1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Fuzhou Rockchip Electronics Co.Ltd 4 * Author:Mark Yao <mark.yao@rock-chips.com> 5 */ 6 7 #include <linux/clk.h> 8 #include <linux/component.h> 9 #include <linux/delay.h> 10 #include <linux/iopoll.h> 11 #include <linux/kernel.h> 12 #include <linux/log2.h> 13 #include <linux/module.h> 14 #include <linux/of.h> 15 #include <linux/of_device.h> 16 #include <linux/overflow.h> 17 #include <linux/platform_device.h> 18 #include <linux/pm_runtime.h> 19 #include <linux/reset.h> 20 21 #include <drm/drm.h> 22 #include <drm/drm_atomic.h> 23 #include <drm/drm_atomic_uapi.h> 24 #include <drm/drm_blend.h> 25 #include <drm/drm_crtc.h> 26 #include <drm/drm_flip_work.h> 27 #include <drm/drm_fourcc.h> 28 #include <drm/drm_framebuffer.h> 29 #include <drm/drm_gem_atomic_helper.h> 30 #include <drm/drm_gem_framebuffer_helper.h> 31 #include <drm/drm_probe_helper.h> 32 #include <drm/drm_self_refresh_helper.h> 33 #include <drm/drm_vblank.h> 34 35 #ifdef CONFIG_DRM_ANALOGIX_DP 36 #include <drm/bridge/analogix_dp.h> 37 #endif 38 39 #include "rockchip_drm_drv.h" 40 #include "rockchip_drm_gem.h" 41 #include "rockchip_drm_fb.h" 42 #include "rockchip_drm_vop.h" 43 #include "rockchip_rgb.h" 44 45 #define VOP_WIN_SET(vop, win, name, v) \ 46 vop_reg_set(vop, &win->phy->name, win->base, ~0, v, #name) 47 #define VOP_SCL_SET(vop, win, name, v) \ 48 vop_reg_set(vop, &win->phy->scl->name, win->base, ~0, v, #name) 49 #define VOP_SCL_SET_EXT(vop, win, name, v) \ 50 vop_reg_set(vop, &win->phy->scl->ext->name, \ 51 win->base, ~0, v, #name) 52 53 #define VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, name, v) \ 54 do { \ 55 if (win_yuv2yuv && win_yuv2yuv->name.mask) \ 56 vop_reg_set(vop, &win_yuv2yuv->name, 0, ~0, v, #name); \ 57 } while (0) 58 59 #define VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop, win_yuv2yuv, name, v) \ 60 do { \ 61 if (win_yuv2yuv && win_yuv2yuv->phy->name.mask) \ 62 vop_reg_set(vop, &win_yuv2yuv->phy->name, win_yuv2yuv->base, ~0, v, #name); \ 63 } while (0) 64 65 #define VOP_INTR_SET_MASK(vop, name, mask, v) \ 66 vop_reg_set(vop, &vop->data->intr->name, 0, mask, v, #name) 67 68 #define VOP_REG_SET(vop, group, name, v) \ 69 vop_reg_set(vop, &vop->data->group->name, 0, ~0, v, #name) 70 71 #define VOP_HAS_REG(vop, group, name) \ 72 (!!(vop->data->group->name.mask)) 73 74 #define VOP_INTR_SET_TYPE(vop, name, type, v) \ 75 do { \ 76 int i, reg = 0, mask = 0; \ 77 for (i = 0; i < vop->data->intr->nintrs; i++) { \ 78 if (vop->data->intr->intrs[i] & type) { \ 79 reg |= (v) << i; \ 80 mask |= 1 << i; \ 81 } \ 82 } \ 83 VOP_INTR_SET_MASK(vop, name, mask, reg); \ 84 } while (0) 85 #define VOP_INTR_GET_TYPE(vop, name, type) \ 86 vop_get_intr_type(vop, &vop->data->intr->name, type) 87 88 #define VOP_WIN_GET(vop, win, name) \ 89 vop_read_reg(vop, win->base, &win->phy->name) 90 91 #define VOP_WIN_HAS_REG(win, name) \ 92 (!!(win->phy->name.mask)) 93 94 #define VOP_WIN_GET_YRGBADDR(vop, win) \ 95 vop_readl(vop, win->base + win->phy->yrgb_mst.offset) 96 97 #define VOP_WIN_TO_INDEX(vop_win) \ 98 ((vop_win) - (vop_win)->vop->win) 99 100 #define VOP_AFBC_SET(vop, name, v) \ 101 do { \ 102 if ((vop)->data->afbc) \ 103 vop_reg_set((vop), &(vop)->data->afbc->name, \ 104 0, ~0, v, #name); \ 105 } while (0) 106 107 #define to_vop(x) container_of(x, struct vop, crtc) 108 #define to_vop_win(x) container_of(x, struct vop_win, base) 109 110 #define AFBC_FMT_RGB565 0x0 111 #define AFBC_FMT_U8U8U8U8 0x5 112 #define AFBC_FMT_U8U8U8 0x4 113 114 #define AFBC_TILE_16x16 BIT(4) 115 116 /* 117 * The coefficients of the following matrix are all fixed points. 118 * The format is S2.10 for the 3x3 part of the matrix, and S9.12 for the offsets. 119 * They are all represented in two's complement. 120 */ 121 static const uint32_t bt601_yuv2rgb[] = { 122 0x4A8, 0x0, 0x662, 123 0x4A8, 0x1E6F, 0x1CBF, 124 0x4A8, 0x812, 0x0, 125 0x321168, 0x0877CF, 0x2EB127 126 }; 127 128 enum vop_pending { 129 VOP_PENDING_FB_UNREF, 130 }; 131 132 struct vop_win { 133 struct drm_plane base; 134 const struct vop_win_data *data; 135 const struct vop_win_yuv2yuv_data *yuv2yuv_data; 136 struct vop *vop; 137 }; 138 139 struct rockchip_rgb; 140 struct vop { 141 struct drm_crtc crtc; 142 struct device *dev; 143 struct drm_device *drm_dev; 144 bool is_enabled; 145 146 struct completion dsp_hold_completion; 147 unsigned int win_enabled; 148 149 /* protected by dev->event_lock */ 150 struct drm_pending_vblank_event *event; 151 152 struct drm_flip_work fb_unref_work; 153 unsigned long pending; 154 155 struct completion line_flag_completion; 156 157 const struct vop_data *data; 158 159 uint32_t *regsbak; 160 void __iomem *regs; 161 void __iomem *lut_regs; 162 163 /* physical map length of vop register */ 164 uint32_t len; 165 166 /* one time only one process allowed to config the register */ 167 spinlock_t reg_lock; 168 /* lock vop irq reg */ 169 spinlock_t irq_lock; 170 /* protects crtc enable/disable */ 171 struct mutex vop_lock; 172 173 unsigned int irq; 174 175 /* vop AHP clk */ 176 struct clk *hclk; 177 /* vop dclk */ 178 struct clk *dclk; 179 /* vop share memory frequency */ 180 struct clk *aclk; 181 182 /* vop dclk reset */ 183 struct reset_control *dclk_rst; 184 185 /* optional internal rgb encoder */ 186 struct rockchip_rgb *rgb; 187 188 struct vop_win win[]; 189 }; 190 191 static inline uint32_t vop_readl(struct vop *vop, uint32_t offset) 192 { 193 return readl(vop->regs + offset); 194 } 195 196 static inline uint32_t vop_read_reg(struct vop *vop, uint32_t base, 197 const struct vop_reg *reg) 198 { 199 return (vop_readl(vop, base + reg->offset) >> reg->shift) & reg->mask; 200 } 201 202 static void vop_reg_set(struct vop *vop, const struct vop_reg *reg, 203 uint32_t _offset, uint32_t _mask, uint32_t v, 204 const char *reg_name) 205 { 206 int offset, mask, shift; 207 208 if (!reg || !reg->mask) { 209 DRM_DEV_DEBUG(vop->dev, "Warning: not support %s\n", reg_name); 210 return; 211 } 212 213 offset = reg->offset + _offset; 214 mask = reg->mask & _mask; 215 shift = reg->shift; 216 217 if (reg->write_mask) { 218 v = ((v << shift) & 0xffff) | (mask << (shift + 16)); 219 } else { 220 uint32_t cached_val = vop->regsbak[offset >> 2]; 221 222 v = (cached_val & ~(mask << shift)) | ((v & mask) << shift); 223 vop->regsbak[offset >> 2] = v; 224 } 225 226 if (reg->relaxed) 227 writel_relaxed(v, vop->regs + offset); 228 else 229 writel(v, vop->regs + offset); 230 } 231 232 static inline uint32_t vop_get_intr_type(struct vop *vop, 233 const struct vop_reg *reg, int type) 234 { 235 uint32_t i, ret = 0; 236 uint32_t regs = vop_read_reg(vop, 0, reg); 237 238 for (i = 0; i < vop->data->intr->nintrs; i++) { 239 if ((type & vop->data->intr->intrs[i]) && (regs & 1 << i)) 240 ret |= vop->data->intr->intrs[i]; 241 } 242 243 return ret; 244 } 245 246 static inline void vop_cfg_done(struct vop *vop) 247 { 248 VOP_REG_SET(vop, common, cfg_done, 1); 249 } 250 251 static bool has_rb_swapped(uint32_t format) 252 { 253 switch (format) { 254 case DRM_FORMAT_XBGR8888: 255 case DRM_FORMAT_ABGR8888: 256 case DRM_FORMAT_BGR888: 257 case DRM_FORMAT_BGR565: 258 return true; 259 default: 260 return false; 261 } 262 } 263 264 static bool has_uv_swapped(uint32_t format) 265 { 266 switch (format) { 267 case DRM_FORMAT_NV21: 268 case DRM_FORMAT_NV61: 269 case DRM_FORMAT_NV42: 270 return true; 271 default: 272 return false; 273 } 274 } 275 276 static enum vop_data_format vop_convert_format(uint32_t format) 277 { 278 switch (format) { 279 case DRM_FORMAT_XRGB8888: 280 case DRM_FORMAT_ARGB8888: 281 case DRM_FORMAT_XBGR8888: 282 case DRM_FORMAT_ABGR8888: 283 return VOP_FMT_ARGB8888; 284 case DRM_FORMAT_RGB888: 285 case DRM_FORMAT_BGR888: 286 return VOP_FMT_RGB888; 287 case DRM_FORMAT_RGB565: 288 case DRM_FORMAT_BGR565: 289 return VOP_FMT_RGB565; 290 case DRM_FORMAT_NV12: 291 case DRM_FORMAT_NV21: 292 return VOP_FMT_YUV420SP; 293 case DRM_FORMAT_NV16: 294 case DRM_FORMAT_NV61: 295 return VOP_FMT_YUV422SP; 296 case DRM_FORMAT_NV24: 297 case DRM_FORMAT_NV42: 298 return VOP_FMT_YUV444SP; 299 default: 300 DRM_ERROR("unsupported format[%08x]\n", format); 301 return -EINVAL; 302 } 303 } 304 305 static int vop_convert_afbc_format(uint32_t format) 306 { 307 switch (format) { 308 case DRM_FORMAT_XRGB8888: 309 case DRM_FORMAT_ARGB8888: 310 case DRM_FORMAT_XBGR8888: 311 case DRM_FORMAT_ABGR8888: 312 return AFBC_FMT_U8U8U8U8; 313 case DRM_FORMAT_RGB888: 314 case