xref: /openbmc/linux/drivers/gpu/drm/radeon/radeon_vm.c (revision b830f94f)
1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 
29 #include <drm/radeon_drm.h>
30 #include "radeon.h"
31 #include "radeon_trace.h"
32 
33 /*
34  * GPUVM
35  * GPUVM is similar to the legacy gart on older asics, however
36  * rather than there being a single global gart table
37  * for the entire GPU, there are multiple VM page tables active
38  * at any given time.  The VM page tables can contain a mix
39  * vram pages and system memory pages and system memory pages
40  * can be mapped as snooped (cached system pages) or unsnooped
41  * (uncached system pages).
42  * Each VM has an ID associated with it and there is a page table
43  * associated with each VMID.  When execting a command buffer,
44  * the kernel tells the the ring what VMID to use for that command
45  * buffer.  VMIDs are allocated dynamically as commands are submitted.
46  * The userspace drivers maintain their own address space and the kernel
47  * sets up their pages tables accordingly when they submit their
48  * command buffers and a VMID is assigned.
49  * Cayman/Trinity support up to 8 active VMs at any given time;
50  * SI supports 16.
51  */
52 
53 /**
54  * radeon_vm_num_pde - return the number of page directory entries
55  *
56  * @rdev: radeon_device pointer
57  *
58  * Calculate the number of page directory entries (cayman+).
59  */
60 static unsigned radeon_vm_num_pdes(struct radeon_device *rdev)
61 {
62 	return rdev->vm_manager.max_pfn >> radeon_vm_block_size;
63 }
64 
65 /**
66  * radeon_vm_directory_size - returns the size of the page directory in bytes
67  *
68  * @rdev: radeon_device pointer
69  *
70  * Calculate the size of the page directory in bytes (cayman+).
71  */
72 static unsigned radeon_vm_directory_size(struct radeon_device *rdev)
73 {
74 	return RADEON_GPU_PAGE_ALIGN(radeon_vm_num_pdes(rdev) * 8);
75 }
76 
77 /**
78  * radeon_vm_manager_init - init the vm manager
79  *
80  * @rdev: radeon_device pointer
81  *
82  * Init the vm manager (cayman+).
83  * Returns 0 for success, error for failure.
84  */
85 int radeon_vm_manager_init(struct radeon_device *rdev)
86 {
87 	int r;
88 
89 	if (!rdev->vm_manager.enabled) {
90 		r = radeon_asic_vm_init(rdev);
91 		if (r)
92 			return r;
93 
94 		rdev->vm_manager.enabled = true;
95 	}
96 	return 0;
97 }
98 
99 /**
100  * radeon_vm_manager_fini - tear down the vm manager
101  *
102  * @rdev: radeon_device pointer
103  *
104  * Tear down the VM manager (cayman+).
105  */
106 void radeon_vm_manager_fini(struct radeon_device *rdev)
107 {
108 	int i;
109 
110 	if (!rdev->vm_manager.enabled)
111 		return;
112 
113 	for (i = 0; i < RADEON_NUM_VM; ++i)
114 		radeon_fence_unref(&rdev->vm_manager.active[i]);
115 	radeon_asic_vm_fini(rdev);
116 	rdev->vm_manager.enabled = false;
117 }
118 
119 /**
120  * radeon_vm_get_bos - add the vm BOs to a validation list
121  *
122  * @vm: vm providing the BOs
123  * @head: head of validation list
124  *
125  * Add the page directory to the list of BOs to
126  * validate for command submission (cayman+).
127  */
128 struct radeon_bo_list *radeon_vm_get_bos(struct radeon_device *rdev,
129 					  struct radeon_vm *vm,
130 					  struct list_head *head)
131 {
132 	struct radeon_bo_list *list;
133 	unsigned i, idx;
134 
135 	list = kvmalloc_array(vm->max_pde_used + 2,
136 			     sizeof(struct radeon_bo_list), GFP_KERNEL);
137 	if (!list)
138 		return NULL;
139 
140 	/* add the vm page table to the list */
141 	list[0].robj = vm->page_directory;
142 	list[0].preferred_domains = RADEON_GEM_DOMAIN_VRAM;
143 	list[0].allowed_domains = RADEON_GEM_DOMAIN_VRAM;
144 	list[0].tv.bo = &vm->page_directory->tbo;
145 	list[0].tv.num_shared = 1;
146 	list[0].tiling_flags = 0;
147 	list_add(&list[0].tv.head, head);
148 
149 	for (i = 0, idx = 1; i <= vm->max_pde_used; i++) {
150 		if (!vm->page_tables[i].bo)
151 			continue;
152 
153 		list[idx].robj = vm->page_tables[i].bo;
154 		list[idx].preferred_domains = RADEON_GEM_DOMAIN_VRAM;
155 		list[idx].allowed_domains = RADEON_GEM_DOMAIN_VRAM;
156 		list[idx].tv.bo = &list[idx].robj->tbo;
157 		list[idx].tv.num_shared = 1;
158 		list[idx].tiling_flags = 0;
159 		list_add(&list[idx++].tv.head, head);
160 	}
161 
162 	return list;
163 }
164 
165 /**
166  * radeon_vm_grab_id - allocate the next free VMID
167  *
168  * @rdev: radeon_device pointer
169  * @vm: vm to allocate id for
170  * @ring: ring we want to submit job to
171  *
172  * Allocate an id for the vm (cayman+).
173  * Returns the fence we need to sync to (if any).
174  *
175  * Global and local mutex must be locked!
