1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <drm/drmP.h> 29 #include <drm/radeon_drm.h> 30 #include "radeon.h" 31 #include "radeon_trace.h" 32 33 /* 34 * GPUVM 35 * GPUVM is similar to the legacy gart on older asics, however 36 * rather than there being a single global gart table 37 * for the entire GPU, there are multiple VM page tables active 38 * at any given time. The VM page tables can contain a mix 39 * vram pages and system memory pages and system memory pages 40 * can be mapped as snooped (cached system pages) or unsnooped 41 * (uncached system pages). 42 * Each VM has an ID associated with it and there is a page table 43 * associated with each VMID. When execting a command buffer, 44 * the kernel tells the the ring what VMID to use for that command 45 * buffer. VMIDs are allocated dynamically as commands are submitted. 46 * The userspace drivers maintain their own address space and the kernel 47 * sets up their pages tables accordingly when they submit their 48 * command buffers and a VMID is assigned. 49 * Cayman/Trinity support up to 8 active VMs at any given time; 50 * SI supports 16. 51 */ 52 53 /** 54 * radeon_vm_num_pde - return the number of page directory entries 55 * 56 * @rdev: radeon_device pointer 57 * 58 * Calculate the number of page directory entries (cayman+). 59 */ 60 static unsigned radeon_vm_num_pdes(struct radeon_device *rdev) 61 { 62 return rdev->vm_manager.max_pfn >> radeon_vm_block_size; 63 } 64 65 /** 66 * radeon_vm_directory_size - returns the size of the page directory in bytes 67 * 68 * @rdev: radeon_device pointer 69 * 70 * Calculate the size of the page directory in bytes (cayman+). 71 */ 72 static unsigned radeon_vm_directory_size(struct radeon_device *rdev) 73 { 74 return RADEON_GPU_PAGE_ALIGN(radeon_vm_num_pdes(rdev) * 8); 75 } 76 77 /** 78 * radeon_vm_manager_init - init the vm manager 79 * 80 * @rdev: radeon_device pointer 81 * 82 * Init the vm manager (cayman+). 83 * Returns 0 for success, error for failure. 84 */ 85 int radeon_vm_manager_init(struct radeon_device *rdev) 86 { 87 int r; 88 89 if (!rdev->vm_manager.enabled) { 90 r = radeon_asic_vm_init(rdev); 91 if (r) 92 return r; 93 94 rdev->vm_manager.enabled = true; 95 } 96 return 0; 97 } 98 99 /** 100 * radeon_vm_manager_fini - tear down the vm manager 101 * 102 * @rdev: radeon_device pointer 103 * 104 * Tear down the VM manager (cayman+). 105 */ 106 void radeon_vm_manager_fini(struct radeon_device *rdev) 107 { 108 int i; 109 110 if (!rdev->vm_manager.enabled) 111 return; 112 113 for (i = 0; i < RADEON_NUM_VM; ++i) 114 radeon_fence_unref(&rdev->vm_manager.active[i]); 115 radeon_asic_vm_fini(rdev); 116 rdev->vm_manager.enabled = false; 117 } 118 119 /** 120 * radeon_vm_get_bos - add the vm BOs to a validation list 121 * 122 * @vm: vm providing the BOs 123 * @head: head of validation list 124 * 125 * Add the page directory to the list of BOs to 126 * validate for command submission (cayman+). 127 */ 128 struct radeon_bo_list *radeon_vm_get_bos(struct radeon_device *rdev, 129 struct radeon_vm *vm, 130 struct list_head *head) 131 { 132 struct radeon_bo_list *list; 133 unsigned i, idx; 134 135 list = kvmalloc_array(vm->max_pde_used + 2, 136 sizeof(struct radeon_bo_list), GFP_KERNEL); 137 if (!list) 138 return NULL; 139 140 /* add the vm page table to the list */ 141 list[0].robj = vm->page_directory; 142 list[0].preferred_domains = RADEON_GEM_DOMAIN_VRAM; 143 list[0].allowed_domains = RADEON_GEM_DOMAIN_VRAM; 144 list[0].tv.bo = &vm->page_directory->tbo; 145 list[0].tv.shared = true; 146 list[0].tiling_flags = 0; 147 list_add(&list[0].tv.head, head); 148 149 for (i = 0, idx = 1; i <= vm->max_pde_used; i++) { 150 if (!vm->page_tables[i].bo) 151 continue; 152 153 list[idx].robj = vm->page_tables[i].bo; 154 list[idx].preferred_domains = RADEON_GEM_DOMAIN_VRAM; 155 list[idx].allowed_domains = RADEON_GEM_DOMAIN_VRAM; 156 list[idx].tv.bo = &list[idx].robj->tbo; 157 list[idx].tv.shared = true; 158 list[idx].tiling_flags = 0; 159 list_add(&list[idx++].tv.head, head); 160 } 161 162 return list; 163 } 164 165 /** 166 * radeon_vm_grab_id - allocate the next free VMID 167 * 168 * @rdev: radeon_device pointer 169 * @vm: vm to allocate id for 170 * @ring: ring we want to submit job to 171 * 172 * Allocate an id for the vm (cayman+). 