xref: /openbmc/linux/drivers/gpu/drm/radeon/radeon_vm.c (revision e6b9d8eddb1772d99a676a906d42865293934edd)
1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 
29 #include <drm/radeon_drm.h>
30 #include "radeon.h"
31 #include "radeon_trace.h"
32 
33 /*
34  * GPUVM
35  * GPUVM is similar to the legacy gart on older asics, however
36  * rather than there being a single global gart table
37  * for the entire GPU, there are multiple VM page tables active
38  * at any given time.  The VM page tables can contain a mix
39  * vram pages and system memory pages and system memory pages
40  * can be mapped as snooped (cached system pages) or unsnooped
41  * (uncached system pages).
42  * Each VM has an ID associated with it and there is a page table
43  * associated with each VMID.  When execting a command buffer,
44  * the kernel tells the ring what VMID to use for that command
45  * buffer.  VMIDs are allocated dynamically as commands are submitted.
46  * The userspace drivers maintain their own address space and the kernel
47  * sets up their pages tables accordingly when they submit their
48  * command buffers and a VMID is assigned.
49  * Cayman/Trinity support up to 8 active VMs at any given time;
50  * SI supports 16.
51  */
52 
53 /**
54  * radeon_vm_num_pdes - return the number of page directory entries
55  *
56  * @rdev: radeon_device pointer
57  *
58  * Calculate the number of page directory entries (cayman+).
59  */
60 static unsigned radeon_vm_num_pdes(struct radeon_device *rdev)
61 {
62 	return rdev->vm_manager.max_pfn >> radeon_vm_block_size;
63 }
64 
65 /**
66  * radeon_vm_directory_size - returns the size of the page directory in bytes
67  *
68  * @rdev: radeon_device pointer
69  *
70  * Calculate the size of the page directory in bytes (cayman+).
71  */
72 static unsigned radeon_vm_directory_size(struct radeon_device *rdev)
73 {
74 	return RADEON_GPU_PAGE_ALIGN(radeon_vm_num_pdes(rdev) * 8);
75 }
76 
77 /**
78  * radeon_vm_manager_init - init the vm manager
79  *
80  * @rdev: radeon_device pointer
81  *
82  * Init the vm manager (cayman+).
83  * Returns 0 for success, error for failure.
84  */
85 int radeon_vm_manager_init(struct radeon_device *rdev)
86 {
87 	int r;
88 
89 	if (!rdev->vm_manager.enabled) {
90 		r = radeon_asic_vm_init(rdev);
91 		if (r)
92 			return r;
93 
94 		rdev->vm_manager.enabled = true;
95 	}
96 	return 0;
97 }
98 
99 /**
100  * radeon_vm_manager_fini - tear down the vm manager
101  *
102  * @rdev: radeon_device pointer
103  *
104  * Tear down the VM manager (cayman+).
105  */
106 void radeon_vm_manager_fini(struct radeon_device *rdev)
107 {
108 	int i;
109 
110 	if (!rdev->vm_manager.enabled)
111 		return;
112 
113 	for (i = 0; i < RADEON_NUM_VM; ++i)
114 		radeon_fence_unref(&rdev->vm_manager.active[i]);
115 	radeon_asic_vm_fini(rdev);
116 	rdev->vm_manager.enabled = false;
117 }
118 
119 /**
120  * radeon_vm_get_bos - add the vm BOs to a validation list
121  *
122  * @rdev: radeon_device pointer
123  * @vm: vm providing the BOs
124  * @head: head of validation list
125  *
126  * Add the page directory to the list of BOs to
127  * validate for command submission (cayman+).
128  */
129 struct radeon_bo_list *radeon_vm_get_bos(struct radeon_device *rdev,
130 					  struct radeon_vm *vm,
131 					  struct list_head *head)
132 {
133 	struct radeon_bo_list *list;
134 	unsigned i, idx;
135 
136 	list = kvmalloc_array(vm->max_pde_used + 2,
137 			     sizeof(struct radeon_bo_list), GFP_KERNEL);
138 	if (!list)
139 		return NULL;
140 
141 	/* add the vm page table to the list */
142 	list[0].robj = vm->page_directory;
143 	list[0].preferred_domains = RADEON_GEM_DOMAIN_VRAM;
144 	list[0].allowed_domains = RADEON_GEM_DOMAIN_VRAM;
145 	list[0].tv.bo = &vm->page_directory->tbo;
146 	list[0].tv.num_shared = 1;
147 	list[0].tiling_flags = 0;
148 	list_add(&list[0].tv.head, head);
149 
150 	for (i = 0, idx = 1; i <= vm->max_pde_used; i++) {
151 		if (!vm->page_tables[i].bo)
152 			continue;
153 
154 		list[idx].robj = vm->page_tables[i].bo;
155 		list[idx].preferred_domains = RADEON_GEM_DOMAIN_VRAM;
156 		list[idx].allowed_domains = RADEON_GEM_DOMAIN_VRAM;
157 		list[idx].tv.bo = &list[idx].robj->tbo;
158 		list[idx].tv.num_shared = 1;
159 		list[idx].tiling_flags = 0;
160 		list_add(&list[idx++].tv.head, head);
161 	}
162 
163 	return list;
164 }
165 
166 /**
167  * radeon_vm_grab_id - allocate the next free VMID
168  *
169  * @rdev: radeon_device pointer
170  * @vm: vm to allocate id for
171  * @ring: ring we want to submit job to
172  *
173  * Allocate an id for the vm (cayman+).
174  * Returns the fence we need to sync to (if any).
175  *
176  * Global and local mutex must be locked!
