1 /*
2  * Copyright (C) Fuzhou Rockchip Electronics Co.Ltd
3  * Author:Mark Yao <mark.yao@rock-chips.com>
4  *
5  * This software is licensed under the terms of the GNU General Public
6  * License version 2, as published by the Free Software Foundation, and
7  * may be copied, distributed, and modified under those terms.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 
15 #include <drm/drm.h>
16 #include <drm/drmP.h>
17 #include <drm/drm_atomic.h>
18 #include <drm/drm_crtc.h>
19 #include <drm/drm_crtc_helper.h>
20 #include <drm/drm_plane_helper.h>
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/clk.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/component.h>
30 
31 #include <linux/reset.h>
32 #include <linux/delay.h>
33 
34 #include "rockchip_drm_drv.h"
35 #include "rockchip_drm_gem.h"
36 #include "rockchip_drm_fb.h"
37 #include "rockchip_drm_vop.h"
38 
39 #define __REG_SET_RELAXED(x, off, mask, shift, v) \
40 		vop_mask_write_relaxed(x, off, (mask) << shift, (v) << shift)
41 #define __REG_SET_NORMAL(x, off, mask, shift, v) \
42 		vop_mask_write(x, off, (mask) << shift, (v) << shift)
43 
44 #define REG_SET(x, base, reg, v, mode) \
45 		__REG_SET_##mode(x, base + reg.offset, reg.mask, reg.shift, v)
46 #define REG_SET_MASK(x, base, reg, mask, v, mode) \
47 		__REG_SET_##mode(x, base + reg.offset, mask, reg.shift, v)
48 
49 #define VOP_WIN_SET(x, win, name, v) \
50 		REG_SET(x, win->base, win->phy->name, v, RELAXED)
51 #define VOP_SCL_SET(x, win, name, v) \
52 		REG_SET(x, win->base, win->phy->scl->name, v, RELAXED)
53 #define VOP_SCL_SET_EXT(x, win, name, v) \
54 		REG_SET(x, win->base, win->phy->scl->ext->name, v, RELAXED)
55 #define VOP_CTRL_SET(x, name, v) \
56 		REG_SET(x, 0, (x)->data->ctrl->name, v, NORMAL)
57 
58 #define VOP_INTR_GET(vop, name) \
59 		vop_read_reg(vop, 0, &vop->data->ctrl->name)
60 
61 #define VOP_INTR_SET(vop, name, mask, v) \
62 		REG_SET_MASK(vop, 0, vop->data->intr->name, mask, v, NORMAL)
63 #define VOP_INTR_SET_TYPE(vop, name, type, v) \
64 	do { \
65 		int i, reg = 0, mask = 0; \
66 		for (i = 0; i < vop->data->intr->nintrs; i++) { \
67 			if (vop->data->intr->intrs[i] & type) { \
68 				reg |= (v) << i; \
69 				mask |= 1 << i; \
70 			} \
71 		} \
72 		VOP_INTR_SET(vop, name, mask, reg); \
73 	} while (0)
74 #define VOP_INTR_GET_TYPE(vop, name, type) \
75 		vop_get_intr_type(vop, &vop->data->intr->name, type)
76 
77 #define VOP_WIN_GET(x, win, name) \
78 		vop_read_reg(x, win->base, &win->phy->name)
79 
80 #define VOP_WIN_GET_YRGBADDR(vop, win) \
81 		vop_readl(vop, win->base + win->phy->yrgb_mst.offset)
82 
83 #define to_vop(x) container_of(x, struct vop, crtc)
84 #define to_vop_win(x) container_of(x, struct vop_win, base)
85 #define to_vop_plane_state(x) container_of(x, struct vop_plane_state, base)
86 
87 struct vop_plane_state {
88 	struct drm_plane_state base;
89 	int format;
90 	struct drm_rect src;
91 	struct drm_rect dest;
92 	dma_addr_t yrgb_mst;
93 	bool enable;
94 };
95 
96 struct vop_win {
97 	struct drm_plane base;
98 	const struct vop_win_data *data;
99 	struct vop *vop;
100 
101 	struct vop_plane_state state;
102 };
103 
104 struct vop {
105 	struct drm_crtc crtc;
106 	struct device *dev;
107 	struct drm_device *drm_dev;
108 	bool is_enabled;
109 
110 	/* mutex vsync_ work */
111 	struct mutex vsync_mutex;
112 	bool vsync_work_pending;
113 	struct completion dsp_hold_completion;
114 	struct completion wait_update_complete;
115 	struct drm_pending_vblank_event *event;
116 
117 	const struct vop_data *data;
118 
119 	uint32_t *regsbak;
120 	void __iomem *regs;
121 
122 	/* physical map length of vop register */
123 	uint32_t len;
124 
125 	/* one time only one process allowed to config the register */
126 	spinlock_t reg_lock;
127 	/* lock vop irq reg */
128 	spinlock_t irq_lock;
129 
130 	unsigned int irq;
131 
132 	/* vop AHP clk */
133 	struct clk *hclk;
134 	/* vop dclk */
135 	struct clk *dclk;
136 	/* vop share memory frequency */
137 	struct clk *aclk;
138 
139 	/* vop dclk reset */
140 	struct reset_control *dclk_rst;
141 
142 	struct vop_win win[];
143 };
144 
145 static inline void vop_writel(struct vop *vop, uint32_t offset, uint32_t v)
146 {
147 	writel(v, vop->regs + offset);
148 	vop->regsbak[offset >> 2] = v;
149 }
150 
151 static inline uint32_t vop_readl(struct vop *vop, uint32_t offset)
152 {
153 	return readl(vop->regs + offset);
154 }
155 
156 static inline uint32_t vop_read_reg(struct vop *vop, uint32_t base,
157 				    const struct vop_reg *reg)
158 {
159 	return (vop_readl(vop, base + reg->offset) >> reg->shift) & reg->mask;
160 }
161 
162 static inline void vop_mask_write(struct vop *vop, uint32_t offset,
163 				  uint32_t mask, uint32_t v)
164 {
165 	if (mask) {
166 		uint32_t cached_val = vop->regsbak[offset >> 2];
167 
168 		cached_val = (cached_val & ~mask) | v;
169 		writel(cached_val, vop->regs + offset);
170 		vop->regsbak[offset >> 2] = cached_val;
171 	}
172 }
173 
174 static inline void vop_mask_write_relaxed(struct vop *vop, uint32_t offset,
175 					  uint32_t mask, uint32_t v)
176 {
177 	if (mask) {
178 		uint32_t cached_val = vop->regsbak[offset >> 2];
179 
180 		cached_val = (cached_val & ~mask) | v;
181 		writel_relaxed(cached_val, vop->regs + offset);
182 		vop->regsbak[offset >> 2] = cached_val;
183 	}