173 * Returns the fence we need to sync to (if any). 174 * 175 * Global and local mutex must be locked! 176 */ 177 struct radeon_fence *radeon_vm_grab_id(struct radeon_device *rdev, 178 struct radeon_vm *vm, int ring) 179 { 180 struct radeon_fence *best[RADEON_NUM_RINGS] = {}; 181 struct radeon_vm_id *vm_id = &vm->ids[ring]; 182 183 unsigned choices[2] = {}; 184 unsigned i; 185 186 /* check if the id is still valid */ 187 if (vm_id->id && vm_id->last_id_use && 188 vm_id->last_id_use == rdev->vm_manager.active[vm_id->id]) 189 return NULL; 190 191 /* we definately need to flush */ 192 vm_id->pd_gpu_addr = ~0ll; 193 194 /* skip over VMID 0, since it is the system VM */ 195 for (i = 1; i < rdev->vm_manager.nvm; ++i) { 196 struct radeon_fence *fence = rdev->vm_manager.active[i]; 197 198 if (fence == NULL) { 199 /* found a free one */ 200 vm_id->id = i; 201 trace_radeon_vm_grab_id(i, ring); 202 return NULL; 203 } 204 205 if (radeon_fence_is_earlier(fence, best[fence->ring])) { 206 best[fence->ring] = fence; 207 choices[fence->ring == ring ? 0 : 1] = i; 208 } 209 } 210 211 for (i = 0; i < 2; ++i) { 212 if (choices[i]) { 213 vm_id->id = choices[i]; 214 trace_radeon_vm_grab_id(choices[i], ring); 215 return rdev->vm_manager.active[choices[i]]; 216 } 217 } 218 219 /* should never happen */ 220 BUG(); 221 return NULL; 222 } 223 224 /** 225 * radeon_vm_flush - hardware flush the vm 226 * 227 * @rdev: radeon_device pointer 228 * @vm: vm we want to flush 229 * @ring: ring to use for flush 230 * @updates: last vm update that is waited for 231 * 232 * Flush the vm (cayman+). 233 * 234 * Global and local mutex must be locked! 235 */ 236 void radeon_vm_flush(struct radeon_device *rdev, 237 struct radeon_vm *vm, 238 int ring, struct radeon_fence *updates) 239 { 240 uint64_t pd_addr = radeon_bo_gpu_offset(vm->page_directory); 241 struct radeon_vm_id *vm_id = &vm->ids[ring]; 242 243 if (pd_addr != vm_id->pd_gpu_addr || !vm_id->flushed_updates || 244 radeon_fence_is_earlier(vm_id->flushed_updates, updates)) { 245 246 trace_radeon_vm_flush(pd_addr, ring, vm->ids[ring].id); 247 radeon_fence_unref(&vm_id->flushed_updates); 248 vm_id->flushed_updates = radeon_fence_ref(updates); 249 vm_id->pd_gpu_addr = pd_addr; 250 radeon_ring_vm_flush(rdev, &rdev->ring[ring], 251 vm_id->id, vm_id->pd_gpu_addr); 252 253 } 254 } 255 256 /** 257 * radeon_vm_fence - remember fence for vm 258 * 259 * @rdev: radeon_device pointer 260 * @vm: vm we want to fence 261 * @fence: fence to remember 262 * 263 * Fence the vm (cayman+). 264 * Set the fence used to protect page table and id. 265 * 266 * Global and local mutex must be locked! 267 */ 268 void radeon_vm_fence(struct radeon_device *rdev, 269 struct radeon_vm *vm, 270 struct radeon_fence *fence) 271 { 272 unsigned vm_id = vm->ids[fence->ring].id; 273 274 radeon_fence_unref(&rdev->vm_manager.active[vm_id]); 275 rdev->vm_manager.active[vm_id] = radeon_fence_ref(fence); 276 277 radeon_fence_unref(&vm->ids[fence->ring].last_id_use); 278 vm->ids[fence->ring].last_id_use = radeon_fence_ref(fence); 279 } 280 281 /** 282 * radeon_vm_bo_find - find the bo_va for a specific vm & bo 283 * 284 * @vm: requested vm 285 * @bo: requested buffer object 286 * 287 * Find @bo inside the requested vm (cayman+). 288 * Search inside the @bos vm list for the requested vm 289 * Returns the found bo_va or NULL if none is found 290 * 291 * Object has to be reserved! 292 */ 293 struct radeon_bo_va *radeon_vm_bo_find(struct radeon_vm *vm, 294 struct radeon_bo *bo) 295 { 296 struct radeon_bo_va *bo_va; 297 298 list_for_each_entry(bo_va, &bo->va, bo_list) { 299 if (bo_va->vm == vm) { 300 return bo_va; 301 } 302 } 303 return NULL; 304 } 305 306 /** 307 * radeon_vm_bo_add - add a bo to a specific vm 308 * 309 * @rdev: radeon_device pointer 310 * @vm: requested vm 311 * @bo: radeon buffer object 312 * 313 * Add @bo into the requested vm (cayman+). 314 * Add @bo to the list of bos associated with the vm 315 * Returns newly added bo_va or NULL for failure 316 * 317 * Object has to be reserved! 