1 /*
2  * Copyright (C) Fuzhou Rockchip Electronics Co.Ltd
3  * Author:Mark Yao <mark.yao@rock-chips.com>
4  *
5  * This software is licensed under the terms of the GNU General Public
6  * License version 2, as published by the Free Software Foundation, and
7  * may be copied, distributed, and modified under those terms.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 
15 #include <drm/drm.h>
16 #include <drm/drmP.h>
17 #include <drm/drm_atomic.h>
18 #include <drm/drm_crtc.h>
19 #include <drm/drm_crtc_helper.h>
20 #include <drm/drm_flip_work.h>
21 #include <drm/drm_plane_helper.h>
22 
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/clk.h>
27 #include <linux/iopoll.h>
28 #include <linux/of.h>
29 #include <linux/of_device.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/component.h>
32 
33 #include <linux/reset.h>
34 #include <linux/delay.h>
35 
36 #include "rockchip_drm_drv.h"
37 #include "rockchip_drm_gem.h"
38 #include "rockchip_drm_fb.h"
39 #include "rockchip_drm_psr.h"
40 #include "rockchip_drm_vop.h"
41 
42 #define __REG_SET_RELAXED(x, off, mask, shift, v, write_mask) \
43 		vop_mask_write(x, off, mask, shift, v, write_mask, true)
44 
45 #define __REG_SET_NORMAL(x, off, mask, shift, v, write_mask) \
46 		vop_mask_write(x, off, mask, shift, v, write_mask, false)
47 
48 #define REG_SET(x, base, reg, v, mode) \
49 		__REG_SET_##mode(x, base + reg.offset, \
50 				 reg.mask, reg.shift, v, reg.write_mask)
51 #define REG_SET_MASK(x, base, reg, mask, v, mode) \
52 		__REG_SET_##mode(x, base + reg.offset, \
53 				 mask, reg.shift, v, reg.write_mask)
54 
55 #define VOP_WIN_SET(x, win, name, v) \
56 		REG_SET(x, win->base, win->phy->name, v, RELAXED)
57 #define VOP_SCL_SET(x, win, name, v) \
58 		REG_SET(x, win->base, win->phy->scl->name, v, RELAXED)
59 #define VOP_SCL_SET_EXT(x, win, name, v) \
60 		REG_SET(x, win->base, win->phy->scl->ext->name, v, RELAXED)
61 #define VOP_CTRL_SET(x, name, v) \
62 		REG_SET(x, 0, (x)->data->ctrl->name, v, NORMAL)
63 
64 #define VOP_INTR_GET(vop, name) \
65 		vop_read_reg(vop, 0, &vop->data->ctrl->name)
66 
67 #define VOP_INTR_SET(vop, name, mask, v) \
68 		REG_SET_MASK(vop, 0, vop->data->intr->name, mask, v, NORMAL)
69 #define VOP_INTR_SET_TYPE(vop, name, type, v) \
70 	do { \
71 		int i, reg = 0, mask = 0; \
72 		for (i = 0; i < vop->data->intr->nintrs; i++) { \
73 			if (vop->data->intr->intrs[i] & type) { \
74 				reg |= (v) << i; \
75 				mask |= 1 << i; \
76 			} \
77 		} \
78 		VOP_INTR_SET(vop, name, mask, reg); \
79 	} while (0)
80 #define VOP_INTR_GET_TYPE(vop, name, type) \
81 		vop_get_intr_type(vop, &vop->data->intr->name, type)
82 
83 #define VOP_WIN_GET(x, win, name) \
84 		vop_read_reg(x, win->base, &win->phy->name)
85 
86 #define VOP_WIN_GET_YRGBADDR(vop, win) \
87 		vop_readl(vop, win->base + win->phy->yrgb_mst.offset)
88 
89 #define to_vop(x) container_of(x, struct vop, crtc)
90 #define to_vop_win(x) container_of(x, struct vop_win, base)
91 
92 enum vop_pending {
93 	VOP_PENDING_FB_UNREF,
94 };
95 
96 struct vop_win {
97 	struct drm_plane base;
98 	const struct vop_win_data *data;
99 	struct vop *vop;
100 };
101 
102 struct vop {
103 	struct drm_crtc crtc;
104 	struct device *dev;
105 	struct drm_device *drm_dev;
106 	bool is_enabled;
107 
108 	/* mutex vsync_ work */
109 	struct mutex vsync_mutex;
110 	bool vsync_work_pending;
111 	struct completion dsp_hold_completion;
112 
113 	/* protected by dev->event_lock */
114 	struct drm_pending_vblank_event *event;
115 
116 	struct drm_flip_work fb_unref_work;
117 	unsigned long pending;
118 
119 	struct completion line_flag_completion;
120 
121 	const struct vop_data *data;
122 
123 	uint32_t *regsbak;
124 	void __iomem *regs;
125 
126 	/* physical map length of vop register */
127 	uint32_t len;
128 
129 	/* one time only one process allowed to config the register */
130 	spinlock_t reg_lock;
131 	/* lock vop irq reg */
132 	spinlock_t irq_lock;
133 
134 	unsigned int irq;
135 
136 	/* vop AHP clk */
137 	struct clk *hclk;
138 	/* vop dclk */
139 	struct clk *dclk;
140 	/* vop share memory frequency */
141 	struct clk *aclk;
142 
143 	/* vop dclk reset */
144 	struct reset_control *dclk_rst;
145 
146 	struct vop_win win[];
147 };
148 
149 static inline void vop_writel(struct vop *vop, uint32_t offset, uint32_t v)
150 {
151 	writel(v, vop->regs + offset);
152 	vop->regsbak[offset >> 2] = v;
153 }
154 
155 static inline uint32_t vop_readl(struct vop *vop, uint32_t offset)
156 {
157 	return readl(vop->regs + offset);
158 }
159 
160 static inline uint32_t vop_read_reg(struct vop *vop, uint32_t base,
161 				    const struct vop_reg *reg)
162 {
163 	return (vop_readl(vop, base + reg->offset) >> reg->shift) & reg->mask;
164 }
165 
166 static inline void vop_mask_write(struct vop *vop, uint32_t offset,
167 				  uint32_t mask, uint32_t shift, uint32_t v,
168 				  bool write_mask, bool relaxed)
169 {
170 	if (!mask)
171 		return;
172 
173 	if (write_mask) {
174 		v = ((v << shift) & 0xffff) | (mask << (shift + 16));
175 	} else {
176 		uint32_t cached_val = vop->regsbak[offset >> 2];
177 
178 		v = (cached_val & ~(mask << shift)) | ((v & mask) << shift);
179 		vop->regsbak[offset >> 2] = v;
180 	}
181 
182 	if (relaxed)
183 		writel_relaxed(v, vop->regs + offset);
184 	else
185 		writel(v, vop->regs + offset);
186 }
187 
188 static inline uint32_t vop_get_intr_type(struct vop *vop,
189 					 const struct vop_reg *reg, int type)
190 {
191 	uint32_t i, ret = 0;
192 	uint32_t regs = vop_read_reg(vop, 0, reg);
193 
194 	for (i = 0; i < vop->data->intr->nintrs; i++) {
195 		if ((type & vop->data->intr->intrs[i]) && (regs & 1 << i))
196 			ret |= vop->data->intr->intrs[i];
197 	}
198 
199 	return ret;
200 }
201 
202 static inline void vop_cfg_done(struct vop *vop)
203 {
204 	VOP_CTRL_SET(vop, cfg_done, 1);
205 }
206 
207 static bool has_rb_swapped(uint32_t format)
208 {
209 	switch (format) {
210 	case DRM_FORMAT_XBGR8888:
211 	case DRM_FORMAT_ABGR8888:
212 	case DRM_FORMAT_BGR888:
213 	case DRM_FORMAT_BGR565:
214 		return true;
215 	default:
216 		return false;
217 	}
218 }
219 
220 static enum vop_data_format vop_convert_format(uint32_t format)
221 {
222 	switch (format) {
223 	case DRM_FORMAT_XRGB8888:
224 	case DRM_FORMAT_ARGB8888:
225 	case DRM_FORMAT_XBGR8888:
226 	case DRM_FORMAT_ABGR8888:
227 		return VOP_FMT_ARGB8888;
228 	case DRM_FORMAT_RGB888:
229 	case DRM_FORMAT_BGR888:
230 		return VOP_FMT_RGB888;
231 	case DRM_FORMAT_RGB565:
232 	case DRM_FORMAT_BGR565:
233 		return VOP_FMT_RGB565;
