xref: /openbmc/linux/drivers/gpu/drm/radeon/radeon_vm.c (revision a2cce7a9)
1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <drm/drmP.h>
29 #include <drm/radeon_drm.h>
30 #include "radeon.h"
31 #include "radeon_trace.h"
32 
33 /*
34  * GPUVM
35  * GPUVM is similar to the legacy gart on older asics, however
36  * rather than there being a single global gart table
37  * for the entire GPU, there are multiple VM page tables active
38  * at any given time.  The VM page tables can contain a mix
39  * vram pages and system memory pages and system memory pages
40  * can be mapped as snooped (cached system pages) or unsnooped
41  * (uncached system pages).
42  * Each VM has an ID associated with it and there is a page table
43  * associated with each VMID.  When execting a command buffer,
44  * the kernel tells the the ring what VMID to use for that command
45  * buffer.  VMIDs are allocated dynamically as commands are submitted.
46  * The userspace drivers maintain their own address space and the kernel
47  * sets up their pages tables accordingly when they submit their
48  * command buffers and a VMID is assigned.
49  * Cayman/Trinity support up to 8 active VMs at any given time;
50  * SI supports 16.
51  */
52 
53 /**
54  * radeon_vm_num_pde - return the number of page directory entries
55  *
56  * @rdev: radeon_device pointer
57  *
58  * Calculate the number of page directory entries (cayman+).
59  */
60 static unsigned radeon_vm_num_pdes(struct radeon_device *rdev)
61 {
62 	return rdev->vm_manager.max_pfn >> radeon_vm_block_size;
63 }
64 
65 /**
66  * radeon_vm_directory_size - returns the size of the page directory in bytes
67  *
68  * @rdev: radeon_device pointer
69  *
70  * Calculate the size of the page directory in bytes (cayman+).
71  */
72 static unsigned radeon_vm_directory_size(struct radeon_device *rdev)
73 {
74 	return RADEON_GPU_PAGE_ALIGN(radeon_vm_num_pdes(rdev) * 8);
75 }
76 
77 /**
78  * radeon_vm_manager_init - init the vm manager
79  *
80  * @rdev: radeon_device pointer
81  *
82  * Init the vm manager (cayman+).
83  * Returns 0 for success, error for failure.
84  */
85 int radeon_vm_manager_init(struct radeon_device *rdev)
86 {
87 	int r;
88 
89 	if (!rdev->vm_manager.enabled) {
90 		r = radeon_asic_vm_init(rdev);
91 		if (r)
92 			return r;
93 
94 		rdev->vm_manager.enabled = true;
95 	}
96 	return 0;
97 }
98 
99 /**
100  * radeon_vm_manager_fini - tear down the vm manager
101  *
102  * @rdev: radeon_device pointer
103  *
104  * Tear down the VM manager (cayman+).
105  */
106 void radeon_vm_manager_fini(struct radeon_device *rdev)
107 {
108 	int i;
109 
110 	if (!rdev->vm_manager.enabled)
111 		return;
112 
113 	for (i = 0; i < RADEON_NUM_VM; ++i)
114 		radeon_fence_unref(&rdev->vm_manager.active[i]);
115 	radeon_asic_vm_fini(rdev);
116 	rdev->vm_manager.enabled = false;
117 }
118 
119 /**
120  * radeon_vm_get_bos - add the vm BOs to a validation list
121  *
122  * @vm: vm providing the BOs
123  * @head: head of validation list
124  *
125  * Add the page directory to the list of BOs to
126  * validate for command submission (cayman+).
127  */
128 struct radeon_bo_list *radeon_vm_get_bos(struct radeon_device *rdev,
129 					  struct radeon_vm *vm,
130 					  struct list_head *head)
131 {
132 	struct radeon_bo_list *list;
133 	unsigned i, idx;
134 
135 	list = drm_malloc_ab(vm->max_pde_used + 2,
136 			     sizeof(struct radeon_bo_list));
137 	if (!list)
138 		return NULL;
139 
140 	/* add the vm page table to the list */
141 	list[0].robj = vm->page_directory;
142 	list[0].prefered_domains = RADEON_GEM_DOMAIN_VRAM;
143 	list[0].allowed_domains = RADEON_GEM_DOMAIN_VRAM;
144 	list[0].tv.bo = &vm->page_directory->tbo;
145 	list[0].tv.shared = true;
146 	list[0].tiling_flags = 0;
147 	list_add(&list[0].tv.head, head);
148 
149 	for (i = 0, idx = 1; i <= vm->max_pde_used; i++) {
150 		if (!vm->page_tables[i].bo)
151 			continue;
152 
153 		list[idx].robj = vm->page_tables[i].bo;
154 		list[idx].prefered_domains = RADEON_GEM_DOMAIN_VRAM;
155 		list[idx].allowed_domains = RADEON_GEM_DOMAIN_VRAM;
156 		list[idx].tv.bo = &list[idx].robj->tbo;
157 		list[idx].tv.shared = true;
158 		list[idx].tiling_flags = 0;
159 		list_add(&list[idx++].tv.head, head);
160 	}
161 
162 	return list;
163 }
164 
165 /**
166  * radeon_vm_grab_id - allocate the next free VMID
167  *
168  * @rdev: radeon_device pointer
169  * @vm: vm to allocate id for
170  * @ring: ring we want to submit job to
171  *
172  * Allocate an id for the vm (cayman+).