318 */ 319 struct radeon_bo_va *radeon_vm_bo_add(struct radeon_device *rdev, 320 struct radeon_vm *vm, 321 struct radeon_bo *bo) 322 { 323 struct radeon_bo_va *bo_va; 324 325 bo_va = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL); 326 if (bo_va == NULL) { 327 return NULL; 328 } 329 bo_va->vm = vm; 330 bo_va->bo = bo; 331 bo_va->it.start = 0; 332 bo_va->it.last = 0; 333 bo_va->flags = 0; 334 bo_va->ref_count = 1; 335 INIT_LIST_HEAD(&bo_va->bo_list); 336 INIT_LIST_HEAD(&bo_va->vm_status); 337 338 mutex_lock(&vm->mutex); 339 list_add_tail(&bo_va->bo_list, &bo->va); 340 mutex_unlock(&vm->mutex); 341 342 return bo_va; 343 } 344 345 /** 346 * radeon_vm_set_pages - helper to call the right asic function 347 * 348 * @rdev: radeon_device pointer 349 * @ib: indirect buffer to fill with commands 350 * @pe: addr of the page entry 351 * @addr: dst addr to write into pe 352 * @count: number of page entries to update 353 * @incr: increase next addr by incr bytes 354 * @flags: hw access flags 355 * 356 * Traces the parameters and calls the right asic functions 357 * to setup the page table using the DMA. 358 */ 359 static void radeon_vm_set_pages(struct radeon_device *rdev, 360 struct radeon_ib *ib, 361 uint64_t pe, 362 uint64_t addr, unsigned count, 363 uint32_t incr, uint32_t flags) 364 { 365 trace_radeon_vm_set_page(pe, addr, count, incr, flags); 366 367 if ((flags & R600_PTE_GART_MASK) == R600_PTE_GART_MASK) { 368 uint64_t src = rdev->gart.table_addr + (addr >> 12) * 8; 369 radeon_asic_vm_copy_pages(rdev, ib, pe, src, count); 370 371 } else if ((flags & R600_PTE_SYSTEM) || (count < 3)) { 372 radeon_asic_vm_write_pages(rdev, ib, pe, addr, 373 count, incr, flags); 374 375 } else { 376 radeon_asic_vm_set_pages(rdev, ib, pe, addr, 377 count, incr, flags); 378 } 379 } 380 381 /** 382 * radeon_vm_clear_bo - initially clear the page dir/table 383 * 384 * @rdev: radeon_device pointer 385 * @bo: bo to clear 386 */ 387 static int radeon_vm_clear_bo(struct radeon_device *rdev, 388 struct radeon_bo *bo) 389 { 390 struct radeon_ib ib; 391 unsigned entries; 392 uint64_t addr; 393 int r; 394 395 r = radeon_bo_reserve(bo, false); 396 if (r) 397 return r; 398 399 r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false); 400 if (r) 401 goto error_unreserve; 402 403 addr = radeon_bo_gpu_offset(bo); 404 entries = radeon_bo_size(bo) / 8; 405 406 r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, 256); 407 if (r) 408 goto error_unreserve; 409 410 ib.length_dw = 0; 411 412 radeon_vm_set_pages(rdev, &ib, addr, 0, entries, 0, 0); 413 radeon_asic_vm_pad_ib(rdev, &ib); 414 WARN_ON(ib.length_dw > 64); 415 416 r = radeon_ib_schedule(rdev, &ib, NULL, false); 417 if (r) 418 goto error_free; 419 420 ib.fence->is_vm_update = true; 421 radeon_bo_fence(bo, ib.fence, false); 422 423 error_free: 424 radeon_ib_free(rdev, &ib); 425 426 error_unreserve: 427 radeon_bo_unreserve(bo); 428 return r; 429 } 430 431 /** 432 * radeon_vm_bo_set_addr - set bos virtual address inside a vm 433 * 434 * @rdev: radeon_device pointer 435 * @bo_va: bo_va to store the address 436 * @soffset: requested offset of the buffer in the VM address space 437 * @flags: attributes of pages (read/write/valid/etc.) 438 * 439 * Set offset of @bo_va (cayman+). 440 * Validate and set the offset requested within the vm address space. 441 * Returns 0 for success, error for failure. 442 * 443 * Object has to be reserved and gets unreserved by this function! 444 */ 445 int radeon_vm_bo_set_addr(struct radeon_device *rdev, 446 struct radeon_bo_va *bo_va, 447 uint64_t soffset, 448 uint32_t flags) 449 { 450 uint64_t size = radeon_bo_size(bo_va->bo); 451 struct radeon_vm *vm = bo_va->vm; 452 unsigned last_pfn, pt_idx; 453 uint64_t eoffset; 454 int r; 455 456 if (soffset) { 457 /* make sure object fit at this offset */ 458 eoffset = soffset + size - 1; 459 if (soffset >= eoffset) { 460 r = -EINVAL; 461 goto error_unreserve; 462 } 463 464 last_pfn = eoffset / RADEON_GPU_PAGE_SIZE; 465 if (last_pfn >= rdev->vm_manager.max_pfn) { 466 dev_err(rdev->dev, "va above limit (0x%08X >= 0x%08X)\n", 467 last_pfn, rdev->vm_manager.max_pfn); 468 r = -EINVAL; 469 goto error_unreserve; 470 } 471 472 } else { 473 eoffset = last_pfn = 0; 474 } 475 476 mutex_lock(&vm->mutex); 477 soffset /= RADEON_GPU_PAGE_SIZE; 478 eoffset /= RADEON_GPU_PAGE_SIZE; 479 if (soffset || eoffset) { 480 struct interval_tree_node *it; 481 it = interval_tree_iter_first(&vm->va, soffset, eoffset); 482 if (it && it != &bo_va->it) { 483 struct radeon_bo_va *tmp; 484 tmp = container_of(it, struct radeon_bo_va, it); 485 /* bo and tmp overlap, invalid offset */ 