KERNEL); 1554 if (!rockchip_state) 1555 return NULL; 1556 1557 __drm_atomic_helper_crtc_duplicate_state(crtc, &rockchip_state->base); 1558 return &rockchip_state->base; 1559 } 1560 1561 static void vop_crtc_destroy_state(struct drm_crtc *crtc, 1562 struct drm_crtc_state *state) 1563 { 1564 struct rockchip_crtc_state *s = to_rockchip_crtc_state(state); 1565 1566 __drm_atomic_helper_crtc_destroy_state(&s->base); 1567 kfree(s); 1568 } 1569 1570 static void vop_crtc_reset(struct drm_crtc *crtc) 1571 { 1572 struct rockchip_crtc_state *crtc_state = 1573 kzalloc(sizeof(*crtc_state), GFP_KERNEL); 1574 1575 if (crtc->state) 1576 vop_crtc_destroy_state(crtc, crtc->state); 1577 1578 __drm_atomic_helper_crtc_reset(crtc, &crtc_state->base); 1579 } 1580 1581 #ifdef CONFIG_DRM_ANALOGIX_DP 1582 static struct drm_connector *vop_get_edp_connector(struct vop *vop) 1583 { 1584 struct drm_connector *connector; 1585 struct drm_connector_list_iter conn_iter; 1586 1587 drm_connector_list_iter_begin(vop->drm_dev, &conn_iter); 1588 drm_for_each_connector_iter(connector, &conn_iter) { 1589 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) { 1590 drm_connector_list_iter_end(&conn_iter); 1591 return connector; 1592 } 1593 } 1594 drm_connector_list_iter_end(&conn_iter); 1595 1596 return NULL; 1597 } 1598 1599 static int vop_crtc_set_crc_source(struct drm_crtc *crtc, 1600 const char *source_name) 1601 { 1602 struct vop *vop = to_vop(crtc); 1603 struct drm_connector *connector; 1604 int ret; 1605 1606 connector = vop_get_edp_connector(vop); 1607 if (!connector) 1608 return -EINVAL; 1609 1610 if (source_name && strcmp(source_name, "auto") == 0) 1611 ret = analogix_dp_start_crc(connector); 1612 else if (!source_name) 1613 ret = analogix_dp_stop_crc(connector); 1614 else 1615 ret = -EINVAL; 1616 1617 return ret; 1618 } 1619 1620 static int 1621 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name, 1622 size_t *values_cnt) 1623 { 1624 if (source_name && strcmp(source_name, "auto") != 0) 1625 return -EINVAL; 1626 1627 *values_cnt = 3; 1628 return 0; 1629 } 1630 1631 #else 1632 static int vop_crtc_set_crc_source(struct drm_crtc *crtc, 1633 const char *source_name) 1634 { 1635 return -ENODEV; 1636 } 1637 1638 static int 1639 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name, 1640 size_t *values_cnt) 1641 { 1642 return -ENODEV; 1643 } 1644 #endif 1645 1646 static const struct drm_crtc_funcs vop_crtc_funcs = { 1647 .set_config = drm_atomic_helper_set_config, 1648 .page_flip = drm_atomic_helper_page_flip, 1649 .destroy = vop_crtc_destroy, 1650 .reset = vop_crtc_reset, 1651 .atomic_duplicate_state = vop_crtc_duplicate_state, 1652 .atomic_destroy_state = vop_crtc_destroy_state, 1653 .enable_vblank = vop_crtc_enable_vblank, 1654 .disable_vblank = vop_crtc_disable_vblank, 1655 .set_crc_source = vop_crtc_set_crc_source, 1656 .verify_crc_source = vop_crtc_verify_crc_source, 1657 }; 1658 1659 static void vop_fb_unref_worker(struct drm_flip_work *work, void *val) 1660 { 1661 struct vop *vop = container_of(work, struct vop, fb_unref_work); 1662 struct