DRM_FORMAT_BGR888: 315 return AFBC_FMT_U8U8U8; 316 case DRM_FORMAT_RGB565: 317 case DRM_FORMAT_BGR565: 318 return AFBC_FMT_RGB565; 319 default: 320 DRM_DEBUG_KMS("unsupported AFBC format[%08x]\n", format); 321 return -EINVAL; 322 } 323 } 324 325 static uint16_t scl_vop_cal_scale(enum scale_mode mode, uint32_t src, 326 uint32_t dst, bool is_horizontal, 327 int vsu_mode, int *vskiplines) 328 { 329 uint16_t val = 1 << SCL_FT_DEFAULT_FIXPOINT_SHIFT; 330 331 if (vskiplines) 332 *vskiplines = 0; 333 334 if (is_horizontal) { 335 if (mode == SCALE_UP) 336 val = GET_SCL_FT_BIC(src, dst); 337 else if (mode == SCALE_DOWN) 338 val = GET_SCL_FT_BILI_DN(src, dst); 339 } else { 340 if (mode == SCALE_UP) { 341 if (vsu_mode == SCALE_UP_BIL) 342 val = GET_SCL_FT_BILI_UP(src, dst); 343 else 344 val = GET_SCL_FT_BIC(src, dst); 345 } else if (mode == SCALE_DOWN) { 346 if (vskiplines) { 347 *vskiplines = scl_get_vskiplines(src, dst); 348 val = scl_get_bili_dn_vskip(src, dst, 349 *vskiplines); 350 } else { 351 val = GET_SCL_FT_BILI_DN(src, dst); 352 } 353 } 354 } 355 356 return val; 357 } 358 359 static void scl_vop_cal_scl_fac(struct vop *vop, const struct vop_win_data *win, 360 uint32_t src_w, uint32_t src_h, uint32_t dst_w, 361 uint32_t dst_h, const struct drm_format_info *info) 362 { 363 uint16_t yrgb_hor_scl_mode, yrgb_ver_scl_mode; 364 uint16_t cbcr_hor_scl_mode = SCALE_NONE; 365 uint16_t cbcr_ver_scl_mode = SCALE_NONE; 366 bool is_yuv = false; 367 uint16_t cbcr_src_w = src_w / info->hsub; 368 uint16_t cbcr_src_h = src_h / info->vsub; 369 uint16_t vsu_mode; 370 uint16_t lb_mode; 371 uint32_t val; 372 int vskiplines; 373 374 if (info->is_yuv) 375 is_yuv = true; 376 377 if (dst_w > 3840) { 378 DRM_DEV_ERROR(vop->dev, "Maximum dst width (3840) exceeded\n"); 379 return; 380 } 381 382 if (!win->phy->scl->ext) { 383 VOP_SCL_SET(vop, win, scale_yrgb_x, 384 scl_cal_scale2(src_w, dst_w)); 385 VOP_SCL_SET(vop, win, scale_yrgb_y, 386 scl_cal_scale2(src_h, dst_h)); 387 if (is_yuv) { 388 VOP_SCL_SET(vop, win, scale_cbcr_x, 389 scl_cal_scale2(cbcr_src_w, dst_w)); 390 VOP_SCL_SET(vop, win, scale_cbcr_y, 391 scl_cal_scale2(cbcr_src_h, dst_h)); 392 } 393 return; 394 } 395 396 yrgb_hor_scl_mode = scl_get_scl_mode(src_w, dst_w); 397 yrgb_ver_scl_mode = scl_get_scl_mode(src_h, dst_h); 398 399 if (is_yuv) { 400 cbcr_hor_scl_mode = scl_get_scl_mode(cbcr_src_w, dst_w); 401 cbcr_ver_scl_mode = scl_get_scl_mode(cbcr_src_h, dst_h); 402 if (cbcr_hor_scl_mode == SCALE_DOWN) 403 lb_mode = scl_vop_cal_lb_mode(dst_w, true); 404 else 405 lb_mode = scl_vop_cal_lb_mode(cbcr_src_w, true); 406 } else { 407 if (yrgb_hor_scl_mode == SCALE_DOWN) 408 lb_mode = scl_vop_cal_lb_mode(dst_w, false); 409 else 410 lb_mode = scl_vop_cal_lb_mode(src_w, false); 411 } 412 413 VOP_SCL_SET_EXT(vop, win, lb_mode, lb_mode); 414 if (lb_mode == LB_RGB_3840X2) { 415 if (yrgb_ver_scl_mode != SCALE_NONE) { 416 DRM_DEV_ERROR(vop->dev, "not allow yrgb ver scale\n"); 417 return; 418 } 419 if (cbcr_ver_scl_mode != SCALE_NONE) { 420 DRM_DEV_ERROR(vop->dev, "not allow cbcr ver scale\n"); 421 return; 422 } 423 vsu_mode = SCALE_UP_BIL; 424 } else if (lb_mode == LB_RGB_2560X4) { 425 vsu_mode = SCALE_UP_BIL; 426 } else { 427 vsu_mode = SCALE_UP_BIC; 428 } 429 430 val = scl_vop_cal_scale(yrgb_hor_scl_mode, src_w, dst_w, 431 true, 0, NULL); 432 VOP_SCL_SET(vop, win, scale_yrgb_x, val); 433 val = scl_vop_cal_scale(yrgb_ver_scl_mode, src_h, dst_h, 434 false, vsu_mode, &vskiplines); 435 VOP_SCL_SET(vop, win, scale_yrgb_y, val); 436 437 VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt4, vskiplines == 4); 438 VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt2, vskiplines == 2); 439 440 VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, yrgb_hor_scl_mode); 441 VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, yrgb_ver_scl_mode); 442 VOP_SCL_SET_EXT(vop, win, yrgb_hsd_mode, SCALE_DOWN_BIL); 443 VOP_SCL_SET_EXT(vop, win, yrgb_vsd_mode, SCALE_DOWN_BIL); 444 VOP_SCL_SET_EXT(vop, win, yrgb_vsu_mode, vsu_mode); 445 if (is_yuv) { 446 val = scl_vop_cal_scale(cbcr_hor_scl_mode, cbcr_src_w, 447 dst_w, true, 0, NULL); 448 VOP_SCL_SET(vop, win, scale_cbcr_x, val); 449 val = scl_vop_cal_scale(cbcr_ver_scl_mode, cbcr_src_h, 450 dst_h, false, vsu_mode, &vskiplines); 451 VOP_SCL_SET(vop, win, scale_cbcr_y, val); 452 453 VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt4, vskiplines == 4); 454 VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt2, vskiplines == 2); 455 VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, cbcr_hor_scl_mode); 456 VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, cbcr_ver_scl_mode); 457 VOP_SCL_SET_EXT(vop, win, cbcr_hsd_mode, SCALE_DOWN_BIL); 458 VOP_SCL_SET_EXT(vop, win, cbcr_vsd_mode, SCALE_DOWN_BIL); 459 VOP_SCL_SET_EXT(vop, win, cbcr_vsu_mode, vsu_mode); 460 } 461 } 462 463 static void vop_dsp_hold_valid_irq_enable(struct vop *vop) 464 { 465 unsigned long flags; 466 467 if (WARN_ON(!vop->is_enabled)) 468 return; 469 470 spin_lock_irqsave(&vop->irq_lock, flags); 471 472 VOP_INTR_SET_TYPE(vop, clear, DSP_HOLD_VALID_INTR, 1); 473 VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 1); 474 475 spin_unlock_irqrestore(&vop->irq_lock, flags); 476 } 477 478 static void vop_dsp_hold_valid_irq_disable(struct vop *vop) 479 { 480 unsigned long flags; 481 482 if (WARN_ON(!vop->is_enabled)) 483 return; 484 485 spin_lock_irqsave(&vop->irq_lock, flags); 486 487 VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 0); 488 489 spin_unlock_irqrestore(&vop->irq_lock, flags); 490 } 491 492 /* 493 * (1) each frame starts at the start of the Vsync pulse which is signaled by 494 * the "FRAME_SYNC" interrupt. 495 * (2) the active data region of each frame ends at dsp_vact_end 496 * (3) we should program this same number (dsp_vact_end) into dsp_line_frag_num, 497 * to get "LINE_FLAG" interrupt at the end of the active on screen data. 498 * 499 * VOP_INTR_CTRL0.dsp_line_frag_num = VOP_DSP_VACT_ST_END.dsp_vact_end 500 * Interrupts 501 * LINE_FLAG -------------------------------+ 502 * FRAME_SYNC ----+ | 503 * | | 504 * v v 505 * | Vsync | Vbp | Vactive | Vfp | 506 * ^ ^ ^ ^ 507 * | | | | 508 * | | | | 509 * dsp_vs_end ------------+ | | | VOP_DSP_VTOTAL_VS_END 510 * dsp_vact_start --------------+ | | VOP_DSP_VACT_ST_END 511 * dsp_vact_end ----------------------------+ | VOP_DSP_VACT_ST_END 512 * dsp_total -------------------------------------+ VOP_DSP_VTOTAL_VS_END 513 */ 514 static bool vop_line_flag_irq_is_enabled(struct vop *vop) 515 { 516 uint32_t line_flag_irq; 517 unsigned long flags; 518 519 spin_lock_irqsave(&vop->irq_lock, flags); 520 521 line_flag_irq = VOP_INTR_GET_TYPE(vop, enable, LINE_FLAG_INTR); 522 523 spin_unlock_irqrestore(&vop->irq_lock, flags); 524 525 return !!line_flag_irq; 526 } 527 528 static void vop_line_flag_irq_enable(struct vop *vop) 529 { 530 unsigned long flags; 531 532 if (WARN_ON(!vop->is_enabled)) 533 return; 534 535 spin_lock_irqsave(&vop->irq_lock, flags); 536 537 VOP_INTR_SET_TYPE(vop, clear, LINE_FLAG_INTR, 1); 538 VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 1); 539 540 spin_unlock_irqrestore(&vop->irq_lock, flags); 541 } 542 543 static void vop_line_flag_irq_disable(struct vop *vop) 544 { 545 unsigned long flags; 546 547 if (WARN_ON(!vop->is_enabled)) 548 return; 549 550 spin_lock_irqsave(&vop->irq_lock, flags); 551 552 VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 0); 553 554 spin_unlock_irqrestore(&vop->irq_lock, flags); 555 } 556 557 static int vop_core_clks_enable(struct vop *vop) 558 { 559 int ret; 560 561 ret = clk_enable(vop->hclk); 562 if (ret < 0) 563 return ret; 564 565 ret = clk_enable(vop->aclk); 566 if (ret < 0) 567 goto err_disable_hclk; 568 569 return 0; 570 571 err_disable_hclk: 572 clk_disable(vop->hclk); 573 return ret; 574 } 575 576 static void vop_core_clks_disable(struct vop *vop) 577 { 578 clk_disable(vop->aclk); 579 clk_disable(vop->hclk); 580 } 581 582 static void vop_win_disable(struct vop *vop, const struct vop_win *vop_win) 583 { 584 const struct vop_win_data *win = vop_win->data; 585 586 if (win->phy->scl && win->phy->scl->ext) { 587 VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, SCALE_NONE); 588 VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, SCALE_NONE); 589 VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, SCALE_NONE); 590 VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, SCALE_NONE); 591 } 592 593 VOP_WIN_SET(vop, win, enable, 0); 594 vop->win_enabled &= ~BIT(VOP_WIN_TO_INDEX(vop_win)); 595 } 596 597 static int vop_enable(struct drm_crtc *crtc, struct drm_crtc_state *old_state) 598 { 599 struct vop *vop = to_vop(crtc); 600 int ret, i; 601 602 ret = pm_runtime_resume_and_get(vop->dev); 603 if (ret < 0) { 604 DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret); 605 return ret; 606 } 607 608 ret = vop_core_clks_enable(vop); 609 if (WARN_ON(ret < 0)) 610 goto err_put_pm_runtime; 611 612 ret = clk_enable(vop->dclk); 613 if (WARN_ON(ret < 0)) 614 goto err_disable_core; 615 616 /* 617 * Slave iommu shares power, irq and clock with vop. It was associated 618 * automatically with this master device via common driver code. 619 * Now that we have enabled the clock we attach it to the shared drm 620 * mapping. 