173  * Returns the fence we need to sync to (if any).
174  *
175  * Global and local mutex must be locked!
176  */
177 struct radeon_fence *radeon_vm_grab_id(struct radeon_device *rdev,
178 				       struct radeon_vm *vm, int ring)
179 {
180 	struct radeon_fence *best[RADEON_NUM_RINGS] = {};
181 	struct radeon_vm_id *vm_id = &vm->ids[ring];
182 
183 	unsigned choices[2] = {};
184 	unsigned i;
185 
186 	/* check if the id is still valid */
187 	if (vm_id->id && vm_id->last_id_use &&
188 	    vm_id->last_id_use == rdev->vm_manager.active[vm_id->id])
189 		return NULL;
190 
191 	/* we definately need to flush */
192 	vm_id->pd_gpu_addr = ~0ll;
193 
194 	/* skip over VMID 0, since it is the system VM */
195 	for (i = 1; i < rdev->vm_manager.nvm; ++i) {
196 		struct radeon_fence *fence = rdev->vm_manager.active[i];
197 
198 		if (fence == NULL) {
199 			/* found a free one */
200 			vm_id->id = i;
201 			trace_radeon_vm_grab_id(i, ring);
202 			return NULL;
203 		}
204 
205 		if (radeon_fence_is_earlier(fence, best[fence->ring])) {
206 			best[fence->ring] = fence;
207 			choices[fence->ring == ring ? 0 : 1] = i;
208 		}
209 	}
210 
211 	for (i = 0; i < 2; ++i) {
212 		if (choices[i]) {
213 			vm_id->id = choices[i];
214 			trace_radeon_vm_grab_id(choices[i], ring);
215 			return rdev->vm_manager.active[choices[i]];
216 		}
217 	}
218 
219 	/* should never happen */
220 	BUG();
221 	return NULL;
222 }
223 
224 /**
225  * radeon_vm_flush - hardware flush the vm
226  *
227  * @rdev: radeon_device pointer
228  * @vm: vm we want to flush
229  * @ring: ring to use for flush
230  * @updates: last vm update that is waited for
231  *
232  * Flush the vm (cayman+).
233  *
234  * Global and local mutex must be locked!
235  */
236 void radeon_vm_flush(struct radeon_device *rdev,
237 		     struct radeon_vm *vm,
238 		     int ring, struct radeon_fence *updates)
239 {
240 	uint64_t pd_addr = radeon_bo_gpu_offset(vm->page_directory);
241 	struct radeon_vm_id *vm_id = &vm->ids[ring];
242 
243 	if (pd_addr != vm_id->pd_gpu_addr || !vm_id->flushed_updates ||
244 	    radeon_fence_is_earlier(vm_id->flushed_updates, updates)) {
245 
246 		trace_radeon_vm_flush(pd_addr, ring, vm->ids[ring].id);
247 		radeon_fence_unref(&vm_id->flushed_updates);
248 		vm_id->flushed_updates = radeon_fence_ref(updates);
249 		vm_id->pd_gpu_addr = pd_addr;
250 		radeon_ring_vm_flush(rdev, &rdev->ring[ring],
251 				     vm_id->id, vm_id->pd_gpu_addr);
252 
253 	}
254 }
255 
256 /**
257  * radeon_vm_fence - remember fence for vm
258  *
259  * @rdev: radeon_device pointer
260  * @vm: vm we want to fence
261  * @fence: fence to remember
262  *
263  * Fence the vm (cayman+).
264  * Set the fence used to protect page table and id.
265  *
266  * Global and local mutex must be locked!
267  */
268 void radeon_vm_fence(struct radeon_device *rdev,
269 		     struct radeon_vm *vm,
270 		     struct radeon_fence *fence)
271 {
272 	unsigned vm_id = vm->ids[fence->ring].id;
273 
274 	radeon_fence_unref(&rdev->vm_manager.active[vm_id]);
275 	rdev->vm_manager.active[vm_id] = radeon_fence_ref(fence);
276 
277 	radeon_fence_unref(&vm->ids[fence->ring].last_id_use);
278 	vm->ids[fence->ring].last_id_use = radeon_fence_ref(fence);
279 }
280 
281 /**
282  * radeon_vm_bo_find - find the bo_va for a specific vm & bo
283  *
284  * @vm: requested vm
285  * @bo: requested buffer object
286  *
287  * Find @bo inside the requested vm (cayman+).