234 	case DRM_FORMAT_NV12:
235 		return VOP_FMT_YUV420SP;
236 	case DRM_FORMAT_NV16:
237 		return VOP_FMT_YUV422SP;
238 	case DRM_FORMAT_NV24:
239 		return VOP_FMT_YUV444SP;
240 	default:
241 		DRM_ERROR("unsupported format[%08x]\n", format);
242 		return -EINVAL;
243 	}
244 }
245 
246 static bool is_yuv_support(uint32_t format)
247 {
248 	switch (format) {
249 	case DRM_FORMAT_NV12:
250 	case DRM_FORMAT_NV16:
251 	case DRM_FORMAT_NV24:
252 		return true;
253 	default:
254 		return false;
255 	}
256 }
257 
258 static bool is_alpha_support(uint32_t format)
259 {
260 	switch (format) {
261 	case DRM_FORMAT_ARGB8888:
262 	case DRM_FORMAT_ABGR8888:
263 		return true;
264 	default:
265 		return false;
266 	}
267 }
268 
269 static uint16_t scl_vop_cal_scale(enum scale_mode mode, uint32_t src,
270 				  uint32_t dst, bool is_horizontal,
271 				  int vsu_mode, int *vskiplines)
272 {
273 	uint16_t val = 1 << SCL_FT_DEFAULT_FIXPOINT_SHIFT;
274 
275 	if (is_horizontal) {
276 		if (mode == SCALE_UP)
277 			val = GET_SCL_FT_BIC(src, dst);
278 		else if (mode == SCALE_DOWN)
279 			val = GET_SCL_FT_BILI_DN(src, dst);
280 	} else {
281 		if (mode == SCALE_UP) {
282 			if (vsu_mode == SCALE_UP_BIL)
283 				val = GET_SCL_FT_BILI_UP(src, dst);
284 			else
285 				val = GET_SCL_FT_BIC(src, dst);
286 		} else if (mode == SCALE_DOWN) {
287 			if (vskiplines) {
288 				*vskiplines = scl_get_vskiplines(src, dst);
289 				val = scl_get_bili_dn_vskip(src, dst,
290 							    *vskiplines);
291 			} else {
292 				val = GET_SCL_FT_BILI_DN(src, dst);
293 			}
294 		}
295 	}
296 
297 	return val;
298 }
299 
300 static void scl_vop_cal_scl_fac(struct vop *vop, const struct vop_win_data *win,
301 			     uint32_t src_w, uint32_t src_h, uint32_t dst_w,
302 			     uint32_t dst_h, uint32_t pixel_format)
303 {
304 	uint16_t yrgb_hor_scl_mode, yrgb_ver_scl_mode;
305 	uint16_t cbcr_hor_scl_mode = SCALE_NONE;
306 	uint16_t cbcr_ver_scl_mode = SCALE_NONE;
307 	int hsub = drm_format_horz_chroma_subsampling(pixel_format);
308 	int vsub = drm_format_vert_chroma_subsampling(pixel_format);
309 	bool is_yuv = is_yuv_support(pixel_format);
310 	uint16_t cbcr_src_w = src_w / hsub;
311 	uint16_t cbcr_src_h = src_h / vsub;
312 	uint16_t vsu_mode;
313 	uint16_t lb_mode;
314 	uint32_t val;
315 	int vskiplines = 0;
316 
317 	if (dst_w > 3840) {
318 		DRM_DEV_ERROR(vop->dev, "Maximum dst width (3840) exceeded\n");
319 		return;
320 	}
321 
322 	if (!win->phy->scl->ext) {
323 		VOP_SCL_SET(vop, win, scale_yrgb_x,
324 			    scl_cal_scale2(src_w, dst_w));
325 		VOP_SCL_SET(vop, win, scale_yrgb_y,
326 			    scl_cal_scale2(src_h, dst_h));
327 		if (is_yuv) {
328 			VOP_SCL_SET(vop, win, scale_cbcr_x,
329 				    scl_cal_scale2(cbcr_src_w, dst_w));
330 			VOP_SCL_SET(vop, win, scale_cbcr_y,
331 				    scl_cal_scale2(cbcr_src_h, dst_h));
332 		}
333 		return;
334 	}
335 
336 	yrgb_hor_scl_mode = scl_get_scl_mode(src_w, dst_w);
337 	yrgb_ver_scl_mode = scl_get_scl_mode(src_h, dst_h);
338 
339 	if (is_yuv) {
340 		cbcr_hor_scl_mode = scl_get_scl_mode(cbcr_src_w, dst_w);
341 		cbcr_ver_scl_mode = scl_get_scl_mode(cbcr_src_h, dst_h);
342 		if (cbcr_hor_scl_mode == SCALE_DOWN)
343 			lb_mode = scl_vop_cal_lb_mode(dst_w, true);
344 		else
345 			lb_mode = scl_vop_cal_lb_mode(cbcr_src_w, true);
346 	} else {
347 		if (yrgb_hor_scl_mode == SCALE_DOWN)
348 			lb_mode = scl_vop_cal_lb_mode(dst_w, false);
349 		else
350 			lb_mode = scl_vop_cal_lb_mode(src_w, false);
351 	}
352 
353 	VOP_SCL_SET_EXT(vop, win, lb_mode, lb_mode);
354 	if (lb_mode == LB_RGB_3840X2) {
355 		if (yrgb_ver_scl_mode != SCALE_NONE) {
356 			DRM_DEV_ERROR(vop->dev, "not allow yrgb ver scale\n");
357 			return;
358 		}
359 		if (cbcr_ver_scl_mode != SCALE_NONE) {
360 			DRM_DEV_ERROR(vop->dev, "not allow cbcr ver scale\n");
361 			return;
362 		}
363 		vsu_mode = SCALE_UP_BIL;
364 	} else if (lb_mode == LB_RGB_2560X4) {
365 		vsu_mode = SCALE_UP_BIL;
366 	} else {
367 		vsu_mode = SCALE_UP_BIC;
368 	}
369 
370 	val = scl_vop_cal_scale(yrgb_hor_scl_mode, src_w, dst_w,
371 				true, 0, NULL);
372 	VOP_SCL_SET(vop, win, scale_yrgb_x, val);
373 	val = scl_vop_cal_scale(yrgb_ver_scl_mode, src_h, dst_h,
374 				false, vsu_mode, &vskiplines);
375 	VOP_SCL_SET(vop, win, scale_yrgb_y, val);
376 
377 	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt4, vskiplines == 4);
378 	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt2, vskiplines == 2);
379 
380 	VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, yrgb_hor_scl_mode);
381 	VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, yrgb_ver_scl_mode);
382 	VOP_SCL_SET_EXT(vop, win, yrgb_hsd_mode, SCALE_DOWN_BIL);
383 	VOP_SCL_SET_EXT(vop, win, yrgb_vsd_mode, SCALE_DOWN_BIL);
384 	VOP_SCL_SET_EXT(vop, win, yrgb_vsu_mode, vsu_mode);
385 	if (is_yuv) {
386 		val = scl_vop_cal_scale(cbcr_hor_scl_mode, cbcr_src_w,
387 					dst_w, true, 0, NULL);
388 		VOP_SCL_SET(vop, win, scale_cbcr_x, val);
389 		val = scl_vop_cal_scale(cbcr_ver_scl_mode, cbcr_src_h,
390 					dst_h, false, vsu_mode, &vskiplines);
391 		VOP_SCL_SET(vop, win, scale_cbcr_y, val);
392 
393 		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt4, vskiplines == 4);
394 		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt2, vskiplines == 2);
395 		VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, cbcr_hor_scl_mode);
396 		VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, cbcr_ver_scl_mode);
397 		VOP_SCL_SET_EXT(vop, win, cbcr_hsd_mode, SCALE_DOWN_BIL);
398 		VOP_SCL_SET_EXT(vop, win, cbcr_vsd_mode, SCALE_DOWN_BIL);
399 		VOP_SCL_SET_EXT(vop, win, cbcr_vsu_mode, vsu_mode);
400 	}
401 }
402 
403 static void vop_dsp_hold_valid_irq_enable(struct vop *vop)
404 {
405 	unsigned long flags;
406 
407 	if (WARN_ON(!vop->is_enabled))
408 		return;
409 
410 	spin_lock_irqsave(&vop->irq_lock, flags);
411 
412 	VOP_INTR_SET_TYPE(vop, clear, DSP_HOLD_VALID_INTR, 1);
413 	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 1);
414 
415 	spin_unlock_irqrestore(&vop->irq_lock, flags);
416 }
417 
418 static void vop_dsp_hold_valid_irq_disable(struct vop *vop)
419 {
420 	unsigned long flags;
421 
422 	if (WARN_ON(!vop->is_enabled))
423 		return;
424 
425 	spin_lock_irqsave(&vop->irq_lock, flags);
426 
427 	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 0);
428 
429 	spin_unlock_irqrestore(&vop->irq_lock, flags);
430 }
431 
432 /*
433  * (1) each frame starts at the start of the Vsync pulse which is signaled by
434  *     the "FRAME_SYNC" interrupt.
