1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Fuzhou Rockchip Electronics Co.Ltd
4  * Author:Mark Yao <mark.yao@rock-chips.com>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/component.h>
9 #include <linux/delay.h>
10 #include <linux/iopoll.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/of_device.h>
15 #include <linux/overflow.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/reset.h>
19 
20 #include <drm/drm.h>
21 #include <drm/drm_atomic.h>
22 #include <drm/drm_atomic_uapi.h>
23 #include <drm/drm_blend.h>
24 #include <drm/drm_crtc.h>
25 #include <drm/drm_flip_work.h>
26 #include <drm/drm_fourcc.h>
27 #include <drm/drm_framebuffer.h>
28 #include <drm/drm_gem_atomic_helper.h>
29 #include <drm/drm_gem_framebuffer_helper.h>
30 #include <drm/drm_plane_helper.h>
31 #include <drm/drm_probe_helper.h>
32 #include <drm/drm_self_refresh_helper.h>
33 #include <drm/drm_vblank.h>
34 
35 #ifdef CONFIG_DRM_ANALOGIX_DP
36 #include <drm/bridge/analogix_dp.h>
37 #endif
38 
39 #include "rockchip_drm_drv.h"
40 #include "rockchip_drm_gem.h"
41 #include "rockchip_drm_fb.h"
42 #include "rockchip_drm_vop.h"
43 #include "rockchip_rgb.h"
44 
45 #define VOP_WIN_SET(vop, win, name, v) \
46 		vop_reg_set(vop, &win->phy->name, win->base, ~0, v, #name)
47 #define VOP_SCL_SET(vop, win, name, v) \
48 		vop_reg_set(vop, &win->phy->scl->name, win->base, ~0, v, #name)
49 #define VOP_SCL_SET_EXT(vop, win, name, v) \
50 		vop_reg_set(vop, &win->phy->scl->ext->name, \
51 			    win->base, ~0, v, #name)
52 
53 #define VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, name, v) \
54 	do { \
55 		if (win_yuv2yuv && win_yuv2yuv->name.mask) \
56 			vop_reg_set(vop, &win_yuv2yuv->name, 0, ~0, v, #name); \
57 	} while (0)
58 
59 #define VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop, win_yuv2yuv, name, v) \
60 	do { \
61 		if (win_yuv2yuv && win_yuv2yuv->phy->name.mask) \
62 			vop_reg_set(vop, &win_yuv2yuv->phy->name, win_yuv2yuv->base, ~0, v, #name); \
63 	} while (0)
64 
65 #define VOP_INTR_SET_MASK(vop, name, mask, v) \
66 		vop_reg_set(vop, &vop->data->intr->name, 0, mask, v, #name)
67 
68 #define VOP_REG_SET(vop, group, name, v) \
69 		    vop_reg_set(vop, &vop->data->group->name, 0, ~0, v, #name)
70 
71 #define VOP_INTR_SET_TYPE(vop, name, type, v) \
72 	do { \
73 		int i, reg = 0, mask = 0; \
74 		for (i = 0; i < vop->data->intr->nintrs; i++) { \
75 			if (vop->data->intr->intrs[i] & type) { \
76 				reg |= (v) << i; \
77 				mask |= 1 << i; \
78 			} \
79 		} \
80 		VOP_INTR_SET_MASK(vop, name, mask, reg); \
81 	} while (0)
82 #define VOP_INTR_GET_TYPE(vop, name, type) \
83 		vop_get_intr_type(vop, &vop->data->intr->name, type)
84 
85 #define VOP_WIN_GET(vop, win, name) \
86 		vop_read_reg(vop, win->base, &win->phy->name)
87 
88 #define VOP_WIN_HAS_REG(win, name) \
89 	(!!(win->phy->name.mask))
90 
91 #define VOP_WIN_GET_YRGBADDR(vop, win) \
92 		vop_readl(vop, win->base + win->phy->yrgb_mst.offset)
93 
94 #define VOP_WIN_TO_INDEX(vop_win) \
95 	((vop_win) - (vop_win)->vop->win)
96 
97 #define VOP_AFBC_SET(vop, name, v) \
98 	do { \
99 		if ((vop)->data->afbc) \
100 			vop_reg_set((vop), &(vop)->data->afbc->name, \
101 				    0, ~0, v, #name); \
102 	} while (0)
103 
104 #define to_vop(x) container_of(x, struct vop, crtc)
105 #define to_vop_win(x) container_of(x, struct vop_win, base)
106 
107 #define AFBC_FMT_RGB565		0x0
108 #define AFBC_FMT_U8U8U8U8	0x5
109 #define AFBC_FMT_U8U8U8		0x4
110 
111 #define AFBC_TILE_16x16		BIT(4)
112 
113 /*
114  * The coefficients of the following matrix are all fixed points.
115  * The format is S2.10 for the 3x3 part of the matrix, and S9.12 for the offsets.
116  * They are all represented in two's complement.
117  */
118 static const uint32_t bt601_yuv2rgb[] = {
119 	0x4A8, 0x0,    0x662,
120 	0x4A8, 0x1E6F, 0x1CBF,
121 	0x4A8, 0x812,  0x0,
122 	0x321168, 0x0877CF, 0x2EB127
123 };
124 
125 enum vop_pending {
126 	VOP_PENDING_FB_UNREF,
127 };
128 
129 struct vop_win {
130 	struct drm_plane base;
131 	const struct vop_win_data *data;
132 	const struct vop_win_yuv2yuv_data *yuv2yuv_data;
133 	struct vop *vop;
134 };
135 
136 struct rockchip_rgb;
137 struct vop {
138 	struct drm_crtc crtc;
139 	struct device *dev;
140 	struct drm_device *drm_dev;
141 	bool is_enabled;
142 
143 	struct completion dsp_hold_completion;
144 	unsigned int win_enabled;
145 
146 	/* protected by dev->event_lock */
147 	struct drm_pending_vblank_event *event;
148 
149 	struct drm_flip_work fb_unref_work;
150 	unsigned long pending;
151 
152 	struct completion line_flag_completion;
153 
154 	const struct vop_data *data;
155 
156 	uint32_t *regsbak;
157 	void __iomem *regs;
158 	void __iomem *lut_regs;
159 
160 	/* physical map length of vop register */
161 	uint32_t len;
162 
163 	/* one time only one process allowed to config the register */
164 	spinlock_t reg_lock;
165 	/* lock vop irq reg */
166 	spinlock_t irq_lock;
167 	/* protects crtc enable/disable */
168 	struct mutex vop_lock;
169 
170 	unsigned int irq;
171 
172 	/* vop AHP clk */
173 	struct clk *hclk;
174 	/* vop dclk */
175 	struct clk *dclk;
176 	/* vop share memory frequency */
177 	struct clk *aclk;
178 
179 	/* vop dclk reset */
180 	struct reset_control *dclk_rst;
181 
182 	/* optional internal rgb encoder */
183 	struct rockchip_rgb *rgb;
184 
185 	struct vop_win win[];
186 };
187 
188 static inline void vop_writel(struct vop *vop, uint32_t offset, uint32_t v)
189 {
190 	writel(v, vop->regs + offset);
191 	vop->regsbak[offset >> 2] = v;
192 }
193 
194 static inline uint32_t vop_readl(struct vop *vop, uint32_t offset)
195 {
196 	return readl(vop->regs + offset);
197 }
198 
199 static inline uint32_t vop_read_reg(struct vop *vop, uint32_t base,
200 				    const struct vop_reg *reg)
201 {
202 	return (vop_readl(vop, base + reg->offset) >> reg->shift) & reg->mask;
203 }
204 
205 static void vop_reg_set(struct vop *vop, const struct vop_reg *reg,
206 			uint32_t _offset, uint32_t _mask, uint32_t v,
207 			const char *reg_name)
208 {
209 	int offset, mask, shift;
210 
211 	if (!reg || !reg->mask) {
212 		DRM_DEV_DEBUG(vop->dev, "Warning: not support %s\n", reg_name);
213 		return;
214 	}
215 
216 	offset = reg->offset + _offset;
217 	mask = reg->mask & _mask;
218 	shift = reg->shift;
219 
220 	if (reg->write_mask) {
221 		v = ((v << shift) & 0xffff) | (mask << (shift + 16));
222 	} else {
223 		uint32_t cached_val = vop->regsbak[offset >> 2];
224 
225 		v = (cached_val & ~(mask << shift)) | ((v & mask) << shift);
226 		vop->regsbak[offset >> 2] = v;
227 	}
228 
229 	if (reg->relaxed)
230 		writel_relaxed(v, vop->regs + offset);
231 	else
232 		writel(v, vop->regs + offset);
233 }
234 
235 static inline uint32_t vop_get_intr_type(struct vop *vop,
236 					 const struct vop_reg *reg, int type)
237 {
238 	uint32_t i, ret = 0;
239 	uint32_t regs = vop_read_reg(vop, 0, reg);
240 
241 	for (i = 0; i < vop->data->intr->nintrs; i++) {
242 		if ((type & vop->data->intr->intrs[i]) && (regs & 1 << i))
243 			ret |= vop->data->intr->intrs[i];
244 	}
245 
246 	return ret;
247 }
248 
249 static inline void vop_cfg_done(struct vop *vop)
250 {
251 	VOP_REG_SET(vop, common, cfg_done, 1);
252 }
253 
254 static bool has_rb_swapped(uint32_t format)
255 {
256 	switch (format) {
257 	case DRM_FORMAT_XBGR8888:
258 	case DRM_FORMAT_ABGR8888:
259 	case DRM_FORMAT_BGR888:
260 	case DRM_FORMAT_BGR565:
261 		return true;
262 	default:
263 		return false;
264 	}
265 }
266 
267 static bool has_uv_swapped(uint32_t format)
268 {
269 	switch (format) {
270 	case DRM_FORMAT_NV21:
271 	case DRM_FORMAT_NV61:
272 	case DRM_FORMAT_NV42:
273 		return true;
274 	default:
275 		return false;
276 	}
277 }
278 
279 static enum vop_data_format vop_convert_format(uint32_t format)
280 {
281 	switch (format) {
282 	case DRM_FORMAT_XRGB8888:
283 	case DRM_FORMAT_ARGB8888:
284 	case DRM_FORMAT_XBGR8888:
285 	case DRM_FORMAT_ABGR8888:
286 		return VOP_FMT_ARGB8888;
287 	case DRM_FORMAT_RGB888:
288 	case DRM_FORMAT_BGR888:
289 		return VOP_FMT_RGB888;
290 	case DRM_FORMAT_RGB565:
291 	case DRM_FORMAT_BGR565:
292 		return VOP_FMT_RGB565;
293 	case DRM_FORMAT_NV12:
294 	case DRM_FORMAT_NV21:
295 		return VOP_FMT_YUV420SP;
296 	case DRM_FORMAT_NV16:
297 	case DRM_FORMAT_NV61:
298 		return VOP_FMT_YUV422SP;
299 	case DRM_FORMAT_NV24:
300 	case DRM_FORMAT_NV42:
301 		return VOP_FMT_YUV444SP;
302 	default:
303 		DRM_ERROR("unsupported format[%08x]\n", format);
304 		return -EINVAL;
305 	}
306 }
307 
308 static int vop_convert_afbc_format(uint32_t format)
309 {
310 	switch (format) {
311 	case DRM_FORMAT_XRGB8888:
312 	case DRM_FORMAT_ARGB8888:
313 	case DRM_FORMAT_XBGR8888:
314 	case DRM_FORMAT_ABGR8888:
315 		return AFBC_FMT_U8U8U8U8;
316 	case DRM_FORMAT_RGB888:
317 	case DRM_FORMAT_BGR888:
318 		return AFBC_FMT_U8U8U8;
319 	case DRM_FORMAT_RGB565:
320 	case DRM_FORMAT_BGR565:
321 		return AFBC_FMT_RGB565;
322 	/* either of the below should not be reachable */
323 	default:
324 		DRM_WARN_ONCE("unsupported AFBC format[%08x]\n", format);
325 		return -EINVAL;
326 	}
327 
328 	return -EINVAL;
329 }
330 
331 static uint16_t scl_vop_cal_scale(enum scale_mode mode, uint32_t src,
332 				  uint32_t dst, bool is_horizontal,
333 				  int vsu_mode, int *vskiplines)
334 {
335 	uint16_t val = 1 << SCL_FT_DEFAULT_FIXPOINT_SHIFT;
336 
337 	if (vskiplines)
338 		*vskiplines = 0;