176  */
177 struct radeon_fence *radeon_vm_grab_id(struct radeon_device *rdev,
178 				       struct radeon_vm *vm, int ring)
179 {
180 	struct radeon_fence *best[RADEON_NUM_RINGS] = {};
181 	struct radeon_vm_id *vm_id = &vm->ids[ring];
182 
183 	unsigned choices[2] = {};
184 	unsigned i;
185 
186 	/* check if the id is still valid */
187 	if (vm_id->id && vm_id->last_id_use &&
188 	    vm_id->last_id_use == rdev->vm_manager.active[vm_id->id])
189 		return NULL;
190 
191 	/* we definately need to flush */
192 	vm_id->pd_gpu_addr = ~0ll;
193 
194 	/* skip over VMID 0, since it is the system VM */
195 	for (i = 1; i < rdev->vm_manager.nvm; ++i) {
196 		struct radeon_fence *fence = rdev->vm_manager.active[i];
197 
198 		if (fence == NULL) {
199 			/* found a free one */
200 			vm_id->id = i;
201 			trace_radeon_vm_grab_id(i, ring);
202 			return NULL;
203 		}
204 
205 		if (radeon_fence_is_earlier(fence, best[fence->ring])) {
206 			best[fence->ring] = fence;
207 			choices[fence->ring == ring ? 0 : 1] = i;
208 		}
209 	}
210 
211 	for (i = 0; i < 2; ++i) {
212 		if (choices[i]) {
213 			vm_id->id = choices[i];
214 			trace_radeon_vm_grab_id(choices[i], ring);
215 			return rdev->vm_manager.active[choices[i]];
216 		}
217 	}
218 
219 	/* should never happen */
220 	BUG();
221 	return NULL;
222 }
223 
224 /**
225  * radeon_vm_flush - hardware flush the vm
226  *
227  * @rdev: radeon_device pointer
228  * @vm: vm we want to flush
229  * @ring: ring to use for flush
230  * @updates: last vm update that is waited for
231  *
232  * Flush the vm (cayman+).
233  *
234  * Global and local mutex must be locked!
235  */
236 void radeon_vm_flush(struct radeon_device *rdev,
237 		     struct radeon_vm *vm,
238 		     int ring, struct radeon_fence *updates)
239 {
240 	uint64_t pd_addr = radeon_bo_gpu_offset(vm->page_directory);
241 	struct radeon_vm_id *vm_id = &vm->ids[ring];
242 
243 	if (pd_addr != vm_id->pd_gpu_addr || !vm_id->flushed_updates ||
244 	    radeon_fence_is_earlier(vm_id->flushed_updates, updates)) {
245 
246 		trace_radeon_vm_flush(pd_addr, ring, vm->ids[ring].id);
247 		radeon_fence_unref(&vm_id->flushed_updates);
248 		vm_id->flushed_updates = radeon_fence_ref(updates);
249 		vm_id->pd_gpu_addr = pd_addr;
250 		radeon_ring_vm_flush(rdev, &rdev->ring[ring],
251 				     vm_id->id, vm_id->pd_gpu_addr);
252 
253 	}
254 }
255 
256 /**
257  * radeon_vm_fence - remember fence for vm
258  *
259  * @rdev: radeon_device pointer
260  * @vm: vm we want to fence
261  * @fence: fence to remember
262  *
263  * Fence the vm (cayman+).
264  * Set the fence used to protect page table and id.
265  *
266  * Global and local mutex must be locked!
267  */
268 void radeon_vm_fence(struct radeon_device *rdev,
269 		     struct radeon_vm *vm,
270 		     struct radeon_fence *fence)
271 {
272 	unsigned vm_id = vm->ids[fence->ring].id;
273 
274 	radeon_fence_unref(&rdev->vm_manager.active[vm_id]);
275 	rdev->vm_manager.active[vm_id] = radeon_fence_ref(fence);
276 
277 	radeon_fence_unref(&vm->ids[fence->ring].last_id_use);
278 	vm->ids[fence->ring].last_id_use = radeon_fence_ref(fence);
279 }
280 
281 /**
282  * radeon_vm_bo_find - find the bo_va for a specific vm & bo
283  *
284  * @vm: requested vm
285  * @bo: requested buffer object
286  *
287  * Find @bo inside the requested vm (cayman+).
288  * Search inside the @bos vm list for the requested vm
289  * Returns the found bo_va or NULL if none is found
290  *
291  * Object has to be reserved!
292  */
293 struct radeon_bo_va *radeon_vm_bo_find(struct radeon_vm *vm,
294 				       struct radeon_bo *bo)
295 {
296 	struct radeon_bo_va *bo_va;
297 
298 	list_for_each_entry(bo_va, &bo->va, bo_list) {
299 		if (bo_va->vm == vm) {
300 			return bo_va;
301 		}
302 	}
303 	return NULL;
304 }
305 
306 /**
307  * radeon_vm_bo_add - add a bo to a specific vm
308  *
309  * @rdev: radeon_device pointer
310  * @vm: requested vm
311  * @bo: radeon buffer object
312  *
313  * Add @bo into the requested vm (cayman+).
314  * Add @bo to the list of bos associated with the vm
315  * Returns newly added bo_va or NULL for failure
316  *
317  * Object has to be reserved!
318  */
319 struct radeon_bo_va *radeon_vm_bo_add(struct radeon_device *rdev,
320 				      struct radeon_vm *vm,
321 				      struct radeon_bo *bo)
322 {
323 	struct radeon_bo_va *bo_va;
324 
325 	bo_va = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL);
326 	if (bo_va == NULL) {
327 		return NULL;
328 	}
329 	bo_va->vm = vm;
330 	bo_va->bo = bo;
331 	bo_va->it.start = 0;
332 	bo_va->it.last = 0;
333 	bo_va->flags = 0;
334 	bo_va->ref_count = 1;
335 	INIT_LIST_HEAD(&bo_va->bo_list);
336 	INIT_LIST_HEAD(&bo_va->vm_status);
337 
338 	mutex_lock(&vm->mutex);
339 	list_add_tail(&bo_va->bo_list, &bo->va);
340 	mutex_unlock(&vm->mutex);
341 
342 	return bo_va;
343 }
344 
345 /**
346  * radeon_vm_set_pages - helper to call the right asic function
347  *
348  * @rdev: radeon_device pointer
349  * @ib: indirect buffer to fill with commands
350  * @pe: addr of the page entry
351  * @addr: dst addr to write into pe
352  * @count: number of page entries to update
353  * @incr: increase next addr by incr bytes
354  * @flags: hw access flags
355  *
356  * Traces the parameters and calls the right asic functions
357  * to setup the page table using the DMA.