435  * (2) the active data region of each frame ends at dsp_vact_end
436  * (3) we should program this same number (dsp_vact_end) into dsp_line_frag_num,
437  *      to get "LINE_FLAG" interrupt at the end of the active on screen data.
438  *
439  * VOP_INTR_CTRL0.dsp_line_frag_num = VOP_DSP_VACT_ST_END.dsp_vact_end
440  * Interrupts
441  * LINE_FLAG -------------------------------+
442  * FRAME_SYNC ----+                         |
443  *                |                         |
444  *                v                         v
445  *                | Vsync | Vbp |  Vactive  | Vfp |
446  *                        ^     ^           ^     ^
447  *                        |     |           |     |
448  *                        |     |           |     |
449  * dsp_vs_end ------------+     |           |     |   VOP_DSP_VTOTAL_VS_END
450  * dsp_vact_start --------------+           |     |   VOP_DSP_VACT_ST_END
451  * dsp_vact_end ----------------------------+     |   VOP_DSP_VACT_ST_END
452  * dsp_total -------------------------------------+   VOP_DSP_VTOTAL_VS_END
453  */
454 static bool vop_line_flag_irq_is_enabled(struct vop *vop)
455 {
456 	uint32_t line_flag_irq;
457 	unsigned long flags;
458 
459 	spin_lock_irqsave(&vop->irq_lock, flags);
460 
461 	line_flag_irq = VOP_INTR_GET_TYPE(vop, enable, LINE_FLAG_INTR);
462 
463 	spin_unlock_irqrestore(&vop->irq_lock, flags);
464 
465 	return !!line_flag_irq;
466 }
467 
468 static void vop_line_flag_irq_enable(struct vop *vop, int line_num)
469 {
470 	unsigned long flags;
471 
472 	if (WARN_ON(!vop->is_enabled))
473 		return;
474 
475 	spin_lock_irqsave(&vop->irq_lock, flags);
476 
477 	VOP_CTRL_SET(vop, line_flag_num[0], line_num);
478 	VOP_INTR_SET_TYPE(vop, clear, LINE_FLAG_INTR, 1);
479 	VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 1);
480 
481 	spin_unlock_irqrestore(&vop->irq_lock, flags);
482 }
483 
484 static void vop_line_flag_irq_disable(struct vop *vop)
485 {
486 	unsigned long flags;
487 
488 	if (WARN_ON(!vop->is_enabled))
489 		return;
490 
491 	spin_lock_irqsave(&vop->irq_lock, flags);
492 
493 	VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 0);
494 
495 	spin_unlock_irqrestore(&vop->irq_lock, flags);
496 }
497 
498 static int vop_enable(struct drm_crtc *crtc)
499 {
500 	struct vop *vop = to_vop(crtc);
501 	int ret;
502 
503 	ret = pm_runtime_get_sync(vop->dev);
504 	if (ret < 0) {
505 		dev_err(vop->dev, "failed to get pm runtime: %d\n", ret);
506 		goto err_put_pm_runtime;
507 	}
508 
509 	ret = clk_enable(vop->hclk);
510 	if (WARN_ON(ret < 0))
511 		goto err_put_pm_runtime;
512 
513 	ret = clk_enable(vop->dclk);
514 	if (WARN_ON(ret < 0))
515 		goto err_disable_hclk;
516 
517 	ret = clk_enable(vop->aclk);
518 	if (WARN_ON(ret < 0))
519 		goto err_disable_dclk;
520 
521 	/*
522 	 * Slave iommu shares power, irq and clock with vop.  It was associated
523 	 * automatically with this master device via common driver code.
524 	 * Now that we have enabled the clock we attach it to the shared drm
525 	 * mapping.
526 	 */
527 	ret = rockchip_drm_dma_attach_device(vop->drm_dev, vop->dev);
528 	if (ret) {
529 		dev_err(vop->dev, "failed to attach dma mapping, %d\n", ret);
530 		goto err_disable_aclk;
531 	}
532 
533 	memcpy(vop->regs, vop->regsbak, vop->len);
534 	vop_cfg_done(vop);
535 
536 	/*
537 	 * At here, vop clock & iommu is enable, R/W vop regs would be safe.
538 	 */
539 	vop->is_enabled = true;
540 
541 	spin_lock(&vop->reg_lock);
542 
543 	VOP_CTRL_SET(vop, standby, 0);
544 
545 	spin_unlock(&vop->reg_lock);
546 
547 	enable_irq(vop->irq);
548 
549 	drm_crtc_vblank_on(crtc);
550 
551 	return 0;
552 
553 err_disable_aclk:
554 	clk_disable(vop->aclk);
555 err_disable_dclk:
556 	clk_disable(vop->dclk);
557 err_disable_hclk:
558 	clk_disable(vop->hclk);
559 err_put_pm_runtime:
560 	pm_runtime_put_sync(vop->dev);
561 	return ret;
562 }
563 
564 static void vop_crtc_disable(struct drm_crtc *crtc)
565 {
566 	struct vop *vop = to_vop(crtc);
567 	int i;
568 
569 	WARN_ON(vop->event);
570 
571 	rockchip_drm_psr_deactivate(&vop->crtc);
572 
573 	/*
574 	 * We need to make sure that all windows are disabled before we
575 	 * disable that crtc. Otherwise we might try to scan from a destroyed
576 	 * buffer later.
577 	 */
578 	for (i = 0; i < vop->data->win_size; i++) {
579 		struct vop_win *vop_win = &vop->win[i];
580 		const struct vop_win_data *win = vop_win->data;
581 
582 		spin_lock(&vop->reg_lock);
583 		VOP_WIN_SET(vop, win, enable, 0);
584 		spin_unlock(&vop->reg_lock);
585 	}
586 
587 	vop_cfg_done(vop);
588 
589 	drm_crtc_vblank_off(crtc);
590 
591 	/*
592 	 * Vop standby will take effect at end of current frame,
593 	 * if dsp hold valid irq happen, it means standby complete.
594 	 *
595 	 * we must wait standby complete when we want to disable aclk,
596 	 * if not, memory bus maybe dead.
597 	 */
598 	reinit_completion(&vop->dsp_hold_completion);
599 	vop_dsp_hold_valid_irq_enable(vop);
600 
601 	spin_lock(&vop->reg_lock);
602 
603 	VOP_CTRL_SET(vop, standby, 1);
604 
605 	spin_unlock(&vop->reg_lock);
606 
607 	wait_for_completion(&vop->dsp_hold_completion);
608 
609 	vop_dsp_hold_valid_irq_disable(vop);
610 
611 	disable_irq(vop->irq);
612 
613 	vop->is_enabled = false;
614 
615 	/*
616 	 * vop standby complete, so iommu detach is safe.