339 
340 	if (is_horizontal) {
341 		if (mode == SCALE_UP)
342 			val = GET_SCL_FT_BIC(src, dst);
343 		else if (mode == SCALE_DOWN)
344 			val = GET_SCL_FT_BILI_DN(src, dst);
345 	} else {
346 		if (mode == SCALE_UP) {
347 			if (vsu_mode == SCALE_UP_BIL)
348 				val = GET_SCL_FT_BILI_UP(src, dst);
349 			else
350 				val = GET_SCL_FT_BIC(src, dst);
351 		} else if (mode == SCALE_DOWN) {
352 			if (vskiplines) {
353 				*vskiplines = scl_get_vskiplines(src, dst);
354 				val = scl_get_bili_dn_vskip(src, dst,
355 							    *vskiplines);
356 			} else {
357 				val = GET_SCL_FT_BILI_DN(src, dst);
358 			}
359 		}
360 	}
361 
362 	return val;
363 }
364 
365 static void scl_vop_cal_scl_fac(struct vop *vop, const struct vop_win_data *win,
366 			     uint32_t src_w, uint32_t src_h, uint32_t dst_w,
367 			     uint32_t dst_h, const struct drm_format_info *info)
368 {
369 	uint16_t yrgb_hor_scl_mode, yrgb_ver_scl_mode;
370 	uint16_t cbcr_hor_scl_mode = SCALE_NONE;
371 	uint16_t cbcr_ver_scl_mode = SCALE_NONE;
372 	bool is_yuv = false;
373 	uint16_t cbcr_src_w = src_w / info->hsub;
374 	uint16_t cbcr_src_h = src_h / info->vsub;
375 	uint16_t vsu_mode;
376 	uint16_t lb_mode;
377 	uint32_t val;
378 	int vskiplines;
379 
380 	if (info->is_yuv)
381 		is_yuv = true;
382 
383 	if (dst_w > 3840) {
384 		DRM_DEV_ERROR(vop->dev, "Maximum dst width (3840) exceeded\n");
385 		return;
386 	}
387 
388 	if (!win->phy->scl->ext) {
389 		VOP_SCL_SET(vop, win, scale_yrgb_x,
390 			    scl_cal_scale2(src_w, dst_w));
391 		VOP_SCL_SET(vop, win, scale_yrgb_y,
392 			    scl_cal_scale2(src_h, dst_h));
393 		if (is_yuv) {
394 			VOP_SCL_SET(vop, win, scale_cbcr_x,
395 				    scl_cal_scale2(cbcr_src_w, dst_w));
396 			VOP_SCL_SET(vop, win, scale_cbcr_y,
397 				    scl_cal_scale2(cbcr_src_h, dst_h));
398 		}
399 		return;
400 	}
401 
402 	yrgb_hor_scl_mode = scl_get_scl_mode(src_w, dst_w);
403 	yrgb_ver_scl_mode = scl_get_scl_mode(src_h, dst_h);
404 
405 	if (is_yuv) {
406 		cbcr_hor_scl_mode = scl_get_scl_mode(cbcr_src_w, dst_w);
407 		cbcr_ver_scl_mode = scl_get_scl_mode(cbcr_src_h, dst_h);
408 		if (cbcr_hor_scl_mode == SCALE_DOWN)
409 			lb_mode = scl_vop_cal_lb_mode(dst_w, true);
410 		else
411 			lb_mode = scl_vop_cal_lb_mode(cbcr_src_w, true);
412 	} else {
413 		if (yrgb_hor_scl_mode == SCALE_DOWN)
414 			lb_mode = scl_vop_cal_lb_mode(dst_w, false);
415 		else
416 			lb_mode = scl_vop_cal_lb_mode(src_w, false);
417 	}
418 
419 	VOP_SCL_SET_EXT(vop, win, lb_mode, lb_mode);
420 	if (lb_mode == LB_RGB_3840X2) {
421 		if (yrgb_ver_scl_mode != SCALE_NONE) {
422 			DRM_DEV_ERROR(vop->dev, "not allow yrgb ver scale\n");
423 			return;
424 		}
425 		if (cbcr_ver_scl_mode != SCALE_NONE) {
426 			DRM_DEV_ERROR(vop->dev, "not allow cbcr ver scale\n");
427 			return;
428 		}
429 		vsu_mode = SCALE_UP_BIL;
430 	} else if (lb_mode == LB_RGB_2560X4) {
431 		vsu_mode = SCALE_UP_BIL;
432 	} else {
433 		vsu_mode = SCALE_UP_BIC;
434 	}
435 
436 	val = scl_vop_cal_scale(yrgb_hor_scl_mode, src_w, dst_w,
437 				true, 0, NULL);
438 	VOP_SCL_SET(vop, win, scale_yrgb_x, val);
439 	val = scl_vop_cal_scale(yrgb_ver_scl_mode, src_h, dst_h,
440 				false, vsu_mode, &vskiplines);
441 	VOP_SCL_SET(vop, win, scale_yrgb_y, val);
442 
443 	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt4, vskiplines == 4);
444 	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt2, vskiplines == 2);
445 
446 	VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, yrgb_hor_scl_mode);
447 	VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, yrgb_ver_scl_mode);
448 	VOP_SCL_SET_EXT(vop, win, yrgb_hsd_mode, SCALE_DOWN_BIL);
449 	VOP_SCL_SET_EXT(vop, win, yrgb_vsd_mode, SCALE_DOWN_BIL);
450 	VOP_SCL_SET_EXT(vop, win, yrgb_vsu_mode, vsu_mode);
451 	if (is_yuv) {
452 		val = scl_vop_cal_scale(cbcr_hor_scl_mode, cbcr_src_w,
453 					dst_w, true, 0, NULL);
454 		VOP_SCL_SET(vop, win, scale_cbcr_x, val);
455 		val = scl_vop_cal_scale(cbcr_ver_scl_mode, cbcr_src_h,
456 					dst_h, false, vsu_mode, &vskiplines);
457 		VOP_SCL_SET(vop, win, scale_cbcr_y, val);
458 
459 		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt4, vskiplines == 4);
460 		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt2, vskiplines == 2);
461 		VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, cbcr_hor_scl_mode);
462 		VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, cbcr_ver_scl_mode);
463 		VOP_SCL_SET_EXT(vop, win, cbcr_hsd_mode, SCALE_DOWN_BIL);
464 		VOP_SCL_SET_EXT(vop, win, cbcr_vsd_mode, SCALE_DOWN_BIL);
465 		VOP_SCL_SET_EXT(vop, win, cbcr_vsu_mode, vsu_mode);
466 	}
467 }
468 
469 static void vop_dsp_hold_valid_irq_enable(struct vop *vop)
470 {
471 	unsigned long flags;
472 
473 	if (WARN_ON(!vop->is_enabled))
474 		return;
475 
476 	spin_lock_irqsave(&vop->irq_lock, flags);
477 
478 	VOP_INTR_SET_TYPE(vop, clear, DSP_HOLD_VALID_INTR, 1);
479 	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 1);
480 
481 	spin_unlock_irqrestore(&vop->irq_lock, flags);
482 }
483 
484 static void vop_dsp_hold_valid_irq_disable(struct vop *vop)
485 {
486 	unsigned long flags;
487 
488 	if (WARN_ON(!vop->is_enabled))
489 		return;
490 
491 	spin_lock_irqsave(&vop->irq_lock, flags);
492 
493 	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 0);
494 
495 	spin_unlock_irqrestore(&vop->irq_lock, flags);
496 }
497 
498 /*
499  * (1) each frame starts at the start of the Vsync pulse which is signaled by
500  *     the "FRAME_SYNC" interrupt.
501  * (2) the active data region of each frame ends at dsp_vact_end
502  * (3) we should program this same number (dsp_vact_end) into dsp_line_frag_num,
503  *      to get "LINE_FLAG" interrupt at the end of the active on screen data.
504  *
505  * VOP_INTR_CTRL0.dsp_line_frag_num = VOP_DSP_VACT_ST_END.dsp_vact_end
506  * Interrupts
507  * LINE_FLAG -------------------------------+
508  * FRAME_SYNC ----+                         |
509  *                |                         |
510  *                v                         v
511  *                | Vsync | Vbp |  Vactive  | Vfp |
512  *                        ^     ^           ^     ^
513  *                        |     |           |     |
514  *                        |     |           |     |
515  * dsp_vs_end ------------+     |           |     |   VOP_DSP_VTOTAL_VS_END
516  * dsp_vact_start --------------+           |     |   VOP_DSP_VACT_ST_END
517  * dsp_vact_end ----------------------------+     |   VOP_DSP_VACT_ST_END
518  * dsp_total -------------------------------------+   VOP_DSP_VTOTAL_VS_END
519  */
520 static bool vop_line_flag_irq_is_enabled(struct vop *vop)
521 {
522 	uint32_t line_flag_irq;
523 	unsigned long flags;
524 
525 	spin_lock_irqsave(&vop->irq_lock, flags);
526 
527 	line_flag_irq = VOP_INTR_GET_TYPE(vop, enable, LINE_FLAG_INTR);
528 
529 	spin_unlock_irqrestore(&vop->irq_lock, flags);
530 
531 	return !!line_flag_irq;
532 }
533 
534 static void vop_line_flag_irq_enable(struct vop *vop)
535 {
536 	unsigned long flags;
537 
538 	if (WARN_ON(!vop->is_enabled))
539 		return;
540 
541 	spin_lock_irqsave(&vop->irq_lock, flags);
542 
543 	VOP_INTR_SET_TYPE(vop, clear, LINE_FLAG_INTR, 1);
544 	VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 1);
545 
546 	spin_unlock_irqrestore(&vop->irq_lock, flags);
547 }
548 
549 static void vop_line_flag_irq_disable(struct vop *vop)
550 {
551 	unsigned long flags;
552 
553 	if (WARN_ON(!vop->is_enabled))
554 		return;
555 
556 	spin_lock_irqsave(&vop->irq_lock, flags);
557 
558 	VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 0);
559 
560 	spin_unlock_irqrestore(&vop->irq_lock, flags);
561 }
562 
563 static int vop_core_clks_enable(struct vop *vop)
564 {
565 	int ret;
566 
567 	ret = clk_enable(vop->hclk);
568 	if (ret < 0)
569 		return ret;
570 
571 	ret = clk_enable(vop->aclk);
572 	if (ret < 0)
573 		goto err_disable_hclk;
574 
575 	return 0;
576 
577 err_disable_hclk:
578 	clk_disable(vop->hclk);
579 	return ret;
580 }
581 
582 static void vop_core_clks_disable(struct vop *vop)
583 {
584 	clk_disable(vop->aclk);
585 	clk_disable(vop->hclk);
586 }
587 
588 static void vop_win_disable(struct vop *vop, const struct vop_win *vop_win)
589 {
590 	const struct vop_win_data *win = vop_win->data;
591 
592 	if (win->phy->scl && win->phy->scl->ext) {
593 		VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, SCALE_NONE);
594 		VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, SCALE_NONE);
595 		VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, SCALE_NONE);
596 		VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, SCALE_NONE);
597 	}
598 
599 	VOP_WIN_SET(vop, win, enable, 0);
600 	vop->win_enabled &= ~BIT(VOP_WIN_TO_INDEX(vop_win));
601 }
602 
603 static int vop_enable(struct drm_crtc *crtc, struct drm_crtc_state *old_state)
604 {
605 	struct vop *vop = to_vop(crtc);
606 	int ret, i;
607 
608 	ret = pm_runtime_get_sync(vop->dev);
609 	if (ret < 0) {
610 		DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
611 		return ret;
612 	}
613 
614 	ret = vop_core_clks_enable(vop);
615 	if (WARN_ON(ret < 0))
616 		goto err_put_pm_runtime;
617 
618 	ret = clk_enable(vop->dclk);
619 	if (WARN_ON(ret < 0))
620 		goto err_disable_core;
621 
622 	/*
623 	 * Slave iommu shares power, irq and clock with vop.  It was associated
624 	 * automatically with this master device via common driver code.