184 }
185 
186 static inline uint32_t vop_get_intr_type(struct vop *vop,
187 					 const struct vop_reg *reg, int type)
188 {
189 	uint32_t i, ret = 0;
190 	uint32_t regs = vop_read_reg(vop, 0, reg);
191 
192 	for (i = 0; i < vop->data->intr->nintrs; i++) {
193 		if ((type & vop->data->intr->intrs[i]) && (regs & 1 << i))
194 			ret |= vop->data->intr->intrs[i];
195 	}
196 
197 	return ret;
198 }
199 
200 static inline void vop_cfg_done(struct vop *vop)
201 {
202 	VOP_CTRL_SET(vop, cfg_done, 1);
203 }
204 
205 static bool has_rb_swapped(uint32_t format)
206 {
207 	switch (format) {
208 	case DRM_FORMAT_XBGR8888:
209 	case DRM_FORMAT_ABGR8888:
210 	case DRM_FORMAT_BGR888:
211 	case DRM_FORMAT_BGR565:
212 		return true;
213 	default:
214 		return false;
215 	}
216 }
217 
218 static enum vop_data_format vop_convert_format(uint32_t format)
219 {
220 	switch (format) {
221 	case DRM_FORMAT_XRGB8888:
222 	case DRM_FORMAT_ARGB8888:
223 	case DRM_FORMAT_XBGR8888:
224 	case DRM_FORMAT_ABGR8888:
225 		return VOP_FMT_ARGB8888;
226 	case DRM_FORMAT_RGB888:
227 	case DRM_FORMAT_BGR888:
228 		return VOP_FMT_RGB888;
229 	case DRM_FORMAT_RGB565:
230 	case DRM_FORMAT_BGR565:
231 		return VOP_FMT_RGB565;
232 	case DRM_FORMAT_NV12:
233 		return VOP_FMT_YUV420SP;
234 	case DRM_FORMAT_NV16:
235 		return VOP_FMT_YUV422SP;
236 	case DRM_FORMAT_NV24:
237 		return VOP_FMT_YUV444SP;
238 	default:
239 		DRM_ERROR("unsupport format[%08x]\n", format);
240 		return -EINVAL;
241 	}
242 }
243 
244 static bool is_yuv_support(uint32_t format)
245 {
246 	switch (format) {
247 	case DRM_FORMAT_NV12:
248 	case DRM_FORMAT_NV16:
249 	case DRM_FORMAT_NV24:
250 		return true;
251 	default:
252 		return false;
253 	}
254 }
255 
256 static bool is_alpha_support(uint32_t format)
257 {
258 	switch (format) {
259 	case DRM_FORMAT_ARGB8888:
260 	case DRM_FORMAT_ABGR8888:
261 		return true;
262 	default:
263 		return false;
264 	}
265 }
266 
267 static uint16_t scl_vop_cal_scale(enum scale_mode mode, uint32_t src,
268 				  uint32_t dst, bool is_horizontal,
269 				  int vsu_mode, int *vskiplines)
270 {
271 	uint16_t val = 1 << SCL_FT_DEFAULT_FIXPOINT_SHIFT;
272 
273 	if (is_horizontal) {
274 		if (mode == SCALE_UP)
275 			val = GET_SCL_FT_BIC(src, dst);
276 		else if (mode == SCALE_DOWN)
277 			val = GET_SCL_FT_BILI_DN(src, dst);
278 	} else {
279 		if (mode == SCALE_UP) {
280 			if (vsu_mode == SCALE_UP_BIL)
281 				val = GET_SCL_FT_BILI_UP(src, dst);
282 			else
283 				val = GET_SCL_FT_BIC(src, dst);
284 		} else if (mode == SCALE_DOWN) {
285 			if (vskiplines) {
286 				*vskiplines = scl_get_vskiplines(src, dst);
287 				val = scl_get_bili_dn_vskip(src, dst,
288 							    *vskiplines);
289 			} else {
290 				val = GET_SCL_FT_BILI_DN(src, dst);
291 			}
292 		}
293 	}
294 
295 	return val;
296 }
297 
298 static void scl_vop_cal_scl_fac(struct vop *vop, const struct vop_win_data *win,
299 			     uint32_t src_w, uint32_t src_h, uint32_t dst_w,
300 			     uint32_t dst_h, uint32_t pixel_format)
301 {
302 	uint16_t yrgb_hor_scl_mode, yrgb_ver_scl_mode;
303 	uint16_t cbcr_hor_scl_mode = SCALE_NONE;
304 	uint16_t cbcr_ver_scl_mode = SCALE_NONE;
305 	int hsub = drm_format_horz_chroma_subsampling(pixel_format);
306 	int vsub = drm_format_vert_chroma_subsampling(pixel_format);
307 	bool is_yuv = is_yuv_support(pixel_format);
308 	uint16_t cbcr_src_w = src_w / hsub;
309 	uint16_t cbcr_src_h = src_h / vsub;
310 	uint16_t vsu_mode;
311 	uint16_t lb_mode;
312 	uint32_t val;
313 	int vskiplines;
314 
315 	if (dst_w > 3840) {
316 		DRM_ERROR("Maximum destination width (3840) exceeded\n");
317 		return;
318 	}
319 
320 	if (!win->phy->scl->ext) {
321 		VOP_SCL_SET(vop, win, scale_yrgb_x,
322 			    scl_cal_scale2(src_w, dst_w));
323 		VOP_SCL_SET(vop, win, scale_yrgb_y,
324 			    scl_cal_scale2(src_h, dst_h));
325 		if (is_yuv) {
326 			VOP_SCL_SET(vop, win, scale_cbcr_x,
327 				    scl_cal_scale2(src_w, dst_w));
328 			VOP_SCL_SET(vop, win, scale_cbcr_y,
329 				    scl_cal_scale2(src_h, dst_h));
330 		}
331 		return;
332 	}
333 
334 	yrgb_hor_scl_mode = scl_get_scl_mode(src_w, dst_w);
335 	yrgb_ver_scl_mode = scl_get_scl_mode(src_h, dst_h);
336 
337 	if (is_yuv) {
338 		cbcr_hor_scl_mode = scl_get_scl_mode(cbcr_src_w, dst_w);
339 		cbcr_ver_scl_mode = scl_get_scl_mode(cbcr_src_h, dst_h);
340 		if (cbcr_hor_scl_mode == SCALE_DOWN)
341 			lb_mode = scl_vop_cal_lb_mode(dst_w, true);
342 		else
343 			lb_mode = scl_vop_cal_lb_mode(cbcr_src_w, true);
344 	} else {
345 		if (yrgb_hor_scl_mode == SCALE_DOWN)
346 			lb_mode = scl_vop_cal_lb_mode(dst_w, false);
347 		else
348 			lb_mode = scl_vop_cal_lb_mode(src_w, false);
349 	}
350 
351 	VOP_SCL_SET_EXT(vop, win, lb_mode, lb_mode);
352 	if (lb_mode == LB_RGB_3840X2) {
353 		if (yrgb_ver_scl_mode != SCALE_NONE) {
354 			DRM_ERROR("ERROR : not allow yrgb ver scale\n");
355 			return;
356 		}
357 		if (cbcr_ver_scl_mode != SCALE_NONE) {
358 			DRM_ERROR("ERROR : not allow cbcr ver scale\n");
359 			return;
360 		}
361 		vsu_mode = SCALE_UP_BIL;
362 	} else if (lb_mode == LB_RGB_2560X4) {
363 		vsu_mode = SCALE_UP_BIL;
364 	} else {
365 		vsu_mode = SCALE_UP_BIC;
366 	}
367 
368 	val = scl_vop_cal_scale(yrgb_hor_scl_mode, src_w, dst_w,
369 				true, 0, NULL);
370 	VOP_SCL_SET(vop, win, scale_yrgb_x, val);