621 */ 622 ret = rockchip_drm_dma_attach_device(vop->drm_dev, vop->dev); 623 if (ret) { 624 DRM_DEV_ERROR(vop->dev, 625 "failed to attach dma mapping, %d\n", ret); 626 goto err_disable_dclk; 627 } 628 629 spin_lock(&vop->reg_lock); 630 for (i = 0; i < vop->len; i += 4) 631 writel_relaxed(vop->regsbak[i / 4], vop->regs + i); 632 633 /* 634 * We need to make sure that all windows are disabled before we 635 * enable the crtc. Otherwise we might try to scan from a destroyed 636 * buffer later. 637 * 638 * In the case of enable-after-PSR, we don't need to worry about this 639 * case since the buffer is guaranteed to be valid and disabling the 640 * window will result in screen glitches on PSR exit. 641 */ 642 if (!old_state || !old_state->self_refresh_active) { 643 for (i = 0; i < vop->data->win_size; i++) { 644 struct vop_win *vop_win = &vop->win[i]; 645 646 vop_win_disable(vop, vop_win); 647 } 648 } 649 650 if (vop->data->afbc) { 651 struct rockchip_crtc_state *s; 652 /* 653 * Disable AFBC and forget there was a vop window with AFBC 654 */ 655 VOP_AFBC_SET(vop, enable, 0); 656 s = to_rockchip_crtc_state(crtc->state); 657 s->enable_afbc = false; 658 } 659 660 vop_cfg_done(vop); 661 662 spin_unlock(&vop->reg_lock); 663 664 /* 665 * At here, vop clock & iommu is enable, R/W vop regs would be safe. 666 */ 667 vop->is_enabled = true; 668 669 spin_lock(&vop->reg_lock); 670 671 VOP_REG_SET(vop, common, standby, 1); 672 673 spin_unlock(&vop->reg_lock); 674 675 drm_crtc_vblank_on(crtc); 676 677 return 0; 678 679 err_disable_dclk: 680 clk_disable(vop->dclk); 681 err_disable_core: 682 vop_core_clks_disable(vop); 683 err_put_pm_runtime: 684 pm_runtime_put_sync(vop->dev); 685 return ret; 686 } 687 688 static void rockchip_drm_set_win_enabled(struct drm_crtc *crtc, bool enabled) 689 { 690 struct vop *vop = to_vop(crtc); 691 int i; 692 693 spin_lock(&vop->reg_lock); 694 695 for (i = 0; i < vop->data->win_size; i++) { 696 struct vop_win *vop_win = &vop->win[i]; 697 const struct vop_win_data *win = vop_win->data; 698 699 VOP_WIN_SET(vop, win, enable, 700 enabled && (vop->win_enabled & BIT(i))); 701 } 702 vop_cfg_done(vop); 703 704 spin_unlock(&vop->reg_lock); 705 } 706 707 static void vop_crtc_atomic_disable(struct drm_crtc *crtc, 708 struct drm_atomic_state *state) 709 { 710 struct vop *vop = to_vop(crtc); 711 712 WARN_ON(vop->event); 713 714 if (crtc->state->self_refresh_active) 715 rockchip_drm_set_win_enabled(crtc, false); 716 717 if (crtc->state->self_refresh_active) 718 goto out; 719 720 mutex_lock(&vop->vop_lock); 721 722 drm_crtc_vblank_off(crtc); 723 724 /* 725 * Vop standby will take effect at end of current frame, 726 * if dsp hold valid irq happen, it means standby complete. 727 * 728 * we must wait standby complete when we want to disable aclk, 729 * if not, memory bus maybe dead. 730 */ 731 reinit_completion(&vop->dsp_hold_completion); 732 vop_dsp_hold_valid_irq_enable(vop); 733 734 spin_lock(&vop->reg_lock); 735 736 VOP_REG_SET(vop, common, standby, 1); 737 738 spin_unlock(&vop->reg_lock); 739 740 if (!wait_for_completion_timeout(&vop->dsp_hold_completion, 741 msecs_to_jiffies(200))) 742 WARN(1, "%s: timed out waiting for DSP hold", crtc->name); 743 744 vop_dsp_hold_valid_irq_disable(vop); 745 746 vop->is_enabled = false; 747 748 /* 749 * vop standby complete, so iommu detach is safe. 750 */ 751 rockchip_drm_dma_detach_device(vop->drm_dev, vop->dev); 752 753 clk_disable(vop->dclk); 754 vop_core_clks_disable(vop); 755 pm_runtime_put(vop->dev); 756 757 mutex_unlock(&vop->vop_lock); 758 759 out: 760 if (crtc->state->event && !crtc->state->active) { 761 spin_lock_irq(&crtc->dev->event_lock); 762 drm_crtc_send_vblank_event(crtc, crtc->state->event); 763 spin_unlock_irq(&crtc->dev->event_lock); 764 765 crtc->state->event = NULL; 766 } 767 } 768 769 static void vop_plane_destroy(struct drm_plane *plane) 770 { 771 drm_plane_cleanup(plane); 772 } 773 774 static inline bool rockchip_afbc(u64 modifier) 775 { 776 return modifier == ROCKCHIP_AFBC_MOD; 777 } 778 779 static bool rockchip_mod_supported(struct drm_plane *plane, 780 u32 format, u64 modifier) 781 { 782 if (modifier == DRM_FORMAT_MOD_LINEAR) 783 return true; 784 785 if (!rockchip_afbc(modifier)) { 786 DRM_DEBUG_KMS("Unsupported format modifier 0x%llx\n", modifier); 787 788 return false; 789 } 790 791 return vop_convert_afbc_format(format) >= 0; 792 } 793 794 static int vop_plane_atomic_check(struct drm_plane *plane, 795 struct drm_atomic_state *state) 796 { 797 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state, 798 plane); 799 struct drm_crtc *crtc = new_plane_state->crtc; 800 struct drm_crtc_state *crtc_state; 801 struct drm_framebuffer *fb = new_plane_state->fb; 802 struct vop_win *vop_win = to_vop_win(plane); 803 const struct vop_win_data *win = vop_win->data; 804 int ret; 805 int min_scale = win->phy->scl ? FRAC_16_16(1, 8) : 806 DRM_PLANE_NO_SCALING; 807 int max_scale = win->phy->scl ? FRAC_16_16(8, 1) : 808 DRM_PLANE_NO_SCALING; 809 810 if (!crtc || WARN_ON(!fb)) 811 return 0; 812 813 crtc_state = drm_atomic_get_existing_crtc_state(state, 814 crtc); 815 if (WARN_ON(!crtc_state)) 816 return -EINVAL; 817 818 ret = drm_atomic_helper_check_plane_state(new_plane_state, crtc_state, 819 min_scale, max_scale, 820 true, true); 821 if (ret) 822 return ret; 823 824 if (!new_plane_state->visible) 825 return 0; 826 827 ret = vop_convert_format(fb->format->format); 828 if (ret < 0) 829 return ret; 830 831 /* 832 * Src.x1 can be odd when do clip, but yuv plane start point 833 * need align with 2 pixel. 834 */ 835 if (fb->format->is_yuv && ((new_plane_state->src.x1 >> 16) % 2)) { 836 DRM_DEBUG_KMS("Invalid Source: Yuv format not support odd xpos\n"); 837 return -EINVAL; 838 } 839 840 if (fb->format->is_yuv && new_plane_state->rotation & DRM_MODE_REFLECT_Y) { 841 DRM_DEBUG_KMS("Invalid Source: Yuv format does not support this rotation\n"); 842 return -EINVAL; 843 } 844 845 if (rockchip_afbc(fb->modifier)) { 846 struct vop *vop = to_vop(crtc); 847 848 if (!vop->data->afbc) { 849 DRM_DEBUG_KMS("vop does not support AFBC\n"); 850 return -EINVAL; 851 } 852 853 ret = vop_convert_afbc_format(fb->format->format); 854 if (ret < 0) 855 return ret; 856 857 if (new_plane_state->src.x1 || new_plane_state->src.y1) { 858 DRM_DEBUG_KMS("AFBC does not support offset display, " \ 859 "xpos=%d, ypos=%d, offset=%d\n", 860 new_plane_state->src.x1, new_plane_state->src.y1, 861 fb->offsets[0]); 862 return -EINVAL; 863 } 864 865 if (new_plane_state->rotation && new_plane_state->rotation != DRM_MODE_ROTATE_0) { 866 DRM_DEBUG_KMS("No rotation support in AFBC, rotation=%d\n", 867 new_plane_state->rotation); 868 return -EINVAL; 869 } 870 } 871 872 return 0; 873 } 874 875 static void vop_plane_atomic_disable(struct drm_plane *plane, 876 struct drm_atomic_state *state) 877 { 878 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state, 879 plane); 880 struct vop_win *vop_win = to_vop_win(plane); 881 struct vop *vop = to_vop(old_state->crtc); 882 883 if (!old_state->crtc) 884 return; 885 886 spin_lock(&vop->reg_lock); 887 888 vop_win_disable(vop, vop_win); 889 890 spin_unlock(&vop->reg_lock); 891 } 892 893 static void vop_plane_atomic_update(struct drm_plane *plane, 894 struct drm_atomic_state *state) 895 { 896 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, 897 plane); 898 struct drm_crtc *crtc = new_state->crtc; 899 struct vop_win *vop_win = to_vop_win(plane); 900 const struct vop_win_data *win = vop_win->data; 901 const struct vop_win_yuv2yuv_data *win_yuv2yuv = vop_win->yuv2yuv_data; 902 struct vop *vop = to_vop(new_state->crtc); 903 struct drm_framebuffer *fb = new_state->fb; 904 unsigned int actual_w, actual_h; 905 unsigned int dsp_stx, dsp_sty; 906 uint32_t act_info, dsp_info, dsp_st; 907 struct drm_rect *src = &new_state->src; 908 struct drm_rect *dest = &new_state->dst; 909 struct drm_gem_object *obj, *uv_obj; 910 struct rockchip_gem_object *rk_obj, *rk_uv_obj; 911 unsigned long offset; 912 dma_addr_t dma_addr; 913 uint32_t val; 914 bool rb_swap, uv_swap; 915 int win_index = VOP_WIN_TO_INDEX(vop_win); 916 int format; 917 int is_yuv = fb->format->is_yuv; 918 int i; 919 920 /* 921 * can't update plane when vop is disabled. 