358  */
359 static void radeon_vm_set_pages(struct radeon_device *rdev,
360 				struct radeon_ib *ib,
361 				uint64_t pe,
362 				uint64_t addr, unsigned count,
363 				uint32_t incr, uint32_t flags)
364 {
365 	trace_radeon_vm_set_page(pe, addr, count, incr, flags);
366 
367 	if ((flags & R600_PTE_GART_MASK) == R600_PTE_GART_MASK) {
368 		uint64_t src = rdev->gart.table_addr + (addr >> 12) * 8;
369 		radeon_asic_vm_copy_pages(rdev, ib, pe, src, count);
370 
371 	} else if ((flags & R600_PTE_SYSTEM) || (count < 3)) {
372 		radeon_asic_vm_write_pages(rdev, ib, pe, addr,
373 					   count, incr, flags);
374 
375 	} else {
376 		radeon_asic_vm_set_pages(rdev, ib, pe, addr,
377 					 count, incr, flags);
378 	}
379 }
380 
381 /**
382  * radeon_vm_clear_bo - initially clear the page dir/table
383  *
384  * @rdev: radeon_device pointer
385  * @bo: bo to clear
386  */
387 static int radeon_vm_clear_bo(struct radeon_device *rdev,
388 			      struct radeon_bo *bo)
389 {
390 	struct ttm_operation_ctx ctx = { true, false };
391 	struct radeon_ib ib;
392 	unsigned entries;
393 	uint64_t addr;
394 	int r;
395 
396 	r = radeon_bo_reserve(bo, false);
397 	if (r)
398 		return r;
399 
400 	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
401 	if (r)
402 		goto error_unreserve;
403 
404 	addr = radeon_bo_gpu_offset(bo);
405 	entries = radeon_bo_size(bo) / 8;
406 
407 	r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, 256);
408 	if (r)
409 		goto error_unreserve;
410 
411 	ib.length_dw = 0;
412 
413 	radeon_vm_set_pages(rdev, &ib, addr, 0, entries, 0, 0);
414 	radeon_asic_vm_pad_ib(rdev, &ib);
415 	WARN_ON(ib.length_dw > 64);
416 
417 	r = radeon_ib_schedule(rdev, &ib, NULL, false);
418 	if (r)
419 		goto error_free;
420 
421 	ib.fence->is_vm_update = true;
422 	radeon_bo_fence(bo, ib.fence, false);
423 
424 error_free:
425 	radeon_ib_free(rdev, &ib);
426 
427 error_unreserve:
428 	radeon_bo_unreserve(bo);
429 	return r;
430 }
431 
432 /**
433  * radeon_vm_bo_set_addr - set bos virtual address inside a vm
434  *
435  * @rdev: radeon_device pointer
436  * @bo_va: bo_va to store the address
437  * @soffset: requested offset of the buffer in the VM address space
438  * @flags: attributes of pages (read/write/valid/etc.)
439  *
440  * Set offset of @bo_va (cayman+).
441  * Validate and set the offset requested within the vm address space.
442  * Returns 0 for success, error for failure.
443  *
444  * Object has to be reserved and gets unreserved by this function!
445  */
446 int radeon_vm_bo_set_addr(struct radeon_device *rdev,
447 			  struct radeon_bo_va *bo_va,
448 			  uint64_t soffset,
449 			  uint32_t flags)
450 {
451 	uint64_t size = radeon_bo_size(bo_va->bo);
452 	struct radeon_vm *vm = bo_va->vm;
453 	unsigned last_pfn, pt_idx;
454 	uint64_t eoffset;
455 	int r;
456 
457 	if (soffset) {
458 		/* make sure object fit at this offset */
459 		eoffset = soffset + size - 1;
460 		if (soffset >= eoffset) {
461 			r = -EINVAL;
462 			goto error_unreserve;
463 		}
464 
465 		last_pfn = eoffset / RADEON_GPU_PAGE_SIZE;
466 		if (last_pfn >= rdev->vm_manager.max_pfn) {
467 			dev_err(rdev->dev, "va above limit (0x%08X >= 0x%08X)\n",
468 				last_pfn, rdev->vm_manager.max_pfn);
469 			r = -EINVAL;
470 			goto error_unreserve;
471 		}
472 
473 	} else {
474 		eoffset = last_pfn = 0;
475 	}
476 
477 	mutex_lock(&vm->mutex);
478 	soffset /= RADEON_GPU_PAGE_SIZE;
479 	eoffset /= RADEON_GPU_PAGE_SIZE;
480 	if (soffset || eoffset) {
481 		struct interval_tree_node *it;
482 		it = interval_tree_iter_first(&vm->va, soffset, eoffset);
483 		if (it && it != &bo_va->it) {
484 			struct radeon_bo_va *tmp;
485 			tmp = container_of(it, struct radeon_bo_va, it);
486 			/* bo and tmp overlap, invalid offset */
487 			dev_err(rdev->dev, "bo %p va 0x%010Lx conflict with "
488 				"(bo %p 0x%010lx 0x%010lx)\n", bo_va->bo,
489 				soffset, tmp->bo, tmp->it.start, tmp->it.last);
490 			mutex_unlock(&vm->mutex);
491 			r = -EINVAL;
492 			goto error_unreserve;
493 		}
494 	}
495 
496 	if (bo_va->it.start || bo_va->it.last) {