177  */
178 struct radeon_fence *radeon_vm_grab_id(struct radeon_device *rdev,
179 				       struct radeon_vm *vm, int ring)
180 {
181 	struct radeon_fence *best[RADEON_NUM_RINGS] = {};
182 	struct radeon_vm_id *vm_id = &vm->ids[ring];
183 
184 	unsigned choices[2] = {};
185 	unsigned i;
186 
187 	/* check if the id is still valid */
188 	if (vm_id->id && vm_id->last_id_use &&
189 	    vm_id->last_id_use == rdev->vm_manager.active[vm_id->id])
190 		return NULL;
191 
192 	/* we definitely need to flush */
193 	vm_id->pd_gpu_addr = ~0ll;
194 
195 	/* skip over VMID 0, since it is the system VM */
196 	for (i = 1; i < rdev->vm_manager.nvm; ++i) {
197 		struct radeon_fence *fence = rdev->vm_manager.active[i];
198 
199 		if (fence == NULL) {
200 			/* found a free one */
201 			vm_id->id = i;
202 			trace_radeon_vm_grab_id(i, ring);
203 			return NULL;
204 		}
205 
206 		if (radeon_fence_is_earlier(fence, best[fence->ring])) {
207 			best[fence->ring] = fence;
208 			choices[fence->ring == ring ? 0 : 1] = i;
209 		}
210 	}
211 
212 	for (i = 0; i < 2; ++i) {
213 		if (choices[i]) {
214 			vm_id->id = choices[i];
215 			trace_radeon_vm_grab_id(choices[i], ring);
216 			return rdev->vm_manager.active[choices[i]];
217 		}
218 	}
219 
220 	/* should never happen */
221 	BUG();
222 	return NULL;
223 }
224 
225 /**
226  * radeon_vm_flush - hardware flush the vm
227  *
228  * @rdev: radeon_device pointer
229  * @vm: vm we want to flush
230  * @ring: ring to use for flush
231  * @updates: last vm update that is waited for
232  *
233  * Flush the vm (cayman+).
234  *
235  * Global and local mutex must be locked!
236  */
237 void radeon_vm_flush(struct radeon_device *rdev,
238 		     struct radeon_vm *vm,
239 		     int ring, struct radeon_fence *updates)
240 {
241 	uint64_t pd_addr = radeon_bo_gpu_offset(vm->page_directory);
242 	struct radeon_vm_id *vm_id = &vm->ids[ring];
243 
244 	if (pd_addr != vm_id->pd_gpu_addr || !vm_id->flushed_updates ||
245 	    radeon_fence_is_earlier(vm_id->flushed_updates, updates)) {
246 
247 		trace_radeon_vm_flush(pd_addr, ring, vm->ids[ring].id);
248 		radeon_fence_unref(&vm_id->flushed_updates);
249 		vm_id->flushed_updates = radeon_fence_ref(updates);
250 		vm_id->pd_gpu_addr = pd_addr;
251 		radeon_ring_vm_flush(rdev, &rdev->ring[ring],
252 				     vm_id->id, vm_id->pd_gpu_addr);
253 
254 	}
255 }
256 
257 /**
258  * radeon_vm_fence - remember fence for vm
259  *
260  * @rdev: radeon_device pointer
261  * @vm: vm we want to fence
262  * @fence: fence to remember
263  *
264  * Fence the vm (cayman+).
265  * Set the fence used to protect page table and id.
266  *
267  * Global and local mutex must be locked!
268  */
269 void radeon_vm_fence(struct radeon_device *rdev,
270 		     struct radeon_vm *vm,
271 		     struct radeon_fence *fence)
272 {
273 	unsigned vm_id = vm->ids[fence->ring].id;
274 
275 	radeon_fence_unref(&rdev->vm_manager.active[vm_id]);
276 	rdev->vm_manager.active[vm_id] = radeon_fence_ref(fence);
277 
278 	radeon_fence_unref(&vm->ids[fence->ring].last_id_use);
279 	vm->ids[fence->ring].last_id_use = radeon_fence_ref(fence);
280 }
281 
282 /**
283  * radeon_vm_bo_find - find the bo_va for a specific vm & bo
284  *
285  * @vm: requested vm
286  * @bo: requested buffer object
287  *
288  * Find @bo inside the requested vm (cayman+).
289  * Search inside the @bos vm list for the requested vm
290  * Returns the found bo_va or NULL if none is found
291  *
292  * Object has to be reserved!
293  */
294 struct radeon_bo_va *radeon_vm_bo_find(struct radeon_vm *vm,
295 				       struct radeon_bo *bo)
296 {
297 	struct radeon_bo_va *bo_va;
298 
299 	list_for_each_entry(bo_va, &bo->va, bo_list) {
300 		if (bo_va->vm == vm)
301 			return bo_va;
302 
303 	}
304 	return NULL;
305 }
306 
307 /**
308  * radeon_vm_bo_add - add a bo to a specific vm
309  *
310  * @rdev: radeon_device pointer
311  * @vm: requested vm
312  * @bo: radeon buffer object
313  *
314  * Add @bo into the requested vm (cayman+).
315  * Add @bo to the list of bos associated with the vm
316  * Returns newly added bo_va or NULL for failure
317  *
318  * Object has to be reserved!
319  */
320 struct radeon_bo_va *radeon_vm_bo_add(struct radeon_device *rdev,
321 				      struct radeon_vm *vm,
322 				      struct radeon_bo *bo)
323 {
324 	struct radeon_bo_va *bo_va;
325 
326 	bo_va = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL);
327 	if (bo_va == NULL)
328 		return NULL;
329 
330 	bo_va->vm = vm;
331 	bo_va->bo = bo;
332 	bo_va->it.start = 0;
333 	bo_va->it.last = 0;
334 	bo_va->flags = 0;
335 	bo_va->ref_count = 1;
336 	INIT_LIST_HEAD(&bo_va->bo_list);
337 	INIT_LIST_HEAD(&bo_va->vm_status);
338 
339 	mutex_lock(&vm->mutex);
340 	list_add_tail(&bo_va->bo_list, &bo->va);
341 	mutex_unlock(&vm->mutex);
342 
343 	return bo_va;
344 }
345 
346 /**
347  * radeon_vm_set_pages - helper to call the right asic function
348  *
349  * @rdev: radeon_device pointer
350  * @ib: indirect buffer to fill with commands
351  * @pe: addr of the page entry
352  * @addr: dst addr to write into pe
353  * @count: number of page entries to update
354  * @incr: increase next addr by incr bytes
355  * @flags: hw access flags
356  *
357  * Traces the parameters and calls the right asic functions
358  * to setup the page table using the DMA.