617 	 */
618 	rockchip_drm_dma_detach_device(vop->drm_dev, vop->dev);
619 
620 	clk_disable(vop->dclk);
621 	clk_disable(vop->aclk);
622 	clk_disable(vop->hclk);
623 	pm_runtime_put(vop->dev);
624 
625 	if (crtc->state->event && !crtc->state->active) {
626 		spin_lock_irq(&crtc->dev->event_lock);
627 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
628 		spin_unlock_irq(&crtc->dev->event_lock);
629 
630 		crtc->state->event = NULL;
631 	}
632 }
633 
634 static void vop_plane_destroy(struct drm_plane *plane)
635 {
636 	drm_plane_cleanup(plane);
637 }
638 
639 static int vop_plane_atomic_check(struct drm_plane *plane,
640 			   struct drm_plane_state *state)
641 {
642 	struct drm_crtc *crtc = state->crtc;
643 	struct drm_crtc_state *crtc_state;
644 	struct drm_framebuffer *fb = state->fb;
645 	struct vop_win *vop_win = to_vop_win(plane);
646 	const struct vop_win_data *win = vop_win->data;
647 	int ret;
648 	struct drm_rect clip;
649 	int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
650 					DRM_PLANE_HELPER_NO_SCALING;
651 	int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
652 					DRM_PLANE_HELPER_NO_SCALING;
653 
654 	if (!crtc || !fb)
655 		return 0;
656 
657 	crtc_state = drm_atomic_get_existing_crtc_state(state->state, crtc);
658 	if (WARN_ON(!crtc_state))
659 		return -EINVAL;
660 
661 	clip.x1 = 0;
662 	clip.y1 = 0;
663 	clip.x2 = crtc_state->adjusted_mode.hdisplay;
664 	clip.y2 = crtc_state->adjusted_mode.vdisplay;
665 
666 	ret = drm_plane_helper_check_state(state, &clip,
667 					   min_scale, max_scale,
668 					   true, true);
669 	if (ret)
670 		return ret;
671 
672 	if (!state->visible)
673 		return 0;
674 
675 	ret = vop_convert_format(fb->format->format);
676 	if (ret < 0)
677 		return ret;
678 
679 	/*
680 	 * Src.x1 can be odd when do clip, but yuv plane start point
681 	 * need align with 2 pixel.
682 	 */
683 	if (is_yuv_support(fb->format->format) && ((state->src.x1 >> 16) % 2))
684 		return -EINVAL;
685 
686 	return 0;
687 }
688 
689 static void vop_plane_atomic_disable(struct drm_plane *plane,
690 				     struct drm_plane_state *old_state)
691 {
692 	struct vop_win *vop_win = to_vop_win(plane);
693 	const struct vop_win_data *win = vop_win->data;
694 	struct vop *vop = to_vop(old_state->crtc);
695 
696 	if (!old_state->crtc)
697 		return;
698 
699 	spin_lock(&vop->reg_lock);
700 
701 	VOP_WIN_SET(vop, win, enable, 0);
702 
703 	spin_unlock(&vop->reg_lock);
704 }
705 
706 static void vop_plane_atomic_update(struct drm_plane *plane,
707 		struct drm_plane_state *old_state)
708 {
709 	struct drm_plane_state *state = plane->state;
710 	struct drm_crtc *crtc = state->crtc;
711 	struct vop_win *vop_win = to_vop_win(plane);
712 	const struct vop_win_data *win = vop_win->data;
713 	struct vop *vop = to_vop(state->crtc);
714 	struct drm_framebuffer *fb = state->fb;
715 	unsigned int actual_w, actual_h;
716 	unsigned int dsp_stx, dsp_sty;
717 	uint32_t act_info, dsp_info, dsp_st;
718 	struct drm_rect *src = &state->src;
719 	struct drm_rect *dest = &state->dst;
720 	struct drm_gem_object *obj, *uv_obj;
721 	struct rockchip_gem_object *rk_obj, *rk_uv_obj;
722 	unsigned long offset;
723 	dma_addr_t dma_addr;
724 	uint32_t val;
725 	bool rb_swap;
726 	int format;
727 
728 	/*
729 	 * can't update plane when vop is disabled.
730 	 */
731 	if (WARN_ON(!crtc))
732 		return;
733 
734 	if (WARN_ON(!vop->is_enabled))
735 		return;
736 
737 	if (!state->visible) {
738 		vop_plane_atomic_disable(plane, old_state);
739 		return;
740 	}
741 
742 	obj = rockchip_fb_get_gem_obj(fb, 0);
743 	rk_obj = to_rockchip_obj(obj);
744 
745 	actual_w = drm_rect_width(src) >> 16;
746 	actual_h = drm_rect_height(src) >> 16;
747 	act_info = (actual_h - 1) << 16 | ((actual_w - 1) & 0xffff);
748 
749 	dsp_info = (drm_rect_height(dest) - 1) << 16;
750 	dsp_info |= (drm_rect_width(dest) - 1) & 0xffff;
751 
752 	dsp_stx = dest->x1 + crtc->mode.htotal - crtc->mode.hsync_start;
753 	dsp_sty = dest->y1 + crtc->mode.vtotal - crtc->mode.vsync_start;
754 	dsp_st = dsp_sty << 16 | (dsp_stx & 0xffff);
755 
756 	offset = (src->x1 >> 16) * fb->format->cpp[0];
757 	offset += (src->y1 >> 16) * fb->pitches[0];
758 	dma_addr = rk_obj->dma_addr + offset + fb->offsets[0];
759 
760 	format = vop_convert_format(fb->format->format);
761 
762 	spin_lock(&vop->reg_lock);
763 
764 	VOP_WIN_SET(vop, win, format, format);
765 	VOP_WIN_SET(vop, win, yrgb_vir, fb->pitches[0] >> 2);
766 	VOP_WIN_SET(vop, win, yrgb_mst, dma_addr);
767 	if (is_yuv_support(fb->format->format)) {
768 		int hsub = drm_format_horz_chroma_subsampling(fb->format->format);
769 		int vsub = drm_format_vert_chroma_subsampling(fb->format->format);
770 		int bpp = fb->format->cpp[1];
771 
772 		uv_obj = rockchip_fb_get_gem_obj(fb, 1);
773 		rk_uv_obj = to_rockchip_obj(uv_obj);
774 
775 		offset = (src->x1 >> 16) * bpp / hsub;
776 		offset += (src->y1 >> 16) * fb->pitches[1] / vsub;
777 
778 		dma_addr = rk_uv_obj->dma_addr + offset + fb->offsets[1];
779 		VOP_WIN_SET(vop, win, uv_vir, fb->pitches[1] >> 2);
780 		VOP_WIN_SET(vop, win, uv_mst, dma_addr);
781 	}
782 
783 	if (win->phy->scl)
784 		scl_vop_cal_scl_fac(vop, win, actual_w, actual_h,
785 				    drm_rect_width(dest), drm_rect_height(dest),
786 				    fb->format->format);
787 
788 	VOP_WIN_SET(vop, win, act_info, act_info);
789 	VOP_WIN_SET(vop, win, dsp_info, dsp_info);
790 	VOP_WIN_SET(vop, win, dsp_st, dsp_st);
791 
792 	rb_swap = has_rb_swapped(fb->format->format);
793 	VOP_WIN_SET(vop, win, rb_swap, rb_swap);
794 
795 	if (is_alpha_support(fb->format->format)) {
796 		VOP_WIN_SET(vop, win, dst_alpha_ctl,
797 			    DST_FACTOR_M0(ALPHA_SRC_INVERSE));
798 		val = SRC_ALPHA_EN(1) | SRC_COLOR_M0(ALPHA_SRC_PRE_MUL) |
799 			SRC_ALPHA_M0(ALPHA_STRAIGHT) |
800 			SRC_BLEND_M0(ALPHA_PER_PIX) |
801 			SRC_ALPHA_CAL_M0(ALPHA_NO_SATURATION) |
802 			SRC_FACTOR_M0(ALPHA_ONE);
803 		VOP_WIN_SET(vop, win, src_alpha_ctl, val);
804 	} else {
805 		VOP_WIN_SET(vop, win, src_alpha_ctl, SRC_ALPHA_EN(0));
806 	}
807 
808 	VOP_WIN_SET(vop, win, enable, 1);
809 	spin_unlock(&vop->reg_lock);
810 }
811 
812 static const struct drm_plane_helper_funcs plane_helper_funcs = {
813 	.atomic_check = vop_plane_atomic_check,
814 	.atomic_update = vop_plane_atomic_update,
815 	.atomic_disable = vop_plane_atomic_disable,