371 	val = scl_vop_cal_scale(yrgb_ver_scl_mode, src_h, dst_h,
372 				false, vsu_mode, &vskiplines);
373 	VOP_SCL_SET(vop, win, scale_yrgb_y, val);
374 
375 	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt4, vskiplines == 4);
376 	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt2, vskiplines == 2);
377 
378 	VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, yrgb_hor_scl_mode);
379 	VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, yrgb_ver_scl_mode);
380 	VOP_SCL_SET_EXT(vop, win, yrgb_hsd_mode, SCALE_DOWN_BIL);
381 	VOP_SCL_SET_EXT(vop, win, yrgb_vsd_mode, SCALE_DOWN_BIL);
382 	VOP_SCL_SET_EXT(vop, win, yrgb_vsu_mode, vsu_mode);
383 	if (is_yuv) {
384 		val = scl_vop_cal_scale(cbcr_hor_scl_mode, cbcr_src_w,
385 					dst_w, true, 0, NULL);
386 		VOP_SCL_SET(vop, win, scale_cbcr_x, val);
387 		val = scl_vop_cal_scale(cbcr_ver_scl_mode, cbcr_src_h,
388 					dst_h, false, vsu_mode, &vskiplines);
389 		VOP_SCL_SET(vop, win, scale_cbcr_y, val);
390 
391 		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt4, vskiplines == 4);
392 		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt2, vskiplines == 2);
393 		VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, cbcr_hor_scl_mode);
394 		VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, cbcr_ver_scl_mode);
395 		VOP_SCL_SET_EXT(vop, win, cbcr_hsd_mode, SCALE_DOWN_BIL);
396 		VOP_SCL_SET_EXT(vop, win, cbcr_vsd_mode, SCALE_DOWN_BIL);
397 		VOP_SCL_SET_EXT(vop, win, cbcr_vsu_mode, vsu_mode);
398 	}
399 }
400 
401 static void vop_dsp_hold_valid_irq_enable(struct vop *vop)
402 {
403 	unsigned long flags;
404 
405 	if (WARN_ON(!vop->is_enabled))
406 		return;
407 
408 	spin_lock_irqsave(&vop->irq_lock, flags);
409 
410 	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 1);
411 
412 	spin_unlock_irqrestore(&vop->irq_lock, flags);
413 }
414 
415 static void vop_dsp_hold_valid_irq_disable(struct vop *vop)
416 {
417 	unsigned long flags;
418 
419 	if (WARN_ON(!vop->is_enabled))
420 		return;
421 
422 	spin_lock_irqsave(&vop->irq_lock, flags);
423 
424 	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 0);
425 
426 	spin_unlock_irqrestore(&vop->irq_lock, flags);
427 }
428 
429 static void vop_enable(struct drm_crtc *crtc)
430 {
431 	struct vop *vop = to_vop(crtc);
432 	int ret;
433 
434 	if (vop->is_enabled)
435 		return;
436 
437 	ret = pm_runtime_get_sync(vop->dev);
438 	if (ret < 0) {
439 		dev_err(vop->dev, "failed to get pm runtime: %d\n", ret);
440 		return;
441 	}
442 
443 	ret = clk_enable(vop->hclk);
444 	if (ret < 0) {
445 		dev_err(vop->dev, "failed to enable hclk - %d\n", ret);
446 		return;
447 	}
448 
449 	ret = clk_enable(vop->dclk);
450 	if (ret < 0) {
451 		dev_err(vop->dev, "failed to enable dclk - %d\n", ret);
452 		goto err_disable_hclk;
453 	}
454 
455 	ret = clk_enable(vop->aclk);
456 	if (ret < 0) {
457 		dev_err(vop->dev, "failed to enable aclk - %d\n", ret);
458 		goto err_disable_dclk;
459 	}
460 
461 	/*
462 	 * Slave iommu shares power, irq and clock with vop.  It was associated
463 	 * automatically with this master device via common driver code.
464 	 * Now that we have enabled the clock we attach it to the shared drm
465 	 * mapping.
466 	 */
467 	ret = rockchip_drm_dma_attach_device(vop->drm_dev, vop->dev);
468 	if (ret) {
469 		dev_err(vop->dev, "failed to attach dma mapping, %d\n", ret);
470 		goto err_disable_aclk;
471 	}
472 
473 	memcpy(vop->regs, vop->regsbak, vop->len);
474 	/*
475 	 * At here, vop clock & iommu is enable, R/W vop regs would be safe.
476 	 */
477 	vop->is_enabled = true;
478 
479 	spin_lock(&vop->reg_lock);
480 
481 	VOP_CTRL_SET(vop, standby, 0);
482 
483 	spin_unlock(&vop->reg_lock);
484 
485 	enable_irq(vop->irq);
486 
487 	drm_crtc_vblank_on(crtc);
488 
489 	return;
490 
491 err_disable_aclk:
492 	clk_disable(vop->aclk);
493 err_disable_dclk:
494 	clk_disable(vop->dclk);
495 err_disable_hclk:
496 	clk_disable(vop->hclk);
497 }
498 
499 static void vop_crtc_disable(struct drm_crtc *crtc)
500 {
501 	struct vop *vop = to_vop(crtc);
502 	int i;
503 
504 	if (!vop->is_enabled)
505 		return;
506 
507 	/*
508 	 * We need to make sure that all windows are disabled before we
509 	 * disable that crtc. Otherwise we might try to scan from a destroyed
510 	 * buffer later.
511 	 */
512 	for (i = 0; i < vop->data->win_size; i++) {
513 		struct vop_win *vop_win = &vop->win[i];
514 		const struct vop_win_data *win = vop_win->data;
515 
516 		spin_lock(&vop->reg_lock);
517 		VOP_WIN_SET(vop, win, enable, 0);
518 		spin_unlock(&vop->reg_lock);
519 	}
520 
521 	drm_crtc_vblank_off(crtc);
522 
523 	/*
524 	 * Vop standby will take effect at end of current frame,
525 	 * if dsp hold valid irq happen, it means standby complete.
526 	 *
527 	 * we must wait standby complete when we want to disable aclk,
528 	 * if not, memory bus maybe dead.
529 	 */
530 	reinit_completion(&vop->dsp_hold_completion);
531 	vop_dsp_hold_valid_irq_enable(vop);
532 
533 	spin_lock(&vop->reg_lock);
534 
535 	VOP_CTRL_SET(vop, standby, 1);
536 
537 	spin_unlock(&vop->reg_lock);
538 
539 	wait_for_completion(&vop->dsp_hold_completion);
540 
541 	vop_dsp_hold_valid_irq_disable(vop);
542 
543 	disable_irq(vop->irq);
544 
545 	vop->is_enabled = false;
546 
547 	/*
548 	 * vop standby complete, so iommu detach is safe.