922 */ 923 if (WARN_ON(!crtc)) 924 return; 925 926 if (WARN_ON(!vop->is_enabled)) 927 return; 928 929 if (!new_state->visible) { 930 vop_plane_atomic_disable(plane, state); 931 return; 932 } 933 934 obj = fb->obj[0]; 935 rk_obj = to_rockchip_obj(obj); 936 937 actual_w = drm_rect_width(src) >> 16; 938 actual_h = drm_rect_height(src) >> 16; 939 act_info = (actual_h - 1) << 16 | ((actual_w - 1) & 0xffff); 940 941 dsp_info = (drm_rect_height(dest) - 1) << 16; 942 dsp_info |= (drm_rect_width(dest) - 1) & 0xffff; 943 944 dsp_stx = dest->x1 + crtc->mode.htotal - crtc->mode.hsync_start; 945 dsp_sty = dest->y1 + crtc->mode.vtotal - crtc->mode.vsync_start; 946 dsp_st = dsp_sty << 16 | (dsp_stx & 0xffff); 947 948 offset = (src->x1 >> 16) * fb->format->cpp[0]; 949 offset += (src->y1 >> 16) * fb->pitches[0]; 950 dma_addr = rk_obj->dma_addr + offset + fb->offsets[0]; 951 952 /* 953 * For y-mirroring we need to move address 954 * to the beginning of the last line. 955 */ 956 if (new_state->rotation & DRM_MODE_REFLECT_Y) 957 dma_addr += (actual_h - 1) * fb->pitches[0]; 958 959 format = vop_convert_format(fb->format->format); 960 961 spin_lock(&vop->reg_lock); 962 963 if (rockchip_afbc(fb->modifier)) { 964 int afbc_format = vop_convert_afbc_format(fb->format->format); 965 966 VOP_AFBC_SET(vop, format, afbc_format | AFBC_TILE_16x16); 967 VOP_AFBC_SET(vop, hreg_block_split, 0); 968 VOP_AFBC_SET(vop, win_sel, VOP_WIN_TO_INDEX(vop_win)); 969 VOP_AFBC_SET(vop, hdr_ptr, dma_addr); 970 VOP_AFBC_SET(vop, pic_size, act_info); 971 } 972 973 VOP_WIN_SET(vop, win, format, format); 974 VOP_WIN_SET(vop, win, yrgb_vir, DIV_ROUND_UP(fb->pitches[0], 4)); 975 VOP_WIN_SET(vop, win, yrgb_mst, dma_addr); 976 VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, y2r_en, is_yuv); 977 VOP_WIN_SET(vop, win, y_mir_en, 978 (new_state->rotation & DRM_MODE_REFLECT_Y) ? 1 : 0); 979 VOP_WIN_SET(vop, win, x_mir_en, 980 (new_state->rotation & DRM_MODE_REFLECT_X) ? 1 : 0); 981 982 if (is_yuv) { 983 int hsub = fb->format->hsub; 984 int vsub = fb->format->vsub; 985 int bpp = fb->format->cpp[1]; 986 987 uv_obj = fb->obj[1]; 988 rk_uv_obj = to_rockchip_obj(uv_obj); 989 990 offset = (src->x1 >> 16) * bpp / hsub; 991 offset += (src->y1 >> 16) * fb->pitches[1] / vsub; 992 993 dma_addr = rk_uv_obj->dma_addr + offset + fb->offsets[1]; 994 VOP_WIN_SET(vop, win, uv_vir, DIV_ROUND_UP(fb->pitches[1], 4)); 995 VOP_WIN_SET(vop, win, uv_mst, dma_addr); 996 997 for (i = 0; i < NUM_YUV2YUV_COEFFICIENTS; i++) { 998 VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop, 999 win_yuv2yuv, 1000 y2r_coefficients[i], 1001 bt601_yuv2rgb[i]); 1002 } 1003 1004 uv_swap = has_uv_swapped(fb->format->format); 1005 VOP_WIN_SET(vop, win, uv_swap, uv_swap); 1006 } 1007 1008 if (win->phy->scl) 1009 scl_vop_cal_scl_fac(vop, win, actual_w, actual_h, 1010 drm_rect_width(dest), drm_rect_height(dest), 1011 fb->format); 1012 1013 VOP_WIN_SET(vop, win, act_info, act_info); 1014 VOP_WIN_SET(vop, win, dsp_info, dsp_info); 1015 VOP_WIN_SET(vop, win, dsp_st, dsp_st); 1016 1017 rb_swap = has_rb_swapped(fb->format->format); 1018 VOP_WIN_SET(vop, win, rb_swap, rb_swap); 1019 1020 /* 1021 * Blending win0 with the background color doesn't seem to work 1022 * correctly. We only get the background color, no matter the contents 1023 * of the win0 framebuffer. However, blending pre-multiplied color 1024 * with the default opaque black default background color is a no-op, 1025 * so we can just disable blending to get the correct result. 1026 */ 1027 if (fb->format->has_alpha && win_index > 0) { 1028 VOP_WIN_SET(vop, win, dst_alpha_ctl, 1029 DST_FACTOR_M0(ALPHA_SRC_INVERSE)); 1030 val = SRC_ALPHA_EN(1) | SRC_COLOR_M0(ALPHA_SRC_PRE_MUL) | 1031 SRC_ALPHA_M0(ALPHA_STRAIGHT) | 1032 SRC_BLEND_M0(ALPHA_PER_PIX) | 1033 SRC_ALPHA_CAL_M0(ALPHA_NO_SATURATION) | 1034 SRC_FACTOR_M0(ALPHA_ONE); 1035 VOP_WIN_SET(vop, win, src_alpha_ctl, val); 1036 1037 VOP_WIN_SET(vop, win, alpha_pre_mul, ALPHA_SRC_PRE_MUL); 1038 VOP_WIN_SET(vop, win, alpha_mode, ALPHA_PER_PIX); 1039 VOP_WIN_SET(vop, win, alpha_en, 1); 1040 } else { 1041 VOP_WIN_SET(vop, win, src_alpha_ctl, SRC_ALPHA_EN(0)); 1042 VOP_WIN_SET(vop, win, alpha_en, 0); 1043 } 1044 1045 VOP_WIN_SET(vop, win, enable, 1); 1046 vop->win_enabled |= BIT(win_index); 1047 spin_unlock(&vop->reg_lock); 1048 } 1049 1050 static int vop_plane_atomic_async_check(struct drm_plane *plane, 1051 struct drm_atomic_state *state) 1052 { 1053 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state, 1054 plane); 1055 struct vop_win *vop_win = to_vop_win(plane); 1056 const struct vop_win_data *win = vop_win->data; 1057 int min_scale = win->phy->scl ? FRAC_16_16(1, 8) : 1058 DRM_PLANE_NO_SCALING; 1059 int max_scale = win->phy->scl ? FRAC_16_16(8, 1) : 1060 DRM_PLANE_NO_SCALING; 1061 struct drm_crtc_state *crtc_state; 1062 1063 if (plane != new_plane_state->crtc->cursor) 1064 return -EINVAL; 1065 1066 if (!plane->state) 1067 return -EINVAL; 1068 1069 if (!plane->state->fb) 1070 return -EINVAL; 1071 1072 if (state) 1073 crtc_state = drm_atomic_get_existing_crtc_state(state, 1074 new_plane_state->crtc); 1075 else /* Special case for asynchronous cursor updates. */ 1076 crtc_state = plane->crtc->state; 1077 1078 return drm_atomic_helper_check_plane_state(plane->state, crtc_state, 1079 min_scale, max_scale, 1080 true, true); 1081 } 1082 1083 static void vop_plane_atomic_async_update(struct drm_plane *plane, 1084 struct drm_atomic_state *state) 1085 { 1086 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, 1087 plane); 1088 struct vop *vop = to_vop(plane->state->crtc); 1089 struct drm_framebuffer *old_fb = plane->state->fb; 1090 1091 plane->state->crtc_x = new_state->crtc_x; 1092 plane->state->crtc_y = new_state->crtc_y; 1093 plane->state->crtc_h = new_state->crtc_h; 1094 plane->state->crtc_w = new_state->crtc_w; 1095 plane->state->src_x = new_state->src_x; 1096 plane->state->src_y = new_state->src_y; 1097 plane->state->src_h = new_state->src_h; 1098 plane->state->src_w = new_state->src_w; 1099 swap(plane->state->fb, new_state->fb); 1100 1101 if (vop->is_enabled) { 1102 vop_plane_atomic_update(plane, state); 1103 spin_lock(&vop->reg_lock); 1104 vop_cfg_done(vop); 1105 spin_unlock(&vop->reg_lock); 1106 1107 /* 1108 * A scanout can still be occurring, so we can't drop the 1109 * reference to the old framebuffer. To solve this we get a 1110 * reference to old_fb and set a worker to release it later. 1111 * FIXME: if we perform 500 async_update calls before the 1112 * vblank, then we can have 500 different framebuffers waiting 1113 * to be released. 1114 */ 1115 if (old_fb && plane->state->fb != old_fb) { 1116 drm_framebuffer_get(old_fb); 1117 WARN_ON(drm_crtc_vblank_get(plane->state->crtc) != 0); 1118 drm_flip_work_queue(&vop->fb_unref_work, old_fb); 1119 set_bit(VOP_PENDING_FB_UNREF, &vop->pending); 1120 } 1121 } 1122 } 1123 1124 static const struct drm_plane_helper_funcs plane_helper_funcs = { 1125 .atomic_check = vop_plane_atomic_check, 1126 .atomic_update = vop_plane_atomic_update, 1127 .atomic_disable = vop_plane_atomic_disable, 1128 .atomic_async_check = vop_plane_atomic_async_check, 1129 .atomic_async_update = vop_plane_atomic_async_update, 1130 }; 1131 1132 static const struct drm_plane_funcs vop_plane_funcs = { 1133 .update_plane = drm_atomic_helper_update_plane, 1134 .disable_plane = drm_atomic_helper_disable_plane, 1135 .destroy = vop_plane_destroy, 1136 .reset = drm_atomic_helper_plane_reset, 1137 .atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state, 1138 .atomic_destroy_state = drm_atomic_helper_plane_destroy_state, 1139 .format_mod_supported = rockchip_mod_supported, 1140 }; 1141 1142 static int vop_crtc_enable_vblank(struct drm_crtc *crtc) 1143 { 1144 struct vop *vop = to_vop(crtc); 1145 unsigned long flags; 1146 1147 if (WARN_ON(!vop->is_enabled)) 1148 return -EPERM; 1149 1150 spin_lock_irqsave(&vop->irq_lock, flags); 1151 1152 VOP_INTR_SET_TYPE(vop, clear, FS_INTR, 1); 1153 VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 1); 1154 1155 spin_unlock_irqrestore(&vop->irq_lock, flags); 1156 1157 return 0; 1158 } 1159 1160 static void vop_crtc_disable_vblank(struct drm_crtc *crtc) 1161 { 1162 struct vop *vop = to_vop(crtc); 1163 unsigned long flags; 1164 1165 if (WARN_ON(!vop->is_enabled)) 1166 return; 1167 1168 spin_lock_irqsave(&vop->irq_lock, flags); 1169 1170 VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 0); 1171 1172 spin_unlock_irqrestore(&vop->irq_lock, flags); 1173 } 1174 1175 static enum drm_mode_status vop_crtc_mode_valid(struct drm_crtc *crtc, 1176 const struct drm_display_mode *mode) 1177 { 1178 struct vop *vop = to_vop(crtc); 1179 1180 if (vop->data->max_output.width && mode->hdisplay > vop->data->max_output.width) 1181 return MODE_BAD_HVALUE; 1182 1183 return MODE_OK; 1184 } 1185 1186 static bool vop_crtc_mode_fixup(struct drm_crtc *crtc, 1187 const struct drm_display_mode *mode, 1188 struct drm_display_mode *adjusted_mode) 1189 { 1190 struct vop *vop = to_vop(crtc); 1191 unsigned long rate; 1192 1193 /* 1194 * Clock craziness. 