625 	 * Now that we have enabled the clock we attach it to the shared drm
626 	 * mapping.
627 	 */
628 	ret = rockchip_drm_dma_attach_device(vop->drm_dev, vop->dev);
629 	if (ret) {
630 		DRM_DEV_ERROR(vop->dev,
631 			      "failed to attach dma mapping, %d\n", ret);
632 		goto err_disable_dclk;
633 	}
634 
635 	spin_lock(&vop->reg_lock);
636 	for (i = 0; i < vop->len; i += 4)
637 		writel_relaxed(vop->regsbak[i / 4], vop->regs + i);
638 
639 	/*
640 	 * We need to make sure that all windows are disabled before we
641 	 * enable the crtc. Otherwise we might try to scan from a destroyed
642 	 * buffer later.
643 	 *
644 	 * In the case of enable-after-PSR, we don't need to worry about this
645 	 * case since the buffer is guaranteed to be valid and disabling the
646 	 * window will result in screen glitches on PSR exit.
647 	 */
648 	if (!old_state || !old_state->self_refresh_active) {
649 		for (i = 0; i < vop->data->win_size; i++) {
650 			struct vop_win *vop_win = &vop->win[i];
651 
652 			vop_win_disable(vop, vop_win);
653 		}
654 	}
655 
656 	if (vop->data->afbc) {
657 		struct rockchip_crtc_state *s;
658 		/*
659 		 * Disable AFBC and forget there was a vop window with AFBC
660 		 */
661 		VOP_AFBC_SET(vop, enable, 0);
662 		s = to_rockchip_crtc_state(crtc->state);
663 		s->enable_afbc = false;
664 	}
665 
666 	vop_cfg_done(vop);
667 
668 	spin_unlock(&vop->reg_lock);
669 
670 	/*
671 	 * At here, vop clock & iommu is enable, R/W vop regs would be safe.
672 	 */
673 	vop->is_enabled = true;
674 
675 	spin_lock(&vop->reg_lock);
676 
677 	VOP_REG_SET(vop, common, standby, 1);
678 
679 	spin_unlock(&vop->reg_lock);
680 
681 	drm_crtc_vblank_on(crtc);
682 
683 	return 0;
684 
685 err_disable_dclk:
686 	clk_disable(vop->dclk);
687 err_disable_core:
688 	vop_core_clks_disable(vop);
689 err_put_pm_runtime:
690 	pm_runtime_put_sync(vop->dev);
691 	return ret;
692 }
693 
694 static void rockchip_drm_set_win_enabled(struct drm_crtc *crtc, bool enabled)
695 {
696         struct vop *vop = to_vop(crtc);
697         int i;
698 
699         spin_lock(&vop->reg_lock);
700 
701         for (i = 0; i < vop->data->win_size; i++) {
702                 struct vop_win *vop_win = &vop->win[i];
703                 const struct vop_win_data *win = vop_win->data;
704 
705                 VOP_WIN_SET(vop, win, enable,
706                             enabled && (vop->win_enabled & BIT(i)));
707         }
708         vop_cfg_done(vop);
709 
710         spin_unlock(&vop->reg_lock);
711 }
712 
713 static void vop_crtc_atomic_disable(struct drm_crtc *crtc,
714 				    struct drm_atomic_state *state)
715 {
716 	struct vop *vop = to_vop(crtc);
717 
718 	WARN_ON(vop->event);
719 
720 	if (crtc->state->self_refresh_active)
721 		rockchip_drm_set_win_enabled(crtc, false);
722 
723 	mutex_lock(&vop->vop_lock);
724 
725 	drm_crtc_vblank_off(crtc);
726 
727 	if (crtc->state->self_refresh_active)
728 		goto out;
729 
730 	/*
731 	 * Vop standby will take effect at end of current frame,
732 	 * if dsp hold valid irq happen, it means standby complete.
733 	 *
734 	 * we must wait standby complete when we want to disable aclk,
735 	 * if not, memory bus maybe dead.
736 	 */
737 	reinit_completion(&vop->dsp_hold_completion);
738 	vop_dsp_hold_valid_irq_enable(vop);
739 
740 	spin_lock(&vop->reg_lock);
741 
742 	VOP_REG_SET(vop, common, standby, 1);
743 
744 	spin_unlock(&vop->reg_lock);
745 
746 	if (!wait_for_completion_timeout(&vop->dsp_hold_completion,
747 					 msecs_to_jiffies(200)))
748 		WARN(1, "%s: timed out waiting for DSP hold", crtc->name);
749 
750 	vop_dsp_hold_valid_irq_disable(vop);
751 
752 	vop->is_enabled = false;
753 
754 	/*
755 	 * vop standby complete, so iommu detach is safe.
756 	 */
757 	rockchip_drm_dma_detach_device(vop->drm_dev, vop->dev);
758 
759 	clk_disable(vop->dclk);
760 	vop_core_clks_disable(vop);
761 	pm_runtime_put(vop->dev);
762 
763 out:
764 	mutex_unlock(&vop->vop_lock);
765 
766 	if (crtc->state->event && !crtc->state->active) {
767 		spin_lock_irq(&crtc->dev->event_lock);
768 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
769 		spin_unlock_irq(&crtc->dev->event_lock);
770 
771 		crtc->state->event = NULL;
772 	}
773 }
774 
775 static void vop_plane_destroy(struct drm_plane *plane)
776 {
777 	drm_plane_cleanup(plane);
778 }
779 
780 static inline bool rockchip_afbc(u64 modifier)
781 {
782 	return modifier == ROCKCHIP_AFBC_MOD;
783 }
784 
785 static bool rockchip_mod_supported(struct drm_plane *plane,
786 				   u32 format, u64 modifier)
787 {
788 	if (modifier == DRM_FORMAT_MOD_LINEAR)
789 		return true;
790 
791 	if (!rockchip_afbc(modifier)) {
792 		DRM_DEBUG_KMS("Unsupported format modifier 0x%llx\n", modifier);
793 
794 		return false;
795 	}
796 
797 	return vop_convert_afbc_format(format) >= 0;
798 }
799 
800 static int vop_plane_atomic_check(struct drm_plane *plane,
801 			   struct drm_atomic_state *state)
802 {
803 	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
804 										 plane);
805 	struct drm_crtc *crtc = new_plane_state->crtc;
806 	struct drm_crtc_state *crtc_state;
807 	struct drm_framebuffer *fb = new_plane_state->fb;
808 	struct vop_win *vop_win = to_vop_win(plane);
809 	const struct vop_win_data *win = vop_win->data;
810 	int ret;
811 	int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
812 					DRM_PLANE_HELPER_NO_SCALING;
813 	int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
814 					DRM_PLANE_HELPER_NO_SCALING;
815 
816 	if (!crtc || WARN_ON(!fb))
817 		return 0;
818 
819 	crtc_state = drm_atomic_get_existing_crtc_state(state,
820 							crtc);
821 	if (WARN_ON(!crtc_state))
822 		return -EINVAL;
823 
824 	ret = drm_atomic_helper_check_plane_state(new_plane_state, crtc_state,
825 						  min_scale, max_scale,
826 						  true, true);
827 	if (ret)
828 		return ret;
829 
830 	if (!new_plane_state->visible)
831 		return 0;
832 
833 	ret = vop_convert_format(fb->format->format);
834 	if (ret < 0)
835 		return ret;
836 
837 	/*
838 	 * Src.x1 can be odd when do clip, but yuv plane start point
839 	 * need align with 2 pixel.
840 	 */
841 	if (fb->format->is_yuv && ((new_plane_state->src.x1 >> 16) % 2)) {
842 		DRM_ERROR("Invalid Source: Yuv format not support odd xpos\n");
843 		return -EINVAL;
844 	}
845 
846 	if (fb->format->is_yuv && new_plane_state->rotation & DRM_MODE_REFLECT_Y) {
847 		DRM_ERROR("Invalid Source: Yuv format does not support this rotation\n");
848 		return -EINVAL;
849 	}
850 
851 	if (rockchip_afbc(fb->modifier)) {
852 		struct vop *vop = to_vop(crtc);
853 
854 		if (!vop->data->afbc) {
855 			DRM_ERROR("vop does not support AFBC\n");
856 			return -EINVAL;
857 		}
858 
859 		ret = vop_convert_afbc_format(fb->format->format);
860 		if (ret < 0)
861 			return ret;
862 
863 		if (new_plane_state->src.x1 || new_plane_state->src.y1) {
864 			DRM_ERROR("AFBC does not support offset display, xpos=%d, ypos=%d, offset=%d\n",
865 				  new_plane_state->src.x1,
866 				  new_plane_state->src.y1, fb->offsets[0]);
867 			return -EINVAL;
868 		}
869 
870 		if (new_plane_state->rotation && new_plane_state->rotation != DRM_MODE_ROTATE_0) {
871 			DRM_ERROR("No rotation support in AFBC, rotation=%d\n",
872 				  new_plane_state->rotation);
873 			return -EINVAL;
874 		}
875 	}
876 
877 	return 0;
878 }
879 
880 static void vop_plane_atomic_disable(struct drm_plane *plane,
881 				     struct drm_atomic_state *state)
882 {
883 	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
884 									   plane);
885 	struct vop_win *vop_win = to_vop_win(plane);
886 	struct vop *vop = to_vop(old_state->crtc);
887 
888 	if (!old_state->crtc)
889 		return;
890 
891 	spin_lock(&vop->reg_lock);
892 
893 	vop_win_disable(vop, vop_win);
894 
895 	spin_unlock(&vop->reg_lock);
896 }
897 
898 static void vop_plane_atomic_update(struct drm_plane *plane,
899 		struct drm_atomic_state *state)
900 {
901 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
902 									   plane);
903 	struct drm_crtc *crtc = new_state->crtc;
904 	struct vop_win *vop_win = to_vop_win(plane);
905 	const struct vop_win_data *win = vop_win->data;
906 	const struct vop_win_yuv2yuv_data *win_yuv2yuv = vop_win->yuv2yuv_data;
907 	struct vop *vop = to_vop(new_state->crtc);
908 	struct drm_framebuffer *fb = new_state->fb;
909 	unsigned int actual_w, actual_h;
910 	unsigned int dsp_stx, dsp_sty;
911 	uint32_t act_info, dsp_info, dsp_st;
912 	struct drm_rect *src = &new_state->src;
913 	struct drm_rect *dest = &new_state->dst;
914 	struct drm_gem_object *obj, *uv_obj;
915 	struct rockchip_gem_object *rk_obj, *rk_uv_obj;
916 	unsigned long offset;
917 	dma_addr_t dma_addr;
918 	uint32_t val;
919 	bool rb_swap, uv_swap;
920 	int win_index = VOP_WIN_TO_INDEX(vop_win);
921 	int format;
922 	int is_yuv = fb->format->is_yuv;
923 	int i;
924 
925 	/*
926 	 * can't update plane when vop is disabled.