359  */
360 static void radeon_vm_set_pages(struct radeon_device *rdev,
361 				struct radeon_ib *ib,
362 				uint64_t pe,
363 				uint64_t addr, unsigned count,
364 				uint32_t incr, uint32_t flags)
365 {
366 	trace_radeon_vm_set_page(pe, addr, count, incr, flags);
367 
368 	if ((flags & R600_PTE_GART_MASK) == R600_PTE_GART_MASK) {
369 		uint64_t src = rdev->gart.table_addr + (addr >> 12) * 8;
370 		radeon_asic_vm_copy_pages(rdev, ib, pe, src, count);
371 
372 	} else if ((flags & R600_PTE_SYSTEM) || (count < 3)) {
373 		radeon_asic_vm_write_pages(rdev, ib, pe, addr,
374 					   count, incr, flags);
375 
376 	} else {
377 		radeon_asic_vm_set_pages(rdev, ib, pe, addr,
378 					 count, incr, flags);
379 	}
380 }
381 
382 /**
383  * radeon_vm_clear_bo - initially clear the page dir/table
384  *
385  * @rdev: radeon_device pointer
386  * @bo: bo to clear
387  */
388 static int radeon_vm_clear_bo(struct radeon_device *rdev,
389 			      struct radeon_bo *bo)
390 {
391 	struct ttm_operation_ctx ctx = { true, false };
392 	struct radeon_ib ib;
393 	unsigned entries;
394 	uint64_t addr;
395 	int r;
396 
397 	r = radeon_bo_reserve(bo, false);
398 	if (r)
399 		return r;
400 
401 	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
402 	if (r)
403 		goto error_unreserve;
404 
405 	addr = radeon_bo_gpu_offset(bo);
406 	entries = radeon_bo_size(bo) / 8;
407 
408 	r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, 256);
409 	if (r)
410 		goto error_unreserve;
411 
412 	ib.length_dw = 0;
413 
414 	radeon_vm_set_pages(rdev, &ib, addr, 0, entries, 0, 0);
415 	radeon_asic_vm_pad_ib(rdev, &ib);
416 	WARN_ON(ib.length_dw > 64);
417 
418 	r = radeon_ib_schedule(rdev, &ib, NULL, false);
419 	if (r)
420 		goto error_free;
421 
422 	ib.fence->is_vm_update = true;
423 	radeon_bo_fence(bo, ib.fence, false);
424 
425 error_free:
426 	radeon_ib_free(rdev, &ib);
427 
428 error_unreserve:
429 	radeon_bo_unreserve(bo);
430 	return r;
431 }
432 
433 /**
434  * radeon_vm_bo_set_addr - set bos virtual address inside a vm
435  *
436  * @rdev: radeon_device pointer
437  * @bo_va: bo_va to store the address
438  * @soffset: requested offset of the buffer in the VM address space
439  * @flags: attributes of pages (read/write/valid/etc.)
440  *
441  * Set offset of @bo_va (cayman+).
442  * Validate and set the offset requested within the vm address space.
443  * Returns 0 for success, error for failure.
444  *
445  * Object has to be reserved and gets unreserved by this function!
446  */
447 int radeon_vm_bo_set_addr(struct radeon_device *rdev,
448 			  struct radeon_bo_va *bo_va,
449 			  uint64_t soffset,
450 			  uint32_t flags)
451 {
452 	uint64_t size = radeon_bo_size(bo_va->bo);
453 	struct radeon_vm *vm = bo_va->vm;
454 	unsigned last_pfn, pt_idx;
455 	uint64_t eoffset;
456 	int r;
457 
458 	if (soffset) {
459 		/* make sure object fit at this offset */
460 		eoffset = soffset + size - 1;
461 		if (soffset >= eoffset) {
462 			r = -EINVAL;
463 			goto error_unreserve;
464 		}
465 
466 		last_pfn = eoffset / RADEON_GPU_PAGE_SIZE;
467 		if (last_pfn >= rdev->vm_manager.max_pfn) {
468 			dev_err(rdev->dev, "va above limit (0x%08X >= 0x%08X)\n",
469 				last_pfn, rdev->vm_manager.max_pfn);
470 			r = -EINVAL;
471 			goto error_unreserve;
472 		}
473 
474 	} else {
475 		eoffset = last_pfn = 0;
476 	}
477 
478 	mutex_lock(&vm->mutex);
479 	soffset /= RADEON_GPU_PAGE_SIZE;
480 	eoffset /= RADEON_GPU_PAGE_SIZE;
481 	if (soffset || eoffset) {
482 		struct interval_tree_node *it;
483 		it = interval_tree_iter_first(&vm->va, soffset, eoffset);
484 		if (it && it != &bo_va->it) {
485 			struct radeon_bo_va *tmp;
486 			tmp = container_of(it, struct radeon_bo_va, it);
487 			/* bo and tmp overlap, invalid offset */
488 			dev_err(rdev->dev, "bo %p va 0x%010Lx conflict with "
489 				"(bo %p 0x%010lx 0x%010lx)\n", bo_va->bo,
490 				soffset, tmp->bo, tmp->it.start, tmp->it.last);
491 			mutex_unlock(&vm->mutex);
492 			r = -EINVAL;
493 			goto error_unreserve;
494 		}
495 	}
496 
497 	if (bo_va->it.start || bo_va->it.last) {