549 	 */
550 	rockchip_drm_dma_detach_device(vop->drm_dev, vop->dev);
551 
552 	clk_disable(vop->dclk);
553 	clk_disable(vop->aclk);
554 	clk_disable(vop->hclk);
555 	pm_runtime_put(vop->dev);
556 }
557 
558 static void vop_plane_destroy(struct drm_plane *plane)
559 {
560 	drm_plane_cleanup(plane);
561 }
562 
563 static int vop_plane_atomic_check(struct drm_plane *plane,
564 			   struct drm_plane_state *state)
565 {
566 	struct drm_crtc *crtc = state->crtc;
567 	struct drm_crtc_state *crtc_state;
568 	struct drm_framebuffer *fb = state->fb;
569 	struct vop_win *vop_win = to_vop_win(plane);
570 	struct vop_plane_state *vop_plane_state = to_vop_plane_state(state);
571 	const struct vop_win_data *win = vop_win->data;
572 	bool visible;
573 	int ret;
574 	struct drm_rect *dest = &vop_plane_state->dest;
575 	struct drm_rect *src = &vop_plane_state->src;
576 	struct drm_rect clip;
577 	int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
578 					DRM_PLANE_HELPER_NO_SCALING;
579 	int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
580 					DRM_PLANE_HELPER_NO_SCALING;
581 
582 	if (!crtc || !fb)
583 		goto out_disable;
584 
585 	crtc_state = drm_atomic_get_existing_crtc_state(state->state, crtc);
586 	if (WARN_ON(!crtc_state))
587 		return -EINVAL;
588 
589 	src->x1 = state->src_x;
590 	src->y1 = state->src_y;
591 	src->x2 = state->src_x + state->src_w;
592 	src->y2 = state->src_y + state->src_h;
593 	dest->x1 = state->crtc_x;
594 	dest->y1 = state->crtc_y;
595 	dest->x2 = state->crtc_x + state->crtc_w;
596 	dest->y2 = state->crtc_y + state->crtc_h;
597 
598 	clip.x1 = 0;
599 	clip.y1 = 0;
600 	clip.x2 = crtc_state->adjusted_mode.hdisplay;
601 	clip.y2 = crtc_state->adjusted_mode.vdisplay;
602 
603 	ret = drm_plane_helper_check_update(plane, crtc, state->fb,
604 					    src, dest, &clip,
605 					    min_scale,
606 					    max_scale,
607 					    true, true, &visible);
608 	if (ret)
609 		return ret;
610 
611 	if (!visible)
612 		goto out_disable;
613 
614 	vop_plane_state->format = vop_convert_format(fb->pixel_format);
615 	if (vop_plane_state->format < 0)
616 		return vop_plane_state->format;
617 
618 	/*
619 	 * Src.x1 can be odd when do clip, but yuv plane start point
620 	 * need align with 2 pixel.
621 	 */
622 	if (is_yuv_support(fb->pixel_format) && ((src->x1 >> 16) % 2))
623 		return -EINVAL;
624 
625 	vop_plane_state->enable = true;
626 
627 	return 0;
628 
629 out_disable:
630 	vop_plane_state->enable = false;
631 	return 0;
632 }
633 
634 static void vop_plane_atomic_disable(struct drm_plane *plane,
635 				     struct drm_plane_state *old_state)
636 {
637 	struct vop_plane_state *vop_plane_state = to_vop_plane_state(old_state);
638 	struct vop_win *vop_win = to_vop_win(plane);
639 	const struct vop_win_data *win = vop_win->data;
640 	struct vop *vop = to_vop(old_state->crtc);
641 
642 	if (!old_state->crtc)
643 		return;
644 
645 	spin_lock(&vop->reg_lock);
646 
647 	VOP_WIN_SET(vop, win, enable, 0);
648 
649 	spin_unlock(&vop->reg_lock);
650 
651 	vop_plane_state->enable = false;
652 }
653 
654 static void vop_plane_atomic_update(struct drm_plane *plane,
655 		struct drm_plane_state *old_state)
656 {
657 	struct drm_plane_state *state = plane->state;
658 	struct drm_crtc *crtc = state->crtc;
659 	struct vop_win *vop_win = to_vop_win(plane);
660 	struct vop_plane_state *vop_plane_state = to_vop_plane_state(state);
661 	const struct vop_win_data *win = vop_win->data;
662 	struct vop *vop = to_vop(state->crtc);
663 	struct drm_framebuffer *fb = state->fb;
664 	unsigned int actual_w, actual_h;
665 	unsigned int dsp_stx, dsp_sty;
666 	uint32_t act_info, dsp_info, dsp_st;
667 	struct drm_rect *src = &vop_plane_state->src;
668 	struct drm_rect *dest = &vop_plane_state->dest;
669 	struct drm_gem_object *obj, *uv_obj;
670 	struct rockchip_gem_object *rk_obj, *rk_uv_obj;
671 	unsigned long offset;
672 	dma_addr_t dma_addr;
673 	uint32_t val;
674 	bool rb_swap;
675 
676 	/*
677 	 * can't update plane when vop is disabled.
678 	 */
679 	if (!crtc)
680 		return;
681 
682 	if (WARN_ON(!vop->is_enabled))
683 		return;
684 
685 	if (!vop_plane_state->enable) {
686 		vop_plane_atomic_disable(plane, old_state);
687 		return;
688 	}
689 
690 	obj = rockchip_fb_get_gem_obj(fb, 0);
691 	rk_obj = to_rockchip_obj(obj);
692 
693 	actual_w = drm_rect_width(src) >> 16;
694 	actual_h = drm_rect_height(src) >> 16;
695 	act_info = (actual_h - 1) << 16 | ((actual_w - 1) & 0xffff);
696 
697 	dsp_info = (drm_rect_height(dest) - 1) << 16;
698 	dsp_info |= (drm_rect_width(dest) - 1) & 0xffff;
699 
700 	dsp_stx = dest->x1 + crtc->mode.htotal - crtc->mode.hsync_start;
701 	dsp_sty = dest->y1 + crtc->mode.vtotal - crtc->mode.vsync_start;
702 	dsp_st = dsp_sty << 16 | (dsp_stx & 0xffff);
703 
704 	offset = (src->x1 >> 16) * drm_format_plane_cpp(fb->pixel_format, 0);
705 	offset += (src->y1 >> 16) * fb->pitches[0];
706 	vop_plane_state->yrgb_mst = rk_obj->dma_addr + offset + fb->offsets[0];
707 
708 	spin_lock(&vop->reg_lock);
709 
710 	VOP_WIN_SET(vop, win, format, vop_plane_state->format);
711 	VOP_WIN_SET(vop, win, yrgb_vir, fb->pitches[0] >> 2);
712 	VOP_WIN_SET(vop, win, yrgb_mst, vop_plane_state->yrgb_mst);
713 	if (is_yuv_support(fb->pixel_format)) {
714 		int hsub = drm_format_horz_chroma_subsampling(fb->pixel_format);
715 		int vsub = drm_format_vert_chroma_subsampling(fb->pixel_format);
716 		int bpp = drm_format_plane_cpp(fb->pixel_format, 1);
717 
718 		uv_obj = rockchip_fb_get_gem_obj(fb, 1);
719 		rk_uv_obj = to_rockchip_obj(uv_obj);
720 
721 		offset = (src->x1 >> 16) * bpp / hsub;
722 		offset += (src->y1 >> 16) * fb->pitches[1] / vsub;
723 
724 		dma_addr = rk_uv_obj->dma_addr + offset + fb->offsets[1];
725 		VOP_WIN_SET(vop, win, uv_vir, fb->pitches[1] >> 2);
726 		VOP_WIN_SET(vop, win, uv_mst, dma_addr);
727 	}
728 
729 	if (win->phy->scl)
730 		scl_vop_cal_scl_fac(vop, win, actual_w, actual_h,
731 				    drm_rect_width(dest), drm_rect_height(dest),
732 				    fb->pixel_format);
733 
734 	VOP_WIN_SET(vop, win, act_info, act_info);
735 	VOP_WIN_SET(vop, win, dsp_info, dsp_info);
736 	VOP_WIN_SET(vop, win, dsp_st, dsp_st);
737 
738 	rb_swap = has_rb_swapped(fb->pixel_format);
739 	VOP_WIN_SET(vop, win, rb_swap, rb_swap);
740 
741 	if (is_alpha_support(fb->pixel_format)) {
742 		VOP_WIN_SET(vop, win, dst_alpha_ctl,
743 			    DST_FACTOR_M0(ALPHA_SRC_INVERSE));