927 	 */
928 	if (WARN_ON(!crtc))
929 		return;
930 
931 	if (WARN_ON(!vop->is_enabled))
932 		return;
933 
934 	if (!new_state->visible) {
935 		vop_plane_atomic_disable(plane, state);
936 		return;
937 	}
938 
939 	obj = fb->obj[0];
940 	rk_obj = to_rockchip_obj(obj);
941 
942 	actual_w = drm_rect_width(src) >> 16;
943 	actual_h = drm_rect_height(src) >> 16;
944 	act_info = (actual_h - 1) << 16 | ((actual_w - 1) & 0xffff);
945 
946 	dsp_info = (drm_rect_height(dest) - 1) << 16;
947 	dsp_info |= (drm_rect_width(dest) - 1) & 0xffff;
948 
949 	dsp_stx = dest->x1 + crtc->mode.htotal - crtc->mode.hsync_start;
950 	dsp_sty = dest->y1 + crtc->mode.vtotal - crtc->mode.vsync_start;
951 	dsp_st = dsp_sty << 16 | (dsp_stx & 0xffff);
952 
953 	offset = (src->x1 >> 16) * fb->format->cpp[0];
954 	offset += (src->y1 >> 16) * fb->pitches[0];
955 	dma_addr = rk_obj->dma_addr + offset + fb->offsets[0];
956 
957 	/*
958 	 * For y-mirroring we need to move address
959 	 * to the beginning of the last line.
960 	 */
961 	if (new_state->rotation & DRM_MODE_REFLECT_Y)
962 		dma_addr += (actual_h - 1) * fb->pitches[0];
963 
964 	format = vop_convert_format(fb->format->format);
965 
966 	spin_lock(&vop->reg_lock);
967 
968 	if (rockchip_afbc(fb->modifier)) {
969 		int afbc_format = vop_convert_afbc_format(fb->format->format);
970 
971 		VOP_AFBC_SET(vop, format, afbc_format | AFBC_TILE_16x16);
972 		VOP_AFBC_SET(vop, hreg_block_split, 0);
973 		VOP_AFBC_SET(vop, win_sel, VOP_WIN_TO_INDEX(vop_win));
974 		VOP_AFBC_SET(vop, hdr_ptr, dma_addr);
975 		VOP_AFBC_SET(vop, pic_size, act_info);
976 	}
977 
978 	VOP_WIN_SET(vop, win, format, format);
979 	VOP_WIN_SET(vop, win, yrgb_vir, DIV_ROUND_UP(fb->pitches[0], 4));
980 	VOP_WIN_SET(vop, win, yrgb_mst, dma_addr);
981 	VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, y2r_en, is_yuv);
982 	VOP_WIN_SET(vop, win, y_mir_en,
983 		    (new_state->rotation & DRM_MODE_REFLECT_Y) ? 1 : 0);
984 	VOP_WIN_SET(vop, win, x_mir_en,
985 		    (new_state->rotation & DRM_MODE_REFLECT_X) ? 1 : 0);
986 
987 	if (is_yuv) {
988 		int hsub = fb->format->hsub;
989 		int vsub = fb->format->vsub;
990 		int bpp = fb->format->cpp[1];
991 
992 		uv_obj = fb->obj[1];
993 		rk_uv_obj = to_rockchip_obj(uv_obj);
994 
995 		offset = (src->x1 >> 16) * bpp / hsub;
996 		offset += (src->y1 >> 16) * fb->pitches[1] / vsub;
997 
998 		dma_addr = rk_uv_obj->dma_addr + offset + fb->offsets[1];
999 		VOP_WIN_SET(vop, win, uv_vir, DIV_ROUND_UP(fb->pitches[1], 4));
1000 		VOP_WIN_SET(vop, win, uv_mst, dma_addr);
1001 
1002 		for (i = 0; i < NUM_YUV2YUV_COEFFICIENTS; i++) {
1003 			VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop,
1004 							win_yuv2yuv,
1005 							y2r_coefficients[i],
1006 							bt601_yuv2rgb[i]);
1007 		}
1008 
1009 		uv_swap = has_uv_swapped(fb->format->format);
1010 		VOP_WIN_SET(vop, win, uv_swap, uv_swap);
1011 	}
1012 
1013 	if (win->phy->scl)
1014 		scl_vop_cal_scl_fac(vop, win, actual_w, actual_h,
1015 				    drm_rect_width(dest), drm_rect_height(dest),
1016 				    fb->format);
1017 
1018 	VOP_WIN_SET(vop, win, act_info, act_info);
1019 	VOP_WIN_SET(vop, win, dsp_info, dsp_info);
1020 	VOP_WIN_SET(vop, win, dsp_st, dsp_st);
1021 
1022 	rb_swap = has_rb_swapped(fb->format->format);
1023 	VOP_WIN_SET(vop, win, rb_swap, rb_swap);
1024 
1025 	/*
1026 	 * Blending win0 with the background color doesn't seem to work
1027 	 * correctly. We only get the background color, no matter the contents
1028 	 * of the win0 framebuffer.  However, blending pre-multiplied color
1029 	 * with the default opaque black default background color is a no-op,
1030 	 * so we can just disable blending to get the correct result.
1031 	 */
1032 	if (fb->format->has_alpha && win_index > 0) {
1033 		VOP_WIN_SET(vop, win, dst_alpha_ctl,
1034 			    DST_FACTOR_M0(ALPHA_SRC_INVERSE));
1035 		val = SRC_ALPHA_EN(1) | SRC_COLOR_M0(ALPHA_SRC_PRE_MUL) |
1036 			SRC_ALPHA_M0(ALPHA_STRAIGHT) |
1037 			SRC_BLEND_M0(ALPHA_PER_PIX) |
1038 			SRC_ALPHA_CAL_M0(ALPHA_NO_SATURATION) |
1039 			SRC_FACTOR_M0(ALPHA_ONE);
1040 		VOP_WIN_SET(vop, win, src_alpha_ctl, val);
1041 
1042 		VOP_WIN_SET(vop, win, alpha_pre_mul, ALPHA_SRC_PRE_MUL);
1043 		VOP_WIN_SET(vop, win, alpha_mode, ALPHA_PER_PIX);
1044 		VOP_WIN_SET(vop, win, alpha_en, 1);
1045 	} else {
1046 		VOP_WIN_SET(vop, win, src_alpha_ctl, SRC_ALPHA_EN(0));
1047 		VOP_WIN_SET(vop, win, alpha_en, 0);
1048 	}
1049 
1050 	VOP_WIN_SET(vop, win, enable, 1);
1051 	vop->win_enabled |= BIT(win_index);
1052 	spin_unlock(&vop->reg_lock);
1053 }
1054 
1055 static int vop_plane_atomic_async_check(struct drm_plane *plane,
1056 					struct drm_atomic_state *state)
1057 {
1058 	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1059 										 plane);
1060 	struct vop_win *vop_win = to_vop_win(plane);
1061 	const struct vop_win_data *win = vop_win->data;
1062 	int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
1063 					DRM_PLANE_HELPER_NO_SCALING;
1064 	int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
1065 					DRM_PLANE_HELPER_NO_SCALING;
1066 	struct drm_crtc_state *crtc_state;
1067 
1068 	if (plane != new_plane_state->crtc->cursor)
1069 		return -EINVAL;
1070 
1071 	if (!plane->state)
1072 		return -EINVAL;
1073 
1074 	if (!plane->state->fb)
1075 		return -EINVAL;
1076 
1077 	if (state)
1078 		crtc_state = drm_atomic_get_existing_crtc_state(state,
1079 								new_plane_state->crtc);
1080 	else /* Special case for asynchronous cursor updates. */
1081 		crtc_state = plane->crtc->state;
1082 
1083 	return drm_atomic_helper_check_plane_state(plane->state, crtc_state,
1084 						   min_scale, max_scale,
1085 						   true, true);
1086 }
1087 
1088 static void vop_plane_atomic_async_update(struct drm_plane *plane,
1089 					  struct drm_atomic_state *state)
1090 {
1091 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
1092 									   plane);
1093 	struct vop *vop = to_vop(plane->state->crtc);
1094 	struct drm_framebuffer *old_fb = plane->state->fb;
1095 
1096 	plane->state->crtc_x = new_state->crtc_x;
1097 	plane->state->crtc_y = new_state->crtc_y;
1098 	plane->state->crtc_h = new_state->crtc_h;
1099 	plane->state->crtc_w = new_state->crtc_w;
1100 	plane->state->src_x = new_state->src_x;
1101 	plane->state->src_y = new_state->src_y;
1102 	plane->state->src_h = new_state->src_h;
1103 	plane->state->src_w = new_state->src_w;
1104 	swap(plane->state->fb, new_state->fb);
1105 
1106 	if (vop->is_enabled) {
1107 		vop_plane_atomic_update(plane, state);
1108 		spin_lock(&vop->reg_lock);
1109 		vop_cfg_done(vop);
1110 		spin_unlock(&vop->reg_lock);
1111 
1112 		/*
1113 		 * A scanout can still be occurring, so we can't drop the
1114 		 * reference to the old framebuffer. To solve this we get a
1115 		 * reference to old_fb and set a worker to release it later.
1116 		 * FIXME: if we perform 500 async_update calls before the
1117 		 * vblank, then we can have 500 different framebuffers waiting
1118 		 * to be released.