497 		/* add a clone of the bo_va to clear the old address */
498 		struct radeon_bo_va *tmp;
499 		tmp = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL);
500 		if (!tmp) {
501 			mutex_unlock(&vm->mutex);
502 			r = -ENOMEM;
503 			goto error_unreserve;
504 		}
505 		tmp->it.start = bo_va->it.start;
506 		tmp->it.last = bo_va->it.last;
507 		tmp->vm = vm;
508 		tmp->bo = radeon_bo_ref(bo_va->bo);
509 
510 		interval_tree_remove(&bo_va->it, &vm->va);
511 		spin_lock(&vm->status_lock);
512 		bo_va->it.start = 0;
513 		bo_va->it.last = 0;
514 		list_del_init(&bo_va->vm_status);
515 		list_add(&tmp->vm_status, &vm->freed);
516 		spin_unlock(&vm->status_lock);
517 	}
518 
519 	if (soffset || eoffset) {
520 		spin_lock(&vm->status_lock);
521 		bo_va->it.start = soffset;
522 		bo_va->it.last = eoffset;
523 		list_add(&bo_va->vm_status, &vm->cleared);
524 		spin_unlock(&vm->status_lock);
525 		interval_tree_insert(&bo_va->it, &vm->va);
526 	}
527 
528 	bo_va->flags = flags;
529 
530 	soffset >>= radeon_vm_block_size;
531 	eoffset >>= radeon_vm_block_size;
532 
533 	BUG_ON(eoffset >= radeon_vm_num_pdes(rdev));
534 
535 	if (eoffset > vm->max_pde_used)
536 		vm->max_pde_used = eoffset;
537 
538 	radeon_bo_unreserve(bo_va->bo);
539 
540 	/* walk over the address space and allocate the page tables */
541 	for (pt_idx = soffset; pt_idx <= eoffset; ++pt_idx) {
542 		struct radeon_bo *pt;
543 
544 		if (vm->page_tables[pt_idx].bo)
545 			continue;
546 
547 		/* drop mutex to allocate and clear page table */
548 		mutex_unlock(&vm->mutex);
549 
550 		r = radeon_bo_create(rdev, RADEON_VM_PTE_COUNT * 8,
551 				     RADEON_GPU_PAGE_SIZE, true,
552 				     RADEON_GEM_DOMAIN_VRAM, 0,
553 				     NULL, NULL, &pt);
554 		if (r)
555 			return r;
556 
557 		r = radeon_vm_clear_bo(rdev, pt);
558 		if (r) {
559 			radeon_bo_unref(&pt);
560 			return r;
561 		}
562 
563 		/* aquire mutex again */
564 		mutex_lock(&vm->mutex);
565 		if (vm->page_tables[pt_idx].bo) {
566 			/* someone else allocated the pt in the meantime */
567 			mutex_unlock(&vm->mutex);
568 			radeon_bo_unref(&pt);
569 			mutex_lock(&vm->mutex);
570 			continue;
571 		}
572 
573 		vm->page_tables[pt_idx].addr = 0;
574 		vm->page_tables[pt_idx].bo = pt;
575 	}
576 
577 	mutex_unlock(&vm->mutex);
578 	return 0;
579 
580 error_unreserve:
581 	radeon_bo_unreserve(bo_va->bo);
582 	return r;
583 }
584 
585 /**
586  * radeon_vm_map_gart - get the physical address of a gart page
587  *
588  * @rdev: radeon_device pointer
589  * @addr: the unmapped addr
590  *
591  * Look up the physical address of the page that the pte resolves
592  * to (cayman+).
593  * Returns the physical address of the page.
594  */
595 uint64_t radeon_vm_map_gart(struct radeon_device *rdev, uint64_t addr)
596 {
597 	uint64_t result;
598 
599 	/* page table offset */
600 	result = rdev->gart.pages_entry[addr >> RADEON_GPU_PAGE_SHIFT];
601 	result &= ~RADEON_GPU_PAGE_MASK;
602 
603 	return result;
604 }
605 
606 /**
607  * radeon_vm_page_flags - translate page flags to what the hw uses
608  *
609  * @flags: flags comming from userspace
610  *
611  * Translate the flags the userspace ABI uses to hw flags.
612  */
613 static uint32_t radeon_vm_page_flags(uint32_t flags)
614 {
615 	uint32_t hw_flags = 0;
616 
617 	hw_flags |= (flags & RADEON_VM_PAGE_VALID) ? R600_PTE_VALID : 0;
618 	hw_flags |= (flags & RADEON_VM_PAGE_READABLE) ? R600_PTE_READABLE : 0;
619 	hw_flags |= (flags & RADEON_VM_PAGE_WRITEABLE) ? R600_PTE_WRITEABLE : 0;
620 	if (flags & RADEON_VM_PAGE_SYSTEM) {
621 		hw_flags |= R600_PTE_SYSTEM;
622 		hw_flags |= (flags & RADEON_VM_PAGE_SNOOPED) ? R600_PTE_SNOOPED : 0;
623 	}
624 	return hw_flags;
625 }
626 
627 /**
628  * radeon_vm_update_pdes - make sure that page directory is valid
629  *
630  * @rdev: radeon_device pointer
631  * @vm: requested vm
632  * @start: start of GPU address range
633  * @end: end of GPU address range
634  *
635  * Allocates new page tables if necessary
636  * and updates the page directory (cayman+).
637  * Returns 0 for success, error for failure.
638  *
639  * Global and local mutex must be locked!