744 		val = SRC_ALPHA_EN(1) | SRC_COLOR_M0(ALPHA_SRC_PRE_MUL) |
745 			SRC_ALPHA_M0(ALPHA_STRAIGHT) |
746 			SRC_BLEND_M0(ALPHA_PER_PIX) |
747 			SRC_ALPHA_CAL_M0(ALPHA_NO_SATURATION) |
748 			SRC_FACTOR_M0(ALPHA_ONE);
749 		VOP_WIN_SET(vop, win, src_alpha_ctl, val);
750 	} else {
751 		VOP_WIN_SET(vop, win, src_alpha_ctl, SRC_ALPHA_EN(0));
752 	}
753 
754 	VOP_WIN_SET(vop, win, enable, 1);
755 	spin_unlock(&vop->reg_lock);
756 }
757 
758 static const struct drm_plane_helper_funcs plane_helper_funcs = {
759 	.atomic_check = vop_plane_atomic_check,
760 	.atomic_update = vop_plane_atomic_update,
761 	.atomic_disable = vop_plane_atomic_disable,
762 };
763 
764 void vop_atomic_plane_reset(struct drm_plane *plane)
765 {
766 	struct vop_plane_state *vop_plane_state =
767 					to_vop_plane_state(plane->state);
768 
769 	if (plane->state && plane->state->fb)
770 		drm_framebuffer_unreference(plane->state->fb);
771 
772 	kfree(vop_plane_state);
773 	vop_plane_state = kzalloc(sizeof(*vop_plane_state), GFP_KERNEL);
774 	if (!vop_plane_state)
775 		return;
776 
777 	plane->state = &vop_plane_state->base;
778 	plane->state->plane = plane;
779 }
780 
781 struct drm_plane_state *
782 vop_atomic_plane_duplicate_state(struct drm_plane *plane)
783 {
784 	struct vop_plane_state *old_vop_plane_state;
785 	struct vop_plane_state *vop_plane_state;
786 
787 	if (WARN_ON(!plane->state))
788 		return NULL;
789 
790 	old_vop_plane_state = to_vop_plane_state(plane->state);
791 	vop_plane_state = kmemdup(old_vop_plane_state,
792 				  sizeof(*vop_plane_state), GFP_KERNEL);
793 	if (!vop_plane_state)
794 		return NULL;
795 
796 	__drm_atomic_helper_plane_duplicate_state(plane,
797 						  &vop_plane_state->base);
798 
799 	return &vop_plane_state->base;
800 }
801 
802 static void vop_atomic_plane_destroy_state(struct drm_plane *plane,
803 					   struct drm_plane_state *state)
804 {
805 	struct vop_plane_state *vop_state = to_vop_plane_state(state);
806 
807 	__drm_atomic_helper_plane_destroy_state(plane, state);
808 
809 	kfree(vop_state);
810 }
811 
812 static const struct drm_plane_funcs vop_plane_funcs = {
813 	.update_plane	= drm_atomic_helper_update_plane,
814 	.disable_plane	= drm_atomic_helper_disable_plane,
815 	.destroy = vop_plane_destroy,
816 	.reset = vop_atomic_plane_reset,
817 	.atomic_duplicate_state = vop_atomic_plane_duplicate_state,
818 	.atomic_destroy_state = vop_atomic_plane_destroy_state,
819 };
820 
821 int rockchip_drm_crtc_mode_config(struct drm_crtc *crtc,
822 				  int connector_type,
823 				  int out_mode)
824 {
825 	struct vop *vop = to_vop(crtc);
826 
827 	if (WARN_ON(!vop->is_enabled))
828 		return -EINVAL;
829 
830 	switch (connector_type) {
831 	case DRM_MODE_CONNECTOR_LVDS:
832 		VOP_CTRL_SET(vop, rgb_en, 1);
833 		break;
834 	case DRM_MODE_CONNECTOR_eDP:
835 		VOP_CTRL_SET(vop, edp_en, 1);
836 		break;
837 	case DRM_MODE_CONNECTOR_HDMIA:
838 		VOP_CTRL_SET(vop, hdmi_en, 1);
839 		break;
840 	case DRM_MODE_CONNECTOR_DSI:
841 		VOP_CTRL_SET(vop, mipi_en, 1);
842 		break;
843 	default:
844 		DRM_ERROR("unsupport connector_type[%d]\n", connector_type);
845 		return -EINVAL;
846 	};
847 	VOP_CTRL_SET(vop, out_mode, out_mode);
848 
849 	return 0;
850 }
851 EXPORT_SYMBOL_GPL(rockchip_drm_crtc_mode_config);
852 
853 static int vop_crtc_enable_vblank(struct drm_crtc *crtc)
854 {
855 	struct vop *vop = to_vop(crtc);
856 	unsigned long flags;
857 
858 	if (WARN_ON(!vop->is_enabled))
859 		return -EPERM;
860 
861 	spin_lock_irqsave(&vop->irq_lock, flags);
862 
863 	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 1);
864 
865 	spin_unlock_irqrestore(&vop->irq_lock, flags);
866 
867 	return 0;
868 }
869 
870 static void vop_crtc_disable_vblank(struct drm_crtc *crtc)
871 {
872 	struct vop *vop = to_vop(crtc);
873 	unsigned long flags;
874 
875 	if (WARN_ON(!vop->is_enabled))
876 		return;
877 
878 	spin_lock_irqsave(&vop->irq_lock, flags);
879 
880 	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 0);
881 
882 	spin_unlock_irqrestore(&vop->irq_lock, flags);
883 }
884 
885 static void vop_crtc_wait_for_update(struct drm_crtc *crtc)
886 {
887 	struct vop *vop = to_vop(crtc);
888 
889 	reinit_completion(&vop->wait_update_complete);
890 	WARN_ON(!wait_for_completion_timeout(&vop->wait_update_complete, 100));
891 }
892 
893 static void vop_crtc_cancel_pending_vblank(struct drm_crtc *crtc,
894 					   struct drm_file *file_priv)
895 {
896 	struct drm_device *drm = crtc->dev;
897 	struct vop *vop = to_vop(crtc);
898 	struct drm_pending_vblank_event *e;
899 	unsigned long flags;
900 
901 	spin_lock_irqsave(&drm->event_lock, flags);
902 	e = vop->event;
903 	if (e && e->base.file_priv == file_priv) {
904 		vop->event = NULL;
905 
906 		e->base.destroy(&e->base);
907 		file_priv->event_space += sizeof(e->event);
908 	}
909 	spin_unlock_irqrestore(&drm->event_lock, flags);
910 }
911 
912 static const struct rockchip_crtc_funcs private_crtc_funcs = {
913 	.enable_vblank = vop_crtc_enable_vblank,
914 	.disable_vblank = vop_crtc_disable_vblank,
915 	.wait_for_update = vop_crtc_wait_for_update,
916 	.cancel_pending_vblank = vop_crtc_cancel_pending_vblank,
917 };
918 
919 static bool vop_crtc_mode_fixup(struct drm_crtc *crtc,
920 				const struct drm_display_mode *mode,
921 				struct drm_display_mode *adjusted_mode)
922 {
923 	struct vop *vop = to_vop(crtc);
924 
925 	adjusted_mode->clock =
926 		clk_round_rate(vop->dclk, mode->clock * 1000) / 1000;
927 
928 	return true;
929 }
930 
931 static void vop_crtc_enable(struct drm_crtc *crtc)
932 {
933 	struct vop *vop = to_vop(crtc);
934 	struct drm_display_mode *adjusted_mode = &crtc->state->adjusted_mode;
935 	u16 hsync_len = adjusted_mode->hsync_end - adjusted_mode->hsync_start;
936 	u16 hdisplay = adjusted_mode->hdisplay;
937 	u16 htotal = adjusted_mode->htotal;
938 	u16 hact_st = adjusted_mode->htotal - adjusted_mode->hsync_start;
939 	u16 hact_end = hact_st + hdisplay;
940 	u16 vdisplay = adjusted_mode->vdisplay;
941 	u16 vtotal = adjusted_mode->vtotal;
942 	u16 vsync_len = adjusted_mode->vsync_end - adjusted_mode->vsync_start;
943 	u16 vact_st = adjusted_mode->vtotal - adjusted_mode->vsync_start;
944 	u16 vact_end = vact_st + vdisplay;
945 	uint32_t val;
946 
947 	vop_enable(crtc);
948 	/*
949 	 * If dclk rate is zero, mean that scanout is stop,
950 	 * we don't need wait any more.
