1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <drm/drmP.h> 29 #include <drm/radeon_drm.h> 30 #include "radeon.h" 31 #include "radeon_trace.h" 32 33 /* 34 * GPUVM 35 * GPUVM is similar to the legacy gart on older asics, however 36 * rather than there being a single global gart table 37 * for the entire GPU, there are multiple VM page tables active 38 * at any given time. The VM page tables can contain a mix 39 * vram pages and system memory pages and system memory pages 40 * can be mapped as snooped (cached system pages) or unsnooped 41 * (uncached system pages). 42 * Each VM has an ID associated with it and there is a page table 43 * associated with each VMID. When execting a command buffer, 44 * the kernel tells the the ring what VMID to use for that command 45 * buffer. VMIDs are allocated dynamically as commands are submitted. 46 * The userspace drivers maintain their own address space and the kernel 47 * sets up their pages tables accordingly when they submit their 48 * command buffers and a VMID is assigned. 49 * Cayman/Trinity support up to 8 active VMs at any given time; 50 * SI supports 16. 51 */ 52 53 /** 54 * radeon_vm_num_pde - return the number of page directory entries 55 * 56 * @rdev: radeon_device pointer 57 * 58 * Calculate the number of page directory entries (cayman+). 59 */ 60 static unsigned radeon_vm_num_pdes(struct radeon_device *rdev) 61 { 62 return rdev->vm_manager.max_pfn >> radeon_vm_block_size; 63 } 64 65 /** 66 * radeon_vm_directory_size - returns the size of the page directory in bytes 67 * 68 * @rdev: radeon_device pointer 69 * 70 * Calculate the size of the page directory in bytes (cayman+). 71 */ 72 static unsigned radeon_vm_directory_size(struct radeon_device *rdev) 73 { 74 return RADEON_GPU_PAGE_ALIGN(radeon_vm_num_pdes(rdev) * 8); 75 } 76 77 /** 78 * radeon_vm_manager_init - init the vm manager 79 * 80 * @rdev: radeon_device pointer 81 * 82 * Init the vm manager (cayman+). 83 * Returns 0 for success, error for failure. 84 */ 85 int radeon_vm_manager_init(struct radeon_device *rdev) 86 { 87 int r; 88 89 if (!rdev->vm_manager.enabled) { 90 r = radeon_asic_vm_init(rdev); 91 if (r) 92 return r; 93 94 rdev->vm_manager.enabled = true; 95 } 96 return 0; 97 } 98 99 /** 100 * radeon_vm_manager_fini - tear down the vm manager 101 * 102 * @rdev: radeon_device pointer 103 * 104 * Tear down the VM manager (cayman+). 105 */ 106 void radeon_vm_manager_fini(struct radeon_device *rdev) 107 { 108 int i; 109 110 if (!rdev->vm_manager.enabled) 111 return; 112 113 for (i = 0; i < RADEON_NUM_VM; ++i) 114 radeon_fence_unref(&rdev->vm_manager.active[i]); 115 radeon_asic_vm_fini(rdev); 116 rdev->vm_manager.enabled = false; 117 } 118 119 /** 120 * radeon_vm_get_bos - add the vm BOs to a validation list 121 * 122 * @vm: vm providing the BOs 123 * @head: head of validation list 124 * 125 * Add the page directory to the list of BOs to 126 * validate for command submission (cayman+). 127 */ 128 struct radeon_bo_list *radeon_vm_get_bos(struct radeon_device *rdev, 129 struct radeon_vm *vm, 130 struct list_head *head) 131 { 132 struct radeon_bo_list *list; 133 unsigned i, idx; 134 135 list = drm_malloc_ab(vm->max_pde_used + 2, 136 sizeof(struct radeon_bo_list)); 137 if (!list) 138 return NULL; 139 140 /* add the vm page table to the list */ 141 list[0].robj = vm->page_directory; 142 list[0].prefered_domains = RADEON_GEM_DOMAIN_VRAM; 143 list[0].allowed_domains = RADEON_GEM_DOMAIN_VRAM; 144 list[0].tv.bo = &vm->page_directory->tbo; 145 list[0].tv.shared = true; 146 list[0].tiling_flags = 0; 147 list_add(&list[0].tv.head, head); 148 149 for (i = 0, idx = 1; i <= vm->max_pde_used; i++) { 150 if (!vm->page_tables[i].bo) 151 continue; 152 153 list[idx].robj = vm->page_tables[i].bo; 154 list[idx].prefered_domains = RADEON_GEM_DOMAIN_VRAM; 155 list[idx].allowed_domains = RADEON_GEM_DOMAIN_VRAM; 156 list[idx].tv.bo = &list[idx].robj->tbo; 157 list[idx].tv.shared = true; 158 list[idx].tiling_flags = 0; 159 list_add(&list[idx++].tv.head, head); 160 } 161 162 return list; 163 } 164 165 /** 166 * radeon_vm_grab_id - allocate the next free VMID 167 * 168 * @rdev: radeon_device pointer 169 * @vm: vm to allocate id for 170 * @ring: ring we want to submit job to 171 * 172 * Allocate an id for the vm (cayman+). 