1119 		 */
1120 		if (old_fb && plane->state->fb != old_fb) {
1121 			drm_framebuffer_get(old_fb);
1122 			WARN_ON(drm_crtc_vblank_get(plane->state->crtc) != 0);
1123 			drm_flip_work_queue(&vop->fb_unref_work, old_fb);
1124 			set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1125 		}
1126 	}
1127 }
1128 
1129 static const struct drm_plane_helper_funcs plane_helper_funcs = {
1130 	.atomic_check = vop_plane_atomic_check,
1131 	.atomic_update = vop_plane_atomic_update,
1132 	.atomic_disable = vop_plane_atomic_disable,
1133 	.atomic_async_check = vop_plane_atomic_async_check,
1134 	.atomic_async_update = vop_plane_atomic_async_update,
1135 };
1136 
1137 static const struct drm_plane_funcs vop_plane_funcs = {
1138 	.update_plane	= drm_atomic_helper_update_plane,
1139 	.disable_plane	= drm_atomic_helper_disable_plane,
1140 	.destroy = vop_plane_destroy,
1141 	.reset = drm_atomic_helper_plane_reset,
1142 	.atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state,
1143 	.atomic_destroy_state = drm_atomic_helper_plane_destroy_state,
1144 	.format_mod_supported = rockchip_mod_supported,
1145 };
1146 
1147 static int vop_crtc_enable_vblank(struct drm_crtc *crtc)
1148 {
1149 	struct vop *vop = to_vop(crtc);
1150 	unsigned long flags;
1151 
1152 	if (WARN_ON(!vop->is_enabled))
1153 		return -EPERM;
1154 
1155 	spin_lock_irqsave(&vop->irq_lock, flags);
1156 
1157 	VOP_INTR_SET_TYPE(vop, clear, FS_INTR, 1);
1158 	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 1);
1159 
1160 	spin_unlock_irqrestore(&vop->irq_lock, flags);
1161 
1162 	return 0;
1163 }
1164 
1165 static void vop_crtc_disable_vblank(struct drm_crtc *crtc)
1166 {
1167 	struct vop *vop = to_vop(crtc);
1168 	unsigned long flags;
1169 
1170 	if (WARN_ON(!vop->is_enabled))
1171 		return;
1172 
1173 	spin_lock_irqsave(&vop->irq_lock, flags);
1174 
1175 	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 0);
1176 
1177 	spin_unlock_irqrestore(&vop->irq_lock, flags);
1178 }
1179 
1180 static bool vop_crtc_mode_fixup(struct drm_crtc *crtc,
1181 				const struct drm_display_mode *mode,
1182 				struct drm_display_mode *adjusted_mode)
1183 {
1184 	struct vop *vop = to_vop(crtc);
1185 	unsigned long rate;
1186 
1187 	/*
1188 	 * Clock craziness.
1189 	 *
1190 	 * Key points:
1191 	 *
1192 	 * - DRM works in in kHz.
1193 	 * - Clock framework works in Hz.
1194 	 * - Rockchip's clock driver picks the clock rate that is the
1195 	 *   same _OR LOWER_ than the one requested.
1196 	 *
1197 	 * Action plan:
1198 	 *
1199 	 * 1. Try to set the exact rate first, and confirm the clock framework
1200 	 *    can provide it.
1201 	 *
1202 	 * 2. If the clock framework cannot provide the exact rate, we should
1203 	 *    add 999 Hz to the requested rate.  That way if the clock we need
1204 	 *    is 60000001 Hz (~60 MHz) and DRM tells us to make 60000 kHz then
1205 	 *    the clock framework will actually give us the right clock.
1206 	 *
1207 	 * 3. Get the clock framework to round the rate for us to tell us
1208 	 *    what it will actually make.
1209 	 *
1210 	 * 4. Store the rounded up rate so that we don't need to worry about
1211 	 *    this in the actual clk_set_rate().
1212 	 */
1213 	rate = clk_round_rate(vop->dclk, adjusted_mode->clock * 1000);
1214 	if (rate / 1000 != adjusted_mode->clock)
1215 		rate = clk_round_rate(vop->dclk,
1216 				      adjusted_mode->clock * 1000 + 999);
1217 	adjusted_mode->clock = DIV_ROUND_UP(rate, 1000);
1218 
1219 	return true;
1220 }
1221 
1222 static bool vop_dsp_lut_is_enabled(struct vop *vop)
1223 {
1224 	return vop_read_reg(vop, 0, &vop->data->common->dsp_lut_en);
1225 }
1226 
1227 static void vop_crtc_write_gamma_lut(struct vop *vop, struct drm_crtc *crtc)
1228 {
1229 	struct drm_color_lut *lut = crtc->state->gamma_lut->data;
1230 	unsigned int i;
1231 
1232 	for (i = 0; i < crtc->gamma_size; i++) {
1233 		u32 word;
1234 
1235 		word = (drm_color_lut_extract(lut[i].red, 10) << 20) |
1236 		       (drm_color_lut_extract(lut[i].green, 10) << 10) |
1237 			drm_color_lut_extract(lut[i].blue, 10);
1238 		writel(word, vop->lut_regs + i * 4);
1239 	}
1240 }
1241 
1242 static void vop_crtc_gamma_set(struct vop *vop, struct drm_crtc *crtc,
1243 			       struct drm_crtc_state *old_state)
1244 {
1245 	struct drm_crtc_state *state = crtc->state;
1246 	unsigned int idle;
1247 	int ret;
1248 
1249 	if (!vop->lut_regs)
1250 		return;
1251 	/*
1252 	 * To disable gamma (gamma_lut is null) or to write
1253 	 * an update to the LUT, clear dsp_lut_en.
1254 	 */
1255 	spin_lock(&vop->reg_lock);
1256 	VOP_REG_SET(vop, common, dsp_lut_en, 0);
1257 	vop_cfg_done(vop);
1258 	spin_unlock(&vop->reg_lock);
1259 
1260 	/*
1261 	 * In order to write the LUT to the internal memory,
1262 	 * we need to first make sure the dsp_lut_en bit is cleared.
1263 	 */
1264 	ret = readx_poll_timeout(vop_dsp_lut_is_enabled, vop,
1265 				 idle, !idle, 5, 30 * 1000);
1266 	if (ret) {
1267 		DRM_DEV_ERROR(vop->dev, "display LUT RAM enable timeout!\n");
1268 		return;
1269 	}
1270 
1271 	if (!state->gamma_lut)
1272 		return;
1273 
1274 	spin_lock(&vop->reg_lock);
1275 	vop_crtc_write_gamma_lut(vop, crtc);
1276 	VOP_REG_SET(vop, common, dsp_lut_en, 1);
1277 	vop_cfg_done(vop);
1278 	spin_unlock(&vop->reg_lock);
1279 }
1280 
1281 static void vop_crtc_atomic_begin(struct drm_crtc *crtc,
1282 				  struct drm_atomic_state *state)
1283 {
1284 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1285 									  crtc);
1286 	struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1287 									      crtc);
1288 	struct vop *vop = to_vop(crtc);
1289 
1290 	/*
1291 	 * Only update GAMMA if the 'active' flag is not changed,
1292 	 * otherwise it's updated by .atomic_enable.
1293 	 */
1294 	if (crtc_state->color_mgmt_changed &&
1295 	    !crtc_state->active_changed)
1296 		vop_crtc_gamma_set(vop, crtc, old_crtc_state);
1297 }
1298 
1299 static void vop_crtc_atomic_enable(struct drm_crtc *crtc,
1300 				   struct drm_atomic_state *state)
1301 {
1302 	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
1303 									 crtc);
1304 	struct vop *vop = to_vop(crtc);
1305 	const struct vop_data *vop_data = vop->data;
1306 	struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc->state);
1307 	struct drm_display_mode *adjusted_mode = &crtc->state->adjusted_mode;
1308 	u16 hsync_len = adjusted_mode->hsync_end - adjusted_mode->hsync_start;
1309 	u16 hdisplay = adjusted_mode->hdisplay;
1310 	u16 htotal = adjusted_mode->htotal;
1311 	u16 hact_st = adjusted_mode->htotal - adjusted_mode->hsync_start;
1312 	u16 hact_end = hact_st + hdisplay;
1313 	u16 vdisplay = adjusted_mode->vdisplay;
1314 	u16 vtotal = adjusted_mode->vtotal;
1315 	u16 vsync_len = adjusted_mode->vsync_end - adjusted_mode->vsync_start;
1316 	u16 vact_st = adjusted_mode->vtotal - adjusted_mode->vsync_start;
1317 	u16 vact_end = vact_st + vdisplay;
1318 	uint32_t pin_pol, val;
1319 	int dither_bpc = s->output_bpc ? s->output_bpc : 10;
1320 	int ret;
1321 
1322 	if (old_state && old_state->self_refresh_active) {
1323 		drm_crtc_vblank_on(crtc);
1324 		rockchip_drm_set_win_enabled(crtc, true);
1325 		return;
1326 	}
1327 
1328 	/*
1329 	 * If we have a GAMMA LUT in the state, then let's make sure
1330 	 * it's updated. We might be coming out of suspend,
1331 	 * which means the LUT internal memory needs to be re-written.
1332 	 */
1333 	if (crtc->state->gamma_lut)
1334 		vop_crtc_gamma_set(vop, crtc, old_state);
1335 
1336 	mutex_lock(&vop->vop_lock);
1337 
1338 	WARN_ON(vop->event);
1339 
1340 	ret = vop_enable(crtc, old_state);
1341 	if (ret) {
1342 		mutex_unlock(&vop->vop_lock);
1343 		DRM_DEV_ERROR(vop->dev, "Failed to enable vop (%d)\n", ret);
1344 		return;
1345 	}
1346 	pin_pol = (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) ?
1347 		   BIT(HSYNC_POSITIVE) : 0;
1348 	pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) ?
1349 		   BIT(VSYNC_POSITIVE) : 0;
1350 	VOP_REG_SET(vop, output, pin_pol, pin_pol);
1351 	VOP_REG_SET(vop, output, mipi_dual_channel_en, 0);
1352 
1353 	switch (s->output_type) {
1354 	case DRM_MODE_CONNECTOR_LVDS:
1355 		VOP_REG_SET(vop, output, rgb_dclk_pol, 1);
1356 		VOP_REG_SET(vop, output, rgb_pin_pol, pin_pol);
1357 		VOP_REG_SET(vop, output, rgb_en, 1);
1358 		break;
1359 	case DRM_MODE_CONNECTOR_eDP:
1360 		VOP_REG_SET(vop, output, edp_dclk_pol, 1);
1361 		VOP_REG_SET(vop, output, edp_pin_pol, pin_pol);
1362 		VOP_REG_SET(vop, output, edp_en, 1);
1363 		break;
1364 	case DRM_MODE_CONNECTOR_HDMIA:
1365 		VOP_REG_SET(vop, output, hdmi_dclk_pol, 1);
1366 		VOP_REG_SET(vop, output, hdmi_pin_pol, pin_pol);
1367 		VOP_REG_SET(vop, output, hdmi_en, 1);
1368 		break;
1369 	case DRM_MODE_CONNECTOR_DSI:
1370 		VOP_REG_SET(vop, output, mipi_dclk_pol, 1);
1371 		VOP_REG_SET(vop, output, mipi_pin_pol, pin_pol);
1372 		VOP_REG_SET(vop, output, mipi_en, 1);
1373 		VOP_REG_SET(vop, output, mipi_dual_channel_en,
1374 			    !!(s->output_flags & ROCKCHIP_OUTPUT_DSI_DUAL));
1375 		break;
1376 	case DRM_MODE_CONNECTOR_DisplayPort:
1377 		VOP_REG_SET(vop, output, dp_dclk_pol, 0);
1378 		VOP_REG_SET(vop, output, dp_pin_pol, pin_pol);
1379 		VOP_REG_SET(vop, output, dp_en, 1);
1380 		break;
1381 	default:
1382 		DRM_DEV_ERROR(vop->dev, "unsupported connector_type [%d]\n",
1383 			      s->output_type);
1384 	}
1385 
1386 	/*
1387 	 * if vop is not support RGB10 output, need force RGB10 to RGB888.