498 		/* add a clone of the bo_va to clear the old address */
499 		struct radeon_bo_va *tmp;
500 		tmp = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL);
501 		if (!tmp) {
502 			mutex_unlock(&vm->mutex);
503 			r = -ENOMEM;
504 			goto error_unreserve;
505 		}
506 		tmp->it.start = bo_va->it.start;
507 		tmp->it.last = bo_va->it.last;
508 		tmp->vm = vm;
509 		tmp->bo = radeon_bo_ref(bo_va->bo);
510 
511 		interval_tree_remove(&bo_va->it, &vm->va);
512 		spin_lock(&vm->status_lock);
513 		bo_va->it.start = 0;
514 		bo_va->it.last = 0;
515 		list_del_init(&bo_va->vm_status);
516 		list_add(&tmp->vm_status, &vm->freed);
517 		spin_unlock(&vm->status_lock);
518 	}
519 
520 	if (soffset || eoffset) {
521 		spin_lock(&vm->status_lock);
522 		bo_va->it.start = soffset;
523 		bo_va->it.last = eoffset;
524 		list_add(&bo_va->vm_status, &vm->cleared);
525 		spin_unlock(&vm->status_lock);
526 		interval_tree_insert(&bo_va->it, &vm->va);
527 	}
528 
529 	bo_va->flags = flags;
530 
531 	soffset >>= radeon_vm_block_size;
532 	eoffset >>= radeon_vm_block_size;
533 
534 	BUG_ON(eoffset >= radeon_vm_num_pdes(rdev));
535 
536 	if (eoffset > vm->max_pde_used)
537 		vm->max_pde_used = eoffset;
538 
539 	radeon_bo_unreserve(bo_va->bo);
540 
541 	/* walk over the address space and allocate the page tables */
542 	for (pt_idx = soffset; pt_idx <= eoffset; ++pt_idx) {
543 		struct radeon_bo *pt;
544 
545 		if (vm->page_tables[pt_idx].bo)
546 			continue;
547 
548 		/* drop mutex to allocate and clear page table */
549 		mutex_unlock(&vm->mutex);
550 
551 		r = radeon_bo_create(rdev, RADEON_VM_PTE_COUNT * 8,
552 				     RADEON_GPU_PAGE_SIZE, true,
553 				     RADEON_GEM_DOMAIN_VRAM, 0,
554 				     NULL, NULL, &pt);
555 		if (r)
556 			return r;
557 
558 		r = radeon_vm_clear_bo(rdev, pt);
559 		if (r) {
560 			radeon_bo_unref(&pt);
561 			return r;
562 		}
563 
564 		/* aquire mutex again */
565 		mutex_lock(&vm->mutex);
566 		if (vm->page_tables[pt_idx].bo) {
567 			/* someone else allocated the pt in the meantime */
568 			mutex_unlock(&vm->mutex);
569 			radeon_bo_unref(&pt);
570 			mutex_lock(&vm->mutex);
571 			continue;
572 		}
573 
574 		vm->page_tables[pt_idx].addr = 0;
575 		vm->page_tables[pt_idx].bo = pt;
576 	}
577 
578 	mutex_unlock(&vm->mutex);
579 	return 0;
580 
581 error_unreserve:
582 	radeon_bo_unreserve(bo_va->bo);
583 	return r;
584 }
585 
586 /**
587  * radeon_vm_map_gart - get the physical address of a gart page
588  *
589  * @rdev: radeon_device pointer
590  * @addr: the unmapped addr
591  *
592  * Look up the physical address of the page that the pte resolves
593  * to (cayman+).
594  * Returns the physical address of the page.
595  */
596 uint64_t radeon_vm_map_gart(struct radeon_device *rdev, uint64_t addr)
597 {
598 	uint64_t result;
599 
600 	/* page table offset */
601 	result = rdev->gart.pages_entry[addr >> RADEON_GPU_PAGE_SHIFT];
602 	result &= ~RADEON_GPU_PAGE_MASK;
603 
604 	return result;
605 }
606 
607 /**
608  * radeon_vm_page_flags - translate page flags to what the hw uses
609  *
610  * @flags: flags comming from userspace
611  *
612  * Translate the flags the userspace ABI uses to hw flags.
613  */
614 static uint32_t radeon_vm_page_flags(uint32_t flags)
615 {
616 	uint32_t hw_flags = 0;
617 
618 	hw_flags |= (flags & RADEON_VM_PAGE_VALID) ? R600_PTE_VALID : 0;
619 	hw_flags |= (flags & RADEON_VM_PAGE_READABLE) ? R600_PTE_READABLE : 0;
620 	hw_flags |= (flags & RADEON_VM_PAGE_WRITEABLE) ? R600_PTE_WRITEABLE : 0;
621 	if (flags & RADEON_VM_PAGE_SYSTEM) {
622 		hw_flags |= R600_PTE_SYSTEM;
623 		hw_flags |= (flags & RADEON_VM_PAGE_SNOOPED) ? R600_PTE_SNOOPED : 0;
624 	}
625 	return hw_flags;
626 }
627 
628 /**
629  * radeon_vm_update_page_directory - make sure that page directory is valid
630  *
631  * @rdev: radeon_device pointer
632  * @vm: requested vm
633  *
634  * Allocates new page tables if necessary
635  * and updates the page directory (cayman+).
636  * Returns 0 for success, error for failure.
637  *
638  * Global and local mutex must be locked!