drm_framebuffer *fb = val; 1663 1664 drm_crtc_vblank_put(&vop->crtc); 1665 drm_framebuffer_put(fb); 1666 } 1667 1668 static void vop_handle_vblank(struct vop *vop) 1669 { 1670 struct drm_device *drm = vop->drm_dev; 1671 struct drm_crtc *crtc = &vop->crtc; 1672 1673 spin_lock(&drm->event_lock); 1674 if (vop->event) { 1675 drm_crtc_send_vblank_event(crtc, vop->event); 1676 drm_crtc_vblank_put(crtc); 1677 vop->event = NULL; 1678 } 1679 spin_unlock(&drm->event_lock); 1680 1681 if (test_and_clear_bit(VOP_PENDING_FB_UNREF, &vop->pending)) 1682 drm_flip_work_commit(&vop->fb_unref_work, system_unbound_wq); 1683 } 1684 1685 static irqreturn_t vop_isr(int irq, void *data) 1686 { 1687 struct vop *vop = data; 1688 struct drm_crtc *crtc = &vop->crtc; 1689 uint32_t active_irqs; 1690 int ret = IRQ_NONE; 1691 1692 /* 1693 * The irq is shared with the iommu. If the runtime-pm state of the 1694 * vop-device is disabled the irq has to be targeted at the iommu. 1695 */ 1696 if (!pm_runtime_get_if_in_use(vop->dev)) 1697 return IRQ_NONE; 1698 1699 if (vop_core_clks_enable(vop)) { 1700 DRM_DEV_ERROR_RATELIMITED(vop->dev, "couldn't enable clocks\n"); 1701 goto out; 1702 } 1703 1704 /* 1705 * interrupt register has interrupt status, enable and clear bits, we 1706 * must hold irq_lock to avoid a race with enable/disable_vblank(). 1707 */ 1708 spin_lock(&vop->irq_lock); 1709 1710 active_irqs = VOP_INTR_GET_TYPE(vop, status, INTR_MASK); 1711 /* Clear all active interrupt sources */ 1712 if (active_irqs) 1713 VOP_INTR_SET_TYPE(vop, clear, active_irqs, 1); 1714 1715 spin_unlock(&vop->irq_lock); 1716 1717 /* This is expected for vop iommu irqs, since the irq is shared */ 1718 if (!active_irqs) 1719 goto out_disable; 1720 1721 if (active_irqs & DSP_HOLD_VALID_INTR) { 1722 complete(&vop->dsp_hold_completion); 1723 active_irqs &= ~DSP_HOLD_VALID_INTR; 1724 ret = IRQ_HANDLED; 1725 } 1726 1727 if (active_irqs & LINE_FLAG_INTR) { 1728 complete(&vop->line_flag_completion); 1729 active_irqs &= ~LINE_FLAG_INTR; 1730 ret = IRQ_HANDLED; 1731 } 1732 1733 if (active_irqs & FS_INTR) { 1734 drm_crtc_handle_vblank(crtc); 1735 vop_handle_vblank(vop); 1736 active_irqs &= ~FS_INTR; 1737 ret = IRQ_HANDLED; 1738 } 1739 1740 /* Unhandled irqs are spurious. */ 1741 if (active_irqs) 1742 DRM_DEV_ERROR(vop->dev, "Unknown VOP IRQs: %#02x\n", 1743 active_irqs); 1744 1745 out_disable: 1746 vop_core_clks_disable(vop); 1747 out: 1748 pm_runtime_put(vop->dev); 1749 return ret; 1750 } 1751 1752 static void vop_plane_add_properties(struct drm_plane *plane, 1753 const struct vop_win_data *win_data) 1754 { 1755 unsigned int flags = 0; 1756 1757 flags |= VOP_WIN_HAS_REG(win_data, x_mir_en) ? DRM_MODE_REFLECT_X : 0; 1758 flags |= VOP_WIN_HAS_REG(win_data, y_mir_en) ? DRM_MODE_REFLECT_Y : 0; 1759 if (flags) 1760 drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0, 1761 DRM_MODE_ROTATE_0 | flags); 1762 } 1763 1764 static int vop_create_crtc(struct vop *vop) 1765 { 1766 const struct vop_data *vop_data = vop->data; 1767 struct device *dev = vop->dev; 1768 struct drm_device *drm_dev = vop->drm_dev; 