xref: /openbmc/linux/drivers/gpu/drm/rockchip/rockchip_drm_vop.c (revision 04eb94d526423ff082efce61f4f26b0369d0bfdd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Fuzhou Rockchip Electronics Co.Ltd
4  * Author:Mark Yao <mark.yao@rock-chips.com>
5  */
6 
7 #include <drm/drm.h>
8 #include <drm/drmP.h>
9 #include <drm/drm_atomic.h>
10 #include <drm/drm_atomic_uapi.h>
11 #include <drm/drm_crtc.h>
12 #include <drm/drm_flip_work.h>
13 #include <drm/drm_gem_framebuffer_helper.h>
14 #include <drm/drm_plane_helper.h>
15 #include <drm/drm_probe_helper.h>
16 #ifdef CONFIG_DRM_ANALOGIX_DP
17 #include <drm/bridge/analogix_dp.h>
18 #endif
19 
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/platform_device.h>
23 #include <linux/clk.h>
24 #include <linux/iopoll.h>
25 #include <linux/of.h>
26 #include <linux/of_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/component.h>
29 #include <linux/overflow.h>
30 
31 #include <linux/reset.h>
32 #include <linux/delay.h>
33 
34 #include "rockchip_drm_drv.h"
35 #include "rockchip_drm_gem.h"
36 #include "rockchip_drm_fb.h"
37 #include "rockchip_drm_psr.h"
38 #include "rockchip_drm_vop.h"
39 #include "rockchip_rgb.h"
40 
41 #define VOP_WIN_SET(vop, win, name, v) \
42 		vop_reg_set(vop, &win->phy->name, win->base, ~0, v, #name)
43 #define VOP_SCL_SET(vop, win, name, v) \
44 		vop_reg_set(vop, &win->phy->scl->name, win->base, ~0, v, #name)
45 #define VOP_SCL_SET_EXT(vop, win, name, v) \
46 		vop_reg_set(vop, &win->phy->scl->ext->name, \
47 			    win->base, ~0, v, #name)
48 
49 #define VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, name, v) \
50 	do { \
51 		if (win_yuv2yuv && win_yuv2yuv->name.mask) \
52 			vop_reg_set(vop, &win_yuv2yuv->name, 0, ~0, v, #name); \
53 	} while (0)
54 
55 #define VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop, win_yuv2yuv, name, v) \
56 	do { \
57 		if (win_yuv2yuv && win_yuv2yuv->phy->name.mask) \
58 			vop_reg_set(vop, &win_yuv2yuv->phy->name, win_yuv2yuv->base, ~0, v, #name); \
59 	} while (0)
60 
61 #define VOP_INTR_SET_MASK(vop, name, mask, v) \
62 		vop_reg_set(vop, &vop->data->intr->name, 0, mask, v, #name)
63 
64 #define VOP_REG_SET(vop, group, name, v) \
65 		    vop_reg_set(vop, &vop->data->group->name, 0, ~0, v, #name)
66 
67 #define VOP_INTR_SET_TYPE(vop, name, type, v) \
68 	do { \
69 		int i, reg = 0, mask = 0; \
70 		for (i = 0; i < vop->data->intr->nintrs; i++) { \
71 			if (vop->data->intr->intrs[i] & type) { \
72 				reg |= (v) << i; \
73 				mask |= 1 << i; \
74 			} \
75 		} \
76 		VOP_INTR_SET_MASK(vop, name, mask, reg); \
77 	} while (0)
78 #define VOP_INTR_GET_TYPE(vop, name, type) \
79 		vop_get_intr_type(vop, &vop->data->intr->name, type)
80 
81 #define VOP_WIN_GET(vop, win, name) \
82 		vop_read_reg(vop, win->offset, win->phy->name)
83 
84 #define VOP_WIN_HAS_REG(win, name) \
85 	(!!(win->phy->name.mask))
86 
87 #define VOP_WIN_GET_YRGBADDR(vop, win) \
88 		vop_readl(vop, win->base + win->phy->yrgb_mst.offset)
89 
90 #define VOP_WIN_TO_INDEX(vop_win) \
91 	((vop_win) - (vop_win)->vop->win)
92 
93 #define to_vop(x) container_of(x, struct vop, crtc)
94 #define to_vop_win(x) container_of(x, struct vop_win, base)
95 
96 /*
97  * The coefficients of the following matrix are all fixed points.
98  * The format is S2.10 for the 3x3 part of the matrix, and S9.12 for the offsets.
99  * They are all represented in two's complement.
100  */
101 static const uint32_t bt601_yuv2rgb[] = {
102 	0x4A8, 0x0,    0x662,
103 	0x4A8, 0x1E6F, 0x1CBF,
104 	0x4A8, 0x812,  0x0,
105 	0x321168, 0x0877CF, 0x2EB127
106 };
107 
108 enum vop_pending {
109 	VOP_PENDING_FB_UNREF,
110 };
111 
112 struct vop_win {
113 	struct drm_plane base;
114 	const struct vop_win_data *data;
115 	const struct vop_win_yuv2yuv_data *yuv2yuv_data;
116 	struct vop *vop;
117 };
118 
119 struct rockchip_rgb;
120 struct vop {
121 	struct drm_crtc crtc;
122 	struct device *dev;
123 	struct drm_device *drm_dev;
124 	bool is_enabled;
125 
126 	struct completion dsp_hold_completion;
127 
128 	/* protected by dev->event_lock */
129 	struct drm_pending_vblank_event *event;
130 
131 	struct drm_flip_work fb_unref_work;
132 	unsigned long pending;
133 
134 	struct completion line_flag_completion;
135 
136 	const struct vop_data *data;
137 
138 	uint32_t *regsbak;
139 	void __iomem *regs;
140 
141 	/* physical map length of vop register */
142 	uint32_t len;
143 
144 	/* one time only one process allowed to config the register */
145 	spinlock_t reg_lock;
146 	/* lock vop irq reg */
147 	spinlock_t irq_lock;
148 	/* protects crtc enable/disable */
149 	struct mutex vop_lock;
150 
151 	unsigned int irq;
152 
153 	/* vop AHP clk */
154 	struct clk *hclk;
155 	/* vop dclk */
156 	struct clk *dclk;
157 	/* vop share memory frequency */
158 	struct clk *aclk;
159 
160 	/* vop dclk reset */
161 	struct reset_control *dclk_rst;
162 
163 	/* optional internal rgb encoder */
164 	struct rockchip_rgb *rgb;
165 
166 	struct vop_win win[];
167 };
168 
169 static inline void vop_writel(struct vop *vop, uint32_t offset, uint32_t v)
170 {
171 	writel(v, vop->regs + offset);
172 	vop->regsbak[offset >> 2] = v;
173 }
174 
175 static inline uint32_t vop_readl(struct vop *vop, uint32_t offset)
176 {
177 	return readl(vop->regs + offset);
178 }
179 
180 static inline uint32_t vop_read_reg(struct vop *vop, uint32_t base,
181 				    const struct vop_reg *reg)
182 {
183 	return (vop_readl(vop, base + reg->offset) >> reg->shift) & reg->mask;
184 }
185 
186 static void vop_reg_set(struct vop *vop, const struct vop_reg *reg,
187 			uint32_t _offset, uint32_t _mask, uint32_t v,
188 			const char *reg_name)
189 {
190 	int offset, mask, shift;
191 
192 	if (!reg || !reg->mask) {
193 		DRM_DEV_DEBUG(vop->dev, "Warning: not support %s\n", reg_name);
194 		return;
195 	}
196 
197 	offset = reg->offset + _offset;
198 	mask = reg->mask & _mask;
199 	shift = reg->shift;
200 
201 	if (reg->write_mask) {
202 		v = ((v << shift) & 0xffff) | (mask << (shift + 16));
203 	} else {
204 		uint32_t cached_val = vop->regsbak[offset >> 2];
205 
206 		v = (cached_val & ~(mask << shift)) | ((v & mask) << shift);
207 		vop->regsbak[offset >> 2] = v;
208 	}
209 
210 	if (reg->relaxed)
211 		writel_relaxed(v, vop->regs + offset);
212 	else
213 		writel(v, vop->regs + offset);
214 }
215 
216 static inline uint32_t vop_get_intr_type(struct vop *vop,
217 					 const struct vop_reg *reg, int type)
218 {
219 	uint32_t i, ret = 0;
220 	uint32_t regs = vop_read_reg(vop, 0, reg);
221 
222 	for (i = 0; i < vop->data->intr->nintrs; i++) {
223 		if ((type & vop->data->intr->intrs[i]) && (regs & 1 << i))
224 			ret |= vop->data->intr->intrs[i];
225 	}
226 
227 	return ret;
228 }
229 
230 static inline void vop_cfg_done(struct vop *vop)
231 {
232 	VOP_REG_SET(vop, common, cfg_done, 1);
233 }
234 
235 static bool has_rb_swapped(uint32_t format)
236 {
237 	switch (format) {