951 	 */
952 	if (clk_get_rate(vop->dclk)) {
953 		/*
954 		 * Rk3288 vop timing register is immediately, when configure
955 		 * display timing on display time, may cause tearing.
956 		 *
957 		 * Vop standby will take effect at end of current frame,
958 		 * if dsp hold valid irq happen, it means standby complete.
959 		 *
960 		 * mode set:
961 		 *    standby and wait complete --> |----
962 		 *                                  | display time
963 		 *                                  |----
964 		 *                                  |---> dsp hold irq
965 		 *     configure display timing --> |
966 		 *         standby exit             |
967 		 *                                  | new frame start.
968 		 */
969 
970 		reinit_completion(&vop->dsp_hold_completion);
971 		vop_dsp_hold_valid_irq_enable(vop);
972 
973 		spin_lock(&vop->reg_lock);
974 
975 		VOP_CTRL_SET(vop, standby, 1);
976 
977 		spin_unlock(&vop->reg_lock);
978 
979 		wait_for_completion(&vop->dsp_hold_completion);
980 
981 		vop_dsp_hold_valid_irq_disable(vop);
982 	}
983 
984 	val = 0x8;
985 	val |= (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC) ? 0 : 1;
986 	val |= (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC) ? 0 : (1 << 1);
987 	VOP_CTRL_SET(vop, pin_pol, val);
988 
989 	VOP_CTRL_SET(vop, htotal_pw, (htotal << 16) | hsync_len);
990 	val = hact_st << 16;
991 	val |= hact_end;
992 	VOP_CTRL_SET(vop, hact_st_end, val);
993 	VOP_CTRL_SET(vop, hpost_st_end, val);
994 
995 	VOP_CTRL_SET(vop, vtotal_pw, (vtotal << 16) | vsync_len);
996 	val = vact_st << 16;
997 	val |= vact_end;
998 	VOP_CTRL_SET(vop, vact_st_end, val);
999 	VOP_CTRL_SET(vop, vpost_st_end, val);
1000 
1001 	clk_set_rate(vop->dclk, adjusted_mode->clock * 1000);
1002 
1003 	VOP_CTRL_SET(vop, standby, 0);
1004 }
1005 
1006 static void vop_crtc_atomic_flush(struct drm_crtc *crtc,
1007 				  struct drm_crtc_state *old_crtc_state)
1008 {
1009 	struct vop *vop = to_vop(crtc);
1010 
1011 	if (WARN_ON(!vop->is_enabled))
1012 		return;
1013 
1014 	spin_lock(&vop->reg_lock);
1015 
1016 	vop_cfg_done(vop);
1017 
1018 	spin_unlock(&vop->reg_lock);
1019 }
1020 
1021 static void vop_crtc_atomic_begin(struct drm_crtc *crtc,
1022 				  struct drm_crtc_state *old_crtc_state)
1023 {
1024 	struct vop *vop = to_vop(crtc);
1025 
1026 	if (crtc->state->event) {
1027 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1028 
1029 		vop->event = crtc->state->event;
1030 		crtc->state->event = NULL;
1031 	}
1032 }
1033 
1034 static const struct drm_crtc_helper_funcs vop_crtc_helper_funcs = {
1035 	.enable = vop_crtc_enable,
1036 	.disable = vop_crtc_disable,
1037 	.mode_fixup = vop_crtc_mode_fixup,
1038 	.atomic_flush = vop_crtc_atomic_flush,
1039 	.atomic_begin = vop_crtc_atomic_begin,
1040 };
1041 
1042 static void vop_crtc_destroy(struct drm_crtc *crtc)
1043 {
1044 	drm_crtc_cleanup(crtc);
1045 }
1046 
1047 static const struct drm_crtc_funcs vop_crtc_funcs = {
1048 	.set_config = drm_atomic_helper_set_config,
1049 	.page_flip = drm_atomic_helper_page_flip,
1050 	.destroy = vop_crtc_destroy,
1051 	.reset = drm_atomic_helper_crtc_reset,
1052 	.atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state,
1053 	.atomic_destroy_state = drm_atomic_helper_crtc_destroy_state,
1054 };
1055 
1056 static bool vop_win_pending_is_complete(struct vop_win *vop_win)
1057 {
1058 	struct drm_plane *plane = &vop_win->base;
1059 	struct vop_plane_state *state = to_vop_plane_state(plane->state);
1060 	dma_addr_t yrgb_mst;
1061 
1062 	if (!state->enable)
1063 		return VOP_WIN_GET(vop_win->vop, vop_win->data, enable) == 0;
1064 
1065 	yrgb_mst = VOP_WIN_GET_YRGBADDR(vop_win->vop, vop_win->data);
1066 
1067 	return yrgb_mst == state->yrgb_mst;
1068 }
1069 
1070 static void vop_handle_vblank(struct vop *vop)
1071 {
1072 	struct drm_device *drm = vop->drm_dev;
1073 	struct drm_crtc *crtc = &vop->crtc;
1074 	unsigned long flags;
1075 	int i;
1076 
1077 	for (i = 0; i < vop->data->win_size; i++) {
1078 		if (!vop_win_pending_is_complete(&vop->win[i]))
1079 			return;
1080 	}
1081 
1082 	if (vop->event) {
1083 		spin_lock_irqsave(&drm->event_lock, flags);
1084 
1085 		drm_crtc_send_vblank_event(crtc, vop->event);
1086 		drm_crtc_vblank_put(crtc);
1087 		vop->event = NULL;
1088 
1089 		spin_unlock_irqrestore(&drm->event_lock, flags);
1090 	}
1091 	if (!completion_done(&vop->wait_update_complete))
1092 		complete(&vop->wait_update_complete);
1093 }
1094 
1095 static irqreturn_t vop_isr(int irq, void *data)
1096 {
1097 	struct vop *vop = data;
1098 	struct drm_crtc *crtc = &vop->crtc;
1099 	uint32_t active_irqs;
1100 	unsigned long flags;
1101 	int ret = IRQ_NONE;
1102 
1103 	/*
1104 	 * interrupt register has interrupt status, enable and clear bits, we
1105 	 * must hold irq_lock to avoid a race with enable/disable_vblank().