640  */
641 int radeon_vm_update_page_directory(struct radeon_device *rdev,
642 				    struct radeon_vm *vm)
643 {
644 	struct radeon_bo *pd = vm->page_directory;
645 	uint64_t pd_addr = radeon_bo_gpu_offset(pd);
646 	uint32_t incr = RADEON_VM_PTE_COUNT * 8;
647 	uint64_t last_pde = ~0, last_pt = ~0;
648 	unsigned count = 0, pt_idx, ndw;
649 	struct radeon_ib ib;
650 	int r;
651 
652 	/* padding, etc. */
653 	ndw = 64;
654 
655 	/* assume the worst case */
656 	ndw += vm->max_pde_used * 6;
657 
658 	/* update too big for an IB */
659 	if (ndw > 0xfffff)
660 		return -ENOMEM;
661 
662 	r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, ndw * 4);
663 	if (r)
664 		return r;
665 	ib.length_dw = 0;
666 
667 	/* walk over the address space and update the page directory */
668 	for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) {
669 		struct radeon_bo *bo = vm->page_tables[pt_idx].bo;
670 		uint64_t pde, pt;
671 
672 		if (bo == NULL)
673 			continue;
674 
675 		pt = radeon_bo_gpu_offset(bo);
676 		if (vm->page_tables[pt_idx].addr == pt)
677 			continue;
678 		vm->page_tables[pt_idx].addr = pt;
679 
680 		pde = pd_addr + pt_idx * 8;
681 		if (((last_pde + 8 * count) != pde) ||
682 		    ((last_pt + incr * count) != pt)) {
683 
684 			if (count) {
685 				radeon_vm_set_pages(rdev, &ib, last_pde,
686 						    last_pt, count, incr,
687 						    R600_PTE_VALID);
688 			}
689 
690 			count = 1;
691 			last_pde = pde;
692 			last_pt = pt;
693 		} else {
694 			++count;
695 		}
696 	}
697 
698 	if (count)
699 		radeon_vm_set_pages(rdev, &ib, last_pde, last_pt, count,
700 				    incr, R600_PTE_VALID);
701 
702 	if (ib.length_dw != 0) {
703 		radeon_asic_vm_pad_ib(rdev, &ib);
704 
705 		radeon_sync_resv(rdev, &ib.sync, pd->tbo.resv, true);
706 		WARN_ON(ib.length_dw > ndw);
707 		r = radeon_ib_schedule(rdev, &ib, NULL, false);
708 		if (r) {
709 			radeon_ib_free(rdev, &ib);
710 			return r;
711 		}
712 		ib.fence->is_vm_update = true;
713 		radeon_bo_fence(pd, ib.fence, false);
714 	}
715 	radeon_ib_free(rdev, &ib);
716 
717 	return 0;
718 }
719 
720 /**
721  * radeon_vm_frag_ptes - add fragment information to PTEs
722  *
723  * @rdev: radeon_device pointer
724  * @ib: IB for the update
725  * @pe_start: first PTE to handle
726  * @pe_end: last PTE to handle
727  * @addr: addr those PTEs should point to
728  * @flags: hw mapping flags
729  *
730  * Global and local mutex must be locked!
731  */
732 static void radeon_vm_frag_ptes(struct radeon_device *rdev,
733 				struct radeon_ib *ib,
734 				uint64_t pe_start, uint64_t pe_end,
735 				uint64_t addr, uint32_t flags)
736 {
737 	/**
738 	 * The MC L1 TLB supports variable sized pages, based on a fragment
739 	 * field in the PTE. When this field is set to a non-zero value, page
740 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
741 	 * flags are considered valid for all PTEs within the fragment range
742 	 * and corresponding mappings are assumed to be physically contiguous.
743 	 *
744 	 * The L1 TLB can store a single PTE for the whole fragment,
745 	 * significantly increasing the space available for translation
746 	 * caching. This leads to large improvements in throughput when the
747 	 * TLB is under pressure.
748 	 *
749 	 * The L2 TLB distributes small and large fragments into two
750 	 * asymmetric partitions. The large fragment cache is significantly
751 	 * larger. Thus, we try to use large fragments wherever possible.
752 	 * Userspace can support this by aligning virtual base address and
753 	 * allocation size to the fragment size.
754 	 */
755 
756 	/* NI is optimized for 256KB fragments, SI and newer for 64KB */
757 	uint64_t frag_flags = ((rdev->family == CHIP_CAYMAN) ||
758 			       (rdev->family == CHIP_ARUBA)) ?
759 			R600_PTE_FRAG_256KB : R600_PTE_FRAG_64KB;
760 	uint64_t frag_align = ((rdev->family == CHIP_CAYMAN) ||
761 			       (rdev->family == CHIP_ARUBA)) ? 0x200 : 0x80;
762 
763 	uint64_t frag_start = ALIGN(pe_start, frag_align);
764 	uint64_t frag_end = pe_end & ~(frag_align - 1);
765 
766 	unsigned count;
767 
768 	/* system pages are non continuously */
769 	if ((flags & R600_PTE_SYSTEM) || !(flags & R600_PTE_VALID) ||
770 	    (frag_start >= frag_end)) {
771 
772 		count = (pe_end - pe_start) / 8;
773 		radeon_vm_set_pages(rdev, ib, pe_start, addr, count,
774 				    RADEON_GPU_PAGE_SIZE, flags);
775 		return;
776 	}
777 
778 	/* handle the 4K area at the beginning */
779 	if (pe_start != frag_start) {
780 		count = (frag_start - pe_start) / 8;
781 		radeon_vm_set_pages(rdev, ib, pe_start, addr, count,
782 				    RADEON_GPU_PAGE_SIZE, flags);
783 		addr += RADEON_GPU_PAGE_SIZE * count;
784 	}
785 
786 	/* handle the area in the middle */
787 	count = (frag_end - frag_start) / 8;
788 	radeon_vm_set_pages(rdev, ib, frag_start, addr, count,
789 			    RADEON_GPU_PAGE_SIZE, flags | frag_flags);
790 
791 	/* handle the 4K area at the end */
792 	if (frag_end != pe_end) {
793 		addr += RADEON_GPU_PAGE_SIZE * count;
794 		count = (pe_end - frag_end) / 8;
795 		radeon_vm_set_pages(rdev, ib, frag_end, addr, count,
796 				    RADEON_GPU_PAGE_SIZE, flags);
797 	}
798 }
799 
800 /**
801  * radeon_vm_update_ptes - make sure that page tables are valid
802  *
803  * @rdev: radeon_device pointer
804  * @vm: requested vm
805  * @start: start of GPU address range
806  * @end: end of GPU address range
807  * @dst: destination address to map to
808  * @flags: mapping flags
809  *
810  * Update the page tables in the range @start - @end (cayman+).