238 	case DRM_FORMAT_XBGR8888:
239 	case DRM_FORMAT_ABGR8888:
240 	case DRM_FORMAT_BGR888:
241 	case DRM_FORMAT_BGR565:
242 		return true;
243 	default:
244 		return false;
245 	}
246 }
247 
248 static enum vop_data_format vop_convert_format(uint32_t format)
249 {
250 	switch (format) {
251 	case DRM_FORMAT_XRGB8888:
252 	case DRM_FORMAT_ARGB8888:
253 	case DRM_FORMAT_XBGR8888:
254 	case DRM_FORMAT_ABGR8888:
255 		return VOP_FMT_ARGB8888;
256 	case DRM_FORMAT_RGB888:
257 	case DRM_FORMAT_BGR888:
258 		return VOP_FMT_RGB888;
259 	case DRM_FORMAT_RGB565:
260 	case DRM_FORMAT_BGR565:
261 		return VOP_FMT_RGB565;
262 	case DRM_FORMAT_NV12:
263 		return VOP_FMT_YUV420SP;
264 	case DRM_FORMAT_NV16:
265 		return VOP_FMT_YUV422SP;
266 	case DRM_FORMAT_NV24:
267 		return VOP_FMT_YUV444SP;
268 	default:
269 		DRM_ERROR("unsupported format[%08x]\n", format);
270 		return -EINVAL;
271 	}
272 }
273 
274 static uint16_t scl_vop_cal_scale(enum scale_mode mode, uint32_t src,
275 				  uint32_t dst, bool is_horizontal,
276 				  int vsu_mode, int *vskiplines)
277 {
278 	uint16_t val = 1 << SCL_FT_DEFAULT_FIXPOINT_SHIFT;
279 
280 	if (vskiplines)
281 		*vskiplines = 0;
282 
283 	if (is_horizontal) {
284 		if (mode == SCALE_UP)
285 			val = GET_SCL_FT_BIC(src, dst);
286 		else if (mode == SCALE_DOWN)
287 			val = GET_SCL_FT_BILI_DN(src, dst);
288 	} else {
289 		if (mode == SCALE_UP) {
290 			if (vsu_mode == SCALE_UP_BIL)
291 				val = GET_SCL_FT_BILI_UP(src, dst);
292 			else
293 				val = GET_SCL_FT_BIC(src, dst);
294 		} else if (mode == SCALE_DOWN) {
295 			if (vskiplines) {
296 				*vskiplines = scl_get_vskiplines(src, dst);
297 				val = scl_get_bili_dn_vskip(src, dst,
298 							    *vskiplines);
299 			} else {
300 				val = GET_SCL_FT_BILI_DN(src, dst);
301 			}
302 		}
303 	}
304 
305 	return val;
306 }
307 
308 static void scl_vop_cal_scl_fac(struct vop *vop, const struct vop_win_data *win,
309 			     uint32_t src_w, uint32_t src_h, uint32_t dst_w,
310 			     uint32_t dst_h, const struct drm_format_info *info)
311 {
312 	uint16_t yrgb_hor_scl_mode, yrgb_ver_scl_mode;
313 	uint16_t cbcr_hor_scl_mode = SCALE_NONE;
314 	uint16_t cbcr_ver_scl_mode = SCALE_NONE;
315 	bool is_yuv = false;
316 	uint16_t cbcr_src_w = src_w / info->hsub;
317 	uint16_t cbcr_src_h = src_h / info->vsub;
318 	uint16_t vsu_mode;
319 	uint16_t lb_mode;
320 	uint32_t val;
321 	int vskiplines;
322 
323 	if (info->is_yuv)
324 		is_yuv = true;
325 
326 	if (dst_w > 3840) {
327 		DRM_DEV_ERROR(vop->dev, "Maximum dst width (3840) exceeded\n");
328 		return;
329 	}
330 
331 	if (!win->phy->scl->ext) {
332 		VOP_SCL_SET(vop, win, scale_yrgb_x,
333 			    scl_cal_scale2(src_w, dst_w));
334 		VOP_SCL_SET(vop, win, scale_yrgb_y,
335 			    scl_cal_scale2(src_h, dst_h));
336 		if (is_yuv) {
337 			VOP_SCL_SET(vop, win, scale_cbcr_x,
338 				    scl_cal_scale2(cbcr_src_w, dst_w));
339 			VOP_SCL_SET(vop, win, scale_cbcr_y,
340 				    scl_cal_scale2(cbcr_src_h, dst_h));
341 		}
342 		return;
343 	}
344 
345 	yrgb_hor_scl_mode = scl_get_scl_mode(src_w, dst_w);
346 	yrgb_ver_scl_mode = scl_get_scl_mode(src_h, dst_h);
347 
348 	if (is_yuv) {
349 		cbcr_hor_scl_mode = scl_get_scl_mode(cbcr_src_w, dst_w);
350 		cbcr_ver_scl_mode = scl_get_scl_mode(cbcr_src_h, dst_h);
351 		if (cbcr_hor_scl_mode == SCALE_DOWN)
352 			lb_mode = scl_vop_cal_lb_mode(dst_w, true);
353 		else
354 			lb_mode = scl_vop_cal_lb_mode(cbcr_src_w, true);
355 	} else {
356 		if (yrgb_hor_scl_mode == SCALE_DOWN)
357 			lb_mode = scl_vop_cal_lb_mode(dst_w, false);
358 		else
359 			lb_mode = scl_vop_cal_lb_mode(src_w, false);
360 	}
361 
362 	VOP_SCL_SET_EXT(vop, win, lb_mode, lb_mode);
363 	if (lb_mode == LB_RGB_3840X2) {
364 		if (yrgb_ver_scl_mode != SCALE_NONE) {
365 			DRM_DEV_ERROR(vop->dev, "not allow yrgb ver scale\n");
366 			return;
367 		}
368 		if (cbcr_ver_scl_mode != SCALE_NONE) {
369 			DRM_DEV_ERROR(vop->dev, "not allow cbcr ver scale\n");
370 			return;
371 		}
372 		vsu_mode = SCALE_UP_BIL;
373 	} else if (lb_mode == LB_RGB_2560X4) {
374 		vsu_mode = SCALE_UP_BIL;
375 	} else {
376 		vsu_mode = SCALE_UP_BIC;
377 	}
378 
379 	val = scl_vop_cal_scale(yrgb_hor_scl_mode, src_w, dst_w,
380 				true, 0, NULL);
381 	VOP_SCL_SET(vop, win, scale_yrgb_x, val);
382 	val = scl_vop_cal_scale(yrgb_ver_scl_mode, src_h, dst_h,
383 				false, vsu_mode, &vskiplines);
384 	VOP_SCL_SET(vop, win, scale_yrgb_y, val);
385 
386 	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt4, vskiplines == 4);
387 	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt2, vskiplines == 2);
388 
389 	VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, yrgb_hor_scl_mode);
390 	VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, yrgb_ver_scl_mode);
391 	VOP_SCL_SET_EXT(vop, win, yrgb_hsd_mode, SCALE_DOWN_BIL);
392 	VOP_SCL_SET_EXT(vop, win, yrgb_vsd_mode, SCALE_DOWN_BIL);
393 	VOP_SCL_SET_EXT(vop, win, yrgb_vsu_mode, vsu_mode);
394 	if (is_yuv) {
395 		val = scl_vop_cal_scale(cbcr_hor_scl_mode, cbcr_src_w,
396 					dst_w, true, 0, NULL);
397 		VOP_SCL_SET(vop, win, scale_cbcr_x, val);
398 		val = scl_vop_cal_scale(cbcr_ver_scl_mode, cbcr_src_h,
399 					dst_h, false, vsu_mode, &vskiplines);
400 		VOP_SCL_SET(vop, win, scale_cbcr_y, val);
401 
402 		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt4, vskiplines == 4);
403 		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt2, vskiplines == 2);
404 		VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, cbcr_hor_scl_mode);
405 		VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, cbcr_ver_scl_mode);
406 		VOP_SCL_SET_EXT(vop, win, cbcr_hsd_mode, SCALE_DOWN_BIL);
407 		VOP_SCL_SET_EXT(vop, win, cbcr_vsd_mode, SCALE_DOWN_BIL);
408 		VOP_SCL_SET_EXT(vop, win, cbcr_vsu_mode, vsu_mode);
409 	}
410 }
411 
412 static void vop_dsp_hold_valid_irq_enable(struct vop *vop)
413 {
414 	unsigned long flags;
415 
416 	if (WARN_ON(!vop->is_enabled))
417 		return;
418 
419 	spin_lock_irqsave(&vop->irq_lock, flags);
420 
421 	VOP_INTR_SET_TYPE(vop, clear, DSP_HOLD_VALID_INTR, 1);
422 	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 1);
423 
424 	spin_unlock_irqrestore(&vop->irq_lock, flags);
425 }
426 
427 static void vop_dsp_hold_valid_irq_disable(struct vop *vop)
428 {
429 	unsigned long flags;
430 
431 	if (WARN_ON(!vop->is_enabled))
432 		return;
433 
434 	spin_lock_irqsave(&vop->irq_lock, flags);
435 
436 	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 0);
437 
438 	spin_unlock_irqrestore(&vop->irq_lock, flags);
439 }
440 
441 /*
442  * (1) each frame starts at the start of the Vsync pulse which is signaled by
443  *     the "FRAME_SYNC" interrupt.
444  * (2) the active data region of each frame ends at dsp_vact_end
445  * (3) we should program this same number (dsp_vact_end) into dsp_line_frag_num,
446  *      to get "LINE_FLAG" interrupt at the end of the active on screen data.