288  * Search inside the @bos vm list for the requested vm
289  * Returns the found bo_va or NULL if none is found
290  *
291  * Object has to be reserved!
292  */
293 struct radeon_bo_va *radeon_vm_bo_find(struct radeon_vm *vm,
294 				       struct radeon_bo *bo)
295 {
296 	struct radeon_bo_va *bo_va;
297 
298 	list_for_each_entry(bo_va, &bo->va, bo_list) {
299 		if (bo_va->vm == vm) {
300 			return bo_va;
301 		}
302 	}
303 	return NULL;
304 }
305 
306 /**
307  * radeon_vm_bo_add - add a bo to a specific vm
308  *
309  * @rdev: radeon_device pointer
310  * @vm: requested vm
311  * @bo: radeon buffer object
312  *
313  * Add @bo into the requested vm (cayman+).
314  * Add @bo to the list of bos associated with the vm
315  * Returns newly added bo_va or NULL for failure
316  *
317  * Object has to be reserved!
318  */
319 struct radeon_bo_va *radeon_vm_bo_add(struct radeon_device *rdev,
320 				      struct radeon_vm *vm,
321 				      struct radeon_bo *bo)
322 {
323 	struct radeon_bo_va *bo_va;
324 
325 	bo_va = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL);
326 	if (bo_va == NULL) {
327 		return NULL;
328 	}
329 	bo_va->vm = vm;
330 	bo_va->bo = bo;
331 	bo_va->it.start = 0;
332 	bo_va->it.last = 0;
333 	bo_va->flags = 0;
334 	bo_va->ref_count = 1;
335 	INIT_LIST_HEAD(&bo_va->bo_list);
336 	INIT_LIST_HEAD(&bo_va->vm_status);
337 
338 	mutex_lock(&vm->mutex);
339 	list_add_tail(&bo_va->bo_list, &bo->va);
340 	mutex_unlock(&vm->mutex);
341 
342 	return bo_va;
343 }
344 
345 /**
346  * radeon_vm_set_pages - helper to call the right asic function
347  *
348  * @rdev: radeon_device pointer
349  * @ib: indirect buffer to fill with commands
350  * @pe: addr of the page entry
351  * @addr: dst addr to write into pe
352  * @count: number of page entries to update
353  * @incr: increase next addr by incr bytes
354  * @flags: hw access flags
355  *
356  * Traces the parameters and calls the right asic functions
357  * to setup the page table using the DMA.
358  */
359 static void radeon_vm_set_pages(struct radeon_device *rdev,
360 				struct radeon_ib *ib,
361 				uint64_t pe,
362 				uint64_t addr, unsigned count,
363 				uint32_t incr, uint32_t flags)
364 {
365 	trace_radeon_vm_set_page(pe, addr, count, incr, flags);
366 
367 	if ((flags & R600_PTE_GART_MASK) == R600_PTE_GART_MASK) {
368 		uint64_t src = rdev->gart.table_addr + (addr >> 12) * 8;
369 		radeon_asic_vm_copy_pages(rdev, ib, pe, src, count);
370 
371 	} else if ((flags & R600_PTE_SYSTEM) || (count < 3)) {
372 		radeon_asic_vm_write_pages(rdev, ib, pe, addr,
373 					   count, incr, flags);
374 
375 	} else {
376 		radeon_asic_vm_set_pages(rdev, ib, pe, addr,
377 					 count, incr, flags);
378 	}
379 }
380 
381 /**
382  * radeon_vm_clear_bo - initially clear the page dir/table
383  *
384  * @rdev: radeon_device pointer
385  * @bo: bo to clear
386  */
387 static int radeon_vm_clear_bo(struct radeon_device *rdev,
388 			      struct radeon_bo *bo)
389 {
390 	struct radeon_ib ib;
391 	unsigned entries;
392 	uint64_t addr;
393 	int r;
394 
395 	r = radeon_bo_reserve(bo, false);
396 	if (r)
397 		return r;
398 
399 	r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
400 	if (r)
401 		goto error_unreserve;
402 
403 	addr = radeon_bo_gpu_offset(bo);
404 	entries = radeon_bo_size(bo) / 8;
405 
406 	r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, 256);
407 	if (r)
408 		goto error_unreserve;
409 
410 	ib.length_dw = 0;
411 
412 	radeon_vm_set_pages(rdev, &ib, addr, 0, entries, 0, 0);
413 	radeon_asic_vm_pad_ib(rdev, &ib);
414 	WARN_ON(ib.length_dw > 64);
415 
416 	r = radeon_ib_schedule(rdev, &ib, NULL, false);
417 	if (r)
418 		goto error_free;
419 
420 	ib.fence->is_vm_update = true;
421 	radeon_bo_fence(bo, ib.fence, false);
422 
423 error_free:
424 	radeon_ib_free(rdev, &ib);
425 
426 error_unreserve:
427 	radeon_bo_unreserve(bo);
428 	return r;
429 }
430 
431 /**
432  * radeon_vm_bo_set_addr - set bos virtual address inside a vm
433  *
434  * @rdev: radeon_device pointer
435  * @bo_va: bo_va to store the address
436  * @soffset: requested offset of the buffer in the VM address space
437  * @flags: attributes of pages (read/write/valid/etc.)