639  */
640 int radeon_vm_update_page_directory(struct radeon_device *rdev,
641 				    struct radeon_vm *vm)
642 {
643 	struct radeon_bo *pd = vm->page_directory;
644 	uint64_t pd_addr = radeon_bo_gpu_offset(pd);
645 	uint32_t incr = RADEON_VM_PTE_COUNT * 8;
646 	uint64_t last_pde = ~0, last_pt = ~0;
647 	unsigned count = 0, pt_idx, ndw;
648 	struct radeon_ib ib;
649 	int r;
650 
651 	/* padding, etc. */
652 	ndw = 64;
653 
654 	/* assume the worst case */
655 	ndw += vm->max_pde_used * 6;
656 
657 	/* update too big for an IB */
658 	if (ndw > 0xfffff)
659 		return -ENOMEM;
660 
661 	r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, ndw * 4);
662 	if (r)
663 		return r;
664 	ib.length_dw = 0;
665 
666 	/* walk over the address space and update the page directory */
667 	for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) {
668 		struct radeon_bo *bo = vm->page_tables[pt_idx].bo;
669 		uint64_t pde, pt;
670 
671 		if (bo == NULL)
672 			continue;
673 
674 		pt = radeon_bo_gpu_offset(bo);
675 		if (vm->page_tables[pt_idx].addr == pt)
676 			continue;
677 		vm->page_tables[pt_idx].addr = pt;
678 
679 		pde = pd_addr + pt_idx * 8;
680 		if (((last_pde + 8 * count) != pde) ||
681 		    ((last_pt + incr * count) != pt)) {
682 
683 			if (count) {
684 				radeon_vm_set_pages(rdev, &ib, last_pde,
685 						    last_pt, count, incr,
686 						    R600_PTE_VALID);
687 			}
688 
689 			count = 1;
690 			last_pde = pde;
691 			last_pt = pt;
692 		} else {
693 			++count;
694 		}
695 	}
696 
697 	if (count)
698 		radeon_vm_set_pages(rdev, &ib, last_pde, last_pt, count,
699 				    incr, R600_PTE_VALID);
700 
701 	if (ib.length_dw != 0) {
702 		radeon_asic_vm_pad_ib(rdev, &ib);
703 
704 		radeon_sync_resv(rdev, &ib.sync, pd->tbo.base.resv, true);
705 		WARN_ON(ib.length_dw > ndw);
706 		r = radeon_ib_schedule(rdev, &ib, NULL, false);
707 		if (r) {
708 			radeon_ib_free(rdev, &ib);
709 			return r;
710 		}
711 		ib.fence->is_vm_update = true;
712 		radeon_bo_fence(pd, ib.fence, false);
713 	}
714 	radeon_ib_free(rdev, &ib);
715 
716 	return 0;
717 }
718 
719 /**
720  * radeon_vm_frag_ptes - add fragment information to PTEs
721  *
722  * @rdev: radeon_device pointer
723  * @ib: IB for the update
724  * @pe_start: first PTE to handle
725  * @pe_end: last PTE to handle
726  * @addr: addr those PTEs should point to
727  * @flags: hw mapping flags
728  *
729  * Global and local mutex must be locked!
730  */
731 static void radeon_vm_frag_ptes(struct radeon_device *rdev,
732 				struct radeon_ib *ib,
733 				uint64_t pe_start, uint64_t pe_end,
734 				uint64_t addr, uint32_t flags)
735 {
736 	/**
737 	 * The MC L1 TLB supports variable sized pages, based on a fragment
738 	 * field in the PTE. When this field is set to a non-zero value, page
739 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
740 	 * flags are considered valid for all PTEs within the fragment range
741 	 * and corresponding mappings are assumed to be physically contiguous.
742 	 *
743 	 * The L1 TLB can store a single PTE for the whole fragment,
744 	 * significantly increasing the space available for translation
745 	 * caching. This leads to large improvements in throughput when the
746 	 * TLB is under pressure.
747 	 *
748 	 * The L2 TLB distributes small and large fragments into two
749 	 * asymmetric partitions. The large fragment cache is significantly
750 	 * larger. Thus, we try to use large fragments wherever possible.
751 	 * Userspace can support this by aligning virtual base address and
752 	 * allocation size to the fragment size.
753 	 */
754 
755 	/* NI is optimized for 256KB fragments, SI and newer for 64KB */
756 	uint64_t frag_flags = ((rdev->family == CHIP_CAYMAN) ||
757 			       (rdev->family == CHIP_ARUBA)) ?
758 			R600_PTE_FRAG_256KB : R600_PTE_FRAG_64KB;
759 	uint64_t frag_align = ((rdev->family == CHIP_CAYMAN) ||
760 			       (rdev->family == CHIP_ARUBA)) ? 0x200 : 0x80;
761 
762 	uint64_t frag_start = ALIGN(pe_start, frag_align);
763 	uint64_t frag_end = pe_end & ~(frag_align - 1);
764 
765 	unsigned count;
766 
767 	/* system pages are non continuously */
768 	if ((flags & R600_PTE_SYSTEM) || !(flags & R600_PTE_VALID) ||
769 	    (frag_start >= frag_end)) {
770 
771 		count = (pe_end - pe_start) / 8;
772 		radeon_vm_set_pages(rdev, ib, pe_start, addr, count,
773 				    RADEON_GPU_PAGE_SIZE, flags);
774 		return;
775 	}
776 
777 	/* handle the 4K area at the beginning */
778 	if (pe_start != frag_start) {
779 		count = (frag_start - pe_start) / 8;
780 		radeon_vm_set_pages(rdev, ib, pe_start, addr, count,
781 				    RADEON_GPU_PAGE_SIZE, flags);
782 		addr += RADEON_GPU_PAGE_SIZE * count;
783 	}
784 
785 	/* handle the area in the middle */
786 	count = (frag_end - frag_start) / 8;
787 	radeon_vm_set_pages(rdev, ib, frag_start, addr, count,
788 			    RADEON_GPU_PAGE_SIZE, flags | frag_flags);
789 
790 	/* handle the 4K area at the end */
791 	if (frag_end != pe_end) {
792 		addr += RADEON_GPU_PAGE_SIZE * count;
793 		count = (pe_end - frag_end) / 8;
794 		radeon_vm_set_pages(rdev, ib, frag_end, addr, count,
795 				    RADEON_GPU_PAGE_SIZE, flags);
796 	}
797 }
798 
799 /**
800  * radeon_vm_update_ptes - make sure that page tables are valid
801  *
802  * @rdev: radeon_device pointer
803  * @vm: requested vm
804  * @ib: indirect buffer to use for the update
805  * @start: start of GPU address range
806  * @end: end of GPU address range
807  * @dst: destination address to map to
808  * @flags: mapping flags
809  *
810  * Update the page tables in the range @start - @end (cayman+).