447  *
448  * VOP_INTR_CTRL0.dsp_line_frag_num = VOP_DSP_VACT_ST_END.dsp_vact_end
449  * Interrupts
450  * LINE_FLAG -------------------------------+
451  * FRAME_SYNC ----+                         |
452  *                |                         |
453  *                v                         v
454  *                | Vsync | Vbp |  Vactive  | Vfp |
455  *                        ^     ^           ^     ^
456  *                        |     |           |     |
457  *                        |     |           |     |
458  * dsp_vs_end ------------+     |           |     |   VOP_DSP_VTOTAL_VS_END
459  * dsp_vact_start --------------+           |     |   VOP_DSP_VACT_ST_END
460  * dsp_vact_end ----------------------------+     |   VOP_DSP_VACT_ST_END
461  * dsp_total -------------------------------------+   VOP_DSP_VTOTAL_VS_END
462  */
463 static bool vop_line_flag_irq_is_enabled(struct vop *vop)
464 {
465 	uint32_t line_flag_irq;
466 	unsigned long flags;
467 
468 	spin_lock_irqsave(&vop->irq_lock, flags);
469 
470 	line_flag_irq = VOP_INTR_GET_TYPE(vop, enable, LINE_FLAG_INTR);
471 
472 	spin_unlock_irqrestore(&vop->irq_lock, flags);
473 
474 	return !!line_flag_irq;
475 }
476 
477 static void vop_line_flag_irq_enable(struct vop *vop)
478 {
479 	unsigned long flags;
480 
481 	if (WARN_ON(!vop->is_enabled))
482 		return;
483 
484 	spin_lock_irqsave(&vop->irq_lock, flags);
485 
486 	VOP_INTR_SET_TYPE(vop, clear, LINE_FLAG_INTR, 1);
487 	VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 1);
488 
489 	spin_unlock_irqrestore(&vop->irq_lock, flags);
490 }
491 
492 static void vop_line_flag_irq_disable(struct vop *vop)
493 {
494 	unsigned long flags;
495 
496 	if (WARN_ON(!vop->is_enabled))
497 		return;
498 
499 	spin_lock_irqsave(&vop->irq_lock, flags);
500 
501 	VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 0);
502 
503 	spin_unlock_irqrestore(&vop->irq_lock, flags);
504 }
505 
506 static int vop_core_clks_enable(struct vop *vop)
507 {
508 	int ret;
509 
510 	ret = clk_enable(vop->hclk);
511 	if (ret < 0)
512 		return ret;
513 
514 	ret = clk_enable(vop->aclk);
515 	if (ret < 0)
516 		goto err_disable_hclk;
517 
518 	return 0;
519 
520 err_disable_hclk:
521 	clk_disable(vop->hclk);
522 	return ret;
523 }
524 
525 static void vop_core_clks_disable(struct vop *vop)
526 {
527 	clk_disable(vop->aclk);
528 	clk_disable(vop->hclk);
529 }
530 
531 static void vop_win_disable(struct vop *vop, const struct vop_win_data *win)
532 {
533 	if (win->phy->scl && win->phy->scl->ext) {
534 		VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, SCALE_NONE);
535 		VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, SCALE_NONE);
536 		VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, SCALE_NONE);
537 		VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, SCALE_NONE);
538 	}
539 
540 	VOP_WIN_SET(vop, win, enable, 0);
541 }
542 
543 static int vop_enable(struct drm_crtc *crtc)
544 {
545 	struct vop *vop = to_vop(crtc);
546 	int ret, i;
547 
548 	ret = pm_runtime_get_sync(vop->dev);
549 	if (ret < 0) {
550 		DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
551 		return ret;
552 	}
553 
554 	ret = vop_core_clks_enable(vop);
555 	if (WARN_ON(ret < 0))
556 		goto err_put_pm_runtime;
557 
558 	ret = clk_enable(vop->dclk);
559 	if (WARN_ON(ret < 0))
560 		goto err_disable_core;
561 
562 	/*
563 	 * Slave iommu shares power, irq and clock with vop.  It was associated
564 	 * automatically with this master device via common driver code.
565 	 * Now that we have enabled the clock we attach it to the shared drm
566 	 * mapping.
567 	 */
568 	ret = rockchip_drm_dma_attach_device(vop->drm_dev, vop->dev);
569 	if (ret) {
570 		DRM_DEV_ERROR(vop->dev,
571 			      "failed to attach dma mapping, %d\n", ret);
572 		goto err_disable_dclk;
573 	}
574 
575 	spin_lock(&vop->reg_lock);
576 	for (i = 0; i < vop->len; i += 4)
577 		writel_relaxed(vop->regsbak[i / 4], vop->regs + i);
578 
579 	/*
580 	 * We need to make sure that all windows are disabled before we
581 	 * enable the crtc. Otherwise we might try to scan from a destroyed
582 	 * buffer later.
583 	 */
584 	for (i = 0; i < vop->data->win_size; i++) {
585 		struct vop_win *vop_win = &vop->win[i];
586 		const struct vop_win_data *win = vop_win->data;
587 
588 		vop_win_disable(vop, win);
589 	}
590 	spin_unlock(&vop->reg_lock);
591 
592 	vop_cfg_done(vop);
593 
594 	/*
595 	 * At here, vop clock & iommu is enable, R/W vop regs would be safe.
596 	 */
597 	vop->is_enabled = true;
598 
599 	spin_lock(&vop->reg_lock);
600 
601 	VOP_REG_SET(vop, common, standby, 1);
602 
603 	spin_unlock(&vop->reg_lock);
604 
605 	drm_crtc_vblank_on(crtc);
606 
607 	return 0;
608 
609 err_disable_dclk:
610 	clk_disable(vop->dclk);
611 err_disable_core:
612 	vop_core_clks_disable(vop);
613 err_put_pm_runtime:
614 	pm_runtime_put_sync(vop->dev);
615 	return ret;
616 }
617 
618 static void vop_crtc_atomic_disable(struct drm_crtc *crtc,
619 				    struct drm_crtc_state *old_state)
620 {
621 	struct vop *vop = to_vop(crtc);
622 
623 	WARN_ON(vop->event);
624 
625 	mutex_lock(&vop->vop_lock);
626 	drm_crtc_vblank_off(crtc);
627 
628 	/*
629 	 * Vop standby will take effect at end of current frame,
630 	 * if dsp hold valid irq happen, it means standby complete.
631 	 *
632 	 * we must wait standby complete when we want to disable aclk,
633 	 * if not, memory bus maybe dead.
634 	 */
635 	reinit_completion(&vop->dsp_hold_completion);
636 	vop_dsp_hold_valid_irq_enable(vop);
637 
638 	spin_lock(&vop->reg_lock);
639 
640 	VOP_REG_SET(vop, common, standby, 1);
641 
642 	spin_unlock(&vop->reg_lock);
643 
644 	wait_for_completion(&vop->dsp_hold_completion);
645 
646 	vop_dsp_hold_valid_irq_disable(vop);
647 
648 	vop->is_enabled = false;
649 
650 	/*
651 	 * vop standby complete, so iommu detach is safe.
652 	 */
653 	rockchip_drm_dma_detach_device(vop->drm_dev, vop->dev);
654 
655 	clk_disable(vop->dclk);
656 	vop_core_clks_disable(vop);
657 	pm_runtime_put(vop->dev);
658 	mutex_unlock(&vop->vop_lock);
659 
660 	if (crtc->state->event && !crtc->state->active) {
661 		spin_lock_irq(&crtc->dev->event_lock);
662 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
663 		spin_unlock_irq(&crtc->dev->event_lock);
664 
665 		crtc->state->event = NULL;
666 	}
667 }
668 
669 static void vop_plane_destroy(struct drm_plane *plane)
670 {
671 	drm_plane_cleanup(plane);
672 }
673 
674 static int vop_plane_atomic_check(struct drm_plane *plane,
675 			   struct drm_plane_state *state)
676 {
677 	struct drm_crtc *crtc = state->crtc;
678 	struct drm_crtc_state *crtc_state;
679 	struct drm_framebuffer *fb = state->fb;
680 	struct vop_win *vop_win = to_vop_win(plane);
681 	const struct vop_win_data *win = vop_win->data;
682 	int ret;
683 	int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
684 					DRM_PLANE_HELPER_NO_SCALING;
685 	int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
686 					DRM_PLANE_HELPER_NO_SCALING;
687 
688 	if (!crtc || !fb)
689 		return 0;
690 
691 	crtc_state = drm_atomic_get_existing_crtc_state(state->state, crtc);
692 	if (WARN_ON(!crtc_state))
693 		return -EINVAL;
694 
695 	ret = drm_atomic_helper_check_plane_state(state, crtc_state,
696 						  min_scale, max_scale,
697 						  true, true);
698 	if (ret)
699 		return ret;
700 
701 	if (!state->visible)
702 		return 0;
703 
704 	ret = vop_convert_format(fb->format->format);
705 	if (ret < 0)
706 		return ret;
707 
708 	/*
709 	 * Src.x1 can be odd when do clip, but yuv plane start point
710 	 * need align with 2 pixel.