1769 struct drm_plane *primary = NULL, *cursor = NULL, *plane, *tmp; 1770 struct drm_crtc *crtc = &vop->crtc; 1771 struct device_node *port; 1772 int ret; 1773 int i; 1774 1775 /* 1776 * Create drm_plane for primary and cursor planes first, since we need 1777 * to pass them to drm_crtc_init_with_planes, which sets the 1778 * "possible_crtcs" to the newly initialized crtc. 1779 */ 1780 for (i = 0; i < vop_data->win_size; i++) { 1781 struct vop_win *vop_win = &vop->win[i]; 1782 const struct vop_win_data *win_data = vop_win->data; 1783 1784 if (win_data->type != DRM_PLANE_TYPE_PRIMARY && 1785 win_data->type != DRM_PLANE_TYPE_CURSOR) 1786 continue; 1787 1788 ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base, 1789 0, &vop_plane_funcs, 1790 win_data->phy->data_formats, 1791 win_data->phy->nformats, 1792 win_data->phy->format_modifiers, 1793 win_data->type, NULL); 1794 if (ret) { 1795 DRM_DEV_ERROR(vop->dev, "failed to init plane %d\n", 1796 ret); 1797 goto err_cleanup_planes; 1798 } 1799 1800 plane = &vop_win->base; 1801 drm_plane_helper_add(plane, &plane_helper_funcs); 1802 vop_plane_add_properties(plane, win_data); 1803 if (plane->type == DRM_PLANE_TYPE_PRIMARY) 1804 primary = plane; 1805 else if (plane->type == DRM_PLANE_TYPE_CURSOR) 1806 cursor = plane; 1807 } 1808 1809 ret = drm_crtc_init_with_planes(drm_dev, crtc, primary, cursor, 1810 &vop_crtc_funcs, NULL); 1811 if (ret) 1812 goto err_cleanup_planes; 1813 1814 drm_crtc_helper_add(crtc, &vop_crtc_helper_funcs); 1815 if (vop->lut_regs) { 1816 drm_mode_crtc_set_gamma_size(crtc, vop_data->lut_size); 1817 drm_crtc_enable_color_mgmt(crtc, 0, false, vop_data->lut_size); 1818 } 1819 1820 /* 1821 * Create drm_planes for overlay windows with possible_crtcs restricted 1822 * to the newly created crtc. 1823 */ 1824 for (i = 0; i < vop_data->win_size; i++) { 1825 struct vop_win *vop_win = &vop->win[i]; 1826 const struct vop_win_data *win_data = vop_win->data; 1827 unsigned long possible_crtcs = drm_crtc_mask(crtc); 1828 1829 if (win_data->type != DRM_PLANE_TYPE_OVERLAY) 1830 continue; 1831 1832 ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base, 1833 possible_crtcs, 1834 &vop_plane_funcs, 1835 win_data->phy->data_formats, 1836 win_data->phy->nformats, 1837 win_data->phy->format_modifiers, 1838 win_data->type, NULL); 1839 if (ret) { 1840 DRM_DEV_ERROR(vop->dev, "failed to init overlay %d\n", 1841 ret); 1842 goto err_cleanup_crtc; 1843 } 1844 drm_plane_helper_add(&vop_win->base, &plane_helper_funcs); 1845 vop_plane_add_properties(&vop_win->base, win_data); 1846 } 1847 1848 port = of_get_child_by_name(dev->of_node, "port"); 1849 if (!port) { 1850 DRM_DEV_ERROR(vop->dev, "no port node found in %pOF\n", 1851 dev->of_node); 1852 ret = -ENOENT; 1853 goto err_cleanup_crtc; 1854 } 1855 1856 drm_flip_work_init(&vop->fb_unref_work, "fb_unref", 1857 vop_fb_unref_worker); 1858 1859 init_completion(&vop->dsp_hold_completion); 1860 init_completion(&vop->line_flag_completion); 1861 crtc->port = port; 1862 1863 ret = drm_self_refresh_helper_init(crtc); 1864 if (ret) 1865 DRM_DEV_DEBUG_KMS(vop->dev, 