486 dev_err(rdev->dev, "bo %p va 0x%010Lx conflict with " 487 "(bo %p 0x%010lx 0x%010lx)\n", bo_va->bo, 488 soffset, tmp->bo, tmp->it.start, tmp->it.last); 489 mutex_unlock(&vm->mutex); 490 r = -EINVAL; 491 goto error_unreserve; 492 } 493 } 494 495 if (bo_va->it.start || bo_va->it.last) { 496 /* add a clone of the bo_va to clear the old address */ 497 struct radeon_bo_va *tmp; 498 tmp = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL); 499 if (!tmp) { 500 mutex_unlock(&vm->mutex); 501 r = -ENOMEM; 502 goto error_unreserve; 503 } 504 tmp->it.start = bo_va->it.start; 505 tmp->it.last = bo_va->it.last; 506 tmp->vm = vm; 507 tmp->bo = radeon_bo_ref(bo_va->bo); 508 509 interval_tree_remove(&bo_va->it, &vm->va); 510 spin_lock(&vm->status_lock); 511 bo_va->it.start = 0; 512 bo_va->it.last = 0; 513 list_del_init(&bo_va->vm_status); 514 list_add(&tmp->vm_status, &vm->freed); 515 spin_unlock(&vm->status_lock); 516 } 517 518 if (soffset || eoffset) { 519 spin_lock(&vm->status_lock); 520 bo_va->it.start = soffset; 521 bo_va->it.last = eoffset; 522 list_add(&bo_va->vm_status, &vm->cleared); 523 spin_unlock(&vm->status_lock); 524 interval_tree_insert(&bo_va->it, &vm->va); 525 } 526 527 bo_va->flags = flags; 528 529 soffset >>= radeon_vm_block_size; 530 eoffset >>= radeon_vm_block_size; 531 532 BUG_ON(eoffset >= radeon_vm_num_pdes(rdev)); 533 534 if (eoffset > vm->max_pde_used) 535 vm->max_pde_used = eoffset; 536 537 radeon_bo_unreserve(bo_va->bo); 538 539 /* walk over the address space and allocate the page tables */ 540 for (pt_idx = soffset; pt_idx <= eoffset; ++pt_idx) { 541 struct radeon_bo *pt; 542 543 if (vm->page_tables[pt_idx].bo) 544 continue; 545 546 /* drop mutex to allocate and clear page table */ 547 mutex_unlock(&vm->mutex); 548 549 r = radeon_bo_create(rdev, RADEON_VM_PTE_COUNT * 8, 550 RADEON_GPU_PAGE_SIZE, true, 551 RADEON_GEM_DOMAIN_VRAM, 0, 552 NULL, NULL, &pt); 553 if (r) 554 return r; 555 556 r = radeon_vm_clear_bo(rdev, pt); 557 if (r) { 558 radeon_bo_unref(&pt); 559 return r; 560 } 561 562 /* aquire mutex again */ 563 mutex_lock(&vm->mutex); 564 if (vm->page_tables[pt_idx].bo) { 565 /* someone else allocated the pt in the meantime */ 566 mutex_unlock(&vm->mutex); 567 radeon_bo_unref(&pt); 568 mutex_lock(&vm->mutex); 569 continue; 570 } 571 572 vm->page_tables[pt_idx].addr = 0; 573 vm->page_tables[pt_idx].bo = pt; 574 } 575 576 mutex_unlock(&vm->mutex); 577 return 0; 578 579 error_unreserve: 580 radeon_bo_unreserve(bo_va->bo); 581 return r; 582 } 583 584 /** 585 * radeon_vm_map_gart - get the physical address of a gart page 586 * 587 * @rdev: radeon_device pointer 588 * @addr: the unmapped addr 589 * 590 * Look up the physical address of the page that the pte resolves 591 * to (cayman+). 592 * Returns the physical address of the page. 593 */ 594 uint64_t radeon_vm_map_gart(struct radeon_device *rdev, uint64_t addr) 595 { 596 uint64_t result; 597 598 /* page table offset */ 599 result = rdev->gart.pages_entry[addr >> RADEON_GPU_PAGE_SHIFT]; 600 result &= ~RADEON_GPU_PAGE_MASK; 601 602 return result; 603 } 604 605 /** 606 * radeon_vm_page_flags - translate page flags to what the hw uses 607 * 608 * @flags: flags comming from userspace 609 * 610 * Translate the flags the userspace ABI uses to hw flags. 611 */ 612 static uint32_t radeon_vm_page_flags(uint32_t flags) 613 { 614 uint32_t hw_flags = 0; 615 616 hw_flags |= (flags & RADEON_VM_PAGE_VALID) ? R600_PTE_VALID : 0; 617 hw_flags |= (flags & RADEON_VM_PAGE_READABLE) ? R600_PTE_READABLE : 0; 618 hw_flags |= (flags & RADEON_VM_PAGE_WRITEABLE) ? R600_PTE_WRITEABLE : 0; 619 if (flags & RADEON_VM_PAGE_SYSTEM) { 620 hw_flags |= R600_PTE_SYSTEM; 621 hw_flags |= (flags & RADEON_VM_PAGE_SNOOPED) ? R600_PTE_SNOOPED : 0; 622 } 623 return hw_flags; 624 } 625 626 /** 627 * radeon_vm_update_pdes - make sure that page directory is valid 628 * 629 * @rdev: radeon_device pointer 630 * @vm: requested vm 631 * @start: start of GPU address range 632 * @end: end of GPU address range 633 * 634 * Allocates new page tables if necessary 635 * and updates the page directory (cayman+). 636 * Returns 0 for success, error for failure. 637 * 638 * Global and local mutex must be locked! 