711 	 */
712 	if (fb->format->is_yuv && ((state->src.x1 >> 16) % 2)) {
713 		DRM_ERROR("Invalid Source: Yuv format not support odd xpos\n");
714 		return -EINVAL;
715 	}
716 
717 	if (fb->format->is_yuv && state->rotation & DRM_MODE_REFLECT_Y) {
718 		DRM_ERROR("Invalid Source: Yuv format does not support this rotation\n");
719 		return -EINVAL;
720 	}
721 
722 	return 0;
723 }
724 
725 static void vop_plane_atomic_disable(struct drm_plane *plane,
726 				     struct drm_plane_state *old_state)
727 {
728 	struct vop_win *vop_win = to_vop_win(plane);
729 	const struct vop_win_data *win = vop_win->data;
730 	struct vop *vop = to_vop(old_state->crtc);
731 
732 	if (!old_state->crtc)
733 		return;
734 
735 	spin_lock(&vop->reg_lock);
736 
737 	vop_win_disable(vop, win);
738 
739 	spin_unlock(&vop->reg_lock);
740 }
741 
742 static void vop_plane_atomic_update(struct drm_plane *plane,
743 		struct drm_plane_state *old_state)
744 {
745 	struct drm_plane_state *state = plane->state;
746 	struct drm_crtc *crtc = state->crtc;
747 	struct vop_win *vop_win = to_vop_win(plane);
748 	const struct vop_win_data *win = vop_win->data;
749 	const struct vop_win_yuv2yuv_data *win_yuv2yuv = vop_win->yuv2yuv_data;
750 	struct vop *vop = to_vop(state->crtc);
751 	struct drm_framebuffer *fb = state->fb;
752 	unsigned int actual_w, actual_h;
753 	unsigned int dsp_stx, dsp_sty;
754 	uint32_t act_info, dsp_info, dsp_st;
755 	struct drm_rect *src = &state->src;
756 	struct drm_rect *dest = &state->dst;
757 	struct drm_gem_object *obj, *uv_obj;
758 	struct rockchip_gem_object *rk_obj, *rk_uv_obj;
759 	unsigned long offset;
760 	dma_addr_t dma_addr;
761 	uint32_t val;
762 	bool rb_swap;
763 	int win_index = VOP_WIN_TO_INDEX(vop_win);
764 	int format;
765 	int is_yuv = fb->format->is_yuv;
766 	int i;
767 
768 	/*
769 	 * can't update plane when vop is disabled.
770 	 */
771 	if (WARN_ON(!crtc))
772 		return;
773 
774 	if (WARN_ON(!vop->is_enabled))
775 		return;
776 
777 	if (!state->visible) {
778 		vop_plane_atomic_disable(plane, old_state);
779 		return;
780 	}
781 
782 	obj = fb->obj[0];
783 	rk_obj = to_rockchip_obj(obj);
784 
785 	actual_w = drm_rect_width(src) >> 16;
786 	actual_h = drm_rect_height(src) >> 16;
787 	act_info = (actual_h - 1) << 16 | ((actual_w - 1) & 0xffff);
788 
789 	dsp_info = (drm_rect_height(dest) - 1) << 16;
790 	dsp_info |= (drm_rect_width(dest) - 1) & 0xffff;
791 
792 	dsp_stx = dest->x1 + crtc->mode.htotal - crtc->mode.hsync_start;
793 	dsp_sty = dest->y1 + crtc->mode.vtotal - crtc->mode.vsync_start;
794 	dsp_st = dsp_sty << 16 | (dsp_stx & 0xffff);
795 
796 	offset = (src->x1 >> 16) * fb->format->cpp[0];
797 	offset += (src->y1 >> 16) * fb->pitches[0];
798 	dma_addr = rk_obj->dma_addr + offset + fb->offsets[0];
799 
800 	/*
801 	 * For y-mirroring we need to move address
802 	 * to the beginning of the last line.
803 	 */
804 	if (state->rotation & DRM_MODE_REFLECT_Y)
805 		dma_addr += (actual_h - 1) * fb->pitches[0];
806 
807 	format = vop_convert_format(fb->format->format);
808 
809 	spin_lock(&vop->reg_lock);
810 
811 	VOP_WIN_SET(vop, win, format, format);
812 	VOP_WIN_SET(vop, win, yrgb_vir, DIV_ROUND_UP(fb->pitches[0], 4));
813 	VOP_WIN_SET(vop, win, yrgb_mst, dma_addr);
814 	VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, y2r_en, is_yuv);
815 	VOP_WIN_SET(vop, win, y_mir_en,
816 		    (state->rotation & DRM_MODE_REFLECT_Y) ? 1 : 0);
817 	VOP_WIN_SET(vop, win, x_mir_en,
818 		    (state->rotation & DRM_MODE_REFLECT_X) ? 1 : 0);
819 
820 	if (is_yuv) {
821 		int hsub = fb->format->hsub;
822 		int vsub = fb->format->vsub;
823 		int bpp = fb->format->cpp[1];
824 
825 		uv_obj = fb->obj[1];
826 		rk_uv_obj = to_rockchip_obj(uv_obj);
827 
828 		offset = (src->x1 >> 16) * bpp / hsub;
829 		offset += (src->y1 >> 16) * fb->pitches[1] / vsub;
830 
831 		dma_addr = rk_uv_obj->dma_addr + offset + fb->offsets[1];
832 		VOP_WIN_SET(vop, win, uv_vir, DIV_ROUND_UP(fb->pitches[1], 4));
833 		VOP_WIN_SET(vop, win, uv_mst, dma_addr);
834 
835 		for (i = 0; i < NUM_YUV2YUV_COEFFICIENTS; i++) {
836 			VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop,
837 							win_yuv2yuv,
838 							y2r_coefficients[i],
839 							bt601_yuv2rgb[i]);
840 		}
841 	}
842 
843 	if (win->phy->scl)
844 		scl_vop_cal_scl_fac(vop, win, actual_w, actual_h,
845 				    drm_rect_width(dest), drm_rect_height(dest),
846 				    fb->format);
847 
848 	VOP_WIN_SET(vop, win, act_info, act_info);
849 	VOP_WIN_SET(vop, win, dsp_info, dsp_info);
850 	VOP_WIN_SET(vop, win, dsp_st, dsp_st);
851 
852 	rb_swap = has_rb_swapped(fb->format->format);
853 	VOP_WIN_SET(vop, win, rb_swap, rb_swap);
854 
855 	/*
856 	 * Blending win0 with the background color doesn't seem to work
857 	 * correctly. We only get the background color, no matter the contents
858 	 * of the win0 framebuffer.  However, blending pre-multiplied color
859 	 * with the default opaque black default background color is a no-op,
860 	 * so we can just disable blending to get the correct result.
861 	 */
862 	if (fb->format->has_alpha && win_index > 0) {
863 		VOP_WIN_SET(vop, win, dst_alpha_ctl,
864 			    DST_FACTOR_M0(ALPHA_SRC_INVERSE));
865 		val = SRC_ALPHA_EN(1) | SRC_COLOR_M0(ALPHA_SRC_PRE_MUL) |
866 			SRC_ALPHA_M0(ALPHA_STRAIGHT) |
867 			SRC_BLEND_M0(ALPHA_PER_PIX) |
868 			SRC_ALPHA_CAL_M0(ALPHA_NO_SATURATION) |
869 			SRC_FACTOR_M0(ALPHA_ONE);
870 		VOP_WIN_SET(vop, win, src_alpha_ctl, val);
871 	} else {
872 		VOP_WIN_SET(vop, win, src_alpha_ctl, SRC_ALPHA_EN(0));
873 	}
874 
875 	VOP_WIN_SET(vop, win, enable, 1);
876 	spin_unlock(&vop->reg_lock);
877 }
878 
879 static int vop_plane_atomic_async_check(struct drm_plane *plane,
880 					struct drm_plane_state *state)
881 {
882 	struct vop_win *vop_win = to_vop_win(plane);
883 	const struct vop_win_data *win = vop_win->data;
884 	int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
885 					DRM_PLANE_HELPER_NO_SCALING;
886 	int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
887 					DRM_PLANE_HELPER_NO_SCALING;
888 	struct drm_crtc_state *crtc_state;
889 
890 	if (plane != state->crtc->cursor)
891 		return -EINVAL;
892 
893 	if (!plane->state)
894 		return -EINVAL;
895 
896 	if (!plane->state->fb)
897 		return -EINVAL;
898 
899 	if (state->state)
900 		crtc_state = drm_atomic_get_existing_crtc_state(state->state,
901 								state->crtc);
902 	else /* Special case for asynchronous cursor updates. */
903 		crtc_state = plane->crtc->state;
904 
905 	return drm_atomic_helper_check_plane_state(plane->state, crtc_state,
906 						   min_scale, max_scale,
907 						   true, true);
908 }
909 
910 static void vop_plane_atomic_async_update(struct drm_plane *plane,
911 					  struct drm_plane_state *new_state)
912 {
913 	struct vop *vop = to_vop(plane->state->crtc);
914 	struct drm_framebuffer *old_fb = plane->state->fb;
915 
916 	plane->state->crtc_x = new_state->crtc_x;
917 	plane->state->crtc_y = new_state->crtc_y;
918 	plane->state->crtc_h = new_state->crtc_h;
919 	plane->state->crtc_w = new_state->crtc_w;
920 	plane->state->src_x = new_state->src_x;
921 	plane->state->src_y = new_state->src_y;
922 	plane->state->src_h = new_state->src_h;
923 	plane->state->src_w = new_state->src_w;
924 	swap(plane->state->fb, new_state->fb);
925 
926 	if (vop->is_enabled) {
927 		rockchip_drm_psr_inhibit_get_state(new_state->state);
928 		vop_plane_atomic_update(plane, plane->state);
929 		spin_lock(&vop->reg_lock);
930 		vop_cfg_done(vop);
931 		spin_unlock(&vop->reg_lock);
932 		rockchip_drm_psr_inhibit_put_state(new_state->state);
933 
934 		/*
935 		 * A scanout can still be occurring, so we can't drop the
936 		 * reference to the old framebuffer. To solve this we get a
937 		 * reference to old_fb and set a worker to release it later.