811  *
812  * Global and local mutex must be locked!
813  */
814 static int radeon_vm_update_ptes(struct radeon_device *rdev,
815 				 struct radeon_vm *vm,
816 				 struct radeon_ib *ib,
817 				 uint64_t start, uint64_t end,
818 				 uint64_t dst, uint32_t flags)
819 {
820 	uint64_t mask = RADEON_VM_PTE_COUNT - 1;
821 	uint64_t last_pte = ~0, last_dst = ~0;
822 	unsigned count = 0;
823 	uint64_t addr;
824 
825 	/* walk over the address space and update the page tables */
826 	for (addr = start; addr < end; ) {
827 		uint64_t pt_idx = addr >> radeon_vm_block_size;
828 		struct radeon_bo *pt = vm->page_tables[pt_idx].bo;
829 		unsigned nptes;
830 		uint64_t pte;
831 		int r;
832 
833 		radeon_sync_resv(rdev, &ib->sync, pt->tbo.base.resv, true);
834 		r = dma_resv_reserve_fences(pt->tbo.base.resv, 1);
835 		if (r)
836 			return r;
837 
838 		if ((addr & ~mask) == (end & ~mask))
839 			nptes = end - addr;
840 		else
841 			nptes = RADEON_VM_PTE_COUNT - (addr & mask);
842 
843 		pte = radeon_bo_gpu_offset(pt);
844 		pte += (addr & mask) * 8;
845 
846 		if ((last_pte + 8 * count) != pte) {
847 
848 			if (count) {
849 				radeon_vm_frag_ptes(rdev, ib, last_pte,
850 						    last_pte + 8 * count,
851 						    last_dst, flags);
852 			}
853 
854 			count = nptes;
855 			last_pte = pte;
856 			last_dst = dst;
857 		} else {
858 			count += nptes;
859 		}
860 
861 		addr += nptes;
862 		dst += nptes * RADEON_GPU_PAGE_SIZE;
863 	}
864 
865 	if (count) {
866 		radeon_vm_frag_ptes(rdev, ib, last_pte,
867 				    last_pte + 8 * count,
868 				    last_dst, flags);
869 	}
870 
871 	return 0;
872 }
873 
874 /**
875  * radeon_vm_fence_pts - fence page tables after an update
876  *
877  * @vm: requested vm
878  * @start: start of GPU address range
879  * @end: end of GPU address range
880  * @fence: fence to use
881  *
882  * Fence the page tables in the range @start - @end (cayman+).
883  *
884  * Global and local mutex must be locked!
885  */
886 static void radeon_vm_fence_pts(struct radeon_vm *vm,
887 				uint64_t start, uint64_t end,
888 				struct radeon_fence *fence)
889 {
890 	unsigned i;
891 
892 	start >>= radeon_vm_block_size;
893 	end = (end - 1) >> radeon_vm_block_size;
894 
895 	for (i = start; i <= end; ++i)
896 		radeon_bo_fence(vm->page_tables[i].bo, fence, true);
897 }
898 
899 /**
900  * radeon_vm_bo_update - map a bo into the vm page table
901  *
902  * @rdev: radeon_device pointer
903  * @bo_va: radeon buffer virtual address object
904  * @mem: ttm mem
905  *
906  * Fill in the page table entries for @bo (cayman+).
907  * Returns 0 for success, -EINVAL for failure.
908  *
909  * Object have to be reserved and mutex must be locked!
910  */
911 int radeon_vm_bo_update(struct radeon_device *rdev,
912 			struct radeon_bo_va *bo_va,
913 			struct ttm_resource *mem)
914 {
915 	struct radeon_vm *vm = bo_va->vm;
916 	struct radeon_ib ib;
917 	unsigned nptes, ncmds, ndw;
918 	uint64_t addr;
919 	uint32_t flags;
920 	int r;
921 
922 	if (!bo_va->it.start) {
923 		dev_err(rdev->dev, "bo %p don't has a mapping in vm %p\n",
924 			bo_va->bo, vm);
925 		return -EINVAL;
926 	}
927 
928 	spin_lock(&vm->status_lock);
929 	if (mem) {
930 		if (list_empty(&bo_va->vm_status)) {
931 			spin_unlock(&vm->status_lock);
932 			return 0;
933 		}
934 		list_del_init(&bo_va->vm_status);
935 	} else {
936 		list_del(&bo_va->vm_status);
937 		list_add(&bo_va->vm_status, &vm->cleared);
938 	}
939 	spin_unlock(&vm->status_lock);
940 
941 	bo_va->flags &= ~RADEON_VM_PAGE_VALID;
942 	bo_va->flags &= ~RADEON_VM_PAGE_SYSTEM;
943 	bo_va->flags &= ~RADEON_VM_PAGE_SNOOPED;
944 	if (bo_va->bo && radeon_ttm_tt_is_readonly(rdev, bo_va->bo->tbo.ttm))
945 		bo_va->flags &= ~RADEON_VM_PAGE_WRITEABLE;
946 
947 	if (mem) {
948 		addr = (u64)mem->start << PAGE_SHIFT;
949 		if (mem->mem_type != TTM_PL_SYSTEM)
950 			bo_va->flags |= RADEON_VM_PAGE_VALID;
951 
952 		if (mem->mem_type == TTM_PL_TT) {
953 			bo_va->flags |= RADEON_VM_PAGE_SYSTEM;
954 			if (!(bo_va->bo->flags & (RADEON_GEM_GTT_WC | RADEON_GEM_GTT_UC)))
955 				bo_va->flags |= RADEON_VM_PAGE_SNOOPED;
956 
957 		} else {
958 			addr += rdev->vm_manager.vram_base_offset;
959 		}
960 	} else {