816 };
817 
818 static const struct drm_plane_funcs vop_plane_funcs = {
819 	.update_plane	= drm_atomic_helper_update_plane,
820 	.disable_plane	= drm_atomic_helper_disable_plane,
821 	.destroy = vop_plane_destroy,
822 	.reset = drm_atomic_helper_plane_reset,
823 	.atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state,
824 	.atomic_destroy_state = drm_atomic_helper_plane_destroy_state,
825 };
826 
827 static int vop_crtc_enable_vblank(struct drm_crtc *crtc)
828 {
829 	struct vop *vop = to_vop(crtc);
830 	unsigned long flags;
831 
832 	if (WARN_ON(!vop->is_enabled))
833 		return -EPERM;
834 
835 	spin_lock_irqsave(&vop->irq_lock, flags);
836 
837 	VOP_INTR_SET_TYPE(vop, clear, FS_INTR, 1);
838 	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 1);
839 
840 	spin_unlock_irqrestore(&vop->irq_lock, flags);
841 
842 	return 0;
843 }
844 
845 static void vop_crtc_disable_vblank(struct drm_crtc *crtc)
846 {
847 	struct vop *vop = to_vop(crtc);
848 	unsigned long flags;
849 
850 	if (WARN_ON(!vop->is_enabled))
851 		return;
852 
853 	spin_lock_irqsave(&vop->irq_lock, flags);
854 
855 	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 0);
856 
857 	spin_unlock_irqrestore(&vop->irq_lock, flags);
858 }
859 
860 static const struct rockchip_crtc_funcs private_crtc_funcs = {
861 	.enable_vblank = vop_crtc_enable_vblank,
862 	.disable_vblank = vop_crtc_disable_vblank,
863 };
864 
865 static bool vop_crtc_mode_fixup(struct drm_crtc *crtc,
866 				const struct drm_display_mode *mode,
867 				struct drm_display_mode *adjusted_mode)
868 {
869 	struct vop *vop = to_vop(crtc);
870 
871 	adjusted_mode->clock =
872 		clk_round_rate(vop->dclk, mode->clock * 1000) / 1000;
873 
874 	return true;
875 }
876 
877 static void vop_crtc_enable(struct drm_crtc *crtc)
878 {
879 	struct vop *vop = to_vop(crtc);
880 	struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc->state);
881 	struct drm_display_mode *adjusted_mode = &crtc->state->adjusted_mode;
882 	u16 hsync_len = adjusted_mode->hsync_end - adjusted_mode->hsync_start;
883 	u16 hdisplay = adjusted_mode->hdisplay;
884 	u16 htotal = adjusted_mode->htotal;
885 	u16 hact_st = adjusted_mode->htotal - adjusted_mode->hsync_start;
886 	u16 hact_end = hact_st + hdisplay;
887 	u16 vdisplay = adjusted_mode->vdisplay;
888 	u16 vtotal = adjusted_mode->vtotal;
889 	u16 vsync_len = adjusted_mode->vsync_end - adjusted_mode->vsync_start;
890 	u16 vact_st = adjusted_mode->vtotal - adjusted_mode->vsync_start;
891 	u16 vact_end = vact_st + vdisplay;
892 	uint32_t pin_pol, val;
893 	int ret;
894 
895 	WARN_ON(vop->event);
896 
897 	ret = vop_enable(crtc);
898 	if (ret) {
899 		DRM_DEV_ERROR(vop->dev, "Failed to enable vop (%d)\n", ret);
900 		return;
901 	}
902 
903 	/*
904 	 * If dclk rate is zero, mean that scanout is stop,
905 	 * we don't need wait any more.
906 	 */
907 	if (clk_get_rate(vop->dclk)) {
908 		/*
909 		 * Rk3288 vop timing register is immediately, when configure
910 		 * display timing on display time, may cause tearing.
911 		 *
912 		 * Vop standby will take effect at end of current frame,
913 		 * if dsp hold valid irq happen, it means standby complete.
914 		 *
915 		 * mode set:
916 		 *    standby and wait complete --> |----
917 		 *                                  | display time
918 		 *                                  |----
919 		 *                                  |---> dsp hold irq
920 		 *     configure display timing --> |
921 		 *         standby exit             |
922 		 *                                  | new frame start.
923 		 */
924 
925 		reinit_completion(&vop->dsp_hold_completion);
926 		vop_dsp_hold_valid_irq_enable(vop);
927 
928 		spin_lock(&vop->reg_lock);
929 
930 		VOP_CTRL_SET(vop, standby, 1);
931 
932 		spin_unlock(&vop->reg_lock);
933 
934 		wait_for_completion(&vop->dsp_hold_completion);
935 
936 		vop_dsp_hold_valid_irq_disable(vop);
937 	}
938 
939 	pin_pol = BIT(DCLK_INVERT);
940 	pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC) ?
941 		   0 : BIT(HSYNC_POSITIVE);
942 	pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC) ?
943 		   0 : BIT(VSYNC_POSITIVE);
944 	VOP_CTRL_SET(vop, pin_pol, pin_pol);
945 
946 	switch (s->output_type) {
947 	case DRM_MODE_CONNECTOR_LVDS:
948 		VOP_CTRL_SET(vop, rgb_en, 1);
949 		VOP_CTRL_SET(vop, rgb_pin_pol, pin_pol);
950 		break;
951 	case DRM_MODE_CONNECTOR_eDP:
952 		VOP_CTRL_SET(vop, edp_pin_pol, pin_pol);
953 		VOP_CTRL_SET(vop, edp_en, 1);
954 		break;
955 	case DRM_MODE_CONNECTOR_HDMIA:
956 		VOP_CTRL_SET(vop, hdmi_pin_pol, pin_pol);
957 		VOP_CTRL_SET(vop, hdmi_en, 1);
958 		break;
959 	case DRM_MODE_CONNECTOR_DSI:
960 		VOP_CTRL_SET(vop, mipi_pin_pol, pin_pol);
961 		VOP_CTRL_SET(vop, mipi_en, 1);
962 		break;
963 	case DRM_MODE_CONNECTOR_DisplayPort:
964 		pin_pol &= ~BIT(DCLK_INVERT);
965 		VOP_CTRL_SET(vop, dp_pin_pol, pin_pol);
966 		VOP_CTRL_SET(vop, dp_en, 1);
967 		break;
968 	default:
969 		DRM_DEV_ERROR(vop->dev, "unsupported connector_type [%d]\n",
970 			      s->output_type);
971 	}
972 	VOP_CTRL_SET(vop, out_mode, s->output_mode);
973 
974 	VOP_CTRL_SET(vop, htotal_pw, (htotal << 16) | hsync_len);
975 	val = hact_st << 16;
976 	val |= hact_end;
977 	VOP_CTRL_SET(vop, hact_st_end, val);
978 	VOP_CTRL_SET(vop, hpost_st_end, val);
979 
980 	VOP_CTRL_SET(vop, vtotal_pw, (vtotal << 16) | vsync_len);
981 	val = vact_st << 16;
982 	val |= vact_end;
983 	VOP_CTRL_SET(vop, vact_st_end, val);
984 	VOP_CTRL_SET(vop, vpost_st_end, val);
985 
986 	clk_set_rate(vop->dclk, adjusted_mode->clock * 1000);
987 
988 	VOP_CTRL_SET(vop, standby, 0);
989 
990 	rockchip_drm_psr_activate(&vop->crtc);
991 }
992 
993 static bool vop_fs_irq_is_pending(struct vop *vop)
994 {
995 	return VOP_INTR_GET_TYPE(vop, status, FS_INTR);
996 }
997 
998 static void vop_wait_for_irq_handler(struct vop *vop)
999 {
1000 	bool pending;
1001 	int ret;
1002 
1003 	/*
1004 	 * Spin until frame start interrupt status bit goes low, which means
1005 	 * that interrupt handler was invoked and cleared it. The timeout of
1006 	 * 10 msecs is really too long, but it is just a safety measure if
1007 	 * something goes really wrong. The wait will only happen in the very
1008 	 * unlikely case of a vblank happening exactly at the same time and
1009 	 * shouldn't exceed microseconds range.