938 		 * FIXME: if we perform 500 async_update calls before the
939 		 * vblank, then we can have 500 different framebuffers waiting
940 		 * to be released.
941 		 */
942 		if (old_fb && plane->state->fb != old_fb) {
943 			drm_framebuffer_get(old_fb);
944 			WARN_ON(drm_crtc_vblank_get(plane->state->crtc) != 0);
945 			drm_flip_work_queue(&vop->fb_unref_work, old_fb);
946 			set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
947 		}
948 	}
949 }
950 
951 static const struct drm_plane_helper_funcs plane_helper_funcs = {
952 	.atomic_check = vop_plane_atomic_check,
953 	.atomic_update = vop_plane_atomic_update,
954 	.atomic_disable = vop_plane_atomic_disable,
955 	.atomic_async_check = vop_plane_atomic_async_check,
956 	.atomic_async_update = vop_plane_atomic_async_update,
957 	.prepare_fb = drm_gem_fb_prepare_fb,
958 };
959 
960 static const struct drm_plane_funcs vop_plane_funcs = {
961 	.update_plane	= drm_atomic_helper_update_plane,
962 	.disable_plane	= drm_atomic_helper_disable_plane,
963 	.destroy = vop_plane_destroy,
964 	.reset = drm_atomic_helper_plane_reset,
965 	.atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state,
966 	.atomic_destroy_state = drm_atomic_helper_plane_destroy_state,
967 };
968 
969 static int vop_crtc_enable_vblank(struct drm_crtc *crtc)
970 {
971 	struct vop *vop = to_vop(crtc);
972 	unsigned long flags;
973 
974 	if (WARN_ON(!vop->is_enabled))
975 		return -EPERM;
976 
977 	spin_lock_irqsave(&vop->irq_lock, flags);
978 
979 	VOP_INTR_SET_TYPE(vop, clear, FS_INTR, 1);
980 	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 1);
981 
982 	spin_unlock_irqrestore(&vop->irq_lock, flags);
983 
984 	return 0;
985 }
986 
987 static void vop_crtc_disable_vblank(struct drm_crtc *crtc)
988 {
989 	struct vop *vop = to_vop(crtc);
990 	unsigned long flags;
991 
992 	if (WARN_ON(!vop->is_enabled))
993 		return;
994 
995 	spin_lock_irqsave(&vop->irq_lock, flags);
996 
997 	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 0);
998 
999 	spin_unlock_irqrestore(&vop->irq_lock, flags);
1000 }
1001 
1002 static bool vop_crtc_mode_fixup(struct drm_crtc *crtc,
1003 				const struct drm_display_mode *mode,
1004 				struct drm_display_mode *adjusted_mode)
1005 {
1006 	struct vop *vop = to_vop(crtc);
1007 
1008 	adjusted_mode->clock =
1009 		DIV_ROUND_UP(clk_round_rate(vop->dclk,
1010 					    adjusted_mode->clock * 1000), 1000);
1011 
1012 	return true;
1013 }
1014 
1015 static void vop_crtc_atomic_enable(struct drm_crtc *crtc,
1016 				   struct drm_crtc_state *old_state)
1017 {
1018 	struct vop *vop = to_vop(crtc);
1019 	const struct vop_data *vop_data = vop->data;
1020 	struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc->state);
1021 	struct drm_display_mode *adjusted_mode = &crtc->state->adjusted_mode;
1022 	u16 hsync_len = adjusted_mode->hsync_end - adjusted_mode->hsync_start;
1023 	u16 hdisplay = adjusted_mode->hdisplay;
1024 	u16 htotal = adjusted_mode->htotal;
1025 	u16 hact_st = adjusted_mode->htotal - adjusted_mode->hsync_start;
1026 	u16 hact_end = hact_st + hdisplay;
1027 	u16 vdisplay = adjusted_mode->vdisplay;
1028 	u16 vtotal = adjusted_mode->vtotal;
1029 	u16 vsync_len = adjusted_mode->vsync_end - adjusted_mode->vsync_start;
1030 	u16 vact_st = adjusted_mode->vtotal - adjusted_mode->vsync_start;
1031 	u16 vact_end = vact_st + vdisplay;
1032 	uint32_t pin_pol, val;
1033 	int dither_bpc = s->output_bpc ? s->output_bpc : 10;
1034 	int ret;
1035 
1036 	mutex_lock(&vop->vop_lock);
1037 
1038 	WARN_ON(vop->event);
1039 
1040 	ret = vop_enable(crtc);
1041 	if (ret) {
1042 		mutex_unlock(&vop->vop_lock);
1043 		DRM_DEV_ERROR(vop->dev, "Failed to enable vop (%d)\n", ret);
1044 		return;
1045 	}
1046 
1047 	pin_pol = BIT(DCLK_INVERT);
1048 	pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) ?
1049 		   BIT(HSYNC_POSITIVE) : 0;
1050 	pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) ?
1051 		   BIT(VSYNC_POSITIVE) : 0;
1052 	VOP_REG_SET(vop, output, pin_pol, pin_pol);
1053 	VOP_REG_SET(vop, output, mipi_dual_channel_en, 0);
1054 
1055 	switch (s->output_type) {
1056 	case DRM_MODE_CONNECTOR_LVDS:
1057 		VOP_REG_SET(vop, output, rgb_en, 1);
1058 		VOP_REG_SET(vop, output, rgb_pin_pol, pin_pol);
1059 		break;
1060 	case DRM_MODE_CONNECTOR_eDP:
1061 		VOP_REG_SET(vop, output, edp_pin_pol, pin_pol);
1062 		VOP_REG_SET(vop, output, edp_en, 1);
1063 		break;
1064 	case DRM_MODE_CONNECTOR_HDMIA:
1065 		VOP_REG_SET(vop, output, hdmi_pin_pol, pin_pol);
1066 		VOP_REG_SET(vop, output, hdmi_en, 1);
1067 		break;
1068 	case DRM_MODE_CONNECTOR_DSI:
1069 		VOP_REG_SET(vop, output, mipi_pin_pol, pin_pol);
1070 		VOP_REG_SET(vop, output, mipi_en, 1);
1071 		VOP_REG_SET(vop, output, mipi_dual_channel_en,
1072 			    !!(s->output_flags & ROCKCHIP_OUTPUT_DSI_DUAL));
1073 		break;
1074 	case DRM_MODE_CONNECTOR_DisplayPort:
1075 		pin_pol &= ~BIT(DCLK_INVERT);
1076 		VOP_REG_SET(vop, output, dp_pin_pol, pin_pol);
1077 		VOP_REG_SET(vop, output, dp_en, 1);
1078 		break;
1079 	default:
1080 		DRM_DEV_ERROR(vop->dev, "unsupported connector_type [%d]\n",
1081 			      s->output_type);
1082 	}
1083 
1084 	/*
1085 	 * if vop is not support RGB10 output, need force RGB10 to RGB888.
1086 	 */
1087 	if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA &&
1088 	    !(vop_data->feature & VOP_FEATURE_OUTPUT_RGB10))
1089 		s->output_mode = ROCKCHIP_OUT_MODE_P888;
1090 
1091 	if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA && dither_bpc <= 8)
1092 		VOP_REG_SET(vop, common, pre_dither_down, 1);
1093 	else
1094 		VOP_REG_SET(vop, common, pre_dither_down, 0);
1095 
1096 	if (dither_bpc == 6) {
1097 		VOP_REG_SET(vop, common, dither_down_sel, DITHER_DOWN_ALLEGRO);
1098 		VOP_REG_SET(vop, common, dither_down_mode, RGB888_TO_RGB666);
1099 		VOP_REG_SET(vop, common, dither_down_en, 1);
1100 	} else {
1101 		VOP_REG_SET(vop, common, dither_down_en, 0);
1102 	}
1103 
1104 	VOP_REG_SET(vop, common, out_mode, s->output_mode);
1105 
1106 	VOP_REG_SET(vop, modeset, htotal_pw, (htotal << 16) | hsync_len);
1107 	val = hact_st << 16;
1108 	val |= hact_end;
1109 	VOP_REG_SET(vop, modeset, hact_st_end, val);
1110 	VOP_REG_SET(vop, modeset, hpost_st_end, val);
1111 
1112 	VOP_REG_SET(vop, modeset, vtotal_pw, (vtotal << 16) | vsync_len);
1113 	val = vact_st << 16;
1114 	val |= vact_end;
1115 	VOP_REG_SET(vop, modeset, vact_st_end, val);
1116 	VOP_REG_SET(vop, modeset, vpost_st_end, val);
1117 
1118 	VOP_REG_SET(vop, intr, line_flag_num[0], vact_end);
1119 
1120 	clk_set_rate(vop->dclk, adjusted_mode->clock * 1000);
1121 
1122 	VOP_REG_SET(vop, common, standby, 0);
1123 	mutex_unlock(&vop->vop_lock);
1124 }
1125 
1126 static bool vop_fs_irq_is_pending(struct vop *vop)
1127 {
1128 	return VOP_INTR_GET_TYPE(vop, status, FS_INTR);
1129 }
1130 
1131 static void vop_wait_for_irq_handler(struct vop *vop)
1132 {
1133 	bool pending;
1134 	int ret;
1135 
1136 	/*
1137 	 * Spin until frame start interrupt status bit goes low, which means
1138 	 * that interrupt handler was invoked and cleared it. The timeout of
1139 	 * 10 msecs is really too long, but it is just a safety measure if
1140 	 * something goes really wrong. The wait will only happen in the very
1141 	 * unlikely case of a vblank happening exactly at the same time and
1142 	 * shouldn't exceed microseconds range.