1866 "Failed to init %s with SR helpers %d, ignoring\n", 1867 crtc->name, ret); 1868 1869 return 0; 1870 1871 err_cleanup_crtc: 1872 drm_crtc_cleanup(crtc); 1873 err_cleanup_planes: 1874 list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list, 1875 head) 1876 drm_plane_cleanup(plane); 1877 return ret; 1878 } 1879 1880 static void vop_destroy_crtc(struct vop *vop) 1881 { 1882 struct drm_crtc *crtc = &vop->crtc; 1883 struct drm_device *drm_dev = vop->drm_dev; 1884 struct drm_plane *plane, *tmp; 1885 1886 drm_self_refresh_helper_cleanup(crtc); 1887 1888 of_node_put(crtc->port); 1889 1890 /* 1891 * We need to cleanup the planes now. Why? 1892 * 1893 * The planes are "&vop->win[i].base". That means the memory is 1894 * all part of the big "struct vop" chunk of memory. That memory 1895 * was devm allocated and associated with this component. We need to 1896 * free it ourselves before vop_unbind() finishes. 1897 */ 1898 list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list, 1899 head) 1900 vop_plane_destroy(plane); 1901 1902 /* 1903 * Destroy CRTC after vop_plane_destroy() since vop_disable_plane() 1904 * references the CRTC. 1905 */ 1906 drm_crtc_cleanup(crtc); 1907 drm_flip_work_cleanup(&vop->fb_unref_work); 1908 } 1909 1910 static int vop_initial(struct vop *vop) 1911 { 1912 struct reset_control *ahb_rst; 1913 int i, ret; 1914 1915 vop->hclk = devm_clk_get(vop->dev, "hclk_vop"); 1916 if (IS_ERR(vop->hclk)) { 1917 DRM_DEV_ERROR(vop->dev, "failed to get hclk source\n"); 1918 return PTR_ERR(vop->hclk); 1919 } 1920 vop->aclk = devm_clk_get(vop->dev, "aclk_vop"); 1921 if (IS_ERR(vop->aclk)) { 1922 DRM_DEV_ERROR(vop->dev, "failed to get aclk source\n"); 1923 return PTR_ERR(vop->aclk); 1924 } 1925 vop->dclk = devm_clk_get(vop->dev, "dclk_vop"); 1926 if (IS_ERR(vop->dclk)) { 1927 DRM_DEV_ERROR(vop->dev, "failed to get dclk source\n"); 1928 return PTR_ERR(vop->dclk); 1929 } 1930 1931 ret = pm_runtime_get_sync(vop->dev); 1932 if (ret < 0) { 1933 DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret); 1934 return ret; 1935 } 1936 1937 ret = clk_prepare(vop->dclk); 1938 if (ret < 0) { 1939 DRM_DEV_ERROR(vop->dev, "failed to prepare dclk\n"); 1940 goto err_put_pm_runtime; 1941 } 1942 1943 /* Enable both the hclk and aclk to setup the vop */ 1944 ret = clk_prepare_enable(vop->hclk); 1945 if (ret < 0) { 1946 DRM_DEV_ERROR(vop->dev, "failed to prepare/enable hclk\n"); 1947 goto err_unprepare_dclk; 1948 } 1949 1950 ret = clk_prepare_enable(vop->aclk); 1951 if (ret < 0) { 1952 DRM_DEV_ERROR(vop->dev, "failed to prepare/enable aclk\n"); 1953 goto err_disable_hclk; 1954 } 1955 1956 /* 1957 * do hclk_reset, reset all vop registers. 