173 * Returns the fence we need to sync to (if any). 174 * 175 * Global and local mutex must be locked! 176 */ 177 struct radeon_fence *radeon_vm_grab_id(struct radeon_device *rdev, 178 struct radeon_vm *vm, int ring) 179 { 180 struct radeon_fence *best[RADEON_NUM_RINGS] = {}; 181 struct radeon_vm_id *vm_id = &vm->ids[ring]; 182 183 unsigned choices[2] = {}; 184 unsigned i; 185 186 /* check if the id is still valid */ 187 if (vm_id->id && vm_id->last_id_use && 188 vm_id->last_id_use == rdev->vm_manager.active[vm_id->id]) 189 return NULL; 190 191 /* we definately need to flush */ 192 vm_id->pd_gpu_addr = ~0ll; 193 194 /* skip over VMID 0, since it is the system VM */ 195 for (i = 1; i < rdev->vm_manager.nvm; ++i) { 196 struct radeon_fence *fence = rdev->vm_manager.active[i]; 197 198 if (fence == NULL) { 199 /* found a free one */ 200 vm_id->id = i; 201 trace_radeon_vm_grab_id(i, ring); 202 return NULL; 203 } 204 205 if (radeon_fence_is_earlier(fence, best[fence->ring])) { 206 best[fence->ring] = fence; 207 choices[fence->ring == ring ? 0 : 1] = i; 208 } 209 } 210 211 for (i = 0; i < 2; ++i) { 212 if (choices[i]) { 213 vm_id->id = choices[i]; 214 trace_radeon_vm_grab_id(choices[i], ring); 215 return rdev->vm_manager.active[choices[i]]; 216 } 217 } 218 219 /* should never happen */ 220 BUG(); 221 return NULL; 222 } 223 224 /** 225 * radeon_vm_flush - hardware flush the vm 226 * 227 * @rdev: radeon_device pointer 228 * @vm: vm we want to flush 229 * @ring: ring to use for flush 230 * @updates: last vm update that is waited for 231 * 232 * Flush the vm (cayman+). 233 * 234 * Global and local mutex must be locked! 235 */ 236 void radeon_vm_flush(struct radeon_device *rdev, 237 struct radeon_vm *vm, 238 int ring, struct radeon_fence *updates) 239 { 240 uint64_t pd_addr = radeon_bo_gpu_offset(vm->page_directory); 241 struct radeon_vm_id *vm_id = &vm->ids[ring]; 242 243 if (pd_addr != vm_id->pd_gpu_addr || !vm_id->flushed_updates || 244 radeon_fence_is_earlier(vm_id->flushed_updates, updates)) { 245 246 trace_radeon_vm_flush(pd_addr, ring, vm->ids[ring].id); 247 radeon_fence_unref(&vm_id->flushed_updates); 248 vm_id->flushed_updates = radeon_fence_ref(updates); 249 vm_id->pd_gpu_addr = pd_addr; 250 radeon_ring_vm_flush(rdev, &rdev->ring[ring], 251 vm_id->id, vm_id->pd_gpu_addr); 252 253 } 254 } 255 256 /** 257 * radeon_vm_fence - remember fence for vm 258 * 259 * @rdev: radeon_device pointer 260 * @vm: vm we want to fence 261 * @fence: fence to remember 262 * 263 * Fence the vm (cayman+). 264 * Set the fence used to protect page table and id. 265 * 266 * Global and local mutex must be locked! 267 */ 268 void radeon_vm_fence(struct radeon_device *rdev, 269 struct radeon_vm *vm, 270 struct radeon_fence *fence) 271 { 272 unsigned vm_id = vm->ids[fence->ring].id; 273 274 radeon_fence_unref(&rdev->vm_manager.active[vm_id]); 275 rdev->vm_manager.active[vm_id] = radeon_fence_ref(fence); 276 277 radeon_fence_unref(&vm->ids[fence->ring].last_id_use); 278 vm->ids[fence->ring].last_id_use = radeon_fence_ref(fence); 279 } 280 281 /** 282 * radeon_vm_bo_find - find the bo_va for a specific vm & bo 283 * 284 * @vm: requested vm 285 * @bo: requested buffer object 286 * 287 * Find @bo inside the requested vm (cayman+). 288 * Search inside the @bos vm list for the requested vm 289 * Returns the found bo_va or NULL if none is found 290 * 291 * Object has to be reserved! 292 */ 293 struct radeon_bo_va *radeon_vm_bo_find(struct radeon_vm *vm, 294 struct radeon_bo *bo) 295 { 296 struct radeon_bo_va *bo_va; 297 298 list_for_each_entry(bo_va, &bo->va, bo_list) { 299 if (bo_va->vm == vm) { 300 return bo_va; 301 } 302 } 303 return NULL; 304 } 305 306 /** 307 * radeon_vm_bo_add - add a bo to a specific vm 308 * 309 * @rdev: radeon_device pointer 310 * @vm: requested vm 311 * @bo: radeon buffer object 312 * 313 * Add @bo into the requested vm (cayman+). 314 * Add @bo to the list of bos associated with the vm 315 * Returns newly added bo_va or NULL for failure 316 * 317 * Object has to be reserved! 