1143 	 */
1144 	ret = readx_poll_timeout_atomic(vop_fs_irq_is_pending, vop, pending,
1145 					!pending, 0, 10 * 1000);
1146 	if (ret)
1147 		DRM_DEV_ERROR(vop->dev, "VOP vblank IRQ stuck for 10 ms\n");
1148 
1149 	synchronize_irq(vop->irq);
1150 }
1151 
1152 static void vop_crtc_atomic_flush(struct drm_crtc *crtc,
1153 				  struct drm_crtc_state *old_crtc_state)
1154 {
1155 	struct drm_atomic_state *old_state = old_crtc_state->state;
1156 	struct drm_plane_state *old_plane_state, *new_plane_state;
1157 	struct vop *vop = to_vop(crtc);
1158 	struct drm_plane *plane;
1159 	int i;
1160 
1161 	if (WARN_ON(!vop->is_enabled))
1162 		return;
1163 
1164 	spin_lock(&vop->reg_lock);
1165 
1166 	vop_cfg_done(vop);
1167 
1168 	spin_unlock(&vop->reg_lock);
1169 
1170 	/*
1171 	 * There is a (rather unlikely) possiblity that a vblank interrupt
1172 	 * fired before we set the cfg_done bit. To avoid spuriously
1173 	 * signalling flip completion we need to wait for it to finish.
1174 	 */
1175 	vop_wait_for_irq_handler(vop);
1176 
1177 	spin_lock_irq(&crtc->dev->event_lock);
1178 	if (crtc->state->event) {
1179 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1180 		WARN_ON(vop->event);
1181 
1182 		vop->event = crtc->state->event;
1183 		crtc->state->event = NULL;
1184 	}
1185 	spin_unlock_irq(&crtc->dev->event_lock);
1186 
1187 	for_each_oldnew_plane_in_state(old_state, plane, old_plane_state,
1188 				       new_plane_state, i) {
1189 		if (!old_plane_state->fb)
1190 			continue;
1191 
1192 		if (old_plane_state->fb == new_plane_state->fb)
1193 			continue;
1194 
1195 		drm_framebuffer_get(old_plane_state->fb);
1196 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1197 		drm_flip_work_queue(&vop->fb_unref_work, old_plane_state->fb);
1198 		set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1199 	}
1200 }
1201 
1202 static const struct drm_crtc_helper_funcs vop_crtc_helper_funcs = {
1203 	.mode_fixup = vop_crtc_mode_fixup,
1204 	.atomic_flush = vop_crtc_atomic_flush,
1205 	.atomic_enable = vop_crtc_atomic_enable,
1206 	.atomic_disable = vop_crtc_atomic_disable,
1207 };
1208 
1209 static void vop_crtc_destroy(struct drm_crtc *crtc)
1210 {
1211 	drm_crtc_cleanup(crtc);
1212 }
1213 
1214 static struct drm_crtc_state *vop_crtc_duplicate_state(struct drm_crtc *crtc)
1215 {
1216 	struct rockchip_crtc_state *rockchip_state;
1217 
1218 	rockchip_state = kzalloc(sizeof(*rockchip_state), GFP_KERNEL);
1219 	if (!rockchip_state)
1220 		return NULL;
1221 
1222 	__drm_atomic_helper_crtc_duplicate_state(crtc, &rockchip_state->base);
1223 	return &rockchip_state->base;
1224 }
1225 
1226 static void vop_crtc_destroy_state(struct drm_crtc *crtc,
1227 				   struct drm_crtc_state *state)
1228 {
1229 	struct rockchip_crtc_state *s = to_rockchip_crtc_state(state);
1230 
1231 	__drm_atomic_helper_crtc_destroy_state(&s->base);
1232 	kfree(s);
1233 }
1234 
1235 static void vop_crtc_reset(struct drm_crtc *crtc)
1236 {
1237 	struct rockchip_crtc_state *crtc_state =
1238 		kzalloc(sizeof(*crtc_state), GFP_KERNEL);
1239 
1240 	if (crtc->state)
1241 		vop_crtc_destroy_state(crtc, crtc->state);
1242 
1243 	__drm_atomic_helper_crtc_reset(crtc, &crtc_state->base);
1244 }
1245 
1246 #ifdef CONFIG_DRM_ANALOGIX_DP
1247 static struct drm_connector *vop_get_edp_connector(struct vop *vop)
1248 {
1249 	struct drm_connector *connector;
1250 	struct drm_connector_list_iter conn_iter;
1251 
1252 	drm_connector_list_iter_begin(vop->drm_dev, &conn_iter);
1253 	drm_for_each_connector_iter(connector, &conn_iter) {
1254 		if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) {
1255 			drm_connector_list_iter_end(&conn_iter);
1256 			return connector;
1257 		}
1258 	}
1259 	drm_connector_list_iter_end(&conn_iter);
1260 
1261 	return NULL;
1262 }
1263 
1264 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1265 				   const char *source_name)
1266 {
1267 	struct vop *vop = to_vop(crtc);
1268 	struct drm_connector *connector;
1269 	int ret;
1270 
1271 	connector = vop_get_edp_connector(vop);
1272 	if (!connector)
1273 		return -EINVAL;
1274 
1275 	if (source_name && strcmp(source_name, "auto") == 0)
1276 		ret = analogix_dp_start_crc(connector);
1277 	else if (!source_name)
1278 		ret = analogix_dp_stop_crc(connector);
1279 	else
1280 		ret = -EINVAL;
1281 
1282 	return ret;
1283 }
1284 
1285 static int
1286 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1287 			   size_t *values_cnt)
1288 {
1289 	if (source_name && strcmp(source_name, "auto") != 0)
1290 		return -EINVAL;
1291 
1292 	*values_cnt = 3;
1293 	return 0;
1294 }
1295 
1296 #else
1297 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1298 				   const char *source_name)
1299 {
1300 	return -ENODEV;
1301 }
1302 
1303 static int
1304 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1305 			   size_t *values_cnt)
1306 {
1307 	return -ENODEV;
1308 }
1309 #endif
1310 
1311 static const struct drm_crtc_funcs vop_crtc_funcs = {
1312 	.set_config = drm_atomic_helper_set_config,
1313 	.page_flip = drm_atomic_helper_page_flip,
1314 	.destroy = vop_crtc_destroy,
1315 	.reset = vop_crtc_reset,
1316 	.atomic_duplicate_state = vop_crtc_duplicate_state,
1317 	.atomic_destroy_state = vop_crtc_destroy_state,
1318 	.enable_vblank = vop_crtc_enable_vblank,
1319 	.disable_vblank = vop_crtc_disable_vblank,
1320 	.set_crc_source = vop_crtc_set_crc_source,
1321 	.verify_crc_source = vop_crtc_verify_crc_source,
1322 };
1323 
1324 static void vop_fb_unref_worker(struct drm_flip_work *work, void *val)
1325 {
1326 	struct vop *vop = container_of(work, struct vop, fb_unref_work);
1327 	struct drm_framebuffer *fb = val;
1328 
1329 	drm_crtc_vblank_put(&vop->crtc);
1330 	drm_framebuffer_put(fb);
1331 }
1332 
1333 static void vop_handle_vblank(struct vop *vop)
1334 {
1335 	struct drm_device *drm = vop->drm_dev;
1336 	struct drm_crtc *crtc = &vop->crtc;
1337 
1338 	spin_lock(&drm->event_lock);
1339 	if (vop->event) {
1340 		drm_crtc_send_vblank_event(crtc, vop->event);
1341 		drm_crtc_vblank_put(crtc);
1342 		vop->event = NULL;
1343 	}
1344 	spin_unlock(&drm->event_lock);
1345 
1346 	if (test_and_clear_bit(VOP_PENDING_FB_UNREF, &vop->pending))
1347 		drm_flip_work_commit(&vop->fb_unref_work, system_unbound_wq);
1348 }
1349 
1350 static irqreturn_t vop_isr(int irq, void *data)
1351 {
1352 	struct vop *vop = data;
1353 	struct drm_crtc *crtc = &vop->crtc;
1354 	uint32_t active_irqs;
1355 	int ret = IRQ_NONE;
1356 
1357 	/*
1358 	 * The irq is shared with the iommu. If the runtime-pm state of the
1359 	 * vop-device is disabled the irq has to be targeted at the iommu.
1360 	 */
1361 	if (!pm_runtime_get_if_in_use(vop->dev))
1362 		return IRQ_NONE;
1363 
1364 	if (vop_core_clks_enable(vop)) {
1365 		DRM_DEV_ERROR_RATELIMITED(vop->dev, "couldn't enable clocks\n");
1366 		goto out;
1367 	}
1368 
1369 	/*
1370 	 * interrupt register has interrupt status, enable and clear bits, we
1371 	 * must hold irq_lock to avoid a race with enable/disable_vblank().