961 		addr = 0;
962 	}
963 
964 	trace_radeon_vm_bo_update(bo_va);
965 
966 	nptes = bo_va->it.last - bo_va->it.start + 1;
967 
968 	/* reserve space for one command every (1 << BLOCK_SIZE) entries
969 	   or 2k dwords (whatever is smaller) */
970 	ncmds = (nptes >> min(radeon_vm_block_size, 11)) + 1;
971 
972 	/* padding, etc. */
973 	ndw = 64;
974 
975 	flags = radeon_vm_page_flags(bo_va->flags);
976 	if ((flags & R600_PTE_GART_MASK) == R600_PTE_GART_MASK) {
977 		/* only copy commands needed */
978 		ndw += ncmds * 7;
979 
980 	} else if (flags & R600_PTE_SYSTEM) {
981 		/* header for write data commands */
982 		ndw += ncmds * 4;
983 
984 		/* body of write data command */
985 		ndw += nptes * 2;
986 
987 	} else {
988 		/* set page commands needed */
989 		ndw += ncmds * 10;
990 
991 		/* two extra commands for begin/end of fragment */
992 		ndw += 2 * 10;
993 	}
994 
995 	/* update too big for an IB */
996 	if (ndw > 0xfffff)
997 		return -ENOMEM;
998 
999 	r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, ndw * 4);
1000 	if (r)
1001 		return r;
1002 	ib.length_dw = 0;
1003 
1004 	if (!(bo_va->flags & RADEON_VM_PAGE_VALID)) {
1005 		unsigned i;
1006 
1007 		for (i = 0; i < RADEON_NUM_RINGS; ++i)
1008 			radeon_sync_fence(&ib.sync, vm->ids[i].last_id_use);
1009 	}
1010 
1011 	r = radeon_vm_update_ptes(rdev, vm, &ib, bo_va->it.start,
1012 				  bo_va->it.last + 1, addr,
1013 				  radeon_vm_page_flags(bo_va->flags));
1014 	if (r) {
1015 		radeon_ib_free(rdev, &ib);
1016 		return r;
1017 	}
1018 
1019 	radeon_asic_vm_pad_ib(rdev, &ib);
1020 	WARN_ON(ib.length_dw > ndw);
1021 
1022 	r = radeon_ib_schedule(rdev, &ib, NULL, false);
1023 	if (r) {
1024 		radeon_ib_free(rdev, &ib);
1025 		return r;
1026 	}
1027 	ib.fence->is_vm_update = true;
1028 	radeon_vm_fence_pts(vm, bo_va->it.start, bo_va->it.last + 1, ib.fence);
1029 	radeon_fence_unref(&bo_va->last_pt_update);
1030 	bo_va->last_pt_update = radeon_fence_ref(ib.fence);
1031 	radeon_ib_free(rdev, &ib);
1032 
1033 	return 0;
1034 }
1035 
1036 /**
1037  * radeon_vm_clear_freed - clear freed BOs in the PT
1038  *
1039  * @rdev: radeon_device pointer
1040  * @vm: requested vm
1041  *
1042  * Make sure all freed BOs are cleared in the PT.
1043  * Returns 0 for success.
1044  *
1045  * PTs have to be reserved and mutex must be locked!
1046  */
1047 int radeon_vm_clear_freed(struct radeon_device *rdev,
1048 			  struct radeon_vm *vm)
1049 {
1050 	struct radeon_bo_va *bo_va;
1051 	int r = 0;
1052 
1053 	spin_lock(&vm->status_lock);
1054 	while (!list_empty(&vm->freed)) {
1055 		bo_va = list_first_entry(&vm->freed,
1056 			struct radeon_bo_va, vm_status);
1057 		spin_unlock(&vm->status_lock);
1058 
1059 		r = radeon_vm_bo_update(rdev, bo_va, NULL);
1060 		radeon_bo_unref(&bo_va->bo);
1061 		radeon_fence_unref(&bo_va->last_pt_update);
1062 		spin_lock(&vm->status_lock);
1063 		list_del(&bo_va->vm_status);
1064 		kfree(bo_va);
1065 		if (r)
1066 			break;
1067 
1068 	}
1069 	spin_unlock(&vm->status_lock);
1070 	return r;
1071 
1072 }
1073 
1074 /**
1075  * radeon_vm_clear_invalids - clear invalidated BOs in the PT
1076  *
1077  * @rdev: radeon_device pointer
1078  * @vm: requested vm
1079  *
1080  * Make sure all invalidated BOs are cleared in the PT.
1081  * Returns 0 for success.
1082  *
1083  * PTs have to be reserved and mutex must be locked!
1084  */
1085 int radeon_vm_clear_invalids(struct radeon_device *rdev,
1086 			     struct radeon_vm *vm)
1087 {
1088 	struct radeon_bo_va *bo_va;
1089 	int r;
1090 
1091 	spin_lock(&vm->status_lock);
1092 	while (!list_empty(&vm->invalidated)) {
1093 		bo_va = list_first_entry(&vm->invalidated,
1094 			struct radeon_bo_va, vm_status);
1095 		spin_unlock(&vm->status_lock);
1096 
1097 		r = radeon_vm_bo_update(rdev, bo_va, NULL);
1098 		if (r)
1099 			return r;
1100 
1101 		spin_lock(&vm->status_lock);
1102 	}
1103 	spin_unlock(&vm->status_lock);
1104 
1105 	return 0;
1106 }
1107 
1108 /**
1109  * radeon_vm_bo_rmv - remove a bo to a specific vm
1110  *
1111  * @rdev: radeon_device pointer
1112  * @bo_va: requested bo_va
1113  *
1114  * Remove @bo_va->bo from the requested vm (cayman+).
1115  *
1116  * Object have to be reserved!