639 */ 640 int radeon_vm_update_page_directory(struct radeon_device *rdev, 641 struct radeon_vm *vm) 642 { 643 struct radeon_bo *pd = vm->page_directory; 644 uint64_t pd_addr = radeon_bo_gpu_offset(pd); 645 uint32_t incr = RADEON_VM_PTE_COUNT * 8; 646 uint64_t last_pde = ~0, last_pt = ~0; 647 unsigned count = 0, pt_idx, ndw; 648 struct radeon_ib ib; 649 int r; 650 651 /* padding, etc. */ 652 ndw = 64; 653 654 /* assume the worst case */ 655 ndw += vm->max_pde_used * 6; 656 657 /* update too big for an IB */ 658 if (ndw > 0xfffff) 659 return -ENOMEM; 660 661 r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, ndw * 4); 662 if (r) 663 return r; 664 ib.length_dw = 0; 665 666 /* walk over the address space and update the page directory */ 667 for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) { 668 struct radeon_bo *bo = vm->page_tables[pt_idx].bo; 669 uint64_t pde, pt; 670 671 if (bo == NULL) 672 continue; 673 674 pt = radeon_bo_gpu_offset(bo); 675 if (vm->page_tables[pt_idx].addr == pt) 676 continue; 677 vm->page_tables[pt_idx].addr = pt; 678 679 pde = pd_addr + pt_idx * 8; 680 if (((last_pde + 8 * count) != pde) || 681 ((last_pt + incr * count) != pt)) { 682 683 if (count) { 684 radeon_vm_set_pages(rdev, &ib, last_pde, 685 last_pt, count, incr, 686 R600_PTE_VALID); 687 } 688 689 count = 1; 690 last_pde = pde; 691 last_pt = pt; 692 } else { 693 ++count; 694 } 695 } 696 697 if (count) 698 radeon_vm_set_pages(rdev, &ib, last_pde, last_pt, count, 699 incr, R600_PTE_VALID); 700 701 if (ib.length_dw != 0) { 702 radeon_asic_vm_pad_ib(rdev, &ib); 703 704 radeon_sync_resv(rdev, &ib.sync, pd->tbo.resv, true); 705 WARN_ON(ib.length_dw > ndw); 706 r = radeon_ib_schedule(rdev, &ib, NULL, false); 707 if (r) { 708 radeon_ib_free(rdev, &ib); 709 return r; 710 } 711 ib.fence->is_vm_update = true; 712 radeon_bo_fence(pd, ib.fence, false); 713 } 714 radeon_ib_free(rdev, &ib); 715 716 return 0; 717 } 718 719 /** 720 * radeon_vm_frag_ptes - add fragment information to PTEs 721 * 722 * @rdev: radeon_device pointer 723 * @ib: IB for the update 724 * @pe_start: first PTE to handle 725 * @pe_end: last PTE to handle 726 * @addr: addr those PTEs should point to 727 * @flags: hw mapping flags 728 * 729 * Global and local mutex must be locked! 730 */ 731 static void radeon_vm_frag_ptes(struct radeon_device *rdev, 732 struct radeon_ib *ib, 733 uint64_t pe_start, uint64_t pe_end, 734 uint64_t addr, uint32_t flags) 735 { 736 /** 737 * The MC L1 TLB supports variable sized pages, based on a fragment 738 * field in the PTE. When this field is set to a non-zero value, page 739 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 740 * flags are considered valid for all PTEs within the fragment range 741 * and corresponding mappings are assumed to be physically contiguous. 742 * 743 * The L1 TLB can store a single PTE for the whole fragment, 744 * significantly increasing the space available for translation 745 * caching. This leads to large improvements in throughput when the 746 * TLB is under pressure. 747 * 748 * The L2 TLB distributes small and large fragments into two 749 * asymmetric partitions. The large fragment cache is significantly 750 * larger. Thus, we try to use large fragments wherever possible. 751 * Userspace can support this by aligning virtual base address and 752 * allocation size to the fragment size. 753 */ 754 755 /* NI is optimized for 256KB fragments, SI and newer for 64KB */ 756 uint64_t frag_flags = ((rdev->family == CHIP_CAYMAN) || 757 (rdev->family == CHIP_ARUBA)) ? 758 R600_PTE_FRAG_256KB : R600_PTE_FRAG_64KB; 759 uint64_t frag_align = ((rdev->family == CHIP_CAYMAN) || 760 (rdev->family == CHIP_ARUBA)) ? 0x200 : 0x80; 761 762 uint64_t frag_start = ALIGN(pe_start, frag_align); 763 uint64_t frag_end = pe_end & ~(frag_align - 1); 764 765 unsigned count; 766 767 /* system pages are non continuously */ 768 if ((flags & R600_PTE_SYSTEM) || !