1195 * 1196 * Key points: 1197 * 1198 * - DRM works in kHz. 1199 * - Clock framework works in Hz. 1200 * - Rockchip's clock driver picks the clock rate that is the 1201 * same _OR LOWER_ than the one requested. 1202 * 1203 * Action plan: 1204 * 1205 * 1. Try to set the exact rate first, and confirm the clock framework 1206 * can provide it. 1207 * 1208 * 2. If the clock framework cannot provide the exact rate, we should 1209 * add 999 Hz to the requested rate. That way if the clock we need 1210 * is 60000001 Hz (~60 MHz) and DRM tells us to make 60000 kHz then 1211 * the clock framework will actually give us the right clock. 1212 * 1213 * 3. Get the clock framework to round the rate for us to tell us 1214 * what it will actually make. 1215 * 1216 * 4. Store the rounded up rate so that we don't need to worry about 1217 * this in the actual clk_set_rate(). 1218 */ 1219 rate = clk_round_rate(vop->dclk, adjusted_mode->clock * 1000); 1220 if (rate / 1000 != adjusted_mode->clock) 1221 rate = clk_round_rate(vop->dclk, 1222 adjusted_mode->clock * 1000 + 999); 1223 adjusted_mode->clock = DIV_ROUND_UP(rate, 1000); 1224 1225 return true; 1226 } 1227 1228 static bool vop_dsp_lut_is_enabled(struct vop *vop) 1229 { 1230 return vop_read_reg(vop, 0, &vop->data->common->dsp_lut_en); 1231 } 1232 1233 static u32 vop_lut_buffer_index(struct vop *vop) 1234 { 1235 return vop_read_reg(vop, 0, &vop->data->common->lut_buffer_index); 1236 } 1237 1238 static void vop_crtc_write_gamma_lut(struct vop *vop, struct drm_crtc *crtc) 1239 { 1240 struct drm_color_lut *lut = crtc->state->gamma_lut->data; 1241 unsigned int i, bpc = ilog2(vop->data->lut_size); 1242 1243 for (i = 0; i < crtc->gamma_size; i++) { 1244 u32 word; 1245 1246 word = (drm_color_lut_extract(lut[i].red, bpc) << (2 * bpc)) | 1247 (drm_color_lut_extract(lut[i].green, bpc) << bpc) | 1248 drm_color_lut_extract(lut[i].blue, bpc); 1249 writel(word, vop->lut_regs + i * 4); 1250 } 1251 } 1252 1253 static void vop_crtc_gamma_set(struct vop *vop, struct drm_crtc *crtc, 1254 struct drm_crtc_state *old_state) 1255 { 1256 struct drm_crtc_state *state = crtc->state; 1257 unsigned int idle; 1258 u32 lut_idx, old_idx; 1259 int ret; 1260 1261 if (!vop->lut_regs) 1262 return; 1263 1264 if (!state->gamma_lut || !VOP_HAS_REG(vop, common, update_gamma_lut)) { 1265 /* 1266 * To disable gamma (gamma_lut is null) or to write 1267 * an update to the LUT, clear dsp_lut_en. 1268 */ 1269 spin_lock(&vop->reg_lock); 1270 VOP_REG_SET(vop, common, dsp_lut_en, 0); 1271 vop_cfg_done(vop); 1272 spin_unlock(&vop->reg_lock); 1273 1274 /* 1275 * In order to write the LUT to the internal memory, 1276 * we need to first make sure the dsp_lut_en bit is cleared. 1277 */ 1278 ret = readx_poll_timeout(vop_dsp_lut_is_enabled, vop, 1279 idle, !idle, 5, 30 * 1000); 1280 if (ret) { 1281 DRM_DEV_ERROR(vop->dev, "display LUT RAM enable timeout!\n"); 1282 return; 1283 } 1284 1285 if (!state->gamma_lut) 1286 return; 1287 } else { 1288 /* 1289 * On RK3399 the gamma LUT can updated without clearing dsp_lut_en, 1290 * by setting update_gamma_lut then waiting for lut_buffer_index change 1291 */ 1292 old_idx = vop_lut_buffer_index(vop); 1293 } 1294 1295 spin_lock(&vop->reg_lock); 1296 vop_crtc_write_gamma_lut(vop, crtc); 1297 VOP_REG_SET(vop, common, dsp_lut_en, 1); 1298 VOP_REG_SET(vop, common, update_gamma_lut, 1); 1299 vop_cfg_done(vop); 1300 spin_unlock(&vop->reg_lock); 1301 1302 if (VOP_HAS_REG(vop, common, update_gamma_lut)) { 1303 ret = readx_poll_timeout(vop_lut_buffer_index, vop, 1304 lut_idx, lut_idx != old_idx, 5, 30 * 1000); 1305 if (ret) { 1306 DRM_DEV_ERROR(vop->dev, "gamma LUT update timeout!\n"); 1307 return; 1308 } 1309 1310 /* 1311 * update_gamma_lut is auto cleared by HW, but write 0 to clear the bit 1312 * in our backup of the regs. 1313 */ 1314 spin_lock(&vop->reg_lock); 1315 VOP_REG_SET(vop, common, update_gamma_lut, 0); 1316 spin_unlock(&vop->reg_lock); 1317 } 1318 } 1319 1320 static void vop_crtc_atomic_begin(struct drm_crtc *crtc, 1321 struct drm_atomic_state *state) 1322 { 1323 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, 1324 crtc); 1325 struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state, 1326 crtc); 1327 struct vop *vop = to_vop(crtc); 1328 1329 /* 1330 * Only update GAMMA if the 'active' flag is not changed, 1331 * otherwise it's updated by .atomic_enable. 1332 */ 1333 if (crtc_state->color_mgmt_changed && 1334 !crtc_state->active_changed) 1335 vop_crtc_gamma_set(vop, crtc, old_crtc_state); 1336 } 1337 1338 static void vop_crtc_atomic_enable(struct drm_crtc *crtc, 1339 struct drm_atomic_state *state) 1340 { 1341 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, 1342 crtc); 1343 struct vop *vop = to_vop(crtc); 1344 const struct vop_data *vop_data = vop->data; 1345 struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc->state); 1346 struct drm_display_mode *adjusted_mode = &crtc->state->adjusted_mode; 1347 u16 hsync_len = adjusted_mode->hsync_end - adjusted_mode->hsync_start; 1348 u16 hdisplay = adjusted_mode->hdisplay; 1349 u16 htotal = adjusted_mode->htotal; 1350 u16 hact_st = adjusted_mode->htotal - adjusted_mode->hsync_start; 1351 u16 hact_end = hact_st + hdisplay; 1352 u16 vdisplay = adjusted_mode->vdisplay; 1353 u16 vtotal = adjusted_mode->vtotal; 1354 u16 vsync_len = adjusted_mode->vsync_end - adjusted_mode->vsync_start; 1355 u16 vact_st = adjusted_mode->vtotal - adjusted_mode->vsync_start; 1356 u16 vact_end = vact_st + vdisplay; 1357 uint32_t pin_pol, val; 1358 int dither_bpc = s->output_bpc ? s->output_bpc : 10; 1359 int ret; 1360 1361 if (old_state && old_state->self_refresh_active) { 1362 drm_crtc_vblank_on(crtc); 1363 rockchip_drm_set_win_enabled(crtc, true); 1364 return; 1365 } 1366 1367 mutex_lock(&vop->vop_lock); 1368 1369 WARN_ON(vop->event); 1370 1371 ret = vop_enable(crtc, old_state); 1372 if (ret) { 1373 mutex_unlock(&vop->vop_lock); 1374 DRM_DEV_ERROR(vop->dev, "Failed to enable vop (%d)\n", ret); 1375 return; 1376 } 1377 pin_pol = (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) ? 1378 BIT(HSYNC_POSITIVE) : 0; 1379 pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) ? 1380 BIT(VSYNC_POSITIVE) : 0; 1381 VOP_REG_SET(vop, output, pin_pol, pin_pol); 1382 VOP_REG_SET(vop, output, mipi_dual_channel_en, 0); 1383 1384 switch (s->output_type) { 1385 case DRM_MODE_CONNECTOR_LVDS: 1386 VOP_REG_SET(vop, output, rgb_dclk_pol, 1); 1387 VOP_REG_SET(vop, output, rgb_pin_pol, pin_pol); 1388 VOP_REG_SET(vop, output, rgb_en, 1); 1389 break; 1390 case DRM_MODE_CONNECTOR_eDP: 1391 VOP_REG_SET(vop, output, edp_dclk_pol, 1); 1392 VOP_REG_SET(vop, output, edp_pin_pol, pin_pol); 1393 VOP_REG_SET(vop, output, edp_en, 1); 1394 break; 1395 case DRM_MODE_CONNECTOR_HDMIA: 1396 VOP_REG_SET(vop, output, hdmi_dclk_pol, 1); 1397 VOP_REG_SET(vop, output, hdmi_pin_pol, pin_pol); 1398 VOP_REG_SET(vop, output, hdmi_en, 1); 1399 break; 1400 case DRM_MODE_CONNECTOR_DSI: 1401 VOP_REG_SET(vop, output, mipi_dclk_pol, 1); 1402 VOP_REG_SET(vop, output, mipi_pin_pol, pin_pol); 1403 VOP_REG_SET(vop, output, mipi_en, 1); 1404 VOP_REG_SET(vop, output, mipi_dual_channel_en, 1405 !!