1372 	*/
1373 	spin_lock(&vop->irq_lock);
1374 
1375 	active_irqs = VOP_INTR_GET_TYPE(vop, status, INTR_MASK);
1376 	/* Clear all active interrupt sources */
1377 	if (active_irqs)
1378 		VOP_INTR_SET_TYPE(vop, clear, active_irqs, 1);
1379 
1380 	spin_unlock(&vop->irq_lock);
1381 
1382 	/* This is expected for vop iommu irqs, since the irq is shared */
1383 	if (!active_irqs)
1384 		goto out_disable;
1385 
1386 	if (active_irqs & DSP_HOLD_VALID_INTR) {
1387 		complete(&vop->dsp_hold_completion);
1388 		active_irqs &= ~DSP_HOLD_VALID_INTR;
1389 		ret = IRQ_HANDLED;
1390 	}
1391 
1392 	if (active_irqs & LINE_FLAG_INTR) {
1393 		complete(&vop->line_flag_completion);
1394 		active_irqs &= ~LINE_FLAG_INTR;
1395 		ret = IRQ_HANDLED;
1396 	}
1397 
1398 	if (active_irqs & FS_INTR) {
1399 		drm_crtc_handle_vblank(crtc);
1400 		vop_handle_vblank(vop);
1401 		active_irqs &= ~FS_INTR;
1402 		ret = IRQ_HANDLED;
1403 	}
1404 
1405 	/* Unhandled irqs are spurious. */
1406 	if (active_irqs)
1407 		DRM_DEV_ERROR(vop->dev, "Unknown VOP IRQs: %#02x\n",
1408 			      active_irqs);
1409 
1410 out_disable:
1411 	vop_core_clks_disable(vop);
1412 out:
1413 	pm_runtime_put(vop->dev);
1414 	return ret;
1415 }
1416 
1417 static void vop_plane_add_properties(struct drm_plane *plane,
1418 				     const struct vop_win_data *win_data)
1419 {
1420 	unsigned int flags = 0;
1421 
1422 	flags |= VOP_WIN_HAS_REG(win_data, x_mir_en) ? DRM_MODE_REFLECT_X : 0;
1423 	flags |= VOP_WIN_HAS_REG(win_data, y_mir_en) ? DRM_MODE_REFLECT_Y : 0;
1424 	if (flags)
1425 		drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
1426 						   DRM_MODE_ROTATE_0 | flags);
1427 }
1428 
1429 static int vop_create_crtc(struct vop *vop)
1430 {
1431 	const struct vop_data *vop_data = vop->data;
1432 	struct device *dev = vop->dev;
1433 	struct drm_device *drm_dev = vop->drm_dev;
1434 	struct drm_plane *primary = NULL, *cursor = NULL, *plane, *tmp;
1435 	struct drm_crtc *crtc = &vop->crtc;
1436 	struct device_node *port;
1437 	int ret;
1438 	int i;
1439 
1440 	/*
1441 	 * Create drm_plane for primary and cursor planes first, since we need
1442 	 * to pass them to drm_crtc_init_with_planes, which sets the
1443 	 * "possible_crtcs" to the newly initialized crtc.
1444 	 */
1445 	for (i = 0; i < vop_data->win_size; i++) {
1446 		struct vop_win *vop_win = &vop->win[i];
1447 		const struct vop_win_data *win_data = vop_win->data;
1448 
1449 		if (win_data->type != DRM_PLANE_TYPE_PRIMARY &&
1450 		    win_data->type != DRM_PLANE_TYPE_CURSOR)
1451 			continue;
1452 
1453 		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1454 					       0, &vop_plane_funcs,
1455 					       win_data->phy->data_formats,
1456 					       win_data->phy->nformats,
1457 					       NULL, win_data->type, NULL);
1458 		if (ret) {
1459 			DRM_DEV_ERROR(vop->dev, "failed to init plane %d\n",
1460 				      ret);
1461 			goto err_cleanup_planes;
1462 		}
1463 
1464 		plane = &vop_win->base;
1465 		drm_plane_helper_add(plane, &plane_helper_funcs);
1466 		vop_plane_add_properties(plane, win_data);
1467 		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
1468 			primary = plane;
1469 		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
1470 			cursor = plane;
1471 	}
1472 
1473 	ret = drm_crtc_init_with_planes(drm_dev, crtc, primary, cursor,
1474 					&vop_crtc_funcs, NULL);
1475 	if (ret)
1476 		goto err_cleanup_planes;
1477 
1478 	drm_crtc_helper_add(crtc, &vop_crtc_helper_funcs);
1479 
1480 	/*
1481 	 * Create drm_planes for overlay windows with possible_crtcs restricted
1482 	 * to the newly created crtc.
1483 	 */
1484 	for (i = 0; i < vop_data->win_size; i++) {
1485 		struct vop_win *vop_win = &vop->win[i];
1486 		const struct vop_win_data *win_data = vop_win->data;
1487 		unsigned long possible_crtcs = drm_crtc_mask(crtc);
1488 
1489 		if (win_data->type != DRM_PLANE_TYPE_OVERLAY)
1490 			continue;
1491 
1492 		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1493 					       possible_crtcs,
1494 					       &vop_plane_funcs,
1495 					       win_data->phy->data_formats,
1496 					       win_data->phy->nformats,
1497 					       NULL, win_data->type, NULL);
1498 		if (ret) {
1499 			DRM_DEV_ERROR(vop->dev, "failed to init overlay %d\n",
1500 				      ret);
1501 			goto err_cleanup_crtc;
1502 		}
1503 		drm_plane_helper_add(&vop_win->base, &plane_helper_funcs);
1504 		vop_plane_add_properties(&vop_win->base, win_data);
1505 	}
1506 
1507 	port = of_get_child_by_name(dev->of_node, "port");
1508 	if (!port) {
1509 		DRM_DEV_ERROR(vop->dev, "no port node found in %pOF\n",
1510 			      dev->of_node);
1511 		ret = -ENOENT;
1512 		goto err_cleanup_crtc;
1513 	}
1514 
1515 	drm_flip_work_init(&vop->fb_unref_work, "fb_unref",
1516 			   vop_fb_unref_worker);
1517 
1518 	init_completion(&vop->dsp_hold_completion);
1519 	init_completion(&vop->line_flag_completion);
1520 	crtc->port = port;
1521 
1522 	return 0;
1523 
1524 err_cleanup_crtc:
1525 	drm_crtc_cleanup(crtc);
1526 err_cleanup_planes:
1527 	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1528 				 head)
1529 		drm_plane_cleanup(plane);
1530 	return ret;
1531 }
1532 
1533 static void vop_destroy_crtc(struct vop *vop)
1534 {
1535 	struct drm_crtc *crtc = &vop->crtc;
1536 	struct drm_device *drm_dev = vop->drm_dev;
1537 	struct drm_plane *plane, *tmp;
1538 
1539 	of_node_put(crtc->port);
1540 
1541 	/*
1542 	 * We need to cleanup the planes now.  Why?
1543 	 *
1544 	 * The planes are "&vop->win[i].base".  That means the memory is
1545 	 * all part of the big "struct vop" chunk of memory.  That memory
1546 	 * was devm allocated and associated with this component.  We need to
1547 	 * free it ourselves before vop_unbind() finishes.
1548 	 */
1549 	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1550 				 head)
1551 		vop_plane_destroy(plane);
1552 
1553 	/*
1554 	 * Destroy CRTC after vop_plane_destroy() since vop_disable_plane()
1555 	 * references the CRTC.
1556 	 */
1557 	drm_crtc_cleanup(crtc);
1558 	drm_flip_work_cleanup(&vop->fb_unref_work);
1559 }
1560 
1561 static int vop_initial(struct vop *vop)
1562 {
1563 	const struct vop_data *vop_data = vop->data;
1564 	struct reset_control *ahb_rst;
1565 	int i, ret;
1566 
1567 	vop->hclk = devm_clk_get(vop->dev, "hclk_vop");
1568 	if (IS_ERR(vop->hclk)) {
1569 		DRM_DEV_ERROR(vop->dev, "failed to get hclk source\n");
1570 		return PTR_ERR(vop->hclk);
1571 	}
1572 	vop->aclk = devm_clk_get(vop->dev, "aclk_vop");
1573 	if (IS_ERR(vop->aclk)) {
1574 		DRM_DEV_ERROR(vop->dev, "failed to get aclk source\n");
1575 		return PTR_ERR(vop->aclk);
1576 	}
1577 	vop->dclk = devm_clk_get(vop->dev, "dclk_vop");
1578 	if (IS_ERR(vop->dclk)) {
1579 		DRM_DEV_ERROR(vop->dev, "failed to get dclk source\n");
1580 		return PTR_ERR(vop->dclk);
1581 	}
1582 
1583 	ret = pm_runtime_get_sync(vop->dev);
1584 	if (ret < 0) {
1585 		DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
1586 		return ret;
1587 	}
1588 
1589 	ret = clk_prepare(vop->dclk);
1590 	if (ret < 0) {
1591 		DRM_DEV_ERROR(vop->dev, "failed to prepare dclk\n");
1592 		goto err_put_pm_runtime;
1593 	}
1594 
1595 	/* Enable both the hclk and aclk to setup the vop */
1596 	ret = clk_prepare_enable(vop->hclk);
1597 	if (ret < 0) {
1598 		DRM_DEV_ERROR(vop->dev, "failed to prepare/enable hclk\n");
1599 		goto err_unprepare_dclk;
1600 	}
1601 
1602 	ret = clk_prepare_enable(vop->aclk);
1603 	if (ret < 0) {
1604 		DRM_DEV_ERROR(vop->dev, "failed to prepare/enable aclk\n");
1605 		goto err_disable_hclk;
1606 	}
1607 
1608 	/*
1609 	 * do hclk_reset, reset all vop registers.