1106 	*/
1107 	spin_lock_irqsave(&vop->irq_lock, flags);
1108 
1109 	active_irqs = VOP_INTR_GET_TYPE(vop, status, INTR_MASK);
1110 	/* Clear all active interrupt sources */
1111 	if (active_irqs)
1112 		VOP_INTR_SET_TYPE(vop, clear, active_irqs, 1);
1113 
1114 	spin_unlock_irqrestore(&vop->irq_lock, flags);
1115 
1116 	/* This is expected for vop iommu irqs, since the irq is shared */
1117 	if (!active_irqs)
1118 		return IRQ_NONE;
1119 
1120 	if (active_irqs & DSP_HOLD_VALID_INTR) {
1121 		complete(&vop->dsp_hold_completion);
1122 		active_irqs &= ~DSP_HOLD_VALID_INTR;
1123 		ret = IRQ_HANDLED;
1124 	}
1125 
1126 	if (active_irqs & FS_INTR) {
1127 		drm_crtc_handle_vblank(crtc);
1128 		vop_handle_vblank(vop);
1129 		active_irqs &= ~FS_INTR;
1130 		ret = IRQ_HANDLED;
1131 	}
1132 
1133 	/* Unhandled irqs are spurious. */
1134 	if (active_irqs)
1135 		DRM_ERROR("Unknown VOP IRQs: %#02x\n", active_irqs);
1136 
1137 	return ret;
1138 }
1139 
1140 static int vop_create_crtc(struct vop *vop)
1141 {
1142 	const struct vop_data *vop_data = vop->data;
1143 	struct device *dev = vop->dev;
1144 	struct drm_device *drm_dev = vop->drm_dev;
1145 	struct drm_plane *primary = NULL, *cursor = NULL, *plane, *tmp;
1146 	struct drm_crtc *crtc = &vop->crtc;
1147 	struct device_node *port;
1148 	int ret;
1149 	int i;
1150 
1151 	/*
1152 	 * Create drm_plane for primary and cursor planes first, since we need
1153 	 * to pass them to drm_crtc_init_with_planes, which sets the
1154 	 * "possible_crtcs" to the newly initialized crtc.
1155 	 */
1156 	for (i = 0; i < vop_data->win_size; i++) {
1157 		struct vop_win *vop_win = &vop->win[i];
1158 		const struct vop_win_data *win_data = vop_win->data;
1159 
1160 		if (win_data->type != DRM_PLANE_TYPE_PRIMARY &&
1161 		    win_data->type != DRM_PLANE_TYPE_CURSOR)
1162 			continue;
1163 
1164 		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1165 					       0, &vop_plane_funcs,
1166 					       win_data->phy->data_formats,
1167 					       win_data->phy->nformats,
1168 					       win_data->type, NULL);
1169 		if (ret) {
1170 			DRM_ERROR("failed to initialize plane\n");
1171 			goto err_cleanup_planes;
1172 		}
1173 
1174 		plane = &vop_win->base;
1175 		drm_plane_helper_add(plane, &plane_helper_funcs);
1176 		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
1177 			primary = plane;
1178 		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
1179 			cursor = plane;
1180 	}
1181 
1182 	ret = drm_crtc_init_with_planes(drm_dev, crtc, primary, cursor,
1183 					&vop_crtc_funcs, NULL);
1184 	if (ret)
1185 		goto err_cleanup_planes;
1186 
1187 	drm_crtc_helper_add(crtc, &vop_crtc_helper_funcs);
1188 
1189 	/*
1190 	 * Create drm_planes for overlay windows with possible_crtcs restricted
1191 	 * to the newly created crtc.
1192 	 */
1193 	for (i = 0; i < vop_data->win_size; i++) {
1194 		struct vop_win *vop_win = &vop->win[i];
1195 		const struct vop_win_data *win_data = vop_win->data;
1196 		unsigned long possible_crtcs = 1 << drm_crtc_index(crtc);
1197 
1198 		if (win_data->type != DRM_PLANE_TYPE_OVERLAY)
1199 			continue;
1200 
1201 		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1202 					       possible_crtcs,
1203 					       &vop_plane_funcs,
1204 					       win_data->phy->data_formats,
1205 					       win_data->phy->nformats,
1206 					       win_data->type, NULL);
1207 		if (ret) {
1208 			DRM_ERROR("failed to initialize overlay plane\n");
1209 			goto err_cleanup_crtc;
1210 		}
1211 		drm_plane_helper_add(&vop_win->base, &plane_helper_funcs);
1212 	}
1213 
1214 	port = of_get_child_by_name(dev->of_node, "port");
1215 	if (!port) {
1216 		DRM_ERROR("no port node found in %s\n",
1217 			  dev->of_node->full_name);
1218 		ret = -ENOENT;
1219 		goto err_cleanup_crtc;
1220 	}
1221 
1222 	init_completion(&vop->dsp_hold_completion);
1223 	init_completion(&vop->wait_update_complete);
1224 	crtc->port = port;
1225 	rockchip_register_crtc_funcs(crtc, &private_crtc_funcs);
1226 
1227 	return 0;
1228 
1229 err_cleanup_crtc:
1230 	drm_crtc_cleanup(crtc);
1231 err_cleanup_planes:
1232 	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1233 				 head)
1234 		drm_plane_cleanup(plane);
1235 	return ret;
1236 }
1237 
1238 static void vop_destroy_crtc(struct vop *vop)
1239 {
1240 	struct drm_crtc *crtc = &vop->crtc;
1241 	struct drm_device *drm_dev = vop->drm_dev;
1242 	struct drm_plane *plane, *tmp;
1243 
1244 	rockchip_unregister_crtc_funcs(crtc);
1245 	of_node_put(crtc->port);
1246 
1247 	/*
1248 	 * We need to cleanup the planes now.  Why?
1249 	 *
1250 	 * The planes are "&vop->win[i].base".  That means the memory is
1251 	 * all part of the big "struct vop" chunk of memory.  That memory
1252 	 * was devm allocated and associated with this component.  We need to
1253 	 * free it ourselves before vop_unbind() finishes.
1254 	 */
1255 	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1256 				 head)
1257 		vop_plane_destroy(plane);
1258 
1259 	/*
1260 	 * Destroy CRTC after vop_plane_destroy() since vop_disable_plane()
1261 	 * references the CRTC.