1388 	 */
1389 	if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA &&
1390 	    !(vop_data->feature & VOP_FEATURE_OUTPUT_RGB10))
1391 		s->output_mode = ROCKCHIP_OUT_MODE_P888;
1392 
1393 	if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA && dither_bpc <= 8)
1394 		VOP_REG_SET(vop, common, pre_dither_down, 1);
1395 	else
1396 		VOP_REG_SET(vop, common, pre_dither_down, 0);
1397 
1398 	if (dither_bpc == 6) {
1399 		VOP_REG_SET(vop, common, dither_down_sel, DITHER_DOWN_ALLEGRO);
1400 		VOP_REG_SET(vop, common, dither_down_mode, RGB888_TO_RGB666);
1401 		VOP_REG_SET(vop, common, dither_down_en, 1);
1402 	} else {
1403 		VOP_REG_SET(vop, common, dither_down_en, 0);
1404 	}
1405 
1406 	VOP_REG_SET(vop, common, out_mode, s->output_mode);
1407 
1408 	VOP_REG_SET(vop, modeset, htotal_pw, (htotal << 16) | hsync_len);
1409 	val = hact_st << 16;
1410 	val |= hact_end;
1411 	VOP_REG_SET(vop, modeset, hact_st_end, val);
1412 	VOP_REG_SET(vop, modeset, hpost_st_end, val);
1413 
1414 	VOP_REG_SET(vop, modeset, vtotal_pw, (vtotal << 16) | vsync_len);
1415 	val = vact_st << 16;
1416 	val |= vact_end;
1417 	VOP_REG_SET(vop, modeset, vact_st_end, val);
1418 	VOP_REG_SET(vop, modeset, vpost_st_end, val);
1419 
1420 	VOP_REG_SET(vop, intr, line_flag_num[0], vact_end);
1421 
1422 	clk_set_rate(vop->dclk, adjusted_mode->clock * 1000);
1423 
1424 	VOP_REG_SET(vop, common, standby, 0);
1425 	mutex_unlock(&vop->vop_lock);
1426 }
1427 
1428 static bool vop_fs_irq_is_pending(struct vop *vop)
1429 {
1430 	return VOP_INTR_GET_TYPE(vop, status, FS_INTR);
1431 }
1432 
1433 static void vop_wait_for_irq_handler(struct vop *vop)
1434 {
1435 	bool pending;
1436 	int ret;
1437 
1438 	/*
1439 	 * Spin until frame start interrupt status bit goes low, which means
1440 	 * that interrupt handler was invoked and cleared it. The timeout of
1441 	 * 10 msecs is really too long, but it is just a safety measure if
1442 	 * something goes really wrong. The wait will only happen in the very
1443 	 * unlikely case of a vblank happening exactly at the same time and
1444 	 * shouldn't exceed microseconds range.
1445 	 */
1446 	ret = readx_poll_timeout_atomic(vop_fs_irq_is_pending, vop, pending,
1447 					!pending, 0, 10 * 1000);
1448 	if (ret)
1449 		DRM_DEV_ERROR(vop->dev, "VOP vblank IRQ stuck for 10 ms\n");
1450 
1451 	synchronize_irq(vop->irq);
1452 }
1453 
1454 static int vop_crtc_atomic_check(struct drm_crtc *crtc,
1455 				 struct drm_atomic_state *state)
1456 {
1457 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1458 									  crtc);
1459 	struct vop *vop = to_vop(crtc);
1460 	struct drm_plane *plane;
1461 	struct drm_plane_state *plane_state;
1462 	struct rockchip_crtc_state *s;
1463 	int afbc_planes = 0;
1464 
1465 	if (vop->lut_regs && crtc_state->color_mgmt_changed &&
1466 	    crtc_state->gamma_lut) {
1467 		unsigned int len;
1468 
1469 		len = drm_color_lut_size(crtc_state->gamma_lut);
1470 		if (len != crtc->gamma_size) {
1471 			DRM_DEBUG_KMS("Invalid LUT size; got %d, expected %d\n",
1472 				      len, crtc->gamma_size);
1473 			return -EINVAL;
1474 		}
1475 	}
1476 
1477 	drm_atomic_crtc_state_for_each_plane(plane, crtc_state) {
1478 		plane_state =
1479 			drm_atomic_get_plane_state(crtc_state->state, plane);
1480 		if (IS_ERR(plane_state)) {
1481 			DRM_DEBUG_KMS("Cannot get plane state for plane %s\n",
1482 				      plane->name);
1483 			return PTR_ERR(plane_state);
1484 		}
1485 
1486 		if (drm_is_afbc(plane_state->fb->modifier))
1487 			++afbc_planes;
1488 	}
1489 
1490 	if (afbc_planes > 1) {
1491 		DRM_DEBUG_KMS("Invalid number of AFBC planes; got %d, expected at most 1\n", afbc_planes);
1492 		return -EINVAL;
1493 	}
1494 
1495 	s = to_rockchip_crtc_state(crtc_state);
1496 	s->enable_afbc = afbc_planes > 0;
1497 
1498 	return 0;
1499 }
1500 
1501 static void vop_crtc_atomic_flush(struct drm_crtc *crtc,
1502 				  struct drm_atomic_state *state)
1503 {
1504 	struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1505 									      crtc);
1506 	struct drm_atomic_state *old_state = old_crtc_state->state;
1507 	struct drm_plane_state *old_plane_state, *new_plane_state;
1508 	struct vop *vop = to_vop(crtc);
1509 	struct drm_plane *plane;
1510 	struct rockchip_crtc_state *s;
1511 	int i;
1512 
1513 	if (WARN_ON(!vop->is_enabled))
1514 		return;
1515 
1516 	spin_lock(&vop->reg_lock);
1517 
1518 	/* Enable AFBC if there is some AFBC window, disable otherwise. */
1519 	s = to_rockchip_crtc_state(crtc->state);
1520 	VOP_AFBC_SET(vop, enable, s->enable_afbc);
1521 	vop_cfg_done(vop);
1522 
1523 	spin_unlock(&vop->reg_lock);
1524 
1525 	/*
1526 	 * There is a (rather unlikely) possiblity that a vblank interrupt
1527 	 * fired before we set the cfg_done bit. To avoid spuriously
1528 	 * signalling flip completion we need to wait for it to finish.
1529 	 */
1530 	vop_wait_for_irq_handler(vop);
1531 
1532 	spin_lock_irq(&crtc->dev->event_lock);
1533 	if (crtc->state->event) {
1534 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1535 		WARN_ON(vop->event);
1536 
1537 		vop->event = crtc->state->event;
1538 		crtc->state->event = NULL;
1539 	}
1540 	spin_unlock_irq(&crtc->dev->event_lock);
1541 
1542 	for_each_oldnew_plane_in_state(old_state, plane, old_plane_state,
1543 				       new_plane_state, i) {
1544 		if (!old_plane_state->fb)
1545 			continue;
1546 
1547 		if (old_plane_state->fb == new_plane_state->fb)
1548 			continue;
1549 
1550 		drm_framebuffer_get(old_plane_state->fb);
1551 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1552 		drm_flip_work_queue(&vop->fb_unref_work, old_plane_state->fb);
1553 		set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1554 	}
1555 }
1556 
1557 static const struct drm_crtc_helper_funcs vop_crtc_helper_funcs = {
1558 	.mode_fixup = vop_crtc_mode_fixup,
1559 	.atomic_check = vop_crtc_atomic_check,
1560 	.atomic_begin = vop_crtc_atomic_begin,
1561 	.atomic_flush = vop_crtc_atomic_flush,
1562 	.atomic_enable = vop_crtc_atomic_enable,
1563 	.atomic_disable = vop_crtc_atomic_disable,
1564 };
1565 
1566 static void vop_crtc_destroy(struct drm_crtc *crtc)
1567 {
1568 	drm_crtc_cleanup(crtc);
1569 }
1570 
1571 static struct drm_crtc_state *vop_crtc_duplicate_state(struct drm_crtc *crtc)
1572 {
1573 	struct rockchip_crtc_state *rockchip_state;
1574 
1575 	if (WARN_ON(!crtc->state))
1576 		return NULL;
1577 
1578 	rockchip_state = kzalloc(sizeof(*rockchip_state), GFP_KERNEL);
1579 	if (!rockchip_state)
1580 		return NULL;
1581 
1582 	__drm_atomic_helper_crtc_duplicate_state(crtc, &rockchip_state->base);
1583 	return &rockchip_state->base;
1584 }
1585 
1586 static void vop_crtc_destroy_state(struct drm_crtc *crtc,
1587 				   struct drm_crtc_state *state)
1588 {
1589 	struct rockchip_crtc_state *s = to_rockchip_crtc_state(state);
1590 
1591 	__drm_atomic_helper_crtc_destroy_state(&s->base);
1592 	kfree(s);
1593 }
1594 
1595 static void vop_crtc_reset(struct drm_crtc *crtc)
1596 {
1597 	struct rockchip_crtc_state *crtc_state =
1598 		kzalloc(sizeof(*crtc_state), GFP_KERNEL);
1599 
1600 	if (crtc->state)
1601 		vop_crtc_destroy_state(crtc, crtc->state);
1602 
1603 	__drm_atomic_helper_crtc_reset(crtc, &crtc_state->base);
1604 }
1605 
1606 #ifdef CONFIG_DRM_ANALOGIX_DP
1607 static struct drm_connector *vop_get_edp_connector(struct vop *vop)
1608 {
1609 	struct drm_connector *connector;
1610 	struct drm_connector_list_iter conn_iter;
1611 
1612 	drm_connector_list_iter_begin(vop->drm_dev, &conn_iter);
1613 	drm_for_each_connector_iter(connector, &conn_iter) {
1614 		if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) {
1615 			drm_connector_list_iter_end(&conn_iter);
1616 			return connector;
1617 		}
1618 	}
1619 	drm_connector_list_iter_end(&conn_iter);
1620 
1621 	return NULL;
1622 }
1623 
1624 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1625 				   const char *source_name)
1626 {
1627 	struct vop *vop = to_vop(crtc);
1628 	struct drm_connector *connector;
1629 	int ret;
1630 
1631 	connector = vop_get_edp_connector(vop);
1632 	if (!connector)
1633 		return -EINVAL;
1634 
1635 	if (source_name && strcmp(source_name, "auto") == 0)
1636 		ret = analogix_dp_start_crc(connector);
1637 	else if (!source_name)
1638 		ret = analogix_dp_stop_crc(connector);
1639 	else
1640 		ret = -EINVAL;
1641 
1642 	return ret;
1643 }
1644 
1645 static int
1646 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1647 			   size_t *values_cnt)
1648 {
1649 	if (source_name && strcmp(source_name, "auto") != 0)
1650 		return -EINVAL;
1651 
1652 	*values_cnt = 3;
1653 	return 0;
1654 }
1655 
1656 #else
1657 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1658 				   const char *source_name)
1659 {
1660 	return -ENODEV;
1661 }
1662 
1663 static int
1664 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1665 			   size_t *values_cnt)
1666 {
1667 	return -ENODEV;
1668 }
1669 #endif
1670 
1671 static const struct drm_crtc_funcs vop_crtc_funcs = {
1672 	.set_config = drm_atomic_helper_set_config,
1673 	.page_flip = drm_atomic_helper_page_flip,
1674 	.destroy = vop_crtc_destroy,
1675 	.reset = vop_crtc_reset,
1676 	.atomic_duplicate_state = vop_crtc_duplicate_state,
1677 	.atomic_destroy_state = vop_crtc_destroy_state,
1678 	.enable_vblank = vop_crtc_enable_vblank,
1679 	.disable_vblank = vop_crtc_disable_vblank,
1680 	.set_crc_source = vop_crtc_set_crc_source,
1681 	.verify_crc_source = vop_crtc_verify_crc_source,
1682 };
1683 
1684 static void vop_fb_unref_worker(struct drm_flip_work *work, void *val)
1685 {
1686 	struct vop *vop = container_of(work, struct vop, fb_unref_work);
1687 	struct drm_framebuffer *fb = val;
1688 
1689 	drm_crtc_vblank_put(&vop->crtc);
1690 	drm_framebuffer_put(fb);
1691 }
1692 
1693 static void vop_handle_vblank(struct vop *vop)
1694 {
1695 	struct drm_device *drm = vop->drm_dev;
1696 	struct drm_crtc *crtc = &vop->crtc;
1697 
1698 	spin_lock(&drm->event_lock);
1699 	if (vop->event) {
1700 		drm_crtc_send_vblank_event(crtc, vop->event);
1701 		drm_crtc_vblank_put(crtc);
1702 		vop->event = NULL;
1703 	}
1704 	spin_unlock(&drm->event_lock);
1705 
1706 	if (test_and_clear_bit(VOP_PENDING_FB_UNREF, &vop->pending))
1707 		drm_flip_work_commit(&vop->fb_unref_work, system_unbound_wq);
1708 }
1709 
1710 static irqreturn_t vop_isr(int irq, void *data)
1711 {
1712 	struct vop *vop = data;
1713 	struct drm_crtc *crtc = &vop->crtc;
1714 	uint32_t active_irqs;
1715 	int ret = IRQ_NONE;
1716 
1717 	/*
1718 	 * The irq is shared with the iommu. If the runtime-pm state of the
1719 	 * vop-device is disabled the irq has to be targeted at the iommu.