1610 	 */
1611 	ahb_rst = devm_reset_control_get(vop->dev, "ahb");
1612 	if (IS_ERR(ahb_rst)) {
1613 		DRM_DEV_ERROR(vop->dev, "failed to get ahb reset\n");
1614 		ret = PTR_ERR(ahb_rst);
1615 		goto err_disable_aclk;
1616 	}
1617 	reset_control_assert(ahb_rst);
1618 	usleep_range(10, 20);
1619 	reset_control_deassert(ahb_rst);
1620 
1621 	VOP_INTR_SET_TYPE(vop, clear, INTR_MASK, 1);
1622 	VOP_INTR_SET_TYPE(vop, enable, INTR_MASK, 0);
1623 
1624 	for (i = 0; i < vop->len; i += sizeof(u32))
1625 		vop->regsbak[i / 4] = readl_relaxed(vop->regs + i);
1626 
1627 	VOP_REG_SET(vop, misc, global_regdone_en, 1);
1628 	VOP_REG_SET(vop, common, dsp_blank, 0);
1629 
1630 	for (i = 0; i < vop_data->win_size; i++) {
1631 		const struct vop_win_data *win = &vop_data->win[i];
1632 		int channel = i * 2 + 1;
1633 
1634 		VOP_WIN_SET(vop, win, channel, (channel + 1) << 4 | channel);
1635 		vop_win_disable(vop, win);
1636 		VOP_WIN_SET(vop, win, gate, 1);
1637 	}
1638 
1639 	vop_cfg_done(vop);
1640 
1641 	/*
1642 	 * do dclk_reset, let all config take affect.
1643 	 */
1644 	vop->dclk_rst = devm_reset_control_get(vop->dev, "dclk");
1645 	if (IS_ERR(vop->dclk_rst)) {
1646 		DRM_DEV_ERROR(vop->dev, "failed to get dclk reset\n");
1647 		ret = PTR_ERR(vop->dclk_rst);
1648 		goto err_disable_aclk;
1649 	}
1650 	reset_control_assert(vop->dclk_rst);
1651 	usleep_range(10, 20);
1652 	reset_control_deassert(vop->dclk_rst);
1653 
1654 	clk_disable(vop->hclk);
1655 	clk_disable(vop->aclk);
1656 
1657 	vop->is_enabled = false;
1658 
1659 	pm_runtime_put_sync(vop->dev);
1660 
1661 	return 0;
1662 
1663 err_disable_aclk:
1664 	clk_disable_unprepare(vop->aclk);
1665 err_disable_hclk:
1666 	clk_disable_unprepare(vop->hclk);
1667 err_unprepare_dclk:
1668 	clk_unprepare(vop->dclk);
1669 err_put_pm_runtime:
1670 	pm_runtime_put_sync(vop->dev);
1671 	return ret;
1672 }
1673 
1674 /*
1675  * Initialize the vop->win array elements.
1676  */
1677 static void vop_win_init(struct vop *vop)
1678 {
1679 	const struct vop_data *vop_data = vop->data;
1680 	unsigned int i;
1681 
1682 	for (i = 0; i < vop_data->win_size; i++) {
1683 		struct vop_win *vop_win = &vop->win[i];
1684 		const struct vop_win_data *win_data = &vop_data->win[i];
1685 
1686 		vop_win->data = win_data;
1687 		vop_win->vop = vop;
1688 
1689 		if (vop_data->win_yuv2yuv)
1690 			vop_win->yuv2yuv_data = &vop_data->win_yuv2yuv[i];
1691 	}
1692 }
1693 
1694 /**
1695  * rockchip_drm_wait_vact_end
1696  * @crtc: CRTC to enable line flag
1697  * @mstimeout: millisecond for timeout
1698  *
1699  * Wait for vact_end line flag irq or timeout.
1700  *
1701  * Returns:
1702  * Zero on success, negative errno on failure.
1703  */
1704 int rockchip_drm_wait_vact_end(struct drm_crtc *crtc, unsigned int mstimeout)
1705 {
1706 	struct vop *vop = to_vop(crtc);
1707 	unsigned long jiffies_left;
1708 	int ret = 0;
1709 
1710 	if (!crtc || !vop->is_enabled)
1711 		return -ENODEV;
1712 
1713 	mutex_lock(&vop->vop_lock);
1714 	if (mstimeout <= 0) {
1715 		ret = -EINVAL;
1716 		goto out;
1717 	}
1718 
1719 	if (vop_line_flag_irq_is_enabled(vop)) {
1720 		ret = -EBUSY;
1721 		goto out;
1722 	}
1723 
1724 	reinit_completion(&vop->line_flag_completion);
1725 	vop_line_flag_irq_enable(vop);
1726 
1727 	jiffies_left = wait_for_completion_timeout(&vop->line_flag_completion,
1728 						   msecs_to_jiffies(mstimeout));
1729 	vop_line_flag_irq_disable(vop);
1730 
1731 	if (jiffies_left == 0) {
1732 		DRM_DEV_ERROR(vop->dev, "Timeout waiting for IRQ\n");
1733 		ret = -ETIMEDOUT;
1734 		goto out;
1735 	}
1736 
1737 out:
1738 	mutex_unlock(&vop->vop_lock);
1739 	return ret;
1740 }
1741 EXPORT_SYMBOL(rockchip_drm_wait_vact_end);
1742 
1743 static int vop_bind(struct device *dev, struct device *master, void *data)
1744 {
1745 	struct platform_device *pdev = to_platform_device(dev);
1746 	const struct vop_data *vop_data;
1747 	struct drm_device *drm_dev = data;
1748 	struct vop *vop;
1749 	struct resource *res;
1750 	int ret, irq;
1751 
1752 	vop_data = of_device_get_match_data(dev);
1753 	if (!vop_data)
1754 		return -ENODEV;
1755 
1756 	/* Allocate vop struct and its vop_win array */
1757 	vop = devm_kzalloc(dev, struct_size(vop, win, vop_data->win_size),
1758 			   GFP_KERNEL);
1759 	if (!vop)
1760 		return -ENOMEM;
1761 
1762 	vop->dev = dev;
1763 	vop->data = vop_data;
1764 	vop->drm_dev = drm_dev;
1765 	dev_set_drvdata(dev, vop);
1766 
1767 	vop_win_init(vop);
1768 
1769 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1770 	vop->len = resource_size(res);
1771 	vop->regs = devm_ioremap_resource(dev, res);
1772 	if (IS_ERR(vop->regs))
1773 		return PTR_ERR(vop->regs);
1774 
1775 	vop->regsbak = devm_kzalloc(dev, vop->len, GFP_KERNEL);
1776 	if (!vop->regsbak)
1777 		return -ENOMEM;
1778 
1779 	irq = platform_get_irq(pdev, 0);
1780 	if (irq < 0) {
1781 		DRM_DEV_ERROR(dev, "cannot find irq for vop\n");
1782 		return irq;
1783 	}
1784 	vop->irq = (unsigned int)irq;
1785 
1786 	spin_lock_init(&vop->reg_lock);
1787 	spin_lock_init(&vop->irq_lock);
1788 	mutex_init(&vop->vop_lock);
1789 
1790 	ret = vop_create_crtc(vop);
1791 	if (ret)
1792 		return ret;
1793 
1794 	pm_runtime_enable(&pdev->dev);
1795 
1796 	ret = vop_initial(vop);
1797 	if (ret < 0) {
1798 		DRM_DEV_ERROR(&pdev->dev,
1799 			      "cannot initial vop dev - err %d\n", ret);
1800 		goto err_disable_pm_runtime;
1801 	}
1802 
1803 	ret = devm_request_irq(dev, vop->irq, vop_isr,
1804 			       IRQF_SHARED, dev_name(dev), vop);
1805 	if (ret)
1806 		goto err_disable_pm_runtime;
1807 
1808 	if (vop->data->feature & VOP_FEATURE_INTERNAL_RGB) {
1809 		vop->rgb = rockchip_rgb_init(dev, &vop->crtc, vop->drm_dev);
1810 		if (IS_ERR(vop->rgb)) {
1811 			ret = PTR_ERR(vop->rgb);
1812 			goto err_disable_pm_runtime;
1813 		}
1814 	}
1815 
1816 	return 0;
1817 
1818 err_disable_pm_runtime:
1819 	pm_runtime_disable(&pdev->dev);
1820 	vop_destroy_crtc(vop);
1821 	return ret;
1822 }
1823 
1824 static void vop_unbind(struct device *dev, struct device *master, void *data)
1825 {
1826 	struct vop *vop = dev_get_drvdata(dev);
1827 
1828 	if (vop->rgb)
1829 		rockchip_rgb_fini(vop->rgb);
1830 
1831 	pm_runtime_disable(dev);
1832 	vop_destroy_crtc(vop);
1833 
1834 	clk_unprepare(vop->aclk);
1835 	clk_unprepare(vop->hclk);
1836 	clk_unprepare(vop->dclk);
1837 }
1838 
1839 const struct component_ops vop_component_ops = {
1840 	.bind = vop_bind,
1841 	.unbind = vop_unbind,
1842 };
1843 EXPORT_SYMBOL_GPL(vop_component_ops);
1844