1010 	 */
1011 	ret = readx_poll_timeout_atomic(vop_fs_irq_is_pending, vop, pending,
1012 					!pending, 0, 10 * 1000);
1013 	if (ret)
1014 		DRM_DEV_ERROR(vop->dev, "VOP vblank IRQ stuck for 10 ms\n");
1015 
1016 	synchronize_irq(vop->irq);
1017 }
1018 
1019 static void vop_crtc_atomic_flush(struct drm_crtc *crtc,
1020 				  struct drm_crtc_state *old_crtc_state)
1021 {
1022 	struct drm_atomic_state *old_state = old_crtc_state->state;
1023 	struct drm_plane_state *old_plane_state;
1024 	struct vop *vop = to_vop(crtc);
1025 	struct drm_plane *plane;
1026 	int i;
1027 
1028 	if (WARN_ON(!vop->is_enabled))
1029 		return;
1030 
1031 	spin_lock(&vop->reg_lock);
1032 
1033 	vop_cfg_done(vop);
1034 
1035 	spin_unlock(&vop->reg_lock);
1036 
1037 	/*
1038 	 * There is a (rather unlikely) possiblity that a vblank interrupt
1039 	 * fired before we set the cfg_done bit. To avoid spuriously
1040 	 * signalling flip completion we need to wait for it to finish.
1041 	 */
1042 	vop_wait_for_irq_handler(vop);
1043 
1044 	spin_lock_irq(&crtc->dev->event_lock);
1045 	if (crtc->state->event) {
1046 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1047 		WARN_ON(vop->event);
1048 
1049 		vop->event = crtc->state->event;
1050 		crtc->state->event = NULL;
1051 	}
1052 	spin_unlock_irq(&crtc->dev->event_lock);
1053 
1054 	for_each_plane_in_state(old_state, plane, old_plane_state, i) {
1055 		if (!old_plane_state->fb)
1056 			continue;
1057 
1058 		if (old_plane_state->fb == plane->state->fb)
1059 			continue;
1060 
1061 		drm_framebuffer_reference(old_plane_state->fb);
1062 		drm_flip_work_queue(&vop->fb_unref_work, old_plane_state->fb);
1063 		set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1064 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1065 	}
1066 }
1067 
1068 static void vop_crtc_atomic_begin(struct drm_crtc *crtc,
1069 				  struct drm_crtc_state *old_crtc_state)
1070 {
1071 	rockchip_drm_psr_flush(crtc);
1072 }
1073 
1074 static const struct drm_crtc_helper_funcs vop_crtc_helper_funcs = {
1075 	.enable = vop_crtc_enable,
1076 	.disable = vop_crtc_disable,
1077 	.mode_fixup = vop_crtc_mode_fixup,
1078 	.atomic_flush = vop_crtc_atomic_flush,
1079 	.atomic_begin = vop_crtc_atomic_begin,
1080 };
1081 
1082 static void vop_crtc_destroy(struct drm_crtc *crtc)
1083 {
1084 	drm_crtc_cleanup(crtc);
1085 }
1086 
1087 static void vop_crtc_reset(struct drm_crtc *crtc)
1088 {
1089 	if (crtc->state)
1090 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
1091 	kfree(crtc->state);
1092 
1093 	crtc->state = kzalloc(sizeof(struct rockchip_crtc_state), GFP_KERNEL);
1094 	if (crtc->state)
1095 		crtc->state->crtc = crtc;
1096 }
1097 
1098 static struct drm_crtc_state *vop_crtc_duplicate_state(struct drm_crtc *crtc)
1099 {
1100 	struct rockchip_crtc_state *rockchip_state;
1101 
1102 	rockchip_state = kzalloc(sizeof(*rockchip_state), GFP_KERNEL);
1103 	if (!rockchip_state)
1104 		return NULL;
1105 
1106 	__drm_atomic_helper_crtc_duplicate_state(crtc, &rockchip_state->base);
1107 	return &rockchip_state->base;
1108 }
1109 
1110 static void vop_crtc_destroy_state(struct drm_crtc *crtc,
1111 				   struct drm_crtc_state *state)
1112 {
1113 	struct rockchip_crtc_state *s = to_rockchip_crtc_state(state);
1114 
1115 	__drm_atomic_helper_crtc_destroy_state(&s->base);
1116 	kfree(s);
1117 }
1118 
1119 static const struct drm_crtc_funcs vop_crtc_funcs = {
1120 	.set_config = drm_atomic_helper_set_config,
1121 	.page_flip = drm_atomic_helper_page_flip,
1122 	.destroy = vop_crtc_destroy,
1123 	.reset = vop_crtc_reset,
1124 	.atomic_duplicate_state = vop_crtc_duplicate_state,
1125 	.atomic_destroy_state = vop_crtc_destroy_state,
1126 };
1127 
1128 static void vop_fb_unref_worker(struct drm_flip_work *work, void *val)
1129 {
1130 	struct vop *vop = container_of(work, struct vop, fb_unref_work);
1131 	struct drm_framebuffer *fb = val;
1132 
1133 	drm_crtc_vblank_put(&vop->crtc);
1134 	drm_framebuffer_unreference(fb);
1135 }
1136 
1137 static void vop_handle_vblank(struct vop *vop)
1138 {
1139 	struct drm_device *drm = vop->drm_dev;
1140 	struct drm_crtc *crtc = &vop->crtc;
1141 	unsigned long flags;
1142 
1143 	spin_lock_irqsave(&drm->event_lock, flags);
1144 	if (vop->event) {
1145 		drm_crtc_send_vblank_event(crtc, vop->event);
1146 		drm_crtc_vblank_put(crtc);
1147 		vop->event = NULL;
1148 	}
1149 	spin_unlock_irqrestore(&drm->event_lock, flags);
1150 
1151 	if (test_and_clear_bit(VOP_PENDING_FB_UNREF, &vop->pending))
1152 		drm_flip_work_commit(&vop->fb_unref_work, system_unbound_wq);
1153 }
1154 
1155 static irqreturn_t vop_isr(int irq, void *data)
1156 {
1157 	struct vop *vop = data;
1158 	struct drm_crtc *crtc = &vop->crtc;
1159 	uint32_t active_irqs;
1160 	unsigned long flags;
1161 	int ret = IRQ_NONE;
1162 
1163 	/*
1164 	 * interrupt register has interrupt status, enable and clear bits, we
1165 	 * must hold irq_lock to avoid a race with enable/disable_vblank().