811  *
812  * Global and local mutex must be locked!
813  */
814 static int radeon_vm_update_ptes(struct radeon_device *rdev,
815 				 struct radeon_vm *vm,
816 				 struct radeon_ib *ib,
817 				 uint64_t start, uint64_t end,
818 				 uint64_t dst, uint32_t flags)
819 {
820 	uint64_t mask = RADEON_VM_PTE_COUNT - 1;
821 	uint64_t last_pte = ~0, last_dst = ~0;
822 	unsigned count = 0;
823 	uint64_t addr;
824 
825 	/* walk over the address space and update the page tables */
826 	for (addr = start; addr < end; ) {
827 		uint64_t pt_idx = addr >> radeon_vm_block_size;
828 		struct radeon_bo *pt = vm->page_tables[pt_idx].bo;
829 		unsigned nptes;
830 		uint64_t pte;
831 		int r;
832 
833 		radeon_sync_resv(rdev, &ib->sync, pt->tbo.resv, true);
834 		r = reservation_object_reserve_shared(pt->tbo.resv, 1);
835 		if (r)
836 			return r;
837 
838 		if ((addr & ~mask) == (end & ~mask))
839 			nptes = end - addr;
840 		else
841 			nptes = RADEON_VM_PTE_COUNT - (addr & mask);
842 
843 		pte = radeon_bo_gpu_offset(pt);
844 		pte += (addr & mask) * 8;
845 
846 		if ((last_pte + 8 * count) != pte) {
847 
848 			if (count) {
849 				radeon_vm_frag_ptes(rdev, ib, last_pte,
850 						    last_pte + 8 * count,
851 						    last_dst, flags);
852 			}
853 
854 			count = nptes;
855 			last_pte = pte;
856 			last_dst = dst;
857 		} else {
858 			count += nptes;
859 		}
860 
861 		addr += nptes;
862 		dst += nptes * RADEON_GPU_PAGE_SIZE;
863 	}
864 
865 	if (count) {
866 		radeon_vm_frag_ptes(rdev, ib, last_pte,
867 				    last_pte + 8 * count,
868 				    last_dst, flags);
869 	}
870 
871 	return 0;
872 }
873 
874 /**
875  * radeon_vm_fence_pts - fence page tables after an update
876  *
877  * @vm: requested vm
878  * @start: start of GPU address range
879  * @end: end of GPU address range
880  * @fence: fence to use
881  *
882  * Fence the page tables in the range @start - @end (cayman+).
883  *
884  * Global and local mutex must be locked!
885  */
886 static void radeon_vm_fence_pts(struct radeon_vm *vm,
887 				uint64_t start, uint64_t end,
888 				struct radeon_fence *fence)
889 {
890 	unsigned i;
891 
892 	start >>= radeon_vm_block_size;
893 	end = (end - 1) >> radeon_vm_block_size;
894 
895 	for (i = start; i <= end; ++i)
896 		radeon_bo_fence(vm->page_tables[i].bo, fence, true);
897 }
898 
899 /**
900  * radeon_vm_bo_update - map a bo into the vm page table
901  *
902  * @rdev: radeon_device pointer
903  * @vm: requested vm
904  * @bo: radeon buffer object
905  * @mem: ttm mem
906  *
907  * Fill in the page table entries for @bo (cayman+).
908  * Returns 0 for success, -EINVAL for failure.
909  *
910  * Object have to be reserved and mutex must be locked!
911  */
912 int radeon_vm_bo_update(struct radeon_device *rdev,
913 			struct radeon_bo_va *bo_va,
914 			struct ttm_mem_reg *mem)
915 {
916 	struct radeon_vm *vm = bo_va->vm;
917 	struct radeon_ib ib;
918 	unsigned nptes, ncmds, ndw;
919 	uint64_t addr;
920 	uint32_t flags;
921 	int r;
922 
923 	if (!bo_va->it.start) {
924 		dev_err(rdev->dev, "bo %p don't has a mapping in vm %p\n",
925 			bo_va->bo, vm);
926 		return -EINVAL;
927 	}
928 
929 	spin_lock(&vm->status_lock);
930 	if (mem) {
931 		if (list_empty(&bo_va->vm_status)) {
932 			spin_unlock(&vm->status_lock);
933 			return 0;
934 		}
935 		list_del_init(&bo_va->vm_status);
936 	} else {
937 		list_del(&bo_va->vm_status);
938 		list_add(&bo_va->vm_status, &vm->cleared);
939 	}
940 	spin_unlock(&vm->status_lock);
941 
942 	bo_va->flags &= ~RADEON_VM_PAGE_VALID;
943 	bo_va->flags &= ~RADEON_VM_PAGE_SYSTEM;
944 	bo_va->flags &= ~RADEON_VM_PAGE_SNOOPED;
945 	if (bo_va->bo && radeon_ttm_tt_is_readonly(bo_va->bo->tbo.ttm))
946 		bo_va->flags &= ~RADEON_VM_PAGE_WRITEABLE;
947 
948 	if (mem) {
949 		addr = (u64)mem->start << PAGE_SHIFT;
950 		if (mem->mem_type != TTM_PL_SYSTEM) {
951 			bo_va->flags |= RADEON_VM_PAGE_VALID;
952 		}
953 		if (mem->mem_type == TTM_PL_TT) {
954 			bo_va->flags |= RADEON_VM_PAGE_SYSTEM;
955 			if (!(bo_va->bo->flags & (RADEON_GEM_GTT_WC | RADEON_GEM_GTT_UC)))
956 				bo_va->flags |= RADEON_VM_PAGE_SNOOPED;
957 
958 		} else {
959 			addr += rdev->vm_manager.vram_base_offset;
960 		}
961 	} else {