1958 */ 1959 ahb_rst = devm_reset_control_get(vop->dev, "ahb"); 1960 if (IS_ERR(ahb_rst)) { 1961 DRM_DEV_ERROR(vop->dev, "failed to get ahb reset\n"); 1962 ret = PTR_ERR(ahb_rst); 1963 goto err_disable_aclk; 1964 } 1965 reset_control_assert(ahb_rst); 1966 usleep_range(10, 20); 1967 reset_control_deassert(ahb_rst); 1968 1969 VOP_INTR_SET_TYPE(vop, clear, INTR_MASK, 1); 1970 VOP_INTR_SET_TYPE(vop, enable, INTR_MASK, 0); 1971 1972 for (i = 0; i < vop->len; i += sizeof(u32)) 1973 vop->regsbak[i / 4] = readl_relaxed(vop->regs + i); 1974 1975 VOP_REG_SET(vop, misc, global_regdone_en, 1); 1976 VOP_REG_SET(vop, common, dsp_blank, 0); 1977 1978 for (i = 0; i < vop->data->win_size; i++) { 1979 struct vop_win *vop_win = &vop->win[i]; 1980 const struct vop_win_data *win = vop_win->data; 1981 int channel = i * 2 + 1; 1982 1983 VOP_WIN_SET(vop, win, channel, (channel + 1) << 4 | channel); 1984 vop_win_disable(vop, vop_win); 1985 VOP_WIN_SET(vop, win, gate, 1); 1986 } 1987 1988 vop_cfg_done(vop); 1989 1990 /* 1991 * do dclk_reset, let all config take affect. 1992 */ 1993 vop->dclk_rst = devm_reset_control_get(vop->dev, "dclk"); 1994 if (IS_ERR(vop->dclk_rst)) { 1995 DRM_DEV_ERROR(vop->dev, "failed to get dclk reset\n"); 1996 ret = PTR_ERR(vop->dclk_rst); 1997 goto err_disable_aclk; 1998 } 1999 reset_control_assert(vop->dclk_rst); 2000 usleep_range(10, 20); 2001 reset_control_deassert(vop->dclk_rst); 2002 2003 clk_disable(vop->hclk); 2004 clk_disable(vop->aclk); 2005 2006 vop->is_enabled = false; 2007 2008 pm_runtime_put_sync(vop->dev); 2009 2010 return 0; 2011 2012 err_disable_aclk: 2013 clk_disable_unprepare(vop->aclk); 2014 err_disable_hclk: 2015 clk_disable_unprepare(vop->hclk); 2016 err_unprepare_dclk: 2017 clk_unprepare(vop->dclk); 2018 err_put_pm_runtime: 2019 pm_runtime_put_sync(vop->dev); 2020 return ret; 2021 } 2022 2023 /* 2024 * Initialize the vop->win array elements. 2025 */ 2026 static void vop_win_init(struct vop *vop) 2027 { 2028 const struct vop_data *vop_data = vop->data; 2029 unsigned int i; 2030 2031 for (i = 0; i < vop_data->win_size; i++) { 2032 struct vop_win *vop_win = &vop->win[i]; 2033 const struct vop_win_data *win_data = &vop_data->win[i]; 2034 2035 vop_win->data = win_data; 2036 vop_win->vop = vop; 2037 2038 if (vop_data->win_yuv2yuv) 2039 vop_win->yuv2yuv_data = &vop_data->win_yuv2yuv[i]; 2040 } 2041 } 2042 2043 /** 2044 * rockchip_drm_wait_vact_end 2045 * @crtc: CRTC to enable line flag 2046 * @mstimeout: millisecond for timeout 2047 * 2048 * Wait for vact_end line flag irq or timeout. 2049 * 2050 * Returns: 2051 * Zero on success, negative errno on failure. 2052 */ 2053 int rockchip_drm_wait_vact_end(struct drm_crtc *crtc, unsigned int mstimeout) 2054 { 2055 struct vop *vop = to_vop(crtc); 2056 unsigned long jiffies_left; 2057 int ret = 0; 2058 2059 if (!crtc || !vop->is_enabled) 2060 return -ENODEV; 2061 2062 mutex_lock(&vop->vop_lock); 2063 if (mstimeout <= 0) { 2064 ret = -EINVAL; 2065 goto out; 2066 } 2067 2068 if (vop_line_flag_irq_is_enabled(vop)) { 2069 ret = -EBUSY; 2070 goto out; 2071 } 2072 2073 reinit_completion(&vop->line_flag_completion); 2074 vop_line_flag_irq_enable(vop); 2075 2076 jiffies_left = wait_for_completion_timeout(&vop->line_flag_completion, 2077 msecs_to_jiffies(mstimeout)); 2078 vop_line_flag_irq_disable(vop); 2079 2080 if (jiffies_left == 0) { 2081 DRM_DEV_ERROR(vop->dev, "Timeout waiting for IRQ\n"); 2082 ret = -ETIMEDOUT; 2083 goto out; 2084 } 2085 2086 out: 2087 