318 */ 319 struct radeon_bo_va *radeon_vm_bo_add(struct radeon_device *rdev, 320 struct radeon_vm *vm, 321 struct radeon_bo *bo) 322 { 323 struct radeon_bo_va *bo_va; 324 325 bo_va = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL); 326 if (bo_va == NULL) { 327 return NULL; 328 } 329 bo_va->vm = vm; 330 bo_va->bo = bo; 331 bo_va->it.start = 0; 332 bo_va->it.last = 0; 333 bo_va->flags = 0; 334 bo_va->addr = 0; 335 bo_va->ref_count = 1; 336 INIT_LIST_HEAD(&bo_va->bo_list); 337 INIT_LIST_HEAD(&bo_va->vm_status); 338 339 mutex_lock(&vm->mutex); 340 list_add_tail(&bo_va->bo_list, &bo->va); 341 mutex_unlock(&vm->mutex); 342 343 return bo_va; 344 } 345 346 /** 347 * radeon_vm_set_pages - helper to call the right asic function 348 * 349 * @rdev: radeon_device pointer 350 * @ib: indirect buffer to fill with commands 351 * @pe: addr of the page entry 352 * @addr: dst addr to write into pe 353 * @count: number of page entries to update 354 * @incr: increase next addr by incr bytes 355 * @flags: hw access flags 356 * 357 * Traces the parameters and calls the right asic functions 358 * to setup the page table using the DMA. 359 */ 360 static void radeon_vm_set_pages(struct radeon_device *rdev, 361 struct radeon_ib *ib, 362 uint64_t pe, 363 uint64_t addr, unsigned count, 364 uint32_t incr, uint32_t flags) 365 { 366 trace_radeon_vm_set_page(pe, addr, count, incr, flags); 367 368 if ((flags & R600_PTE_GART_MASK) == R600_PTE_GART_MASK) { 369 uint64_t src = rdev->gart.table_addr + (addr >> 12) * 8; 370 radeon_asic_vm_copy_pages(rdev, ib, pe, src, count); 371 372 } else if ((flags & R600_PTE_SYSTEM) || (count < 3)) { 373 radeon_asic_vm_write_pages(rdev, ib, pe, addr, 374 count, incr, flags); 375 376 } else { 377 radeon_asic_vm_set_pages(rdev, ib, pe, addr, 378 count, incr, flags); 379 } 380 } 381 382 /** 383 * radeon_vm_clear_bo - initially clear the page dir/table 384 * 385 * @rdev: radeon_device pointer 386 * @bo: bo to clear 387 */ 388 static int radeon_vm_clear_bo(struct radeon_device *rdev, 389 struct radeon_bo *bo) 390 { 391 struct radeon_ib ib; 392 unsigned entries; 393 uint64_t addr; 394 int r; 395 396 r = radeon_bo_reserve(bo, false); 397 if (r) 398 return r; 399 400 r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false); 401 if (r) 402 goto error_unreserve; 403 404 addr = radeon_bo_gpu_offset(bo); 405 entries = radeon_bo_size(bo) / 8; 406 407 r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, 256); 408 if (r) 409 goto error_unreserve; 410 411 ib.length_dw = 0; 412 413 radeon_vm_set_pages(rdev, &ib, addr, 0, entries, 0, 0); 414 radeon_asic_vm_pad_ib(rdev, &ib); 415 WARN_ON(ib.length_dw > 64); 416 417 r = radeon_ib_schedule(rdev, &ib, NULL, false); 418 if (r) 419 goto error_free; 420 421 ib.fence->is_vm_update = true; 422 radeon_bo_fence(bo, ib.fence, false); 423 424 error_free: 425 radeon_ib_free(rdev, &ib); 426 427 error_unreserve: 428 radeon_bo_unreserve(bo); 429 return r; 430 } 431 432 /** 433 * radeon_vm_bo_set_addr - set bos virtual address inside a vm 434 * 435 * @rdev: radeon_device pointer 436 * @bo_va: bo_va to store the address 437 * @soffset: requested offset of the buffer in the VM address space 438 * @flags: attributes of pages (read/write/valid/etc.) 439 * 440 * Set offset of @bo_va (cayman+). 441 * Validate and set the offset requested within the vm address space. 442 * Returns 0 for success, error for failure. 443 * 444 * Object has to be reserved and gets unreserved by this function! 445 */ 446 int radeon_vm_bo_set_addr(struct radeon_device *rdev, 447 struct radeon_bo_va *bo_va, 448 uint64_t soffset, 449 uint32_t flags) 450 { 451 uint64_t size = radeon_bo_size(bo_va->bo); 452 struct radeon_vm *vm = bo_va->vm; 453 unsigned last_pfn, pt_idx; 454 uint64_t eoffset; 455 int r; 456 457 if (soffset) { 458 /* make sure object fit at this offset */ 459 eoffset = soffset + size; 460 if (soffset >= eoffset) { 461 return -EINVAL; 462 } 463 464 last_pfn = eoffset / RADEON_GPU_PAGE_SIZE; 465 if (last_pfn > rdev->vm_manager.max_pfn) { 466 dev_err(rdev->dev, "va above limit (0x%08X > 0x%08X)\n", 467 last_pfn, rdev->vm_manager.max_pfn); 468 return -EINVAL; 469 } 470 471 } else { 472 eoffset = last_pfn = 0; 473 } 474 475 mutex_lock(&vm->mutex); 476 if (bo_va->it.start || bo_va->it.last) { 477 if (bo_va->addr) { 478 /* add a clone of the bo_va to clear the old address */ 479 struct radeon_bo_va *tmp; 480 tmp = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL); 481 if (!tmp) { 482 mutex_unlock(&vm->mutex); 483 return -ENOMEM; 484 } 485 tmp->it.start = bo_va->it.start; 486 tmp->it.last = bo_va->it.last; 487 tmp->vm = vm; 488 tmp->addr = bo_va->addr; 489 tmp->bo = radeon_bo_ref(bo_va->bo); 490 spin_lock(&vm->status_lock); 491 list_add(&tmp->vm_status, &vm->freed); 492 spin_unlock(&vm->status_lock); 493 } 494 495 interval_tree_remove(&bo_va->it, &vm->va); 496 bo_va->it.start = 0; 497 bo_va->it.last = 0; 498 } 499 500 soffset /= RADEON_GPU_PAGE_SIZE; 501 eoffset /= RADEON_GPU_PAGE_SIZE; 502 if (soffset || eoffset) { 503 struct interval_tree_node *it; 504 it = interval_tree_iter_first(&vm->va, soffset, eoffset - 1); 505 if (it) { 506 struct radeon_bo_va *tmp; 507 tmp = container_of(it, struct radeon_bo_va, it); 508 /* bo and tmp overlap, invalid offset */ 509 dev_err(rdev->dev, "bo %p va 0x%010Lx conflict with " 510 "(bo %p 0x%010lx 0x%010lx)\n", bo_va->bo, 511 soffset, tmp->bo, tmp->it.start, tmp->it.last); 512 mutex_unlock(&vm->mutex); 513 return -EINVAL; 514 } 515 bo_va->it.start = soffset; 516 bo_va->it.last = eoffset - 1; 517 interval_tree_insert(&bo_va->it, &vm->va); 518 } 519 520 bo_va->flags = flags; 521 bo_va->addr = 0; 522 523 soffset >>= radeon_vm_block_size; 524 eoffset >>= radeon_vm_block_size; 525 526 BUG_ON(eoffset >= radeon_vm_num_pdes(rdev)); 527 528 if (eoffset > vm->max_pde_used) 529 vm->max_pde_used = eoffset; 530 531 radeon_bo_unreserve(bo_va->bo); 532 533 /* walk over the address space and allocate the page tables */ 534 for (pt_idx = soffset; pt_idx <= eoffset; ++pt_idx) { 535 struct radeon_bo *pt; 536 537 if (vm->page_tables[pt_idx].bo) 538 continue; 539 540 /* drop mutex to allocate and clear page table */ 541 mutex_unlock(&vm->mutex); 542 543 r = radeon_bo_create(rdev, RADEON_VM_PTE_COUNT * 8, 544 RADEON_GPU_PAGE_SIZE, true, 545 RADEON_GEM_DOMAIN_VRAM, 0, 546 NULL, NULL, &pt); 547 if (r) 548 return r; 549 550 r = radeon_vm_clear_bo(rdev, pt); 551 if (r) { 552 radeon_bo_unref(&pt); 553 radeon_bo_reserve(bo_va->bo, false); 554 return r; 555 } 556 557 /* aquire mutex again */ 558 mutex_lock(&vm->mutex); 559 if (vm->page_tables[pt_idx].bo) { 560 /* someone else allocated the pt in the meantime */ 561 mutex_unlock(&vm->mutex); 562 radeon_bo_unref(&pt); 563 mutex_lock(&vm->mutex); 564 continue; 565 } 566 567 vm->page_tables[pt_idx].addr = 0; 568 vm->page_tables[pt_idx].bo = pt; 569 } 570 571 mutex_unlock(&vm->mutex); 572 return 0; 573 } 574 575 /** 576 * radeon_vm_map_gart - get the physical address of a gart page 577 * 578 * @rdev: radeon_device pointer 579 * @addr: the unmapped addr 580 * 581 * Look up the physical address of the page that the pte resolves 582 * to (cayman+). 583 * Returns the physical address of the page. 584 */ 585 uint64_t radeon_vm_map_gart(struct radeon_device *rdev, uint64_t addr) 586 { 587 uint64_t result; 588 589 /* page table offset */ 590 result = rdev->gart.pages_entry[addr >> RADEON_GPU_PAGE_SHIFT]; 591 result &= ~RADEON_GPU_PAGE_MASK; 592 593 return result; 594 } 595 596 /** 597 * radeon_vm_page_flags - translate page flags to what the hw uses 598 * 599 * @flags: flags comming from userspace 600 * 601 * Translate the flags the userspace ABI uses to hw flags. 602 */ 603 static uint32_t radeon_vm_page_flags(uint32_t flags) 604 { 605 uint32_t hw_flags = 0; 606 hw_flags |= (flags & RADEON_VM_PAGE_VALID) ? R600_PTE_VALID : 0; 607 hw_flags |= (flags & RADEON_VM_PAGE_READABLE) ? R600_PTE_READABLE : 0; 608 hw_flags |= (flags & RADEON_VM_PAGE_WRITEABLE) ? R600_PTE_WRITEABLE : 0; 609 if (flags & RADEON_VM_PAGE_SYSTEM) { 610 hw_flags |= R600_PTE_SYSTEM; 611 hw_flags |= (flags & RADEON_VM_PAGE_SNOOPED) ? R600_PTE_SNOOPED : 0; 612 } 613 return hw_flags; 614 } 615 616 /** 617 * radeon_vm_update_pdes - make sure that page directory is valid 618 * 619 * @rdev: radeon_device pointer 620 * @vm: requested vm 621 * @start: start of GPU address range 622 * @end: end of GPU address range 623 * 624 * Allocates new page tables if necessary 625 * and updates the page directory (cayman+). 626 * Returns 0 for success, error for failure. 627 * 628 * Global and local mutex must be locked! 