1166 	*/
1167 	spin_lock_irqsave(&vop->irq_lock, flags);
1168 
1169 	active_irqs = VOP_INTR_GET_TYPE(vop, status, INTR_MASK);
1170 	/* Clear all active interrupt sources */
1171 	if (active_irqs)
1172 		VOP_INTR_SET_TYPE(vop, clear, active_irqs, 1);
1173 
1174 	spin_unlock_irqrestore(&vop->irq_lock, flags);
1175 
1176 	/* This is expected for vop iommu irqs, since the irq is shared */
1177 	if (!active_irqs)
1178 		return IRQ_NONE;
1179 
1180 	if (active_irqs & DSP_HOLD_VALID_INTR) {
1181 		complete(&vop->dsp_hold_completion);
1182 		active_irqs &= ~DSP_HOLD_VALID_INTR;
1183 		ret = IRQ_HANDLED;
1184 	}
1185 
1186 	if (active_irqs & LINE_FLAG_INTR) {
1187 		complete(&vop->line_flag_completion);
1188 		active_irqs &= ~LINE_FLAG_INTR;
1189 		ret = IRQ_HANDLED;
1190 	}
1191 
1192 	if (active_irqs & FS_INTR) {
1193 		drm_crtc_handle_vblank(crtc);
1194 		vop_handle_vblank(vop);
1195 		active_irqs &= ~FS_INTR;
1196 		ret = IRQ_HANDLED;
1197 	}
1198 
1199 	/* Unhandled irqs are spurious. */
1200 	if (active_irqs)
1201 		DRM_DEV_ERROR(vop->dev, "Unknown VOP IRQs: %#02x\n",
1202 			      active_irqs);
1203 
1204 	return ret;
1205 }
1206 
1207 static int vop_create_crtc(struct vop *vop)
1208 {
1209 	const struct vop_data *vop_data = vop->data;
1210 	struct device *dev = vop->dev;
1211 	struct drm_device *drm_dev = vop->drm_dev;
1212 	struct drm_plane *primary = NULL, *cursor = NULL, *plane, *tmp;
1213 	struct drm_crtc *crtc = &vop->crtc;
1214 	struct device_node *port;
1215 	int ret;
1216 	int i;
1217 
1218 	/*
1219 	 * Create drm_plane for primary and cursor planes first, since we need
1220 	 * to pass them to drm_crtc_init_with_planes, which sets the
1221 	 * "possible_crtcs" to the newly initialized crtc.
1222 	 */
1223 	for (i = 0; i < vop_data->win_size; i++) {
1224 		struct vop_win *vop_win = &vop->win[i];
1225 		const struct vop_win_data *win_data = vop_win->data;
1226 
1227 		if (win_data->type != DRM_PLANE_TYPE_PRIMARY &&
1228 		    win_data->type != DRM_PLANE_TYPE_CURSOR)
1229 			continue;
1230 
1231 		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1232 					       0, &vop_plane_funcs,
1233 					       win_data->phy->data_formats,
1234 					       win_data->phy->nformats,
1235 					       win_data->type, NULL);
1236 		if (ret) {
1237 			DRM_DEV_ERROR(vop->dev, "failed to init plane %d\n",
1238 				      ret);
1239 			goto err_cleanup_planes;
1240 		}
1241 
1242 		plane = &vop_win->base;
1243 		drm_plane_helper_add(plane, &plane_helper_funcs);
1244 		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
1245 			primary = plane;
1246 		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
1247 			cursor = plane;
1248 	}
1249 
1250 	ret = drm_crtc_init_with_planes(drm_dev, crtc, primary, cursor,
1251 					&vop_crtc_funcs, NULL);
1252 	if (ret)
1253 		goto err_cleanup_planes;
1254 
1255 	drm_crtc_helper_add(crtc, &vop_crtc_helper_funcs);
1256 
1257 	/*
1258 	 * Create drm_planes for overlay windows with possible_crtcs restricted
1259 	 * to the newly created crtc.
1260 	 */
1261 	for (i = 0; i < vop_data->win_size; i++) {
1262 		struct vop_win *vop_win = &vop->win[i];
1263 		const struct vop_win_data *win_data = vop_win->data;
1264 		unsigned long possible_crtcs = 1 << drm_crtc_index(crtc);
1265 
1266 		if (win_data->type != DRM_PLANE_TYPE_OVERLAY)
1267 			continue;
1268 
1269 		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1270 					       possible_crtcs,
1271 					       &vop_plane_funcs,
1272 					       win_data->phy->data_formats,
1273 					       win_data->phy->nformats,
1274 					       win_data->type, NULL);
1275 		if (ret) {
1276 			DRM_DEV_ERROR(vop->dev, "failed to init overlay %d\n",
1277 				      ret);
1278 			goto err_cleanup_crtc;
1279 		}
1280 		drm_plane_helper_add(&vop_win->base, &plane_helper_funcs);
1281 	}
1282 
1283 	port = of_get_child_by_name(dev->of_node, "port");
1284 	if (!port) {
1285 		DRM_DEV_ERROR(vop->dev, "no port node found in %s\n",
1286 			      dev->of_node->full_name);
1287 		ret = -ENOENT;
1288 		goto err_cleanup_crtc;
1289 	}
1290 
1291 	drm_flip_work_init(&vop->fb_unref_work, "fb_unref",
1292 			   vop_fb_unref_worker);
1293 
1294 	init_completion(&vop->dsp_hold_completion);
1295 	init_completion(&vop->line_flag_completion);
1296 	crtc->port = port;
1297 	rockchip_register_crtc_funcs(crtc, &private_crtc_funcs);
1298 
1299 	return 0;
1300 
1301 err_cleanup_crtc:
1302 	drm_crtc_cleanup(crtc);
1303 err_cleanup_planes:
1304 	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1305 				 head)
1306 		drm_plane_cleanup(plane);
1307 	return ret;
1308 }
1309 
1310 static void vop_destroy_crtc(struct vop *vop)
1311 {
1312 	struct drm_crtc *crtc = &vop->crtc;
1313 	struct drm_device *drm_dev = vop->drm_dev;
1314 	struct drm_plane *plane, *tmp;
1315 
1316 	rockchip_unregister_crtc_funcs(crtc);
1317 	of_node_put(crtc->port);
1318 
1319 	/*
1320 	 * We need to cleanup the planes now.  Why?
1321 	 *
1322 	 * The planes are "&vop->win[i].base".  That means the memory is
1323 	 * all part of the big "struct vop" chunk of memory.  That memory
1324 	 * was devm allocated and associated with this component.  We need to
1325 	 * free it ourselves before vop_unbind() finishes.
1326 	 */
1327 	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1328 				 head)
1329 		vop_plane_destroy(plane);
1330 
1331 	/*
1332 	 * Destroy CRTC after vop_plane_destroy() since vop_disable_plane()
1333 	 * references the CRTC.
1334 	 */
1335 	drm_crtc_cleanup(crtc);
1336 	drm_flip_work_cleanup(&vop->fb_unref_work);
1337 }
1338 
1339 static int vop_initial(struct vop *vop)
1340 {
1341 	const struct vop_data *vop_data = vop->data;
1342 	const struct vop_reg_data *init_table = vop_data->init_table;
1343 	struct reset_control *ahb_rst;
1344 	int i, ret;
1345 
1346 	vop->hclk = devm_clk_get(vop->dev, "hclk_vop");
1347 	if (IS_ERR(vop->hclk)) {
1348 		dev_err(vop->dev, "failed to get hclk source\n");
1349 		return PTR_ERR(vop->hclk);
1350 	}
1351 	vop->aclk = devm_clk_get(vop->dev, "aclk_vop");
1352 	if (IS_ERR(vop->aclk)) {
1353 		dev_err(vop->dev, "failed to get aclk source\n");
1354 		return PTR_ERR(vop->aclk);
1355 	}
1356 	vop->dclk = devm_clk_get(vop->dev, "dclk_vop");
1357 	if (IS_ERR(vop->dclk)) {
1358 		dev_err(vop->dev, "failed to get dclk source\n");
1359 		return PTR_ERR(vop->dclk);
1360 	}
1361 
1362 	ret = clk_prepare(vop->dclk);
1363 	if (ret < 0) {
1364 		dev_err(vop->dev, "failed to prepare dclk\n");
1365 		return ret;
1366 	}
1367 
1368 	/* Enable both the hclk and aclk to setup the vop */
1369 	ret = clk_prepare_enable(vop->hclk);
1370 	if (ret < 0) {
1371 		dev_err(vop->dev, "failed to prepare/enable hclk\n");
1372 		goto err_unprepare_dclk;
1373 	}
1374 
1375 	ret = clk_prepare_enable(vop->aclk);
1376 	if (ret < 0) {
1377 		dev_err(vop->dev, "failed to prepare/enable aclk\n");
1378 		goto err_disable_hclk;
1379 	}
1380 
1381 	/*
1382 	 * do hclk_reset, reset all vop registers.