438  *
439  * Set offset of @bo_va (cayman+).
440  * Validate and set the offset requested within the vm address space.
441  * Returns 0 for success, error for failure.
442  *
443  * Object has to be reserved and gets unreserved by this function!
444  */
445 int radeon_vm_bo_set_addr(struct radeon_device *rdev,
446 			  struct radeon_bo_va *bo_va,
447 			  uint64_t soffset,
448 			  uint32_t flags)
449 {
450 	uint64_t size = radeon_bo_size(bo_va->bo);
451 	struct radeon_vm *vm = bo_va->vm;
452 	unsigned last_pfn, pt_idx;
453 	uint64_t eoffset;
454 	int r;
455 
456 	if (soffset) {
457 		/* make sure object fit at this offset */
458 		eoffset = soffset + size;
459 		if (soffset >= eoffset) {
460 			r = -EINVAL;
461 			goto error_unreserve;
462 		}
463 
464 		last_pfn = eoffset / RADEON_GPU_PAGE_SIZE;
465 		if (last_pfn > rdev->vm_manager.max_pfn) {
466 			dev_err(rdev->dev, "va above limit (0x%08X > 0x%08X)\n",
467 				last_pfn, rdev->vm_manager.max_pfn);
468 			r = -EINVAL;
469 			goto error_unreserve;
470 		}
471 
472 	} else {
473 		eoffset = last_pfn = 0;
474 	}
475 
476 	mutex_lock(&vm->mutex);
477 	soffset /= RADEON_GPU_PAGE_SIZE;
478 	eoffset /= RADEON_GPU_PAGE_SIZE;
479 	if (soffset || eoffset) {
480 		struct interval_tree_node *it;
481 		it = interval_tree_iter_first(&vm->va, soffset, eoffset - 1);
482 		if (it && it != &bo_va->it) {
483 			struct radeon_bo_va *tmp;
484 			tmp = container_of(it, struct radeon_bo_va, it);
485 			/* bo and tmp overlap, invalid offset */
486 			dev_err(rdev->dev, "bo %p va 0x%010Lx conflict with "
487 				"(bo %p 0x%010lx 0x%010lx)\n", bo_va->bo,
488 				soffset, tmp->bo, tmp->it.start, tmp->it.last);
489 			mutex_unlock(&vm->mutex);
490 			r = -EINVAL;
491 			goto error_unreserve;
492 		}
493 	}
494 
495 	if (bo_va->it.start || bo_va->it.last) {
496 		/* add a clone of the bo_va to clear the old address */
497 		struct radeon_bo_va *tmp;
498 		tmp = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL);
499 		if (!tmp) {
500 			mutex_unlock(&vm->mutex);
501 			r = -ENOMEM;
502 			goto error_unreserve;
503 		}
504 		tmp->it.start = bo_va->it.start;
505 		tmp->it.last = bo_va->it.last;
506 		tmp->vm = vm;
507 		tmp->bo = radeon_bo_ref(bo_va->bo);
508 
509 		interval_tree_remove(&bo_va->it, &vm->va);
510 		spin_lock(&vm->status_lock);
511 		bo_va->it.start = 0;
512 		bo_va->it.last = 0;
513 		list_del_init(&bo_va->vm_status);
514 		list_add(&tmp->vm_status, &vm->freed);
515 		spin_unlock(&vm->status_lock);
516 	}
517 
518 	if (soffset || eoffset) {
519 		spin_lock(&vm->status_lock);
520 		bo_va->it.start = soffset;
521 		bo_va->it.last = eoffset - 1;
522 		list_add(&bo_va->vm_status, &vm->cleared);
523 		spin_unlock(&vm->status_lock);
524 		interval_tree_insert(&bo_va->it, &vm->va);
525 	}
526 
527 	bo_va->flags = flags;
528 
529 	soffset >>= radeon_vm_block_size;
530 	eoffset >>= radeon_vm_block_size;
531 
532 	BUG_ON(eoffset >= radeon_vm_num_pdes(rdev));
533 
534 	if (eoffset > vm->max_pde_used)
535 		vm->max_pde_used = eoffset;