1117  */
1118 void radeon_vm_bo_rmv(struct radeon_device *rdev,
1119 		      struct radeon_bo_va *bo_va)
1120 {
1121 	struct radeon_vm *vm = bo_va->vm;
1122 
1123 	list_del(&bo_va->bo_list);
1124 
1125 	mutex_lock(&vm->mutex);
1126 	if (bo_va->it.start || bo_va->it.last)
1127 		interval_tree_remove(&bo_va->it, &vm->va);
1128 
1129 	spin_lock(&vm->status_lock);
1130 	list_del(&bo_va->vm_status);
1131 	if (bo_va->it.start || bo_va->it.last) {
1132 		bo_va->bo = radeon_bo_ref(bo_va->bo);
1133 		list_add(&bo_va->vm_status, &vm->freed);
1134 	} else {
1135 		radeon_fence_unref(&bo_va->last_pt_update);
1136 		kfree(bo_va);
1137 	}
1138 	spin_unlock(&vm->status_lock);
1139 
1140 	mutex_unlock(&vm->mutex);
1141 }
1142 
1143 /**
1144  * radeon_vm_bo_invalidate - mark the bo as invalid
1145  *
1146  * @rdev: radeon_device pointer
1147  * @bo: radeon buffer object
1148  *
1149  * Mark @bo as invalid (cayman+).
1150  */
1151 void radeon_vm_bo_invalidate(struct radeon_device *rdev,
1152 			     struct radeon_bo *bo)
1153 {
1154 	struct radeon_bo_va *bo_va;
1155 
1156 	list_for_each_entry(bo_va, &bo->va, bo_list) {
1157 		spin_lock(&bo_va->vm->status_lock);
1158 		if (list_empty(&bo_va->vm_status) &&
1159 		    (bo_va->it.start || bo_va->it.last))
1160 			list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
1161 		spin_unlock(&bo_va->vm->status_lock);
1162 	}
1163 }
1164 
1165 /**
1166  * radeon_vm_init - initialize a vm instance
1167  *
1168  * @rdev: radeon_device pointer
1169  * @vm: requested vm
1170  *
1171  * Init @vm fields (cayman+).
1172  */
1173 int radeon_vm_init(struct radeon_device *rdev, struct radeon_vm *vm)
1174 {
1175 	const unsigned align = min(RADEON_VM_PTB_ALIGN_SIZE,
1176 		RADEON_VM_PTE_COUNT * 8);
1177 	unsigned pd_size, pd_entries, pts_size;
1178 	int i, r;
1179 
1180 	vm->ib_bo_va = NULL;
1181 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
1182 		vm->ids[i].id = 0;
1183 		vm->ids[i].flushed_updates = NULL;
1184 		vm->ids[i].last_id_use = NULL;
1185 	}
1186 	mutex_init(&vm->mutex);
1187 	vm->va = RB_ROOT_CACHED;
1188 	spin_lock_init(&vm->status_lock);
1189 	INIT_LIST_HEAD(&vm->invalidated);
1190 	INIT_LIST_HEAD(&vm->freed);
1191 	INIT_LIST_HEAD(&vm->cleared);
1192 
1193 	pd_size = radeon_vm_directory_size(rdev);
1194 	pd_entries = radeon_vm_num_pdes(rdev);
1195 
1196 	/* allocate page table array */
1197 	pts_size = pd_entries * sizeof(struct radeon_vm_pt);
1198 	vm->page_tables = kzalloc(pts_size, GFP_KERNEL);
1199 	if (vm->page_tables == NULL) {
1200 		DRM_ERROR("Cannot allocate memory for page table array\n");
1201 		return -ENOMEM;
1202 	}
1203 
1204 	r = radeon_bo_create(rdev, pd_size, align, true,
1205 			     RADEON_GEM_DOMAIN_VRAM, 0, NULL,
1206 			     NULL, &vm->page_directory);
1207 	if (r)
1208 		return r;
1209 
1210 	r = radeon_vm_clear_bo(rdev, vm->page_directory);
1211 	if (r) {
1212 		radeon_bo_unref(&vm->page_directory);
1213 		vm->page_directory = NULL;
1214 		return r;
1215 	}
1216 
1217 	return 0;
1218 }
1219 
1220 /**
1221  * radeon_vm_fini - tear down a vm instance
1222  *
1223  * @rdev: radeon_device pointer
1224  * @vm: requested vm
1225  *
1226  * Tear down @vm (cayman+).
1227  * Unbind the VM and remove all bos from the vm bo list
1228  */
1229 void radeon_vm_fini(struct radeon_device *rdev, struct radeon_vm *vm)
1230 {
1231 	struct radeon_bo_va *bo_va, *tmp;
1232 	int i, r;
1233 
1234 	if (!RB_EMPTY_ROOT(&vm->va.rb_root))
1235 		dev_err(rdev->dev, "still active bo inside vm\n");
1236 
1237 	rbtree_postorder_for_each_entry_safe(bo_va, tmp,
1238 					     &vm->va.rb_root, it.rb) {
1239 		interval_tree_remove(&bo_va->it, &vm->va);
1240 		r = radeon_bo_reserve(bo_va->bo, false);
1241 		if (!r) {
1242 			list_del_init(&bo_va->bo_list);
1243 			radeon_bo_unreserve(bo_va->bo);
1244 			radeon_fence_unref(&bo_va->last_pt_update);
1245 			kfree(bo_va);
1246 		}
1247 	}
1248 	list_for_each_entry_safe(bo_va, tmp, &vm->freed, vm_status) {
1249 		radeon_bo_unref(&bo_va->bo);
1250 		radeon_fence_unref(&bo_va->last_pt_update);
1251 		kfree(bo_va);
1252 	}
1253 
1254 	for (i = 0; i < radeon_vm_num_pdes(rdev); i++)
1255 		radeon_bo_unref(&vm->page_tables[i].bo);
1256 	kfree(vm->page_tables);
1257 
1258 	radeon_bo_unref(&vm->page_directory);
1259 
1260 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
1261 		radeon_fence_unref(&vm->ids[i].flushed_updates);
1262 		radeon_fence_unref(&vm->ids[i].last_id_use);
1263 	}
1264 
1265 	mutex_destroy(&vm->mutex);
1266 }
1267