1383 	 */
1384 	ahb_rst = devm_reset_control_get(vop->dev, "ahb");
1385 	if (IS_ERR(ahb_rst)) {
1386 		dev_err(vop->dev, "failed to get ahb reset\n");
1387 		ret = PTR_ERR(ahb_rst);
1388 		goto err_disable_aclk;
1389 	}
1390 	reset_control_assert(ahb_rst);
1391 	usleep_range(10, 20);
1392 	reset_control_deassert(ahb_rst);
1393 
1394 	memcpy(vop->regsbak, vop->regs, vop->len);
1395 
1396 	for (i = 0; i < vop_data->table_size; i++)
1397 		vop_writel(vop, init_table[i].offset, init_table[i].value);
1398 
1399 	for (i = 0; i < vop_data->win_size; i++) {
1400 		const struct vop_win_data *win = &vop_data->win[i];
1401 
1402 		VOP_WIN_SET(vop, win, enable, 0);
1403 	}
1404 
1405 	vop_cfg_done(vop);
1406 
1407 	/*
1408 	 * do dclk_reset, let all config take affect.
1409 	 */
1410 	vop->dclk_rst = devm_reset_control_get(vop->dev, "dclk");
1411 	if (IS_ERR(vop->dclk_rst)) {
1412 		dev_err(vop->dev, "failed to get dclk reset\n");
1413 		ret = PTR_ERR(vop->dclk_rst);
1414 		goto err_disable_aclk;
1415 	}
1416 	reset_control_assert(vop->dclk_rst);
1417 	usleep_range(10, 20);
1418 	reset_control_deassert(vop->dclk_rst);
1419 
1420 	clk_disable(vop->hclk);
1421 	clk_disable(vop->aclk);
1422 
1423 	vop->is_enabled = false;
1424 
1425 	return 0;
1426 
1427 err_disable_aclk:
1428 	clk_disable_unprepare(vop->aclk);
1429 err_disable_hclk:
1430 	clk_disable_unprepare(vop->hclk);
1431 err_unprepare_dclk:
1432 	clk_unprepare(vop->dclk);
1433 	return ret;
1434 }
1435 
1436 /*
1437  * Initialize the vop->win array elements.
1438  */
1439 static void vop_win_init(struct vop *vop)
1440 {
1441 	const struct vop_data *vop_data = vop->data;
1442 	unsigned int i;
1443 
1444 	for (i = 0; i < vop_data->win_size; i++) {
1445 		struct vop_win *vop_win = &vop->win[i];
1446 		const struct vop_win_data *win_data = &vop_data->win[i];
1447 
1448 		vop_win->data = win_data;
1449 		vop_win->vop = vop;
1450 	}
1451 }
1452 
1453 /**
1454  * rockchip_drm_wait_line_flag - acqiure the give line flag event
1455  * @crtc: CRTC to enable line flag
1456  * @line_num: interested line number
1457  * @mstimeout: millisecond for timeout
1458  *
1459  * Driver would hold here until the interested line flag interrupt have
1460  * happened or timeout to wait.
1461  *
1462  * Returns:
1463  * Zero on success, negative errno on failure.
1464  */
1465 int rockchip_drm_wait_line_flag(struct drm_crtc *crtc, unsigned int line_num,
1466 				unsigned int mstimeout)
1467 {
1468 	struct vop *vop = to_vop(crtc);
1469 	unsigned long jiffies_left;
1470 
1471 	if (!crtc || !vop->is_enabled)
1472 		return -ENODEV;
1473 
1474 	if (line_num > crtc->mode.vtotal || mstimeout <= 0)
1475 		return -EINVAL;
1476 
1477 	if (vop_line_flag_irq_is_enabled(vop))
1478 		return -EBUSY;
1479 
1480 	reinit_completion(&vop->line_flag_completion);
1481 	vop_line_flag_irq_enable(vop, line_num);
1482 
1483 	jiffies_left = wait_for_completion_timeout(&vop->line_flag_completion,
1484 						   msecs_to_jiffies(mstimeout));
1485 	vop_line_flag_irq_disable(vop);
1486 
1487 	if (jiffies_left == 0) {
1488 		dev_err(vop->dev, "Timeout waiting for IRQ\n");
1489 		return -ETIMEDOUT;
1490 	}
1491 
1492 	return 0;
1493 }
1494 EXPORT_SYMBOL(rockchip_drm_wait_line_flag);
1495 
1496 static int vop_bind(struct device *dev, struct device *master, void *data)
1497 {
1498 	struct platform_device *pdev = to_platform_device(dev);
1499 	const struct vop_data *vop_data;
1500 	struct drm_device *drm_dev = data;
1501 	struct vop *vop;
1502 	struct resource *res;
1503 	size_t alloc_size;
1504 	int ret, irq;
1505 
1506 	vop_data = of_device_get_match_data(dev);
1507 	if (!vop_data)
1508 		return -ENODEV;
1509 
1510 	/* Allocate vop struct and its vop_win array */
1511 	alloc_size = sizeof(*vop) + sizeof(*vop->win) * vop_data->win_size;
1512 	vop = devm_kzalloc(dev, alloc_size, GFP_KERNEL);
1513 	if (!vop)
1514 		return -ENOMEM;
1515 
1516 	vop->dev = dev;
1517 	vop->data = vop_data;
1518 	vop->drm_dev = drm_dev;
1519 	dev_set_drvdata(dev, vop);
1520 
1521 	vop_win_init(vop);
1522 
1523 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1524 	vop->len = resource_size(res);
1525 	vop->regs = devm_ioremap_resource(dev, res);
1526 	if (IS_ERR(vop->regs))
1527 		return PTR_ERR(vop->regs);
1528 
1529 	vop->regsbak = devm_kzalloc(dev, vop->len, GFP_KERNEL);
1530 	if (!vop->regsbak)
1531 		return -ENOMEM;
1532 
1533 	ret = vop_initial(vop);
1534 	if (ret < 0) {
1535 		dev_err(&pdev->dev, "cannot initial vop dev - err %d\n", ret);
1536 		return ret;
1537 	}
1538 
1539 	irq = platform_get_irq(pdev, 0);
1540 	if (irq < 0) {
1541 		dev_err(dev, "cannot find irq for vop\n");
1542 		return irq;
1543 	}
1544 	vop->irq = (unsigned int)irq;
1545 
1546 	spin_lock_init(&vop->reg_lock);
1547 	spin_lock_init(&vop->irq_lock);
1548 
1549 	mutex_init(&vop->vsync_mutex);
1550 
1551 	ret = devm_request_irq(dev, vop->irq, vop_isr,
1552 			       IRQF_SHARED, dev_name(dev), vop);
1553 	if (ret)
1554 		return ret;
1555 
1556 	/* IRQ is initially disabled; it gets enabled in power_on */
1557 	disable_irq(vop->irq);
1558 
1559 	ret = vop_create_crtc(vop);
1560 	if (ret)
1561 		goto err_enable_irq;
1562 
1563 	pm_runtime_enable(&pdev->dev);
1564 
1565 	return 0;
1566 
1567 err_enable_irq:
1568 	enable_irq(vop->irq); /* To balance out the disable_irq above */
1569 	return ret;
1570 }
1571 
1572 static void vop_unbind(struct device *dev, struct device *master, void *data)
1573 {
1574 	struct vop *vop = dev_get_drvdata(dev);
1575 
1576 	pm_runtime_disable(dev);
1577 	vop_destroy_crtc(vop);
1578 }
1579 
1580 const struct component_ops vop_component_ops = {
1581 	.bind = vop_bind,
1582 	.unbind = vop_unbind,
1583 };
1584 EXPORT_SYMBOL_GPL(vop_component_ops);
1585