536 
537 	radeon_bo_unreserve(bo_va->bo);
538 
539 	/* walk over the address space and allocate the page tables */
540 	for (pt_idx = soffset; pt_idx <= eoffset; ++pt_idx) {
541 		struct radeon_bo *pt;
542 
543 		if (vm->page_tables[pt_idx].bo)
544 			continue;
545 
546 		/* drop mutex to allocate and clear page table */
547 		mutex_unlock(&vm->mutex);
548 
549 		r = radeon_bo_create(rdev, RADEON_VM_PTE_COUNT * 8,
550 				     RADEON_GPU_PAGE_SIZE, true,
551 				     RADEON_GEM_DOMAIN_VRAM, 0,
552 				     NULL, NULL, &pt);
553 		if (r)
554 			return r;
555 
556 		r = radeon_vm_clear_bo(rdev, pt);
557 		if (r) {
558 			radeon_bo_unref(&pt);
559 			return r;
560 		}
561 
562 		/* aquire mutex again */
563 		mutex_lock(&vm->mutex);
564 		if (vm->page_tables[pt_idx].bo) {
565 			/* someone else allocated the pt in the meantime */
566 			mutex_unlock(&vm->mutex);
567 			radeon_bo_unref(&pt);
568 			mutex_lock(&vm->mutex);
569 			continue;
570 		}
571 
572 		vm->page_tables[pt_idx].addr = 0;
573 		vm->page_tables[pt_idx].bo = pt;
574 	}
575 
576 	mutex_unlock(&vm->mutex);
577 	return 0;
578 
579 error_unreserve:
580 	radeon_bo_unreserve(bo_va->bo);
581 	return r;
582 }
583 
584 /**
585  * radeon_vm_map_gart - get the physical address of a gart page
586  *
587  * @rdev: radeon_device pointer
588  * @addr: the unmapped addr
589  *
590  * Look up the physical address of the page that the pte resolves
591  * to (cayman+).
592  * Returns the physical address of the page.
593  */
594 uint64_t radeon_vm_map_gart(struct radeon_device *rdev, uint64_t addr)
595 {
596 	uint64_t result;
597 
598 	/* page table offset */
599 	result = rdev->gart.pages_entry[addr >> RADEON_GPU_PAGE_SHIFT];
600 	result &= ~RADEON_GPU_PAGE_MASK;
601 
602 	return result;
603 }
604 
605 /**
606  * radeon_vm_page_flags - translate page flags to what the hw uses
607  *
608  * @flags: flags comming from userspace
609  *
610  * Translate the flags the userspace ABI uses to hw flags.
611  */
612 static uint32_t radeon_vm_page_flags(uint32_t flags)
613 {
614         uint32_t hw_flags = 0;
615         hw_flags |= (flags & RADEON_VM_PAGE_VALID) ? R600_PTE_VALID : 0;
616         hw_flags |= (flags & RADEON_VM_PAGE_READABLE) ? R600_PTE_READABLE : 0;
617         hw_flags |= (flags & RADEON_VM_PAGE_WRITEABLE) ? R600_PTE_WRITEABLE : 0;
618         if (flags & RADEON_VM_PAGE_SYSTEM) {
619                 hw_flags |= R600_PTE_SYSTEM;
620                 hw_flags |= (flags & RADEON_VM_PAGE_SNOOPED) ? R600_PTE_SNOOPED : 0;
621         }
622         return hw_flags;
623 }
624 
625 /**
626  * radeon_vm_update_pdes - make sure that page directory is valid
627  *
628  * @rdev: radeon_device pointer
629  * @vm: requested vm
630  * @start: start of GPU address range
631  * @end: end of GPU address range
632  *
633  * Allocates new page tables if necessary
634  * and updates the page directory (cayman+).
635  * Returns 0 for success, error for failure.
636  *
637  * Global and local mutex must be locked!