629 */ 630 int radeon_vm_update_page_directory(struct radeon_device *rdev, 631 struct radeon_vm *vm) 632 { 633 struct radeon_bo *pd = vm->page_directory; 634 uint64_t pd_addr = radeon_bo_gpu_offset(pd); 635 uint32_t incr = RADEON_VM_PTE_COUNT * 8; 636 uint64_t last_pde = ~0, last_pt = ~0; 637 unsigned count = 0, pt_idx, ndw; 638 struct radeon_ib ib; 639 int r; 640 641 /* padding, etc. */ 642 ndw = 64; 643 644 /* assume the worst case */ 645 ndw += vm->max_pde_used * 6; 646 647 /* update too big for an IB */ 648 if (ndw > 0xfffff) 649 return -ENOMEM; 650 651 r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, ndw * 4); 652 if (r) 653 return r; 654 ib.length_dw = 0; 655 656 /* walk over the address space and update the page directory */ 657 for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) { 658 struct radeon_bo *bo = vm->page_tables[pt_idx].bo; 659 uint64_t pde, pt; 660 661 if (bo == NULL) 662 continue; 663 664 pt = radeon_bo_gpu_offset(bo); 665 if (vm->page_tables[pt_idx].addr == pt) 666 continue; 667 vm->page_tables[pt_idx].addr = pt; 668 669 pde = pd_addr + pt_idx * 8; 670 if (((last_pde + 8 * count) != pde) || 671 ((last_pt + incr * count) != pt)) { 672 673 if (count) { 674 radeon_vm_set_pages(rdev, &ib, last_pde, 675 last_pt, count, incr, 676 R600_PTE_VALID); 677 } 678 679 count = 1; 680 last_pde = pde; 681 last_pt = pt; 682 } else { 683 ++count; 684 } 685 } 686 687 if (count) 688 radeon_vm_set_pages(rdev, &ib, last_pde, last_pt, count, 689 incr, R600_PTE_VALID); 690 691 if (ib.length_dw != 0) { 692 radeon_asic_vm_pad_ib(rdev, &ib); 693 694 radeon_sync_resv(rdev, &ib.sync, pd->tbo.resv, true); 695 WARN_ON(ib.length_dw > ndw); 696 r = radeon_ib_schedule(rdev, &ib, NULL, false); 697 if (r) { 698 radeon_ib_free(rdev, &ib); 699 return r; 700 } 701 ib.fence->is_vm_update = true; 702 radeon_bo_fence(pd, ib.fence, false); 703 } 704 radeon_ib_free(rdev, &ib); 705 706 return 0; 707 } 708 709 /** 710 * radeon_vm_frag_ptes - add fragment information to PTEs 711 * 712 * @rdev: radeon_device pointer 713 * @ib: IB for the update 714 * @pe_start: first PTE to handle 715 * @pe_end: last PTE to handle 716 * @addr: addr those PTEs should point to 717 * @flags: hw mapping flags 718 * 719 * Global and local mutex must be locked! 720 */ 721 static void radeon_vm_frag_ptes(struct radeon_device *rdev, 722 struct radeon_ib *ib, 723 uint64_t pe_start, uint64_t pe_end, 724 uint64_t addr, uint32_t flags) 725 { 726 /** 727 * The MC L1 TLB supports variable sized pages, based on a fragment 728 * field in the PTE. When this field is set to a non-zero value, page 729 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 730 * flags are considered valid for all PTEs within the fragment range 731 * and corresponding mappings are assumed to be physically contiguous. 732 * 733 * The L1 TLB can store a single PTE for the whole fragment, 734 * significantly increasing the space available for translation 735 * caching. This leads to large improvements in throughput when the 736 * TLB is under pressure. 737 * 738 * The L2 TLB distributes small and large fragments into two 739 * asymmetric partitions. The large fragment cache is significantly 740 * larger. Thus, we try to use large fragments wherever possible. 741 * Userspace can support this by aligning virtual base address and 742 * allocation size to the fragment size. 743 */ 744 745 /* NI is optimized for 256KB fragments, SI and newer for 64KB */ 746 uint64_t frag_flags = ((rdev->family == CHIP_CAYMAN) || 747 (rdev->family == CHIP_ARUBA)) ? 748 R600_PTE_FRAG_256KB : R600_PTE_FRAG_64KB; 749 uint64_t frag_align = ((rdev->family == CHIP_CAYMAN) || 750 (rdev->family == CHIP_ARUBA)) ? 0x200 : 0x80; 751 752 uint64_t frag_start = ALIGN(pe_start, frag_align); 753 uint64_t frag_end = pe_end & ~(frag_align - 1); 754 755 unsigned count; 756 757 /* system pages are non continuously */ 758 if ((flags & R600_PTE_SYSTEM) || !