1720 	 */
1721 	if (!pm_runtime_get_if_in_use(vop->dev))
1722 		return IRQ_NONE;
1723 
1724 	if (vop_core_clks_enable(vop)) {
1725 		DRM_DEV_ERROR_RATELIMITED(vop->dev, "couldn't enable clocks\n");
1726 		goto out;
1727 	}
1728 
1729 	/*
1730 	 * interrupt register has interrupt status, enable and clear bits, we
1731 	 * must hold irq_lock to avoid a race with enable/disable_vblank().
1732 	*/
1733 	spin_lock(&vop->irq_lock);
1734 
1735 	active_irqs = VOP_INTR_GET_TYPE(vop, status, INTR_MASK);
1736 	/* Clear all active interrupt sources */
1737 	if (active_irqs)
1738 		VOP_INTR_SET_TYPE(vop, clear, active_irqs, 1);
1739 
1740 	spin_unlock(&vop->irq_lock);
1741 
1742 	/* This is expected for vop iommu irqs, since the irq is shared */
1743 	if (!active_irqs)
1744 		goto out_disable;
1745 
1746 	if (active_irqs & DSP_HOLD_VALID_INTR) {
1747 		complete(&vop->dsp_hold_completion);
1748 		active_irqs &= ~DSP_HOLD_VALID_INTR;
1749 		ret = IRQ_HANDLED;
1750 	}
1751 
1752 	if (active_irqs & LINE_FLAG_INTR) {
1753 		complete(&vop->line_flag_completion);
1754 		active_irqs &= ~LINE_FLAG_INTR;
1755 		ret = IRQ_HANDLED;
1756 	}
1757 
1758 	if (active_irqs & FS_INTR) {
1759 		drm_crtc_handle_vblank(crtc);
1760 		vop_handle_vblank(vop);
1761 		active_irqs &= ~FS_INTR;
1762 		ret = IRQ_HANDLED;
1763 	}
1764 
1765 	/* Unhandled irqs are spurious. */
1766 	if (active_irqs)
1767 		DRM_DEV_ERROR(vop->dev, "Unknown VOP IRQs: %#02x\n",
1768 			      active_irqs);
1769 
1770 out_disable:
1771 	vop_core_clks_disable(vop);
1772 out:
1773 	pm_runtime_put(vop->dev);
1774 	return ret;
1775 }
1776 
1777 static void vop_plane_add_properties(struct drm_plane *plane,
1778 				     const struct vop_win_data *win_data)
1779 {
1780 	unsigned int flags = 0;
1781 
1782 	flags |= VOP_WIN_HAS_REG(win_data, x_mir_en) ? DRM_MODE_REFLECT_X : 0;
1783 	flags |= VOP_WIN_HAS_REG(win_data, y_mir_en) ? DRM_MODE_REFLECT_Y : 0;
1784 	if (flags)
1785 		drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
1786 						   DRM_MODE_ROTATE_0 | flags);
1787 }
1788 
1789 static int vop_create_crtc(struct vop *vop)
1790 {
1791 	const struct vop_data *vop_data = vop->data;
1792 	struct device *dev = vop->dev;
1793 	struct drm_device *drm_dev = vop->drm_dev;
1794 	struct drm_plane *primary = NULL, *cursor = NULL, *plane, *tmp;
1795 	struct drm_crtc *crtc = &vop->crtc;
1796 	struct device_node *port;
1797 	int ret;
1798 	int i;
1799 
1800 	/*
1801 	 * Create drm_plane for primary and cursor planes first, since we need
1802 	 * to pass them to drm_crtc_init_with_planes, which sets the
1803 	 * "possible_crtcs" to the newly initialized crtc.
1804 	 */
1805 	for (i = 0; i < vop_data->win_size; i++) {
1806 		struct vop_win *vop_win = &vop->win[i];
1807 		const struct vop_win_data *win_data = vop_win->data;
1808 
1809 		if (win_data->type != DRM_PLANE_TYPE_PRIMARY &&
1810 		    win_data->type != DRM_PLANE_TYPE_CURSOR)
1811 			continue;
1812 
1813 		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1814 					       0, &vop_plane_funcs,
1815 					       win_data->phy->data_formats,
1816 					       win_data->phy->nformats,
1817 					       win_data->phy->format_modifiers,
1818 					       win_data->type, NULL);
1819 		if (ret) {
1820 			DRM_DEV_ERROR(vop->dev, "failed to init plane %d\n",
1821 				      ret);
1822 			goto err_cleanup_planes;
1823 		}
1824 
1825 		plane = &vop_win->base;
1826 		drm_plane_helper_add(plane, &plane_helper_funcs);
1827 		vop_plane_add_properties(plane, win_data);
1828 		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
1829 			primary = plane;
1830 		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
1831 			cursor = plane;
1832 	}
1833 
1834 	ret = drm_crtc_init_with_planes(drm_dev, crtc, primary, cursor,
1835 					&vop_crtc_funcs, NULL);
1836 	if (ret)
1837 		goto err_cleanup_planes;
1838 
1839 	drm_crtc_helper_add(crtc, &vop_crtc_helper_funcs);
1840 	if (vop->lut_regs) {
1841 		drm_mode_crtc_set_gamma_size(crtc, vop_data->lut_size);
1842 		drm_crtc_enable_color_mgmt(crtc, 0, false, vop_data->lut_size);
1843 	}
1844 
1845 	/*
1846 	 * Create drm_planes for overlay windows with possible_crtcs restricted
1847 	 * to the newly created crtc.
1848 	 */
1849 	for (i = 0; i < vop_data->win_size; i++) {
1850 		struct vop_win *vop_win = &vop->win[i];
1851 		const struct vop_win_data *win_data = vop_win->data;
1852 		unsigned long possible_crtcs = drm_crtc_mask(crtc);
1853 
1854 		if (win_data->type != DRM_PLANE_TYPE_OVERLAY)
1855 			continue;
1856 
1857 		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1858 					       possible_crtcs,
1859 					       &vop_plane_funcs,
1860 					       win_data->phy->data_formats,
1861 					       win_data->phy->nformats,
1862 					       win_data->phy->format_modifiers,
1863 					       win_data->type, NULL);
1864 		if (ret) {
1865 			DRM_DEV_ERROR(vop->dev, "failed to init overlay %d\n",
1866 				      ret);
1867 			goto err_cleanup_crtc;
1868 		}
1869 		drm_plane_helper_add(&vop_win->base, &plane_helper_funcs);
1870 		vop_plane_add_properties(&vop_win->base, win_data);
1871 	}
1872 
1873 	port = of_get_child_by_name(dev->of_node, "port");
1874 	if (!port) {
1875 		DRM_DEV_ERROR(vop->dev, "no port node found in %pOF\n",
1876 			      dev->of_node);
1877 		ret = -ENOENT;
1878 		goto err_cleanup_crtc;
1879 	}
1880 
1881 	drm_flip_work_init(&vop->fb_unref_work, "fb_unref",
1882 			   vop_fb_unref_worker);
1883 
1884 	init_completion(&vop->dsp_hold_completion);
1885 	init_completion(&vop->line_flag_completion);
1886 	crtc->port = port;
1887 
1888 	ret = drm_self_refresh_helper_init(crtc);
1889 	if (ret)
1890 		DRM_DEV_DEBUG_KMS(vop->dev,
1891 			"Failed to init %s with SR helpers %d, ignoring\n",
1892 			crtc->name, ret);
1893 
1894 	return 0;
1895 
1896 err_cleanup_crtc:
1897 	drm_crtc_cleanup(crtc);
1898 err_cleanup_planes:
1899 	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1900 				 head)
1901 		drm_plane_cleanup(plane);
1902 	return ret;
1903 }
1904 
1905 static void vop_destroy_crtc(struct vop *vop)
1906 {
1907 	struct drm_crtc *crtc = &vop->crtc;
1908 	struct drm_device *drm_dev = vop->drm_dev;
1909 	struct drm_plane *plane, *tmp;
1910 
1911 	drm_self_refresh_helper_cleanup(crtc);
1912 
1913 	of_node_put(crtc->port);
1914 
1915 	/*
1916 	 * We need to cleanup the planes now.  Why?
1917 	 *
1918 	 * The planes are "&vop->win[i].base".  That means the memory is
1919 	 * all part of the big "struct vop" chunk of memory.  That memory
1920 	 * was devm allocated and associated with this component.  We need to
1921 	 * free it ourselves before vop_unbind() finishes.
1922 	 */
1923 	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1924 				 head)
1925 		vop_plane_destroy(plane);
1926 
1927 	/*
1928 	 * Destroy CRTC after vop_plane_destroy() since vop_disable_plane()
1929 	 * references the CRTC.