638  */
639 int radeon_vm_update_page_directory(struct radeon_device *rdev,
640 				    struct radeon_vm *vm)
641 {
642 	struct radeon_bo *pd = vm->page_directory;
643 	uint64_t pd_addr = radeon_bo_gpu_offset(pd);
644 	uint32_t incr = RADEON_VM_PTE_COUNT * 8;
645 	uint64_t last_pde = ~0, last_pt = ~0;
646 	unsigned count = 0, pt_idx, ndw;
647 	struct radeon_ib ib;
648 	int r;
649 
650 	/* padding, etc. */
651 	ndw = 64;
652 
653 	/* assume the worst case */
654 	ndw += vm->max_pde_used * 6;
655 
656 	/* update too big for an IB */
657 	if (ndw > 0xfffff)
658 		return -ENOMEM;
659 
660 	r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, ndw * 4);
661 	if (r)
662 		return r;
663 	ib.length_dw = 0;
664 
665 	/* walk over the address space and update the page directory */
666 	for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) {
667 		struct radeon_bo *bo = vm->page_tables[pt_idx].bo;
668 		uint64_t pde, pt;
669 
670 		if (bo == NULL)
671 			continue;
672 
673 		pt = radeon_bo_gpu_offset(bo);
674 		if (vm->page_tables[pt_idx].addr == pt)
675 			continue;
676 		vm->page_tables[pt_idx].addr = pt;
677 
678 		pde = pd_addr + pt_idx * 8;
679 		if (((last_pde + 8 * count) != pde) ||
680 		    ((last_pt + incr * count) != pt)) {
681 
682 			if (count) {
683 				radeon_vm_set_pages(rdev, &ib, last_pde,
684 						    last_pt, count, incr,
685 						    R600_PTE_VALID);
686 			}
687 
688 			count = 1;
689 			last_pde = pde;
690 			last_pt = pt;
691 		} else {
692 			++count;
693 		}
694 	}
695 
696 	if (count)
697 		radeon_vm_set_pages(rdev, &ib, last_pde, last_pt, count,
698 				    incr, R600_PTE_VALID);
699 
700 	if (ib.length_dw != 0) {
701 		radeon_asic_vm_pad_ib(rdev, &ib);
702 
703 		radeon_sync_resv(rdev, &ib.sync, pd->tbo.resv, true);
704 		WARN_ON(ib.length_dw > ndw);
705 		r = radeon_ib_schedule(rdev, &ib, NULL, false);
706 		if (r) {
707 			radeon_ib_free(rdev, &ib);
708 			return r;
709 		}
710 		ib.fence->is_vm_update = true;
711 		radeon_bo_fence(pd, ib.fence, false);
712 	}
713 	radeon_ib_free(rdev, &ib);
714 
715 	return 0;
716 }
717 
718 /**
719  * radeon_vm_frag_ptes - add fragment information to PTEs
720  *
721  * @rdev: radeon_device pointer
722  * @ib: IB for the update
723  * @pe_start: first PTE to handle
724  * @pe_end: last PTE to handle
725  * @addr: addr those PTEs should point to
726  * @flags: hw mapping flags
727  *
728  * Global and local mutex must be locked!
729  */
730 static void radeon_vm_frag_ptes(struct radeon_device *rdev,
731 				struct radeon_ib *ib,
732 				uint64_t pe_start, uint64_t pe_end,
733 				uint64_t addr, uint32_t flags)
734 {
735 	/**
736 	 * The MC L1 TLB supports variable sized pages, based on a fragment
737 	 * field in the PTE. When this field is set to a non-zero value, page
738 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
739 	 * flags are considered valid for all PTEs within the fragment range
740 	 * and corresponding mappings are assumed to be physically contiguous.
741 	 *
742 	 * The L1 TLB can store a single PTE for the whole fragment,
743 	 * significantly increasing the space available for translation
744 	 * caching. This leads to large improvements in throughput when the
745 	 * TLB is under pressure.
746 	 *
747 	 * The L2 TLB distributes small and large fragments into two
748 	 * asymmetric partitions. The large fragment cache is significantly
749 	 * larger. Thus, we try to use large fragments wherever possible.
750 	 * Userspace can support this by aligning virtual base address and
751 	 * allocation size to the fragment size.
752 	 */
753 
754 	/* NI is optimized for 256KB fragments, SI and newer for 64KB */
755 	uint64_t frag_flags = ((rdev->family == CHIP_CAYMAN) ||
756 			       (rdev->family == CHIP_ARUBA)) ?
757 			R600_PTE_FRAG_256KB : R600_PTE_FRAG_64KB;
758 	uint64_t frag_align = ((rdev->family == CHIP_CAYMAN) ||
759 			       (rdev->family == CHIP_ARUBA)) ? 0x200 : 0x80;
760 
761 	uint64_t frag_start = ALIGN(pe_start, frag_align);
762 	uint64_t frag_end = pe_end & ~(frag_align - 1);
763 
764 	unsigned count;
765 
766 	/* system pages are non continuously */
767 	if ((flags & R600_PTE_SYSTEM) || !(flags & R600_PTE_VALID) ||
768 	    (frag_start >= frag_end)) {
769 
770 		count = (pe_end - pe_start) / 8;
771 		radeon_vm_set_pages(rdev, ib, pe_start, addr, count,
772 				    RADEON_GPU_PAGE_SIZE, flags);
773 		return;
774 	}
775 
776 	/* handle the 4K area at the beginning */
777 	if (pe_start != frag_start) {
778 		count = (frag_start - pe_start) / 8;
779 		radeon_vm_set_pages(rdev, ib, pe_start, addr, count,
780 				    RADEON_GPU_PAGE_SIZE, flags);
781 		addr += RADEON_GPU_PAGE_SIZE * count;
782 	}
783 
784 	/* handle the area in the middle */
785 	count = (frag_end - frag_start) / 8;
786 	radeon_vm_set_pages(rdev, ib, frag_start, addr, count,
787 			    RADEON_GPU_PAGE_SIZE, flags | frag_flags);
788 
789 	/* handle the 4K area at the end */
790 	if (frag_end != pe_end) {
791 		addr += RADEON_GPU_PAGE_SIZE * count;
792 		count = (pe_end - frag_end) / 8;
793 		radeon_vm_set_pages(rdev, ib, frag_end, addr, count,
794 				    RADEON_GPU_PAGE_SIZE, flags);
795 	}
796 }
797 
798 /**
799  * radeon_vm_update_ptes - make sure that page tables are valid
800  *
801  * @rdev: radeon_device pointer
802  * @vm: requested vm
803  * @start: start of GPU address range
804  * @end: end of GPU address range
805  * @dst: destination address to map to
806  * @flags: mapping flags
807  *
808  * Update the page tables in the range @start - @end (cayman+).