(flags & R600_PTE_VALID) || 759 (frag_start >= frag_end)) { 760 761 count = (pe_end - pe_start) / 8; 762 radeon_vm_set_pages(rdev, ib, pe_start, addr, count, 763 RADEON_GPU_PAGE_SIZE, flags); 764 return; 765 } 766 767 /* handle the 4K area at the beginning */ 768 if (pe_start != frag_start) { 769 count = (frag_start - pe_start) / 8; 770 radeon_vm_set_pages(rdev, ib, pe_start, addr, count, 771 RADEON_GPU_PAGE_SIZE, flags); 772 addr += RADEON_GPU_PAGE_SIZE * count; 773 } 774 775 /* handle the area in the middle */ 776 count = (frag_end - frag_start) / 8; 777 radeon_vm_set_pages(rdev, ib, frag_start, addr, count, 778 RADEON_GPU_PAGE_SIZE, flags | frag_flags); 779 780 /* handle the 4K area at the end */ 781 if (frag_end != pe_end) { 782 addr += RADEON_GPU_PAGE_SIZE * count; 783 count = (pe_end - frag_end) / 8; 784 radeon_vm_set_pages(rdev, ib, frag_end, addr, count, 785 RADEON_GPU_PAGE_SIZE, flags); 786 } 787 } 788 789 /** 790 * radeon_vm_update_ptes - make sure that page tables are valid 791 * 792 * @rdev: radeon_device pointer 793 * @vm: requested vm 794 * @start: start of GPU address range 795 * @end: end of GPU address range 796 * @dst: destination address to map to 797 * @flags: mapping flags 798 * 799 * Update the page tables in the range @start - @end (cayman+). 800 * 801 * Global and local mutex must be locked! 802 */ 803 static int radeon_vm_update_ptes(struct radeon_device *rdev, 804 struct radeon_vm *vm, 805 struct radeon_ib *ib, 806 uint64_t start, uint64_t end, 807 uint64_t dst, uint32_t flags) 808 { 809 uint64_t mask = RADEON_VM_PTE_COUNT - 1; 810 uint64_t last_pte = ~0, last_dst = ~0; 811 unsigned count = 0; 812 uint64_t addr; 813 814 /* walk over the address space and update the page tables */ 815 for (addr = start; addr < end; ) { 816 uint64_t pt_idx = addr >> radeon_vm_block_size; 817 struct radeon_bo *pt = vm->page_tables[pt_idx].bo; 818 unsigned nptes; 819 uint64_t pte; 820 int r; 821 822 radeon_sync_resv(rdev, &ib->sync, pt->tbo.resv, true); 823 r = reservation_object_reserve_shared(pt->tbo.resv); 824 if (r) 825 return r; 826 827 if ((addr & ~mask) == (end & ~mask)) 828 nptes = end - addr; 829 else 830 nptes = RADEON_VM_PTE_COUNT - (addr & mask); 831 832 pte = radeon_bo_gpu_offset(pt); 833 pte += (addr & mask) * 8; 834 835 if ((last_pte + 8 * count) != pte) { 836 837 if (count) { 838 radeon_vm_frag_ptes(rdev, ib, last_pte, 839 last_pte + 8 * count, 840 last_dst, flags); 841 } 842 843 count = nptes; 844 last_pte = pte; 845 last_dst = dst; 846 } else { 847 count += nptes; 848 } 849 850 addr += nptes; 851 dst += nptes * RADEON_GPU_PAGE_SIZE; 852 } 853 854 if (count) { 855 radeon_vm_frag_ptes(rdev, ib, last_pte, 856 last_pte + 8 * count, 857 last_dst, flags); 858 } 859 860 return 0; 861 } 862 863 /** 864 * radeon_vm_fence_pts - fence page tables after an update 865 * 866 * @vm: requested vm 867 * @start: start of GPU address range 868 * @end: end of GPU address range 869 * @fence: fence to use 870 * 871 * Fence the page tables in the range @start - @end (cayman+). 872 * 873 * Global and local mutex must be locked! 874 */ 875 static void radeon_vm_fence_pts(struct radeon_vm *vm, 876 uint64_t start, uint64_t end, 877 struct radeon_fence *fence) 878 { 879 unsigned i; 880 881 start >>= radeon_vm_block_size; 882 end >>= radeon_vm_block_size; 883 884 for (i = start; i <= end; ++i) 885 radeon_bo_fence(vm->page_tables[i].bo, fence, true); 886 } 887 888 /** 889 * radeon_vm_bo_update - map a bo into the vm page table 890 * 891 * @rdev: radeon_device pointer 892 * @vm: requested vm 893 * @bo: radeon buffer object 894 * @mem: ttm mem 895 * 896 * Fill in the page table entries for @bo (cayman+). 897 * Returns 0 for success, -EINVAL for failure. 898 * 899 * Object have to be reserved and mutex must be locked! 900 */ 901 int radeon_vm_bo_update(struct radeon_device *rdev, 902 struct radeon_bo_va *bo_va, 903 struct ttm_mem_reg *mem) 904 { 905 struct radeon_vm *vm = bo_va->vm; 906 struct radeon_ib ib; 907 unsigned nptes, ncmds, ndw; 908 uint64_t addr; 909 uint32_t flags; 910 int r; 911 912 if (!bo_va->it.start) { 913 dev_err(rdev->dev, "bo %p don't has a mapping in vm %p\n", 914 bo_va->bo, vm); 915 return -EINVAL; 916 } 917 918 spin_lock(&vm->status_lock); 919 list_del_init(&bo_va->vm_status); 920 spin_unlock(&vm->status_lock); 921 922 bo_va->flags &= ~RADEON_VM_PAGE_VALID; 923 bo_va->flags &= ~RADEON_VM_PAGE_SYSTEM; 924 bo_va->flags &= ~RADEON_VM_PAGE_SNOOPED; 925 if (bo_va->bo && radeon_ttm_tt_is_readonly(bo_va->bo->tbo.ttm)) 926 bo_va->flags &= ~RADEON_VM_PAGE_WRITEABLE; 927 928 if (mem) { 929 addr = mem->start << PAGE_SHIFT; 930 if (mem->mem_type != TTM_PL_SYSTEM) { 931 bo_va->flags |= RADEON_VM_PAGE_VALID; 932 } 933 if (mem->mem_type == TTM_PL_TT) { 934 bo_va->flags |= RADEON_VM_PAGE_SYSTEM; 935 if (!