1930 	 */
1931 	drm_crtc_cleanup(crtc);
1932 	drm_flip_work_cleanup(&vop->fb_unref_work);
1933 }
1934 
1935 static int vop_initial(struct vop *vop)
1936 {
1937 	struct reset_control *ahb_rst;
1938 	int i, ret;
1939 
1940 	vop->hclk = devm_clk_get(vop->dev, "hclk_vop");
1941 	if (IS_ERR(vop->hclk)) {
1942 		DRM_DEV_ERROR(vop->dev, "failed to get hclk source\n");
1943 		return PTR_ERR(vop->hclk);
1944 	}
1945 	vop->aclk = devm_clk_get(vop->dev, "aclk_vop");
1946 	if (IS_ERR(vop->aclk)) {
1947 		DRM_DEV_ERROR(vop->dev, "failed to get aclk source\n");
1948 		return PTR_ERR(vop->aclk);
1949 	}
1950 	vop->dclk = devm_clk_get(vop->dev, "dclk_vop");
1951 	if (IS_ERR(vop->dclk)) {
1952 		DRM_DEV_ERROR(vop->dev, "failed to get dclk source\n");
1953 		return PTR_ERR(vop->dclk);
1954 	}
1955 
1956 	ret = pm_runtime_get_sync(vop->dev);
1957 	if (ret < 0) {
1958 		DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
1959 		return ret;
1960 	}
1961 
1962 	ret = clk_prepare(vop->dclk);
1963 	if (ret < 0) {
1964 		DRM_DEV_ERROR(vop->dev, "failed to prepare dclk\n");
1965 		goto err_put_pm_runtime;
1966 	}
1967 
1968 	/* Enable both the hclk and aclk to setup the vop */
1969 	ret = clk_prepare_enable(vop->hclk);
1970 	if (ret < 0) {
1971 		DRM_DEV_ERROR(vop->dev, "failed to prepare/enable hclk\n");
1972 		goto err_unprepare_dclk;
1973 	}
1974 
1975 	ret = clk_prepare_enable(vop->aclk);
1976 	if (ret < 0) {
1977 		DRM_DEV_ERROR(vop->dev, "failed to prepare/enable aclk\n");
1978 		goto err_disable_hclk;
1979 	}
1980 
1981 	/*
1982 	 * do hclk_reset, reset all vop registers.
1983 	 */
1984 	ahb_rst = devm_reset_control_get(vop->dev, "ahb");
1985 	if (IS_ERR(ahb_rst)) {
1986 		DRM_DEV_ERROR(vop->dev, "failed to get ahb reset\n");
1987 		ret = PTR_ERR(ahb_rst);
1988 		goto err_disable_aclk;
1989 	}
1990 	reset_control_assert(ahb_rst);
1991 	usleep_range(10, 20);
1992 	reset_control_deassert(ahb_rst);
1993 
1994 	VOP_INTR_SET_TYPE(vop, clear, INTR_MASK, 1);
1995 	VOP_INTR_SET_TYPE(vop, enable, INTR_MASK, 0);
1996 
1997 	for (i = 0; i < vop->len; i += sizeof(u32))
1998 		vop->regsbak[i / 4] = readl_relaxed(vop->regs + i);
1999 
2000 	VOP_REG_SET(vop, misc, global_regdone_en, 1);
2001 	VOP_REG_SET(vop, common, dsp_blank, 0);
2002 
2003 	for (i = 0; i < vop->data->win_size; i++) {
2004 		struct vop_win *vop_win = &vop->win[i];
2005 		const struct vop_win_data *win = vop_win->data;
2006 		int channel = i * 2 + 1;
2007 
2008 		VOP_WIN_SET(vop, win, channel, (channel + 1) << 4 | channel);
2009 		vop_win_disable(vop, vop_win);
2010 		VOP_WIN_SET(vop, win, gate, 1);
2011 	}
2012 
2013 	vop_cfg_done(vop);
2014 
2015 	/*
2016 	 * do dclk_reset, let all config take affect.
2017 	 */
2018 	vop->dclk_rst = devm_reset_control_get(vop->dev, "dclk");
2019 	if (IS_ERR(vop->dclk_rst)) {
2020 		DRM_DEV_ERROR(vop->dev, "failed to get dclk reset\n");
2021 		ret = PTR_ERR(vop->dclk_rst);
2022 		goto err_disable_aclk;
2023 	}
2024 	reset_control_assert(vop->dclk_rst);
2025 	usleep_range(10, 20);
2026 	reset_control_deassert(vop->dclk_rst);
2027 
2028 	clk_disable(vop->hclk);
2029 	clk_disable(vop->aclk);
2030 
2031 	vop->is_enabled = false;
2032 
2033 	pm_runtime_put_sync(vop->dev);
2034 
2035 	return 0;
2036 
2037 err_disable_aclk:
2038 	clk_disable_unprepare(vop->aclk);
2039 err_disable_hclk:
2040 	clk_disable_unprepare(vop->hclk);
2041 err_unprepare_dclk:
2042 	clk_unprepare(vop->dclk);
2043 err_put_pm_runtime:
2044 	pm_runtime_put_sync(vop->dev);
2045 	return ret;
2046 }
2047 
2048 /*
2049  * Initialize the vop->win array elements.
2050  */
2051 static void vop_win_init(struct vop *vop)
2052 {
2053 	const struct vop_data *vop_data = vop->data;
2054 	unsigned int i;
2055 
2056 	for (i = 0; i < vop_data->win_size; i++) {
2057 		struct vop_win *vop_win = &vop->win[i];
2058 		const struct vop_win_data *win_data = &vop_data->win[i];
2059 
2060 		vop_win->data = win_data;
2061 		vop_win->vop = vop;
2062 
2063 		if (vop_data->win_yuv2yuv)
2064 			vop_win->yuv2yuv_data = &vop_data->win_yuv2yuv[i];
2065 	}
2066 }
2067 
2068 /**
2069  * rockchip_drm_wait_vact_end
2070  * @crtc: CRTC to enable line flag
2071  * @mstimeout: millisecond for timeout
2072  *
2073  * Wait for vact_end line flag irq or timeout.
2074  *
2075  * Returns:
2076  * Zero on success, negative errno on failure.
2077  */
2078 int rockchip_drm_wait_vact_end(struct drm_crtc *crtc, unsigned int mstimeout)
2079 {
2080 	struct vop *vop = to_vop(crtc);
2081 	unsigned long jiffies_left;
2082 	int ret = 0;
2083 
2084 	if (!crtc || !vop->is_enabled)
2085 		return -ENODEV;
2086 
2087 	mutex_lock(&vop->vop_lock);
2088 	if (mstimeout <= 0) {
2089 		ret = -EINVAL;
2090 		goto out;
2091 	}
2092 
2093 	if (vop_line_flag_irq_is_enabled(vop)) {
2094 		ret = -EBUSY;
2095 		goto out;
2096 	}
2097 
2098 	reinit_completion(&vop->line_flag_completion);
2099 	vop_line_flag_irq_enable(vop);
2100 
2101 	jiffies_left = wait_for_completion_timeout(&vop->line_flag_completion,
2102 						   msecs_to_jiffies(mstimeout));
2103 	vop_line_flag_irq_disable(vop);
2104 
2105 	if (jiffies_left == 0) {
2106 		DRM_DEV_ERROR(vop->dev, "Timeout waiting for IRQ\n");
2107 		ret = -ETIMEDOUT;
2108 		goto out;
2109 	}
2110 
2111 out:
2112 	mutex_unlock(&vop->vop_lock);
2113 	return ret;
2114 }
2115 EXPORT_SYMBOL(rockchip_drm_wait_vact_end);
2116 
2117 static int vop_bind(struct device *dev, struct device *master, void *data)
2118 {
2119 	struct platform_device *pdev = to_platform_device(dev);
2120 	const struct vop_data *vop_data;
2121 	struct drm_device *drm_dev = data;
2122 	struct vop *vop;
2123 	struct resource *res;
2124 	int ret, irq;
2125 
2126 	vop_data = of_device_get_match_data(dev);
2127 	if (!vop_data)
2128 		return -ENODEV;
2129 
2130 	/* Allocate vop struct and its vop_win array */
2131 	vop = devm_kzalloc(dev, struct_size(vop, win, vop_data->win_size),
2132 			   GFP_KERNEL);
2133 	if (!vop)
2134 		return -ENOMEM;
2135 
2136 	vop->dev = dev;
2137 	vop->data = vop_data;
2138 	vop->drm_dev = drm_dev;
2139 	dev_set_drvdata(dev, vop);
2140 
2141 	vop_win_init(vop);
2142 
2143 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2144 	vop->regs = devm_ioremap_resource(dev, res);
2145 	if (IS_ERR(vop->regs))
2146 		return PTR_ERR(vop->regs);
2147 	vop->len = resource_size(res);
2148 
2149 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2150 	if (res) {
2151 		if (!vop_data->lut_size) {
2152 			DRM_DEV_ERROR(dev, "no gamma LUT size defined\n");
2153 			return -EINVAL;
2154 		}
2155 		vop->lut_regs = devm_ioremap_resource(dev, res);
2156 		if (IS_ERR(vop->lut_regs))
2157 			return PTR_ERR(vop->lut_regs);
2158 	}
2159 
2160 	vop->regsbak = devm_kzalloc(dev, vop->len, GFP_KERNEL);
2161 	if (!vop->regsbak)
2162 		return -ENOMEM;
2163 
2164 	irq = platform_get_irq(pdev, 0);
2165 	if (irq < 0) {
2166 		DRM_DEV_ERROR(dev, "cannot find irq for vop\n");
2167 		return irq;
2168 	}
2169 	vop->irq = (unsigned int)irq;
2170 
2171 	spin_lock_init(&vop->reg_lock);
2172 	spin_lock_init(&vop->irq_lock);
2173 	mutex_init(&vop->vop_lock);
2174 
2175 	ret = vop_create_crtc(vop);
2176 	if (ret)
2177 		return ret;
2178 
2179 	pm_runtime_enable(&pdev->dev);
2180 
2181 	ret = vop_initial(vop);
2182 	if (ret < 0) {
2183 		DRM_DEV_ERROR(&pdev->dev,
2184 			      "cannot initial vop dev - err %d\n", ret);
2185 		goto err_disable_pm_runtime;
2186 	}
2187 
2188 	ret = devm_request_irq(dev, vop->irq, vop_isr,
2189 			       IRQF_SHARED, dev_name(dev), vop);
2190 	if (ret)
2191 		goto err_disable_pm_runtime;
2192 
2193 	if (vop->data->feature & VOP_FEATURE_INTERNAL_RGB) {
2194 		vop->rgb = rockchip_rgb_init(dev, &vop->crtc, vop->drm_dev);
2195 		if (IS_ERR(vop->rgb)) {
2196 			ret = PTR_ERR(vop->rgb);
2197 			goto err_disable_pm_runtime;
2198 		}
2199 	}
2200 
2201 	rockchip_drm_dma_init_device(drm_dev, dev);
2202 
2203 	return 0;
2204 
2205 err_disable_pm_runtime:
2206 	pm_runtime_disable(&pdev->dev);
2207 	vop_destroy_crtc(vop);
2208 	return ret;
2209 }
2210 
2211 static void vop_unbind(struct device *dev, struct device *master, void *data)
2212 {
2213 	struct vop *vop = dev_get_drvdata(dev);
2214 
2215 	if (vop->rgb)
2216 		rockchip_rgb_fini(vop->rgb);
2217 
2218 	pm_runtime_disable(dev);
2219 	vop_destroy_crtc(vop);
2220 
2221 	clk_unprepare(vop->aclk);
2222 	clk_unprepare(vop->hclk);
2223 	clk_unprepare(vop->dclk);
2224 }
2225 
2226 const struct component_ops vop_component_ops = {
2227 	.bind = vop_bind,
2228 	.unbind = vop_unbind,
2229 };
2230 EXPORT_SYMBOL_GPL(vop_component_ops);
2231