(s->output_flags & ROCKCHIP_OUTPUT_DSI_DUAL)); 1406 break; 1407 case DRM_MODE_CONNECTOR_DisplayPort: 1408 VOP_REG_SET(vop, output, dp_dclk_pol, 0); 1409 VOP_REG_SET(vop, output, dp_pin_pol, pin_pol); 1410 VOP_REG_SET(vop, output, dp_en, 1); 1411 break; 1412 default: 1413 DRM_DEV_ERROR(vop->dev, "unsupported connector_type [%d]\n", 1414 s->output_type); 1415 } 1416 1417 /* 1418 * if vop is not support RGB10 output, need force RGB10 to RGB888. 1419 */ 1420 if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA && 1421 !(vop_data->feature & VOP_FEATURE_OUTPUT_RGB10)) 1422 s->output_mode = ROCKCHIP_OUT_MODE_P888; 1423 1424 if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA && dither_bpc <= 8) 1425 VOP_REG_SET(vop, common, pre_dither_down, 1); 1426 else 1427 VOP_REG_SET(vop, common, pre_dither_down, 0); 1428 1429 if (dither_bpc == 6) { 1430 VOP_REG_SET(vop, common, dither_down_sel, DITHER_DOWN_ALLEGRO); 1431 VOP_REG_SET(vop, common, dither_down_mode, RGB888_TO_RGB666); 1432 VOP_REG_SET(vop, common, dither_down_en, 1); 1433 } else { 1434 VOP_REG_SET(vop, common, dither_down_en, 0); 1435 } 1436 1437 VOP_REG_SET(vop, common, out_mode, s->output_mode); 1438 1439 VOP_REG_SET(vop, modeset, htotal_pw, (htotal << 16) | hsync_len); 1440 val = hact_st << 16; 1441 val |= hact_end; 1442 VOP_REG_SET(vop, modeset, hact_st_end, val); 1443 VOP_REG_SET(vop, modeset, hpost_st_end, val); 1444 1445 VOP_REG_SET(vop, modeset, vtotal_pw, (vtotal << 16) | vsync_len); 1446 val = vact_st << 16; 1447 val |= vact_end; 1448 VOP_REG_SET(vop, modeset, vact_st_end, val); 1449 VOP_REG_SET(vop, modeset, vpost_st_end, val); 1450 1451 VOP_REG_SET(vop, intr, line_flag_num[0], vact_end); 1452 1453 clk_set_rate(vop->dclk, adjusted_mode->clock * 1000); 1454 1455 VOP_REG_SET(vop, common, standby, 0); 1456 mutex_unlock(&vop->vop_lock); 1457 1458 /* 1459 * If we have a GAMMA LUT in the state, then let's make sure 1460 * it's updated. We might be coming out of suspend, 1461 * which means the LUT internal memory needs to be re-written. 1462 */ 1463 if (crtc->state->gamma_lut) 1464 vop_crtc_gamma_set(vop, crtc, old_state); 1465 } 1466 1467 static bool vop_fs_irq_is_pending(struct vop *vop) 1468 { 1469 return VOP_INTR_GET_TYPE(vop, status, FS_INTR); 1470 } 1471 1472 static void vop_wait_for_irq_handler(struct vop *vop) 1473 { 1474 bool pending; 1475 int ret; 1476 1477 /* 1478 * Spin until frame start interrupt status bit goes low, which means 1479 * that interrupt handler was invoked and cleared it. The timeout of 1480 * 10 msecs is really too long, but it is just a safety measure if 1481 * something goes really wrong. The wait will only happen in the very 1482 * unlikely case of a vblank happening exactly at the same time and 1483 * shouldn't exceed microseconds range. 1484 */ 1485 ret = readx_poll_timeout_atomic(vop_fs_irq_is_pending, vop, pending, 1486 !pending, 0, 10 * 1000); 1487 if (ret) 1488 DRM_DEV_ERROR(vop->dev, "VOP vblank IRQ stuck for 10 ms\n"); 1489 1490 synchronize_irq(vop->irq); 1491 } 1492 1493 static int vop_crtc_atomic_check(struct drm_crtc *crtc, 1494 struct drm_atomic_state *state) 1495 { 1496 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, 1497 crtc); 1498 struct vop *vop = to_vop(crtc); 1499 struct drm_plane *plane; 1500 struct drm_plane_state *plane_state; 1501 struct rockchip_crtc_state *s; 1502 int afbc_planes = 0; 1503 1504 if (vop->lut_regs && crtc_state->color_mgmt_changed && 1505 crtc_state->gamma_lut) { 1506 unsigned int len; 1507 1508 len = drm_color_lut_size(crtc_state->gamma_lut); 1509 if (len != crtc->gamma_size) { 1510 DRM_DEBUG_KMS("Invalid LUT size; got %d, expected %d\n", 1511 len, crtc->gamma_size); 1512 return -EINVAL; 1513 } 1514 } 1515 1516 drm_atomic_crtc_state_for_each_plane(plane, crtc_state) { 1517 plane_state = 1518 drm_atomic_get_plane_state(crtc_state->state, plane); 1519 if (IS_ERR(plane_state)) { 1520 DRM_DEBUG_KMS("Cannot get plane state for plane %s\n", 1521 plane->name); 1522 return PTR_ERR(plane_state); 1523 } 1524 1525 if (drm_is_afbc(plane_state->fb->modifier)) 1526 ++afbc_planes; 1527 } 1528 1529 if (afbc_planes > 1) { 1530 DRM_DEBUG_KMS("Invalid number of AFBC planes; got %d, expected at most 1\n", afbc_planes); 1531 return -EINVAL; 1532 } 1533 1534 s = to_rockchip_crtc_state(crtc_state); 1535 s->enable_afbc = afbc_planes > 0; 1536 1537 return 0; 1538 } 1539 1540 static void vop_crtc_atomic_flush(struct drm_crtc *crtc, 1541 struct drm_atomic_state *state) 1542 { 1543 struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state, 1544 crtc); 1545 struct drm_atomic_state *old_state = old_crtc_state->state; 1546 struct drm_plane_state *old_plane_state, *new_plane_state; 1547 struct vop *vop = to_vop(crtc); 1548 struct drm_plane *plane; 1549 struct rockchip_crtc_state *s; 1550 int i; 1551 1552 if (WARN_ON(!vop->is_enabled)) 1553 return; 1554 1555 spin_lock(&vop->reg_lock); 1556 1557 /* Enable AFBC if there is some AFBC window, disable otherwise. */ 1558 s = to_rockchip_crtc_state(crtc->state); 1559 VOP_AFBC_SET(vop, enable, s->enable_afbc); 1560 vop_cfg_done(vop); 1561 1562 spin_unlock(&vop->reg_lock); 1563 1564 /* 1565 * There is a (rather unlikely) possiblity that a vblank interrupt 1566 * fired before we set the cfg_done bit. To avoid spuriously 1567 * signalling flip completion we need to wait for it to finish. 1568 */ 1569 vop_wait_for_irq_handler(vop); 1570 1571 spin_lock_irq(&crtc->dev->event_lock); 1572 if (crtc->state->event) { 1573 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 1574 WARN_ON(vop->event); 1575 1576 vop->event = crtc->state->event; 1577 crtc->state->event = NULL; 1578 } 1579 spin_unlock_irq(&crtc->dev->event_lock); 1580 1581 for_each_oldnew_plane_in_state(old_state, plane, old_plane_state, 1582 new_plane_state, i) { 1583 if (!old_plane_state->fb) 1584 continue; 1585 1586 if (old_plane_state->fb == new_plane_state->fb) 1587 continue; 1588 1589 drm_framebuffer_get(old_plane_state->fb); 1590 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 1591 drm_flip_work_queue(&vop->fb_unref_work, old_plane_state->fb); 1592 set_bit(VOP_PENDING_FB_UNREF, &vop->pending); 1593 } 1594 } 1595 1596 static const struct drm_crtc_helper_funcs vop_crtc_helper_funcs = { 1597 .mode_valid = vop_crtc_mode_valid, 1598 .mode_fixup = vop_crtc_mode_fixup, 1599 .atomic_check = vop_crtc_atomic_check, 1600 .atomic_begin = vop_crtc_atomic_begin, 1601 .atomic_flush = vop_crtc_atomic_flush, 1602 .atomic_enable = vop_crtc_atomic_enable, 1603 .atomic_disable = vop_crtc_atomic_disable, 1604 }; 1605 1606 static void vop_crtc_destroy(struct drm_crtc *crtc) 1607 { 1608 drm_crtc_cleanup(crtc); 1609 } 1610 1611 static struct drm_crtc_state *vop_crtc_duplicate_state(struct drm_crtc *crtc) 1612 { 1613 struct rockchip_crtc_state *rockchip_state; 1614 1615 if (WARN_ON(!crtc->state)) 1616 return NULL; 1617 1618 rockchip_state = kzalloc(sizeof(*rockchip_state), GFP_KERNEL); 1619 if (!rockchip_state) 1620 return NULL; 1621 1622 __drm_atomic_helper_crtc_duplicate_state(crtc, &rockchip_state->base); 1623 return &rockchip_state->base; 1624 } 1625 1626 static void vop_crtc_destroy_state(struct drm_crtc *crtc, 1627 struct drm_crtc_state *state) 1628 { 1629 struct rockchip_crtc_state *s = to_rockchip_crtc_state(state); 1630 1631 __drm_atomic_helper_crtc_destroy_state(&s->base); 1632 kfree(s); 1633 } 1634 1635 static void vop_crtc_reset(struct drm_crtc *crtc) 1636 { 1637 struct rockchip_crtc_state *crtc_state = 1638 kzalloc(sizeof(*crtc_state), GFP_KERNEL); 1639 1640 if (crtc->state) 1641 vop_crtc_destroy_state(crtc, crtc->state); 1642 1643 __drm_atomic_helper_crtc_reset(crtc, &crtc_state->base); 1644 } 1645 1646 #ifdef CONFIG_DRM_ANALOGIX_DP 1647 static struct drm_connector *vop_get_edp_connector(struct vop *vop) 1648 { 1649 struct drm_connector *connector; 1650 struct drm_connector_list_iter conn_iter; 1651 1652 drm_connector_list_iter_begin(vop->drm_dev, &conn_iter); 1653 drm_for_each_connector_iter(connector, &conn_iter) { 1654 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) { 1655 drm_connector_list_iter_end(&conn_iter); 1656 return connector; 1657 } 1658 } 1659 drm_connector_list_iter_end(&conn_iter); 1660 1661 return NULL; 1662 } 1663 1664 static int vop_crtc_set_crc_source(struct drm_crtc *crtc, 1665 const char *source_name) 1666 { 1667 struct vop *vop = to_vop(crtc); 1668 struct drm_connector *connector; 1669 int ret; 1670 1671 connector = vop_get_edp_connector(vop); 1672 if (!connector) 1673 return -EINVAL; 1674 1675 if (source_name && strcmp(source_name, "auto") == 0) 1676 ret = analogix_dp_start_crc(connector); 1677 else if (!source_name) 