962 		addr = 0;
963 	}
964 
965 	trace_radeon_vm_bo_update(bo_va);
966 
967 	nptes = bo_va->it.last - bo_va->it.start + 1;
968 
969 	/* reserve space for one command every (1 << BLOCK_SIZE) entries
970 	   or 2k dwords (whatever is smaller) */
971 	ncmds = (nptes >> min(radeon_vm_block_size, 11)) + 1;
972 
973 	/* padding, etc. */
974 	ndw = 64;
975 
976 	flags = radeon_vm_page_flags(bo_va->flags);
977 	if ((flags & R600_PTE_GART_MASK) == R600_PTE_GART_MASK) {
978 		/* only copy commands needed */
979 		ndw += ncmds * 7;
980 
981 	} else if (flags & R600_PTE_SYSTEM) {
982 		/* header for write data commands */
983 		ndw += ncmds * 4;
984 
985 		/* body of write data command */
986 		ndw += nptes * 2;
987 
988 	} else {
989 		/* set page commands needed */
990 		ndw += ncmds * 10;
991 
992 		/* two extra commands for begin/end of fragment */
993 		ndw += 2 * 10;
994 	}
995 
996 	/* update too big for an IB */
997 	if (ndw > 0xfffff)
998 		return -ENOMEM;
999 
1000 	r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, ndw * 4);
1001 	if (r)
1002 		return r;
1003 	ib.length_dw = 0;
1004 
1005 	if (!(bo_va->flags & RADEON_VM_PAGE_VALID)) {
1006 		unsigned i;
1007 
1008 		for (i = 0; i < RADEON_NUM_RINGS; ++i)
1009 			radeon_sync_fence(&ib.sync, vm->ids[i].last_id_use);
1010 	}
1011 
1012 	r = radeon_vm_update_ptes(rdev, vm, &ib, bo_va->it.start,
1013 				  bo_va->it.last + 1, addr,
1014 				  radeon_vm_page_flags(bo_va->flags));
1015 	if (r) {
1016 		radeon_ib_free(rdev, &ib);
1017 		return r;
1018 	}
1019 
1020 	radeon_asic_vm_pad_ib(rdev, &ib);
1021 	WARN_ON(ib.length_dw > ndw);
1022 
1023 	r = radeon_ib_schedule(rdev, &ib, NULL, false);
1024 	if (r) {
1025 		radeon_ib_free(rdev, &ib);
1026 		return r;
1027 	}
1028 	ib.fence->is_vm_update = true;
1029 	radeon_vm_fence_pts(vm, bo_va->it.start, bo_va->it.last + 1, ib.fence);
1030 	radeon_fence_unref(&bo_va->last_pt_update);
1031 	bo_va->last_pt_update = radeon_fence_ref(ib.fence);
1032 	radeon_ib_free(rdev, &ib);
1033 
1034 	return 0;
1035 }
1036 
1037 /**
1038  * radeon_vm_clear_freed - clear freed BOs in the PT
1039  *
1040  * @rdev: radeon_device pointer
1041  * @vm: requested vm
1042  *
1043  * Make sure all freed BOs are cleared in the PT.
1044  * Returns 0 for success.
1045  *
1046  * PTs have to be reserved and mutex must be locked!
1047  */
1048 int radeon_vm_clear_freed(struct radeon_device *rdev,
1049 			  struct radeon_vm *vm)
1050 {
1051 	struct radeon_bo_va *bo_va;
1052 	int r = 0;
1053 
1054 	spin_lock(&vm->status_lock);
1055 	while (!list_empty(&vm->freed)) {
1056 		bo_va = list_first_entry(&vm->freed,
1057 			struct radeon_bo_va, vm_status);
1058 		spin_unlock(&vm->status_lock);
1059 
1060 		r = radeon_vm_bo_update(rdev, bo_va, NULL);
1061 		radeon_bo_unref(&bo_va->bo);
1062 		radeon_fence_unref(&bo_va->last_pt_update);
1063 		spin_lock(&vm->status_lock);
1064 		list_del(&bo_va->vm_status);
1065 		kfree(bo_va);
1066 		if (r)
1067 			break;
1068 
1069 	}
1070 	spin_unlock(&vm->status_lock);
1071 	return r;
1072 
1073 }
1074 
1075 /**
1076  * radeon_vm_clear_invalids - clear invalidated BOs in the PT
1077  *
1078  * @rdev: radeon_device pointer
1079  * @vm: requested vm
1080  *
1081  * Make sure all invalidated BOs are cleared in the PT.
1082  * Returns 0 for success.
1083  *
1084  * PTs have to be reserved and mutex must be locked!
1085  */
1086 int radeon_vm_clear_invalids(struct radeon_device *rdev,
1087 			     struct radeon_vm *vm)
1088 {
1089 	struct radeon_bo_va *bo_va;
1090 	int r;
1091 
1092 	spin_lock(&vm->status_lock);
1093 	while (!list_empty(&vm->invalidated)) {
1094 		bo_va = list_first_entry(&vm->invalidated,
1095 			struct radeon_bo_va, vm_status);
1096 		spin_unlock(&vm->status_lock);
1097 
1098 		r = radeon_vm_bo_update(rdev, bo_va, NULL);
1099 		if (r)
1100 			return r;
1101 
1102 		spin_lock(&vm->status_lock);
1103 	}
1104 	spin_unlock(&vm->status_lock);
1105 
1106 	return 0;
1107 }
1108 
1109 /**
1110  * radeon_vm_bo_rmv - remove a bo to a specific vm
1111  *
1112  * @rdev: radeon_device pointer
1113  * @bo_va: requested bo_va
1114  *
1115  * Remove @bo_va->bo from the requested vm (cayman+).
1116  *
1117  * Object have to be reserved!