809  *
810  * Global and local mutex must be locked!
811  */
812 static int radeon_vm_update_ptes(struct radeon_device *rdev,
813 				 struct radeon_vm *vm,
814 				 struct radeon_ib *ib,
815 				 uint64_t start, uint64_t end,
816 				 uint64_t dst, uint32_t flags)
817 {
818 	uint64_t mask = RADEON_VM_PTE_COUNT - 1;
819 	uint64_t last_pte = ~0, last_dst = ~0;
820 	unsigned count = 0;
821 	uint64_t addr;
822 
823 	/* walk over the address space and update the page tables */
824 	for (addr = start; addr < end; ) {
825 		uint64_t pt_idx = addr >> radeon_vm_block_size;
826 		struct radeon_bo *pt = vm->page_tables[pt_idx].bo;
827 		unsigned nptes;
828 		uint64_t pte;
829 		int r;
830 
831 		radeon_sync_resv(rdev, &ib->sync, pt->tbo.resv, true);
832 		r = reservation_object_reserve_shared(pt->tbo.resv);
833 		if (r)
834 			return r;
835 
836 		if ((addr & ~mask) == (end & ~mask))
837 			nptes = end - addr;
838 		else
839 			nptes = RADEON_VM_PTE_COUNT - (addr & mask);
840 
841 		pte = radeon_bo_gpu_offset(pt);
842 		pte += (addr & mask) * 8;
843 
844 		if ((last_pte + 8 * count) != pte) {
845 
846 			if (count) {
847 				radeon_vm_frag_ptes(rdev, ib, last_pte,
848 						    last_pte + 8 * count,
849 						    last_dst, flags);
850 			}
851 
852 			count = nptes;
853 			last_pte = pte;
854 			last_dst = dst;
855 		} else {
856 			count += nptes;
857 		}
858 
859 		addr += nptes;
860 		dst += nptes * RADEON_GPU_PAGE_SIZE;
861 	}
862 
863 	if (count) {
864 		radeon_vm_frag_ptes(rdev, ib, last_pte,
865 				    last_pte + 8 * count,
866 				    last_dst, flags);
867 	}
868 
869 	return 0;
870 }
871 
872 /**
873  * radeon_vm_fence_pts - fence page tables after an update
874  *
875  * @vm: requested vm
876  * @start: start of GPU address range
877  * @end: end of GPU address range
878  * @fence: fence to use
879  *
880  * Fence the page tables in the range @start - @end (cayman+).
881  *
882  * Global and local mutex must be locked!
883  */
884 static void radeon_vm_fence_pts(struct radeon_vm *vm,
885 				uint64_t start, uint64_t end,
886 				struct radeon_fence *fence)
887 {
888 	unsigned i;
889 
890 	start >>= radeon_vm_block_size;
891 	end >>= radeon_vm_block_size;
892 
893 	for (i = start; i <= end; ++i)
894 		radeon_bo_fence(vm->page_tables[i].bo, fence, true);
895 }
896 
897 /**
898  * radeon_vm_bo_update - map a bo into the vm page table
899  *
900  * @rdev: radeon_device pointer
901  * @vm: requested vm
902  * @bo: radeon buffer object
903  * @mem: ttm mem
904  *
905  * Fill in the page table entries for @bo (cayman+).
906  * Returns 0 for success, -EINVAL for failure.
907  *
908  * Object have to be reserved and mutex must be locked!