1262 	 */
1263 	drm_crtc_cleanup(crtc);
1264 }
1265 
1266 static int vop_initial(struct vop *vop)
1267 {
1268 	const struct vop_data *vop_data = vop->data;
1269 	const struct vop_reg_data *init_table = vop_data->init_table;
1270 	struct reset_control *ahb_rst;
1271 	int i, ret;
1272 
1273 	vop->hclk = devm_clk_get(vop->dev, "hclk_vop");
1274 	if (IS_ERR(vop->hclk)) {
1275 		dev_err(vop->dev, "failed to get hclk source\n");
1276 		return PTR_ERR(vop->hclk);
1277 	}
1278 	vop->aclk = devm_clk_get(vop->dev, "aclk_vop");
1279 	if (IS_ERR(vop->aclk)) {
1280 		dev_err(vop->dev, "failed to get aclk source\n");
1281 		return PTR_ERR(vop->aclk);
1282 	}
1283 	vop->dclk = devm_clk_get(vop->dev, "dclk_vop");
1284 	if (IS_ERR(vop->dclk)) {
1285 		dev_err(vop->dev, "failed to get dclk source\n");
1286 		return PTR_ERR(vop->dclk);
1287 	}
1288 
1289 	ret = clk_prepare(vop->dclk);
1290 	if (ret < 0) {
1291 		dev_err(vop->dev, "failed to prepare dclk\n");
1292 		return ret;
1293 	}
1294 
1295 	/* Enable both the hclk and aclk to setup the vop */
1296 	ret = clk_prepare_enable(vop->hclk);
1297 	if (ret < 0) {
1298 		dev_err(vop->dev, "failed to prepare/enable hclk\n");
1299 		goto err_unprepare_dclk;
1300 	}
1301 
1302 	ret = clk_prepare_enable(vop->aclk);
1303 	if (ret < 0) {
1304 		dev_err(vop->dev, "failed to prepare/enable aclk\n");
1305 		goto err_disable_hclk;
1306 	}
1307 
1308 	/*
1309 	 * do hclk_reset, reset all vop registers.
1310 	 */
1311 	ahb_rst = devm_reset_control_get(vop->dev, "ahb");
1312 	if (IS_ERR(ahb_rst)) {
1313 		dev_err(vop->dev, "failed to get ahb reset\n");
1314 		ret = PTR_ERR(ahb_rst);
1315 		goto err_disable_aclk;
1316 	}
1317 	reset_control_assert(ahb_rst);
1318 	usleep_range(10, 20);
1319 	reset_control_deassert(ahb_rst);
1320 
1321 	memcpy(vop->regsbak, vop->regs, vop->len);
1322 
1323 	for (i = 0; i < vop_data->table_size; i++)
1324 		vop_writel(vop, init_table[i].offset, init_table[i].value);
1325 
1326 	for (i = 0; i < vop_data->win_size; i++) {
1327 		const struct vop_win_data *win = &vop_data->win[i];
1328 
1329 		VOP_WIN_SET(vop, win, enable, 0);
1330 	}
1331 
1332 	vop_cfg_done(vop);
1333 
1334 	/*
1335 	 * do dclk_reset, let all config take affect.
1336 	 */
1337 	vop->dclk_rst = devm_reset_control_get(vop->dev, "dclk");
1338 	if (IS_ERR(vop->dclk_rst)) {
1339 		dev_err(vop->dev, "failed to get dclk reset\n");
1340 		ret = PTR_ERR(vop->dclk_rst);
1341 		goto err_disable_aclk;
1342 	}
1343 	reset_control_assert(vop->dclk_rst);
1344 	usleep_range(10, 20);
1345 	reset_control_deassert(vop->dclk_rst);
1346 
1347 	clk_disable(vop->hclk);
1348 	clk_disable(vop->aclk);
1349 
1350 	vop->is_enabled = false;
1351 
1352 	return 0;
1353 
1354 err_disable_aclk:
1355 	clk_disable_unprepare(vop->aclk);
1356 err_disable_hclk:
1357 	clk_disable_unprepare(vop->hclk);
1358 err_unprepare_dclk:
1359 	clk_unprepare(vop->dclk);
1360 	return ret;
1361 }
1362 
1363 /*
1364  * Initialize the vop->win array elements.
1365  */
1366 static void vop_win_init(struct vop *vop)
1367 {
1368 	const struct vop_data *vop_data = vop->data;
1369 	unsigned int i;
1370 
1371 	for (i = 0; i < vop_data->win_size; i++) {
1372 		struct vop_win *vop_win = &vop->win[i];
1373 		const struct vop_win_data *win_data = &vop_data->win[i];
1374 
1375 		vop_win->data = win_data;
1376 		vop_win->vop = vop;
1377 	}
1378 }
1379 
1380 static int vop_bind(struct device *dev, struct device *master, void *data)
1381 {
1382 	struct platform_device *pdev = to_platform_device(dev);
1383 	const struct vop_data *vop_data;
1384 	struct drm_device *drm_dev = data;
1385 	struct vop *vop;
1386 	struct resource *res;
1387 	size_t alloc_size;
1388 	int ret, irq;
1389 
1390 	vop_data = of_device_get_match_data(dev);
1391 	if (!vop_data)
1392 		return -ENODEV;
1393 
1394 	/* Allocate vop struct and its vop_win array */
1395 	alloc_size = sizeof(*vop) + sizeof(*vop->win) * vop_data->win_size;
1396 	vop = devm_kzalloc(dev, alloc_size, GFP_KERNEL);
1397 	if (!vop)
1398 		return -ENOMEM;
1399 
1400 	vop->dev = dev;
1401 	vop->data = vop_data;
1402 	vop->drm_dev = drm_dev;
1403 	dev_set_drvdata(dev, vop);
1404 
1405 	vop_win_init(vop);
1406 
1407 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1408 	vop->len = resource_size(res);
1409 	vop->regs = devm_ioremap_resource(dev, res);
1410 	if (IS_ERR(vop->regs))
1411 		return PTR_ERR(vop->regs);
1412 
1413 	vop->regsbak = devm_kzalloc(dev, vop->len, GFP_KERNEL);
1414 	if (!vop->regsbak)
1415 		return -ENOMEM;
1416 
1417 	ret = vop_initial(vop);
1418 	if (ret < 0) {
1419 		dev_err(&pdev->dev, "cannot initial vop dev - err %d\n", ret);
1420 		return ret;
1421 	}
1422 
1423 	irq = platform_get_irq(pdev, 0);
1424 	if (irq < 0) {
1425 		dev_err(dev, "cannot find irq for vop\n");
1426 		return irq;
1427 	}
1428 	vop->irq = (unsigned int)irq;
1429 
1430 	spin_lock_init(&vop->reg_lock);
1431 	spin_lock_init(&vop->irq_lock);
1432 
1433 	mutex_init(&vop->vsync_mutex);
1434 
1435 	ret = devm_request_irq(dev, vop->irq, vop_isr,
1436 			       IRQF_SHARED, dev_name(dev), vop);
1437 	if (ret)
1438 		return ret;
1439 
1440 	/* IRQ is initially disabled; it gets enabled in power_on */
1441 	disable_irq(vop->irq);
1442 
1443 	ret = vop_create_crtc(vop);
1444 	if (ret)
1445 		return ret;
1446 
1447 	pm_runtime_enable(&pdev->dev);
1448 	return 0;
1449 }
1450 
1451 static void vop_unbind(struct device *dev, struct device *master, void *data)
1452 {
1453 	struct vop *vop = dev_get_drvdata(dev);
1454 
1455 	pm_runtime_disable(dev);
1456 	vop_destroy_crtc(vop);
1457 }
1458 
1459 const struct component_ops vop_component_ops = {
1460 	.bind = vop_bind,
1461 	.unbind = vop_unbind,
1462 };
1463 EXPORT_SYMBOL_GPL(vop_component_ops);
1464