mutex_unlock(&vop->vop_lock); 2088 return ret; 2089 } 2090 EXPORT_SYMBOL(rockchip_drm_wait_vact_end); 2091 2092 static int vop_bind(struct device *dev, struct device *master, void *data) 2093 { 2094 struct platform_device *pdev = to_platform_device(dev); 2095 const struct vop_data *vop_data; 2096 struct drm_device *drm_dev = data; 2097 struct vop *vop; 2098 struct resource *res; 2099 int ret, irq; 2100 2101 vop_data = of_device_get_match_data(dev); 2102 if (!vop_data) 2103 return -ENODEV; 2104 2105 /* Allocate vop struct and its vop_win array */ 2106 vop = devm_kzalloc(dev, struct_size(vop, win, vop_data->win_size), 2107 GFP_KERNEL); 2108 if (!vop) 2109 return -ENOMEM; 2110 2111 vop->dev = dev; 2112 vop->data = vop_data; 2113 vop->drm_dev = drm_dev; 2114 dev_set_drvdata(dev, vop); 2115 2116 vop_win_init(vop); 2117 2118 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2119 vop->len = resource_size(res); 2120 vop->regs = devm_ioremap_resource(dev, res); 2121 if (IS_ERR(vop->regs)) 2122 return PTR_ERR(vop->regs); 2123 2124 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 2125 if (res) { 2126 if (!vop_data->lut_size) { 2127 DRM_DEV_ERROR(dev, "no gamma LUT size defined\n"); 2128 return -EINVAL; 2129 } 2130 vop->lut_regs = devm_ioremap_resource(dev, res); 2131 if (IS_ERR(vop->lut_regs)) 2132 return PTR_ERR(vop->lut_regs); 2133 } 2134 2135 vop->regsbak = devm_kzalloc(dev, vop->len, GFP_KERNEL); 2136 if (!vop->regsbak) 2137 return -ENOMEM; 2138 2139 irq = platform_get_irq(pdev, 0); 2140 if (irq < 0) { 2141 DRM_DEV_ERROR(dev, "cannot find irq for vop\n"); 2142 return irq; 2143 } 2144 vop->irq = (unsigned int)irq; 2145 2146 spin_lock_init(&vop->reg_lock); 2147 spin_lock_init(&vop->irq_lock); 2148 mutex_init(&vop->vop_lock); 2149 2150 ret = vop_create_crtc(vop); 2151 if (ret) 2152 return ret; 2153 2154 pm_runtime_enable(&pdev->dev); 2155 2156 ret = vop_initial(vop); 2157 if (ret < 0) { 2158 DRM_DEV_ERROR(&pdev->dev, 2159 "cannot initial vop dev - err %d\n", ret); 2160 goto err_disable_pm_runtime; 2161 } 2162 2163 ret = devm_request_irq(dev, vop->irq, vop_isr, 2164 IRQF_SHARED, dev_name(dev), vop); 2165 if (ret) 2166 goto err_disable_pm_runtime; 2167 2168 if (vop->data->feature & VOP_FEATURE_INTERNAL_RGB) { 2169 vop->rgb = rockchip_rgb_init(dev, &vop->crtc, vop->drm_dev); 2170 if (IS_ERR(vop->rgb)) { 2171 ret = PTR_ERR(vop->rgb); 2172 goto err_disable_pm_runtime; 2173 } 2174 } 2175 2176 return 0; 2177 2178 err_disable_pm_runtime: 2179 pm_runtime_disable(&pdev->dev); 2180 vop_destroy_crtc(vop); 2181 return ret; 2182 } 2183 2184 static void vop_unbind(struct device *dev, struct device *master, void *data) 2185 { 2186 struct vop *vop = dev_get_drvdata(dev); 2187 2188 if (vop->rgb) 2189 rockchip_rgb_fini(vop->rgb); 2190 2191 pm_runtime_disable(dev); 2192 vop_destroy_crtc(vop); 2193 2194 clk_unprepare(vop->aclk); 2195 clk_unprepare(vop->hclk); 2196 clk_unprepare(vop->dclk); 2197 } 2198 2199 const struct component_ops vop_component_ops = { 2200 .bind = vop_bind, 2201 .unbind = vop_unbind, 2202 }; 2203 EXPORT_SYMBOL_GPL(vop_component_ops); 2204