(flags & R600_PTE_VALID) || 769 (frag_start >= frag_end)) { 770 771 count = (pe_end - pe_start) / 8; 772 radeon_vm_set_pages(rdev, ib, pe_start, addr, count, 773 RADEON_GPU_PAGE_SIZE, flags); 774 return; 775 } 776 777 /* handle the 4K area at the beginning */ 778 if (pe_start != frag_start) { 779 count = (frag_start - pe_start) / 8; 780 radeon_vm_set_pages(rdev, ib, pe_start, addr, count, 781 RADEON_GPU_PAGE_SIZE, flags); 782 addr += RADEON_GPU_PAGE_SIZE * count; 783 } 784 785 /* handle the area in the middle */ 786 count = (frag_end - frag_start) / 8; 787 radeon_vm_set_pages(rdev, ib, frag_start, addr, count, 788 RADEON_GPU_PAGE_SIZE, flags | frag_flags); 789 790 /* handle the 4K area at the end */ 791 if (frag_end != pe_end) { 792 addr += RADEON_GPU_PAGE_SIZE * count; 793 count = (pe_end - frag_end) / 8; 794 radeon_vm_set_pages(rdev, ib, frag_end, addr, count, 795 RADEON_GPU_PAGE_SIZE, flags); 796 } 797 } 798 799 /** 800 * radeon_vm_update_ptes - make sure that page tables are valid 801 * 802 * @rdev: radeon_device pointer 803 * @vm: requested vm 804 * @start: start of GPU address range 805 * @end: end of GPU address range 806 * @dst: destination address to map to 807 * @flags: mapping flags 808 * 809 * Update the page tables in the range @start - @end (cayman+). 810 * 811 * Global and local mutex must be locked! 812 */ 813 static int radeon_vm_update_ptes(struct radeon_device *rdev, 814 struct radeon_vm *vm, 815 struct radeon_ib *ib, 816 uint64_t start, uint64_t end, 817 uint64_t dst, uint32_t flags) 818 { 819 uint64_t mask = RADEON_VM_PTE_COUNT - 1; 820 uint64_t last_pte = ~0, last_dst = ~0; 821 unsigned count = 0; 822 uint64_t addr; 823 824 /* walk over the address space and update the page tables */ 825 for (addr = start; addr < end; ) { 826 uint64_t pt_idx = addr >> radeon_vm_block_size; 827 struct radeon_bo *pt = vm->page_tables[pt_idx].bo; 828 unsigned nptes; 829 uint64_t pte; 830 int r; 831 832 radeon_sync_resv(rdev, &ib->sync, pt->tbo.resv, true); 833 r = reservation_object_reserve_shared(pt->tbo.resv); 834 if (r) 835 return r; 836 837 if ((addr & ~mask) == (end & ~mask)) 838 nptes = end - addr; 839 else 840 nptes = RADEON_VM_PTE_COUNT - (addr & mask); 841 842 pte = radeon_bo_gpu_offset(pt); 843 pte += (addr & mask) * 8; 844 845 if ((last_pte + 8 * count) != pte) { 846 847 if (count) { 848 radeon_vm_frag_ptes(rdev, ib, last_pte, 849 last_pte + 8 * count, 850 last_dst, flags); 851 } 852 853 count = nptes; 854 last_pte = pte; 855 last_dst = dst; 856 } else { 857 count += nptes; 858 } 859 860 addr += nptes; 861 dst += nptes * RADEON_GPU_PAGE_SIZE; 862 } 863 864 if (count) { 865 radeon_vm_frag_ptes(rdev, ib, last_pte, 866 last_pte + 8 * count, 867 last_dst, flags); 868 } 869 870 return 0; 871 } 872 873 /** 874 * radeon_vm_fence_pts - fence page tables after an update 875 * 876 * @vm: requested vm 877 * @start: start of GPU address range 878 * @end: end of GPU address range 879 * @fence: fence to use 880 * 881 * Fence the page tables in the range @start - @end (cayman+). 882 * 883 * Global and local mutex must be locked! 884 */ 885 static void radeon_vm_fence_pts(struct radeon_vm *vm, 886 uint64_t start, uint64_t end, 887 struct radeon_fence *fence) 888 { 889 unsigned i; 890 891 start >>= radeon_vm_block_size; 892 end = (end - 1) >> radeon_vm_block_size; 893 894 for (i = start; i <= end; ++i) 895 radeon_bo_fence(vm->page_tables[i].bo, fence, true); 896 } 897 898 /** 899 * radeon_vm_bo_update - map a bo into the vm page table 900 * 901 * @rdev: radeon_device pointer 902 * @vm: requested vm 903 * @bo: radeon buffer object 904 * @mem: ttm mem 905 * 906 * Fill in the page table entries for @bo (cayman+). 907 * Returns 0 for success, -EINVAL for failure. 908 * 909 * Object have to be reserved and mutex must be locked! 910 */ 911 int radeon_vm_bo_update(struct radeon_device *rdev, 912 struct radeon_bo_va *bo_va, 913 struct ttm_mem_reg *mem) 914 { 915 struct radeon_vm *vm = bo_va->vm; 916 struct radeon_ib ib; 917 unsigned nptes, ncmds, ndw; 918 uint64_t addr; 919 uint32_t flags; 920 int r; 921 922 if (!bo_va->it.start) { 923 dev_err(rdev->dev, "bo %p don't has a mapping in vm %p\n", 924 bo_va->bo, vm); 925 return -EINVAL; 926 } 927 928 spin_lock(&vm->status_lock); 929 if (mem) { 930 if (list_empty(&bo_va->vm_status)) { 931 spin_unlock(&vm->status_lock); 932 return 0; 933 } 934 list_del_init(&bo_va->vm_status); 935 } else { 936 list_del(&bo_va->vm_status); 937 list_add(&bo_va->vm_status, &vm->cleared); 938 } 939 spin_unlock(&vm->status_lock); 940 941 bo_va->flags &= ~RADEON_VM_PAGE_VALID; 942 bo_va->flags &= ~RADEON_VM_PAGE_SYSTEM; 943 bo_va->flags &= ~RADEON_VM_PAGE_SNOOPED; 944 if (bo_va->bo && radeon_ttm_tt_is_readonly(bo_va->bo->tbo.ttm)) 945 bo_va->flags &= ~RADEON_VM_PAGE_WRITEABLE; 946 947 if (mem) { 948 addr = mem->start << PAGE_SHIFT; 949 if (mem->mem_type != TTM_PL_SYSTEM) { 950 bo_va->flags |= RADEON_VM_PAGE_VALID; 951 } 952 if (mem->mem_type == TTM_PL_TT) { 953 bo_va->flags |= RADEON_VM_PAGE_SYSTEM; 954 if (!