1678 ret = analogix_dp_stop_crc(connector); 1679 else 1680 ret = -EINVAL; 1681 1682 return ret; 1683 } 1684 1685 static int 1686 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name, 1687 size_t *values_cnt) 1688 { 1689 if (source_name && strcmp(source_name, "auto") != 0) 1690 return -EINVAL; 1691 1692 *values_cnt = 3; 1693 return 0; 1694 } 1695 1696 #else 1697 static int vop_crtc_set_crc_source(struct drm_crtc *crtc, 1698 const char *source_name) 1699 { 1700 return -ENODEV; 1701 } 1702 1703 static int 1704 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name, 1705 size_t *values_cnt) 1706 { 1707 return -ENODEV; 1708 } 1709 #endif 1710 1711 static const struct drm_crtc_funcs vop_crtc_funcs = { 1712 .set_config = drm_atomic_helper_set_config, 1713 .page_flip = drm_atomic_helper_page_flip, 1714 .destroy = vop_crtc_destroy, 1715 .reset = vop_crtc_reset, 1716 .atomic_duplicate_state = vop_crtc_duplicate_state, 1717 .atomic_destroy_state = vop_crtc_destroy_state, 1718 .enable_vblank = vop_crtc_enable_vblank, 1719 .disable_vblank = vop_crtc_disable_vblank, 1720 .set_crc_source = vop_crtc_set_crc_source, 1721 .verify_crc_source = vop_crtc_verify_crc_source, 1722 }; 1723 1724 static void vop_fb_unref_worker(struct drm_flip_work *work, void *val) 1725 { 1726 struct vop *vop = container_of(work, struct vop, fb_unref_work); 1727 struct drm_framebuffer *fb = val; 1728 1729 drm_crtc_vblank_put(&vop->crtc); 1730 drm_framebuffer_put(fb); 1731 } 1732 1733 static void vop_handle_vblank(struct vop *vop) 1734 { 1735 struct drm_device *drm = vop->drm_dev; 1736 struct drm_crtc *crtc = &vop->crtc; 1737 1738 spin_lock(&drm->event_lock); 1739 if (vop->event) { 1740 drm_crtc_send_vblank_event(crtc, vop->event); 1741 drm_crtc_vblank_put(crtc); 1742 vop->event = NULL; 1743 } 1744 spin_unlock(&drm->event_lock); 1745 1746 if (test_and_clear_bit(VOP_PENDING_FB_UNREF, &vop->pending)) 1747 drm_flip_work_commit(&vop->fb_unref_work, system_unbound_wq); 1748 } 1749 1750 static irqreturn_t vop_isr(int irq, void *data) 1751 { 1752 struct vop *vop = data; 1753 struct drm_crtc *crtc = &vop->crtc; 1754 uint32_t active_irqs; 1755 int ret = IRQ_NONE; 1756 1757 /* 1758 * The irq is shared with the iommu. If the runtime-pm state of the 1759 * vop-device is disabled the irq has to be targeted at the iommu. 1760 */ 1761 if (!pm_runtime_get_if_in_use(vop->dev)) 1762 return IRQ_NONE; 1763 1764 if (vop_core_clks_enable(vop)) { 1765 DRM_DEV_ERROR_RATELIMITED(vop->dev, "couldn't enable clocks\n"); 1766 goto out; 1767 } 1768 1769 /* 1770 * interrupt register has interrupt status, enable and clear bits, we 1771 * must hold irq_lock to avoid a race with enable/disable_vblank(). 1772 */ 1773 spin_lock(&vop->irq_lock); 1774 1775 active_irqs = VOP_INTR_GET_TYPE(vop, status, INTR_MASK); 1776 /* Clear all active interrupt sources */ 1777 if (active_irqs) 1778 VOP_INTR_SET_TYPE(vop, clear, active_irqs, 1); 1779 1780 spin_unlock(&vop->irq_lock); 1781 1782 /* This is expected for vop iommu irqs, since the irq is shared */ 1783 if (!active_irqs) 1784 goto out_disable; 1785 1786 if (active_irqs & DSP_HOLD_VALID_INTR) { 1787 complete(&vop->dsp_hold_completion); 1788 active_irqs &= ~DSP_HOLD_VALID_INTR; 1789 ret = IRQ_HANDLED; 1790 } 1791 1792 if (active_irqs & LINE_FLAG_INTR) { 1793 complete(&vop->line_flag_completion); 1794 active_irqs &= ~LINE_FLAG_INTR; 1795 ret = IRQ_HANDLED; 1796 } 1797 1798 if (active_irqs & FS_INTR) { 1799 drm_crtc_handle_vblank(crtc); 1800 vop_handle_vblank(vop); 1801 active_irqs &= ~FS_INTR; 1802 ret = IRQ_HANDLED; 1803 } 1804 1805 /* Unhandled irqs are spurious. */ 1806 if (active_irqs) 1807 DRM_DEV_ERROR(vop->dev, "Unknown VOP IRQs: %#02x\n", 1808 active_irqs); 1809 1810 out_disable: 1811 vop_core_clks_disable(vop); 1812 out: 1813 pm_runtime_put(vop->dev); 1814 return ret; 1815 } 1816 1817 static void vop_plane_add_properties(struct drm_plane *plane, 1818 const struct vop_win_data *win_data) 1819 { 1820 unsigned int flags = 0; 1821 1822 flags |= VOP_WIN_HAS_REG(win_data, x_mir_en) ? DRM_MODE_REFLECT_X : 0; 1823 flags |= VOP_WIN_HAS_REG(win_data, y_mir_en) ? DRM_MODE_REFLECT_Y : 0; 1824 if (flags) 1825 drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0, 1826 DRM_MODE_ROTATE_0 | flags); 1827 } 1828 1829 static int vop_create_crtc(struct vop *vop) 1830 { 1831 const struct vop_data *vop_data = vop->data; 1832 struct device *dev = vop->dev; 1833 struct drm_device *drm_dev = vop->drm_dev; 1834 struct drm_plane *primary = NULL, *cursor = NULL, *plane, *tmp; 1835 struct drm_crtc *crtc = &vop->crtc; 1836 struct device_node *port; 1837 int ret; 1838 int i; 1839 1840 /* 1841 * Create drm_plane for primary and cursor planes first, since we need 1842 * to pass them to drm_crtc_init_with_planes, which sets the 1843 * "possible_crtcs" to the newly initialized crtc. 1844 */ 1845 for (i = 0; i < vop_data->win_size; i++) { 1846 struct vop_win *vop_win = &vop->win[i]; 1847 const struct vop_win_data *win_data = vop_win->data; 1848 1849 if (win_data->type != DRM_PLANE_TYPE_PRIMARY && 1850 win_data->type != DRM_PLANE_TYPE_CURSOR) 1851 continue; 1852 1853 ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base, 1854 0, &vop_plane_funcs, 1855 win_data->phy->data_formats, 1856 win_data->phy->nformats, 1857 win_data->phy->format_modifiers, 1858 win_data->type, NULL); 1859 if (ret) { 1860 DRM_DEV_ERROR(vop->dev, "failed to init plane %d\n", 1861 ret); 1862 goto err_cleanup_planes; 1863 } 1864 1865 plane = &vop_win->base; 1866 drm_plane_helper_add(plane, &plane_helper_funcs); 1867 vop_plane_add_properties(plane, win_data); 1868 if (plane->type == DRM_PLANE_TYPE_PRIMARY) 1869 primary = plane; 1870 else if (plane->type == DRM_PLANE_TYPE_CURSOR) 1871 cursor = plane; 1872 } 1873 1874 ret = drm_crtc_init_with_planes(drm_dev, crtc, primary, cursor, 1875 &vop_crtc_funcs, NULL); 1876 if (ret) 1877 goto err_cleanup_planes; 1878 1879 drm_crtc_helper_add(crtc, &vop_crtc_helper_funcs); 1880 if (vop->lut_regs) { 1881 drm_mode_crtc_set_gamma_size(crtc, vop_data->lut_size); 1882 drm_crtc_enable_color_mgmt(crtc, 0, false, vop_data->lut_size); 1883 } 1884 1885 /* 1886 * Create drm_planes for overlay windows with possible_crtcs restricted 1887 * to the newly created crtc. 1888 */ 1889 for (i = 0; i < vop_data->win_size; i++) { 1890 struct vop_win *vop_win = &vop->win[i]; 1891 const struct vop_win_data *win_data = vop_win->data; 1892 unsigned long possible_crtcs = drm_crtc_mask(crtc); 1893 1894 if (win_data->type != DRM_PLANE_TYPE_OVERLAY) 1895 continue; 1896 1897 ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base, 1898 possible_crtcs, 1899 &vop_plane_funcs, 1900 win_data->phy->data_formats, 1901 win_data->phy->nformats, 1902 win_data->phy->format_modifiers, 1903 win_data->type, NULL); 1904 if (ret) { 1905 DRM_DEV_ERROR(vop->dev, "failed to init overlay %d\n", 1906 ret); 1907 goto err_cleanup_crtc; 1908 } 1909 drm_plane_helper_add(&vop_win->base, &plane_helper_funcs); 1910 vop_plane_add_properties(&vop_win->base, win_data); 1911 } 1912 1913 port = of_get_child_by_name(dev->of_node, "port"); 1914 if (!port) { 1915 DRM_DEV_ERROR(vop->dev, "no port node found in %pOF\n", 1916 dev->of_node); 1917 ret = -ENOENT; 1918 goto err_cleanup_crtc; 1919 } 1920 1921 drm_flip_work_init(&vop->fb_unref_work, "fb_unref", 1922 vop_fb_unref_worker); 1923 1924 init_completion(&vop->dsp_hold_completion); 1925 init_completion(&vop->line_flag_completion); 1926 crtc->port = port; 1927 1928 ret = drm_self_refresh_helper_init(crtc); 1929 if (ret) 1930 DRM_DEV_DEBUG_KMS(vop->dev, 1931 "Failed to init %s with SR helpers %d, ignoring\n", 1932 crtc->name, ret); 1933 1934 return 0; 1935 1936 err_cleanup_crtc: 1937 drm_crtc_cleanup(crtc); 1938 err_cleanup_planes: 1939 list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list, 1940 head) 1941 drm_plane_cleanup(plane); 1942 return ret; 1943 } 1944 1945 static void vop_destroy_crtc(struct vop *vop) 1946 { 1947 struct drm_crtc *crtc = &vop->crtc; 1948 struct drm_device *drm_dev = vop->drm_dev; 1949 struct drm_plane *plane, *tmp; 1950 1951 drm_self_refresh_helper_cleanup(crtc); 1952 1953 of_node_put(crtc->port); 1954 1955 /* 1956 * We need to cleanup the planes now. Why? 1957 * 1958 * The planes are "&vop->win[i].base". That means the memory is 1959 * all part of the big "struct vop" chunk of memory. That memory 1960 * was devm allocated and associated with this component. We need to 1961 * free it ourselves before vop_unbind() finishes. 