1118  */
1119 void radeon_vm_bo_rmv(struct radeon_device *rdev,
1120 		      struct radeon_bo_va *bo_va)
1121 {
1122 	struct radeon_vm *vm = bo_va->vm;
1123 
1124 	list_del(&bo_va->bo_list);
1125 
1126 	mutex_lock(&vm->mutex);
1127 	if (bo_va->it.start || bo_va->it.last)
1128 		interval_tree_remove(&bo_va->it, &vm->va);
1129 
1130 	spin_lock(&vm->status_lock);
1131 	list_del(&bo_va->vm_status);
1132 	if (bo_va->it.start || bo_va->it.last) {
1133 		bo_va->bo = radeon_bo_ref(bo_va->bo);
1134 		list_add(&bo_va->vm_status, &vm->freed);
1135 	} else {
1136 		radeon_fence_unref(&bo_va->last_pt_update);
1137 		kfree(bo_va);
1138 	}
1139 	spin_unlock(&vm->status_lock);
1140 
1141 	mutex_unlock(&vm->mutex);
1142 }
1143 
1144 /**
1145  * radeon_vm_bo_invalidate - mark the bo as invalid
1146  *
1147  * @rdev: radeon_device pointer
1148  * @vm: requested vm
1149  * @bo: radeon buffer object
1150  *
1151  * Mark @bo as invalid (cayman+).
1152  */
1153 void radeon_vm_bo_invalidate(struct radeon_device *rdev,
1154 			     struct radeon_bo *bo)
1155 {
1156 	struct radeon_bo_va *bo_va;
1157 
1158 	list_for_each_entry(bo_va, &bo->va, bo_list) {
1159 		spin_lock(&bo_va->vm->status_lock);
1160 		if (list_empty(&bo_va->vm_status) &&
1161 		    (bo_va->it.start || bo_va->it.last))
1162 			list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
1163 		spin_unlock(&bo_va->vm->status_lock);
1164 	}
1165 }
1166 
1167 /**
1168  * radeon_vm_init - initialize a vm instance
1169  *
1170  * @rdev: radeon_device pointer
1171  * @vm: requested vm
1172  *
1173  * Init @vm fields (cayman+).
1174  */
1175 int radeon_vm_init(struct radeon_device *rdev, struct radeon_vm *vm)
1176 {
1177 	const unsigned align = min(RADEON_VM_PTB_ALIGN_SIZE,
1178 		RADEON_VM_PTE_COUNT * 8);
1179 	unsigned pd_size, pd_entries, pts_size;
1180 	int i, r;
1181 
1182 	vm->ib_bo_va = NULL;
1183 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
1184 		vm->ids[i].id = 0;
1185 		vm->ids[i].flushed_updates = NULL;
1186 		vm->ids[i].last_id_use = NULL;
1187 	}
1188 	mutex_init(&vm->mutex);
1189 	vm->va = RB_ROOT_CACHED;
1190 	spin_lock_init(&vm->status_lock);
1191 	INIT_LIST_HEAD(&vm->invalidated);
1192 	INIT_LIST_HEAD(&vm->freed);
1193 	INIT_LIST_HEAD(&vm->cleared);
1194 
1195 	pd_size = radeon_vm_directory_size(rdev);
1196 	pd_entries = radeon_vm_num_pdes(rdev);
1197 
1198 	/* allocate page table array */
1199 	pts_size = pd_entries * sizeof(struct radeon_vm_pt);
1200 	vm->page_tables = kzalloc(pts_size, GFP_KERNEL);
1201 	if (vm->page_tables == NULL) {
1202 		DRM_ERROR("Cannot allocate memory for page table array\n");
1203 		return -ENOMEM;
1204 	}
1205 
1206 	r = radeon_bo_create(rdev, pd_size, align, true,
1207 			     RADEON_GEM_DOMAIN_VRAM, 0, NULL,
1208 			     NULL, &vm->page_directory);
1209 	if (r)
1210 		return r;
1211 
1212 	r = radeon_vm_clear_bo(rdev, vm->page_directory);
1213 	if (r) {
1214 		radeon_bo_unref(&vm->page_directory);
1215 		vm->page_directory = NULL;
1216 		return r;
1217 	}
1218 
1219 	return 0;
1220 }
1221 
1222 /**
1223  * radeon_vm_fini - tear down a vm instance
1224  *
1225  * @rdev: radeon_device pointer
1226  * @vm: requested vm
1227  *
1228  * Tear down @vm (cayman+).
1229  * Unbind the VM and remove all bos from the vm bo list
1230  */
1231 void radeon_vm_fini(struct radeon_device *rdev, struct radeon_vm *vm)
1232 {
1233 	struct radeon_bo_va *bo_va, *tmp;
1234 	int i, r;
1235 
1236 	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
1237 		dev_err(rdev->dev, "still active bo inside vm\n");
1238 	}
1239 	rbtree_postorder_for_each_entry_safe(bo_va, tmp,
1240 					     &vm->va.rb_root, it.rb) {
1241 		interval_tree_remove(&bo_va->it, &vm->va);
1242 		r = radeon_bo_reserve(bo_va->bo, false);
1243 		if (!r) {
1244 			list_del_init(&bo_va->bo_list);
1245 			radeon_bo_unreserve(bo_va->bo);
1246 			radeon_fence_unref(&bo_va->last_pt_update);
1247 			kfree(bo_va);
1248 		}
1249 	}
1250 	list_for_each_entry_safe(bo_va, tmp, &vm->freed, vm_status) {
1251 		radeon_bo_unref(&bo_va->bo);
1252 		radeon_fence_unref(&bo_va->last_pt_update);
1253 		kfree(bo_va);
1254 	}
1255 
1256 	for (i = 0; i < radeon_vm_num_pdes(rdev); i++)
1257 		radeon_bo_unref(&vm->page_tables[i].bo);
1258 	kfree(vm->page_tables);
1259 
1260 	radeon_bo_unref(&vm->page_directory);
1261 
1262 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
1263 		radeon_fence_unref(&vm->ids[i].flushed_updates);
1264 		radeon_fence_unref(&vm->ids[i].last_id_use);
1265 	}
1266 
1267 	mutex_destroy(&vm->mutex);
1268 }
1269