(bo_va->bo->flags & (RADEON_GEM_GTT_WC | RADEON_GEM_GTT_UC))) 936 bo_va->flags |= RADEON_VM_PAGE_SNOOPED; 937 938 } else { 939 addr += rdev->vm_manager.vram_base_offset; 940 } 941 } else { 942 addr = 0; 943 } 944 945 if (addr == bo_va->addr) 946 return 0; 947 bo_va->addr = addr; 948 949 trace_radeon_vm_bo_update(bo_va); 950 951 nptes = bo_va->it.last - bo_va->it.start + 1; 952 953 /* reserve space for one command every (1 << BLOCK_SIZE) entries 954 or 2k dwords (whatever is smaller) */ 955 ncmds = (nptes >> min(radeon_vm_block_size, 11)) + 1; 956 957 /* padding, etc. */ 958 ndw = 64; 959 960 flags = radeon_vm_page_flags(bo_va->flags); 961 if ((flags & R600_PTE_GART_MASK) == R600_PTE_GART_MASK) { 962 /* only copy commands needed */ 963 ndw += ncmds * 7; 964 965 } else if (flags & R600_PTE_SYSTEM) { 966 /* header for write data commands */ 967 ndw += ncmds * 4; 968 969 /* body of write data command */ 970 ndw += nptes * 2; 971 972 } else { 973 /* set page commands needed */ 974 ndw += ncmds * 10; 975 976 /* two extra commands for begin/end of fragment */ 977 ndw += 2 * 10; 978 } 979 980 /* update too big for an IB */ 981 if (ndw > 0xfffff) 982 return -ENOMEM; 983 984 r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, ndw * 4); 985 if (r) 986 return r; 987 ib.length_dw = 0; 988 989 if (!(bo_va->flags & RADEON_VM_PAGE_VALID)) { 990 unsigned i; 991 992 for (i = 0; i < RADEON_NUM_RINGS; ++i) 993 radeon_sync_fence(&ib.sync, vm->ids[i].last_id_use); 994 } 995 996 r = radeon_vm_update_ptes(rdev, vm, &ib, bo_va->it.start, 997 bo_va->it.last + 1, addr, 998 radeon_vm_page_flags(bo_va->flags)); 999 if (r) { 1000 radeon_ib_free(rdev, &ib); 1001 return r; 1002 } 1003 1004 radeon_asic_vm_pad_ib(rdev, &ib); 1005 WARN_ON(ib.length_dw > ndw); 1006 1007 r = radeon_ib_schedule(rdev, &ib, NULL, false); 1008 if (r) { 1009 radeon_ib_free(rdev, &ib); 1010 return r; 1011 } 1012 ib.fence->is_vm_update = true; 1013 radeon_vm_fence_pts(vm, bo_va->it.start, bo_va->it.last + 1, ib.fence); 1014 radeon_fence_unref(&bo_va->last_pt_update); 1015 bo_va->last_pt_update = radeon_fence_ref(ib.fence); 1016 radeon_ib_free(rdev, &ib); 1017 1018 return 0; 1019 } 1020 1021 /** 1022 * radeon_vm_clear_freed - clear freed BOs in the PT 1023 * 1024 * @rdev: radeon_device pointer 1025 * @vm: requested vm 1026 * 1027 * Make sure all freed BOs are cleared in the PT. 1028 * Returns 0 for success. 1029 * 1030 * PTs have to be reserved and mutex must be locked! 1031 */ 1032 int radeon_vm_clear_freed(struct radeon_device *rdev, 1033 struct radeon_vm *vm) 1034 { 1035 struct radeon_bo_va *bo_va; 1036 int r; 1037 1038 spin_lock(&vm->status_lock); 1039 while (!list_empty(&vm->freed)) { 1040 bo_va = list_first_entry(&vm->freed, 1041 struct radeon_bo_va, vm_status); 1042 spin_unlock(&vm->status_lock); 1043 1044 r = radeon_vm_bo_update(rdev, bo_va, NULL); 1045 radeon_bo_unref(&bo_va->bo); 1046 radeon_fence_unref(&bo_va->last_pt_update); 1047 kfree(bo_va); 1048 if (r) 1049 return r; 1050 1051 spin_lock(&vm->status_lock); 1052 } 1053 spin_unlock(&vm->status_lock); 1054 return 0; 1055 1056 } 1057 1058 /** 1059 * radeon_vm_clear_invalids - clear invalidated BOs in the PT 1060 * 1061 * @rdev: radeon_device pointer 1062 * @vm: requested vm 1063 * 1064 * Make sure all invalidated BOs are cleared in the PT. 1065 * Returns 0 for success. 1066 * 1067 * PTs have to be reserved and mutex must be locked! 1068 */ 1069 int radeon_vm_clear_invalids(struct radeon_device *rdev, 1070 struct radeon_vm *vm) 1071 { 1072 struct radeon_bo_va *bo_va; 1073 int r; 1074 1075 spin_lock(&vm->status_lock); 1076 while (!list_empty(&vm->invalidated)) { 1077 bo_va = list_first_entry(&vm->invalidated, 1078 struct radeon_bo_va, vm_status); 1079 spin_unlock(&vm->status_lock); 1080 1081 r = radeon_vm_bo_update(rdev, bo_va, NULL); 1082 if (r) 1083 return r; 1084 1085 spin_lock(&vm->status_lock); 1086 } 1087 spin_unlock(&vm->status_lock); 1088 1089 return 0; 1090 } 1091 1092 /** 1093 * radeon_vm_bo_rmv - remove a bo to a specific vm 1094 * 1095 * @rdev: radeon_device pointer 1096 * @bo_va: requested bo_va 1097 * 1098 * Remove @bo_va->bo from the requested vm (cayman+). 