1962 */ 1963 list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list, 1964 head) 1965 vop_plane_destroy(plane); 1966 1967 /* 1968 * Destroy CRTC after vop_plane_destroy() since vop_disable_plane() 1969 * references the CRTC. 1970 */ 1971 drm_crtc_cleanup(crtc); 1972 drm_flip_work_cleanup(&vop->fb_unref_work); 1973 } 1974 1975 static int vop_initial(struct vop *vop) 1976 { 1977 struct reset_control *ahb_rst; 1978 int i, ret; 1979 1980 vop->hclk = devm_clk_get(vop->dev, "hclk_vop"); 1981 if (IS_ERR(vop->hclk)) { 1982 DRM_DEV_ERROR(vop->dev, "failed to get hclk source\n"); 1983 return PTR_ERR(vop->hclk); 1984 } 1985 vop->aclk = devm_clk_get(vop->dev, "aclk_vop"); 1986 if (IS_ERR(vop->aclk)) { 1987 DRM_DEV_ERROR(vop->dev, "failed to get aclk source\n"); 1988 return PTR_ERR(vop->aclk); 1989 } 1990 vop->dclk = devm_clk_get(vop->dev, "dclk_vop"); 1991 if (IS_ERR(vop->dclk)) { 1992 DRM_DEV_ERROR(vop->dev, "failed to get dclk source\n"); 1993 return PTR_ERR(vop->dclk); 1994 } 1995 1996 ret = pm_runtime_resume_and_get(vop->dev); 1997 if (ret < 0) { 1998 DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret); 1999 return ret; 2000 } 2001 2002 ret = clk_prepare(vop->dclk); 2003 if (ret < 0) { 2004 DRM_DEV_ERROR(vop->dev, "failed to prepare dclk\n"); 2005 goto err_put_pm_runtime; 2006 } 2007 2008 /* Enable both the hclk and aclk to setup the vop */ 2009 ret = clk_prepare_enable(vop->hclk); 2010 if (ret < 0) { 2011 DRM_DEV_ERROR(vop->dev, "failed to prepare/enable hclk\n"); 2012 goto err_unprepare_dclk; 2013 } 2014 2015 ret = clk_prepare_enable(vop->aclk); 2016 if (ret < 0) { 2017 DRM_DEV_ERROR(vop->dev, "failed to prepare/enable aclk\n"); 2018 goto err_disable_hclk; 2019 } 2020 2021 /* 2022 * do hclk_reset, reset all vop registers. 2023 */ 2024 ahb_rst = devm_reset_control_get(vop->dev, "ahb"); 2025 if (IS_ERR(ahb_rst)) { 2026 DRM_DEV_ERROR(vop->dev, "failed to get ahb reset\n"); 2027 ret = PTR_ERR(ahb_rst); 2028 goto err_disable_aclk; 2029 } 2030 reset_control_assert(ahb_rst); 2031 usleep_range(10, 20); 2032 reset_control_deassert(ahb_rst); 2033 2034 VOP_INTR_SET_TYPE(vop, clear, INTR_MASK, 1); 2035 VOP_INTR_SET_TYPE(vop, enable, INTR_MASK, 0); 2036 2037 for (i = 0; i < vop->len; i += sizeof(u32)) 2038 vop->regsbak[i / 4] = readl_relaxed(vop->regs + i); 2039 2040 VOP_REG_SET(vop, misc, global_regdone_en, 1); 2041 VOP_REG_SET(vop, common, dsp_blank, 0); 2042 2043 for (i = 0; i < vop->data->win_size; i++) { 2044 struct vop_win *vop_win = &vop->win[i]; 2045 const struct vop_win_data *win = vop_win->data; 2046 int channel = i * 2 + 1; 2047 2048 VOP_WIN_SET(vop, win, channel, (channel + 1) << 4 | channel); 2049 vop_win_disable(vop, vop_win); 2050 VOP_WIN_SET(vop, win, gate, 1); 2051 } 2052 2053 vop_cfg_done(vop); 2054 2055 /* 2056 * do dclk_reset, let all config take affect. 2057 */ 2058 vop->dclk_rst = devm_reset_control_get(vop->dev, "dclk"); 2059 if (IS_ERR(vop->dclk_rst)) { 2060 DRM_DEV_ERROR(vop->dev, "failed to get dclk reset\n"); 2061 ret = PTR_ERR(vop->dclk_rst); 2062 goto err_disable_aclk; 2063 } 2064 reset_control_assert(vop->dclk_rst); 2065 usleep_range(10, 20); 2066 reset_control_deassert(vop->dclk_rst); 2067 2068 clk_disable(vop->hclk); 2069 clk_disable(vop->aclk); 2070 2071 vop->is_enabled = false; 2072 2073 pm_runtime_put_sync(vop->dev); 2074 2075 return 0; 2076 2077 err_disable_aclk: 2078 clk_disable_unprepare(vop->aclk); 2079 err_disable_hclk: 2080 clk_disable_unprepare(vop->hclk); 2081 err_unprepare_dclk: 2082 clk_unprepare(vop->dclk); 2083 err_put_pm_runtime: 2084 pm_runtime_put_sync(vop->dev); 2085 return ret; 2086 } 2087 2088 /* 2089 * Initialize the vop->win array elements. 2090 */ 2091 static void vop_win_init(struct vop *vop) 2092 { 2093 const struct vop_data *vop_data = vop->data; 2094 unsigned int i; 2095 2096 for (i = 0; i < vop_data->win_size; i++) { 2097 struct vop_win *vop_win = &vop->win[i]; 2098 const struct vop_win_data *win_data = &vop_data->win[i]; 2099 2100 vop_win->data = win_data; 2101 vop_win->vop = vop; 2102 2103 if (vop_data->win_yuv2yuv) 2104 vop_win->yuv2yuv_data = &vop_data->win_yuv2yuv[i]; 2105 } 2106 } 2107 2108 /** 2109 * rockchip_drm_wait_vact_end 2110 * @crtc: CRTC to enable line flag 2111 * @mstimeout: millisecond for timeout 2112 * 2113 * Wait for vact_end line flag irq or timeout. 2114 * 2115 * Returns: 2116 * Zero on success, negative errno on failure. 2117 */ 2118 int rockchip_drm_wait_vact_end(struct drm_crtc *crtc, unsigned int mstimeout) 2119 { 2120 struct vop *vop = to_vop(crtc); 2121 unsigned long jiffies_left; 2122 int ret = 0; 2123 2124 if (!crtc || !vop->is_enabled) 2125 return -ENODEV; 2126 2127 mutex_lock(&vop->vop_lock); 2128 if (mstimeout <= 0) { 2129 ret = -EINVAL; 2130 goto out; 2131 } 2132 2133 if (vop_line_flag_irq_is_enabled(vop)) { 2134 ret = -EBUSY; 2135 goto out; 2136 } 2137 2138 reinit_completion(&vop->line_flag_completion); 2139 vop_line_flag_irq_enable(vop); 2140 2141 jiffies_left = wait_for_completion_timeout(&vop->line_flag_completion, 2142 msecs_to_jiffies(mstimeout)); 2143 vop_line_flag_irq_disable(vop); 2144 2145 if (jiffies_left == 0) { 2146 DRM_DEV_ERROR(vop->dev, "Timeout waiting for IRQ\n"); 2147 ret = -ETIMEDOUT; 2148 goto out; 2149 } 2150 2151 out: 2152 mutex_unlock(&vop->vop_lock); 2153 return ret; 2154 } 2155 EXPORT_SYMBOL(rockchip_drm_wait_vact_end); 2156 2157 static int vop_bind(struct device *dev, struct device *master, void *data) 2158 { 2159 struct platform_device *pdev = to_platform_device(dev); 2160 const struct vop_data *vop_data; 2161 struct drm_device *drm_dev = data; 2162 struct vop *vop; 2163 struct resource *res; 2164 int ret, irq; 2165 2166 vop_data = of_device_get_match_data(dev); 2167 if (!vop_data) 2168 return -ENODEV; 2169 2170 /* Allocate vop struct and its vop_win array */ 2171 vop = devm_kzalloc(dev, struct_size(vop, win, vop_data->win_size), 2172 GFP_KERNEL); 2173 if (!vop) 2174 return -ENOMEM; 2175 2176 vop->dev = dev; 2177 vop->data = vop_data; 2178 vop->drm_dev = drm_dev; 2179 dev_set_drvdata(dev, vop); 2180 2181 vop_win_init(vop); 2182 2183 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2184 vop->regs = devm_ioremap_resource(dev, res); 2185 if (IS_ERR(vop->regs)) 2186 return PTR_ERR(vop->regs); 2187 vop->len = resource_size(res); 2188 2189 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 2190 if (res) { 2191 if (vop_data->lut_size != 1024 && vop_data->lut_size != 256) { 2192 DRM_DEV_ERROR(dev, "unsupported gamma LUT size %d\n", vop_data->lut_size); 2193 return -EINVAL; 2194 } 2195 vop->lut_regs = devm_ioremap_resource(dev, res); 2196 if (IS_ERR(vop->lut_regs)) 2197 return PTR_ERR(vop->lut_regs); 2198 } 2199 2200 vop->regsbak = devm_kzalloc(dev, vop->len, GFP_KERNEL); 2201 if (!vop->regsbak) 2202 return -ENOMEM; 2203 2204 irq = platform_get_irq(pdev, 0); 2205 if (irq < 0) { 2206 DRM_DEV_ERROR(dev, "cannot find irq for vop\n"); 2207 return irq; 2208 } 2209 vop->irq = (unsigned int)irq; 2210 2211 spin_lock_init(&vop->reg_lock); 2212 spin_lock_init(&vop->irq_lock); 2213 mutex_init(&vop->vop_lock); 2214 2215 ret = vop_create_crtc(vop); 2216 if (ret) 2217 return ret; 2218 2219 pm_runtime_enable(&pdev->dev); 2220 2221 ret = vop_initial(vop); 2222 if (ret < 0) { 2223 DRM_DEV_ERROR(&pdev->dev, 2224 "cannot initial vop dev - err %d\n", ret); 2225 goto err_disable_pm_runtime; 2226 } 2227 2228 ret = devm_request_irq(dev, vop->irq, vop_isr, 2229 IRQF_SHARED, dev_name(dev), vop); 2230 if (ret) 2231 goto err_disable_pm_runtime; 2232 2233 if (vop->data->feature & VOP_FEATURE_INTERNAL_RGB) { 2234 vop->rgb = rockchip_rgb_init(dev, &vop->crtc, vop->drm_dev, 0); 2235 if (IS_ERR(vop->rgb)) { 2236 ret = PTR_ERR(vop->rgb); 2237 goto err_disable_pm_runtime; 2238 } 2239 } 2240 2241 rockchip_drm_dma_init_device(drm_dev, dev); 2242 2243 return 0; 2244 2245 err_disable_pm_runtime: 2246 pm_runtime_disable(&pdev->dev); 2247 vop_destroy_crtc(vop); 2248 return ret; 2249 } 2250 2251 static void vop_unbind(struct device *dev, struct device *master, void *data) 2252 { 2253 struct vop *vop = dev_get_drvdata(dev); 2254 2255 if (vop->rgb) 2256 rockchip_rgb_fini(vop->rgb); 2257 2258 pm_runtime_disable(dev); 2259 vop_destroy_crtc(vop); 2260 2261 clk_unprepare(vop->aclk); 2262 clk_unprepare(vop->hclk); 2263 clk_unprepare(vop->dclk); 2264 } 2265 2266 const struct component_ops vop_component_ops = { 2267 .bind = vop_bind, 2268 .unbind = vop_unbind, 2269 }; 2270 EXPORT_SYMBOL_GPL(vop_component_ops); 2271