(bo_va->bo->flags & (RADEON_GEM_GTT_WC | RADEON_GEM_GTT_UC))) 955 bo_va->flags |= RADEON_VM_PAGE_SNOOPED; 956 957 } else { 958 addr += rdev->vm_manager.vram_base_offset; 959 } 960 } else { 961 addr = 0; 962 } 963 964 trace_radeon_vm_bo_update(bo_va); 965 966 nptes = bo_va->it.last - bo_va->it.start + 1; 967 968 /* reserve space for one command every (1 << BLOCK_SIZE) entries 969 or 2k dwords (whatever is smaller) */ 970 ncmds = (nptes >> min(radeon_vm_block_size, 11)) + 1; 971 972 /* padding, etc. */ 973 ndw = 64; 974 975 flags = radeon_vm_page_flags(bo_va->flags); 976 if ((flags & R600_PTE_GART_MASK) == R600_PTE_GART_MASK) { 977 /* only copy commands needed */ 978 ndw += ncmds * 7; 979 980 } else if (flags & R600_PTE_SYSTEM) { 981 /* header for write data commands */ 982 ndw += ncmds * 4; 983 984 /* body of write data command */ 985 ndw += nptes * 2; 986 987 } else { 988 /* set page commands needed */ 989 ndw += ncmds * 10; 990 991 /* two extra commands for begin/end of fragment */ 992 ndw += 2 * 10; 993 } 994 995 /* update too big for an IB */ 996 if (ndw > 0xfffff) 997 return -ENOMEM; 998 999 r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, ndw * 4); 1000 if (r) 1001 return r; 1002 ib.length_dw = 0; 1003 1004 if (!(bo_va->flags & RADEON_VM_PAGE_VALID)) { 1005 unsigned i; 1006 1007 for (i = 0; i < RADEON_NUM_RINGS; ++i) 1008 radeon_sync_fence(&ib.sync, vm->ids[i].last_id_use); 1009 } 1010 1011 r = radeon_vm_update_ptes(rdev, vm, &ib, bo_va->it.start, 1012 bo_va->it.last + 1, addr, 1013 radeon_vm_page_flags(bo_va->flags)); 1014 if (r) { 1015 radeon_ib_free(rdev, &ib); 1016 return r; 1017 } 1018 1019 radeon_asic_vm_pad_ib(rdev, &ib); 1020 WARN_ON(ib.length_dw > ndw); 1021 1022 r = radeon_ib_schedule(rdev, &ib, NULL, false); 1023 if (r) { 1024 radeon_ib_free(rdev, &ib); 1025 return r; 1026 } 1027 ib.fence->is_vm_update = true; 1028 radeon_vm_fence_pts(vm, bo_va->it.start, bo_va->it.last + 1, ib.fence); 1029 radeon_fence_unref(&bo_va->last_pt_update); 1030 bo_va->last_pt_update = radeon_fence_ref(ib.fence); 1031 radeon_ib_free(rdev, &ib); 1032 1033 return 0; 1034 } 1035 1036 /** 1037 * radeon_vm_clear_freed - clear freed BOs in the PT 1038 * 1039 * @rdev: radeon_device pointer 1040 * @vm: requested vm 1041 * 1042 * Make sure all freed BOs are cleared in the PT. 1043 * Returns 0 for success. 1044 * 1045 * PTs have to be reserved and mutex must be locked! 1046 */ 1047 int radeon_vm_clear_freed(struct radeon_device *rdev, 1048 struct radeon_vm *vm) 1049 { 1050 struct radeon_bo_va *bo_va; 1051 int r = 0; 1052 1053 spin_lock(&vm->status_lock); 1054 while (!list_empty(&vm->freed)) { 1055 bo_va = list_first_entry(&vm->freed, 1056 struct radeon_bo_va, vm_status); 1057 spin_unlock(&vm->status_lock); 1058 1059 r = radeon_vm_bo_update(rdev, bo_va, NULL); 1060 radeon_bo_unref(&bo_va->bo); 1061 radeon_fence_unref(&bo_va->last_pt_update); 1062 spin_lock(&vm->status_lock); 1063 list_del(&bo_va->vm_status); 1064 kfree(bo_va); 1065 if (r) 1066 break; 1067 1068 } 1069 spin_unlock(&vm->status_lock); 1070 return r; 1071 1072 } 1073 1074 /** 1075 * radeon_vm_clear_invalids - clear invalidated BOs in the PT 1076 * 1077 * @rdev: radeon_device pointer 1078 * @vm: requested vm 1079 * 1080 * Make sure all invalidated BOs are cleared in the PT. 1081 * Returns 0 for success. 1082 * 1083 * PTs have to be reserved and mutex must be locked! 1084 */ 1085 int radeon_vm_clear_invalids(struct radeon_device *rdev, 1086 struct radeon_vm *vm) 1087 { 1088 struct radeon_bo_va *bo_va; 1089 int r; 1090 1091 spin_lock(&vm->status_lock); 1092 while (!list_empty(&vm->invalidated)) { 1093 bo_va = list_first_entry(&vm->invalidated, 1094 struct radeon_bo_va, vm_status); 1095 spin_unlock(&vm->status_lock); 1096 1097 r = radeon_vm_bo_update(rdev, bo_va, NULL); 1098 if (r) 1099 return r; 1100 1101 spin_lock(&vm->status_lock); 1102 } 1103 spin_unlock(&vm->status_lock); 1104 1105 return 0; 1106 } 1107 1108 /** 1109 * radeon_vm_bo_rmv - remove a bo to a specific vm 1110 * 1111 * @rdev: radeon_device pointer 1112 * @bo_va: requested bo_va 1113 * 1114 * Remove @bo_va->bo from the requested vm (cayman+). 1115 * 1116 * Object have to be reserved! 