1099 * 1100 * Object have to be reserved! 1101 */ 1102 void radeon_vm_bo_rmv(struct radeon_device *rdev, 1103 struct radeon_bo_va *bo_va) 1104 { 1105 struct radeon_vm *vm = bo_va->vm; 1106 1107 list_del(&bo_va->bo_list); 1108 1109 mutex_lock(&vm->mutex); 1110 interval_tree_remove(&bo_va->it, &vm->va); 1111 spin_lock(&vm->status_lock); 1112 list_del(&bo_va->vm_status); 1113 1114 if (bo_va->addr) { 1115 bo_va->bo = radeon_bo_ref(bo_va->bo); 1116 list_add(&bo_va->vm_status, &vm->freed); 1117 } else { 1118 radeon_fence_unref(&bo_va->last_pt_update); 1119 kfree(bo_va); 1120 } 1121 spin_unlock(&vm->status_lock); 1122 1123 mutex_unlock(&vm->mutex); 1124 } 1125 1126 /** 1127 * radeon_vm_bo_invalidate - mark the bo as invalid 1128 * 1129 * @rdev: radeon_device pointer 1130 * @vm: requested vm 1131 * @bo: radeon buffer object 1132 * 1133 * Mark @bo as invalid (cayman+). 1134 */ 1135 void radeon_vm_bo_invalidate(struct radeon_device *rdev, 1136 struct radeon_bo *bo) 1137 { 1138 struct radeon_bo_va *bo_va; 1139 1140 list_for_each_entry(bo_va, &bo->va, bo_list) { 1141 if (bo_va->addr) { 1142 spin_lock(&bo_va->vm->status_lock); 1143 list_del(&bo_va->vm_status); 1144 list_add(&bo_va->vm_status, &bo_va->vm->invalidated); 1145 spin_unlock(&bo_va->vm->status_lock); 1146 } 1147 } 1148 } 1149 1150 /** 1151 * radeon_vm_init - initialize a vm instance 1152 * 1153 * @rdev: radeon_device pointer 1154 * @vm: requested vm 1155 * 1156 * Init @vm fields (cayman+). 1157 */ 1158 int radeon_vm_init(struct radeon_device *rdev, struct radeon_vm *vm) 1159 { 1160 const unsigned align = min(RADEON_VM_PTB_ALIGN_SIZE, 1161 RADEON_VM_PTE_COUNT * 8); 1162 unsigned pd_size, pd_entries, pts_size; 1163 int i, r; 1164 1165 vm->ib_bo_va = NULL; 1166 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 1167 vm->ids[i].id = 0; 1168 vm->ids[i].flushed_updates = NULL; 1169 vm->ids[i].last_id_use = NULL; 1170 } 1171 mutex_init(&vm->mutex); 1172 vm->va = RB_ROOT; 1173 spin_lock_init(&vm->status_lock); 1174 INIT_LIST_HEAD(&vm->invalidated); 1175 INIT_LIST_HEAD(&vm->freed); 1176 1177 pd_size = radeon_vm_directory_size(rdev); 1178 pd_entries = radeon_vm_num_pdes(rdev); 1179 1180 /* allocate page table array */ 1181 pts_size = pd_entries * sizeof(struct radeon_vm_pt); 1182 vm->page_tables = kzalloc(pts_size, GFP_KERNEL); 1183 if (vm->page_tables == NULL) { 1184 DRM_ERROR("Cannot allocate memory for page table array\n"); 1185 return -ENOMEM; 1186 } 1187 1188 r = radeon_bo_create(rdev, pd_size, align, true, 1189 RADEON_GEM_DOMAIN_VRAM, 0, NULL, 1190 NULL, &vm->page_directory); 1191 if (r) 1192 return r; 1193 1194 r = radeon_vm_clear_bo(rdev, vm->page_directory); 1195 if (r) { 1196 radeon_bo_unref(&vm->page_directory); 1197 vm->page_directory = NULL; 1198 return r; 1199 } 1200 1201 return 0; 1202 } 1203 1204 /** 1205 * radeon_vm_fini - tear down a vm instance 1206 * 1207 * @rdev: radeon_device pointer 1208 * @vm: requested vm 1209 * 1210 * Tear down @vm (cayman+). 1211 * Unbind the VM and remove all bos from the vm bo list 1212 */ 1213 void radeon_vm_fini(struct radeon_device *rdev, struct radeon_vm *vm) 1214 { 1215 struct radeon_bo_va *bo_va, *tmp; 1216 int i, r; 1217 1218 if (!RB_EMPTY_ROOT(&vm->va)) { 1219 dev_err(rdev->dev, "still active bo inside vm\n"); 1220 } 1221 rbtree_postorder_for_each_entry_safe(bo_va, tmp, &vm->va, it.rb) { 1222 interval_tree_remove(&bo_va->it, &vm->va); 1223 r = radeon_bo_reserve(bo_va->bo, false); 1224 if (!r) { 1225 list_del_init(&bo_va->bo_list); 1226 radeon_bo_unreserve(bo_va->bo); 1227 radeon_fence_unref(&bo_va->last_pt_update); 1228 kfree(bo_va); 1229 } 1230 } 1231 list_for_each_entry_safe(bo_va, tmp, &vm->freed, vm_status) { 1232 radeon_bo_unref(&bo_va->bo); 1233 radeon_fence_unref(&bo_va->last_pt_update); 1234 kfree(bo_va); 1235 } 1236 1237 for (i = 0; i < radeon_vm_num_pdes(rdev); i++) 1238 radeon_bo_unref(&vm->page_tables[i].bo); 1239 kfree(vm->page_tables); 1240 1241 radeon_bo_unref(&vm->page_directory); 1242 1243 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 1244 radeon_fence_unref(&vm->ids[i].flushed_updates); 1245 radeon_fence_unref(&vm->ids[i].last_id_use); 1246 } 1247 1248 mutex_destroy(&vm->mutex); 1249 } 1250