1117 */ 1118 void radeon_vm_bo_rmv(struct radeon_device *rdev, 1119 struct radeon_bo_va *bo_va) 1120 { 1121 struct radeon_vm *vm = bo_va->vm; 1122 1123 list_del(&bo_va->bo_list); 1124 1125 mutex_lock(&vm->mutex); 1126 if (bo_va->it.start || bo_va->it.last) 1127 interval_tree_remove(&bo_va->it, &vm->va); 1128 1129 spin_lock(&vm->status_lock); 1130 list_del(&bo_va->vm_status); 1131 if (bo_va->it.start || bo_va->it.last) { 1132 bo_va->bo = radeon_bo_ref(bo_va->bo); 1133 list_add(&bo_va->vm_status, &vm->freed); 1134 } else { 1135 radeon_fence_unref(&bo_va->last_pt_update); 1136 kfree(bo_va); 1137 } 1138 spin_unlock(&vm->status_lock); 1139 1140 mutex_unlock(&vm->mutex); 1141 } 1142 1143 /** 1144 * radeon_vm_bo_invalidate - mark the bo as invalid 1145 * 1146 * @rdev: radeon_device pointer 1147 * @vm: requested vm 1148 * @bo: radeon buffer object 1149 * 1150 * Mark @bo as invalid (cayman+). 1151 */ 1152 void radeon_vm_bo_invalidate(struct radeon_device *rdev, 1153 struct radeon_bo *bo) 1154 { 1155 struct radeon_bo_va *bo_va; 1156 1157 list_for_each_entry(bo_va, &bo->va, bo_list) { 1158 spin_lock(&bo_va->vm->status_lock); 1159 if (list_empty(&bo_va->vm_status) && 1160 (bo_va->it.start || bo_va->it.last)) 1161 list_add(&bo_va->vm_status, &bo_va->vm->invalidated); 1162 spin_unlock(&bo_va->vm->status_lock); 1163 } 1164 } 1165 1166 /** 1167 * radeon_vm_init - initialize a vm instance 1168 * 1169 * @rdev: radeon_device pointer 1170 * @vm: requested vm 1171 * 1172 * Init @vm fields (cayman+). 1173 */ 1174 int radeon_vm_init(struct radeon_device *rdev, struct radeon_vm *vm) 1175 { 1176 const unsigned align = min(RADEON_VM_PTB_ALIGN_SIZE, 1177 RADEON_VM_PTE_COUNT * 8); 1178 unsigned pd_size, pd_entries, pts_size; 1179 int i, r; 1180 1181 vm->ib_bo_va = NULL; 1182 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 1183 vm->ids[i].id = 0; 1184 vm->ids[i].flushed_updates = NULL; 1185 vm->ids[i].last_id_use = NULL; 1186 } 1187 mutex_init(&vm->mutex); 1188 vm->va = RB_ROOT_CACHED; 1189 spin_lock_init(&vm->status_lock); 1190 INIT_LIST_HEAD(&vm->invalidated); 1191 INIT_LIST_HEAD(&vm->freed); 1192 INIT_LIST_HEAD(&vm->cleared); 1193 1194 pd_size = radeon_vm_directory_size(rdev); 1195 pd_entries = radeon_vm_num_pdes(rdev); 1196 1197 /* allocate page table array */ 1198 pts_size = pd_entries * sizeof(struct radeon_vm_pt); 1199 vm->page_tables = kzalloc(pts_size, GFP_KERNEL); 1200 if (vm->page_tables == NULL) { 1201 DRM_ERROR("Cannot allocate memory for page table array\n"); 1202 return -ENOMEM; 1203 } 1204 1205 r = radeon_bo_create(rdev, pd_size, align, true, 1206 RADEON_GEM_DOMAIN_VRAM, 0, NULL, 1207 NULL, &vm->page_directory); 1208 if (r) 1209 return r; 1210 1211 r = radeon_vm_clear_bo(rdev, vm->page_directory); 1212 if (r) { 1213 radeon_bo_unref(&vm->page_directory); 1214 vm->page_directory = NULL; 1215 return r; 1216 } 1217 1218 return 0; 1219 } 1220 1221 /** 1222 * radeon_vm_fini - tear down a vm instance 1223 * 1224 * @rdev: radeon_device pointer 1225 * @vm: requested vm 1226 * 1227 * Tear down @vm (cayman+). 1228 * Unbind the VM and remove all bos from the vm bo list 1229 */ 1230 void radeon_vm_fini(struct radeon_device *rdev, struct radeon_vm *vm) 1231 { 1232 struct radeon_bo_va *bo_va, *tmp; 1233 int i, r; 1234 1235 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 1236 dev_err(rdev->dev, "still active bo inside vm\n"); 1237 } 1238 rbtree_postorder_for_each_entry_safe(bo_va, tmp, 1239 &vm->va.rb_root, it.rb) { 1240 interval_tree_remove(&bo_va->it, &vm->va); 1241 r = radeon_bo_reserve(bo_va->bo, false); 1242 if (!r) { 1243 list_del_init(&bo_va->bo_list); 1244 radeon_bo_unreserve(bo_va->bo); 1245 radeon_fence_unref(&bo_va->last_pt_update); 1246 kfree(bo_va); 1247 } 1248 } 1249 list_for_each_entry_safe(bo_va, tmp, &vm->freed, vm_status) { 1250 radeon_bo_unref(&bo_va->bo); 1251 radeon_fence_unref(&bo_va->last_pt_update); 1252 kfree(bo_va); 1253 } 1254 1255 for (i = 0; i < radeon_vm_num_pdes(rdev); i++) 1256 radeon_bo_unref(&vm->page_tables[i].bo); 1257 kfree(vm->page_tables); 1258 1259 radeon_bo_unref(&vm->page_directory); 1260 1261 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 1262 radeon_fence_unref(&vm->ids[i].flushed_updates); 1263 radeon_fence_unref(&vm->ids[i].last_id_use); 1264 } 1265 1266 mutex_destroy(&vm->mutex); 1267 } 1268