909  */
910 int radeon_vm_bo_update(struct radeon_device *rdev,
911 			struct radeon_bo_va *bo_va,
912 			struct ttm_mem_reg *mem)
913 {
914 	struct radeon_vm *vm = bo_va->vm;
915 	struct radeon_ib ib;
916 	unsigned nptes, ncmds, ndw;
917 	uint64_t addr;
918 	uint32_t flags;
919 	int r;
920 
921 	if (!bo_va->it.start) {
922 		dev_err(rdev->dev, "bo %p don't has a mapping in vm %p\n",
923 			bo_va->bo, vm);
924 		return -EINVAL;
925 	}
926 
927 	spin_lock(&vm->status_lock);
928 	if (mem) {
929 		if (list_empty(&bo_va->vm_status)) {
930 			spin_unlock(&vm->status_lock);
931 			return 0;
932 		}
933 		list_del_init(&bo_va->vm_status);
934 	} else {
935 		list_del(&bo_va->vm_status);
936 		list_add(&bo_va->vm_status, &vm->cleared);
937 	}
938 	spin_unlock(&vm->status_lock);
939 
940 	bo_va->flags &= ~RADEON_VM_PAGE_VALID;
941 	bo_va->flags &= ~RADEON_VM_PAGE_SYSTEM;
942 	bo_va->flags &= ~RADEON_VM_PAGE_SNOOPED;
943 	if (bo_va->bo && radeon_ttm_tt_is_readonly(bo_va->bo->tbo.ttm))
944 		bo_va->flags &= ~RADEON_VM_PAGE_WRITEABLE;
945 
946 	if (mem) {
947 		addr = mem->start << PAGE_SHIFT;
948 		if (mem->mem_type != TTM_PL_SYSTEM) {
949 			bo_va->flags |= RADEON_VM_PAGE_VALID;
950 		}
951 		if (mem->mem_type == TTM_PL_TT) {
952 			bo_va->flags |= RADEON_VM_PAGE_SYSTEM;
953 			if (!(bo_va->bo->flags & (RADEON_GEM_GTT_WC | RADEON_GEM_GTT_UC)))
954 				bo_va->flags |= RADEON_VM_PAGE_SNOOPED;
955 
956 		} else {
957 			addr += rdev->vm_manager.vram_base_offset;
958 		}
959 	} else {
960 		addr = 0;
961 	}
962 
963 	trace_radeon_vm_bo_update(bo_va);
964 
965 	nptes = bo_va->it.last - bo_va->it.start + 1;
966 
967 	/* reserve space for one command every (1 << BLOCK_SIZE) entries
968 	   or 2k dwords (whatever is smaller) */
969 	ncmds = (nptes >> min(radeon_vm_block_size, 11)) + 1;
970 
971 	/* padding, etc. */
972 	ndw = 64;
973 
974 	flags = radeon_vm_page_flags(bo_va->flags);
975 	if ((flags & R600_PTE_GART_MASK) == R600_PTE_GART_MASK) {
976 		/* only copy commands needed */
977 		ndw += ncmds * 7;
978 
979 	} else if (flags & R600_PTE_SYSTEM) {
980 		/* header for write data commands */
981 		ndw += ncmds * 4;
982 
983 		/* body of write data command */
984 		ndw += nptes * 2;
985 
986 	} else {
987 		/* set page commands needed */
988 		ndw += ncmds * 10;
989 
990 		/* two extra commands for begin/end of fragment */
991 		ndw += 2 * 10;
992 	}
993 
994 	/* update too big for an IB */
995 	if (ndw > 0xfffff)
996 		return -ENOMEM;
997 
998 	r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, ndw * 4);
999 	if (r)
1000 		return r;
1001 	ib.length_dw = 0;
1002 
1003 	if (!(bo_va->flags & RADEON_VM_PAGE_VALID)) {
1004 		unsigned i;
1005 
1006 		for (i = 0; i < RADEON_NUM_RINGS; ++i)
1007 			radeon_sync_fence(&ib.sync, vm->ids[i].last_id_use);
1008 	}
1009 
1010 	r = radeon_vm_update_ptes(rdev, vm, &ib, bo_va->it.start,
1011 				  bo_va->it.last + 1, addr,
1012 				  radeon_vm_page_flags(bo_va->flags));
1013 	if (r) {
1014 		radeon_ib_free(rdev, &ib);
1015 		return r;
1016 	}
1017 
1018 	radeon_asic_vm_pad_ib(rdev, &ib);
1019 	WARN_ON(ib.length_dw > ndw);
1020 
1021 	r = radeon_ib_schedule(rdev, &ib, NULL, false);
1022 	if (r) {
1023 		radeon_ib_free(rdev, &ib);
1024 		return r;
1025 	}
1026 	ib.fence->is_vm_update = true;
1027 	radeon_vm_fence_pts(vm, bo_va->it.start, bo_va->it.last + 1, ib.fence);
1028 	radeon_fence_unref(&bo_va->last_pt_update);
1029 	bo_va->last_pt_update = radeon_fence_ref(ib.fence);
1030 	radeon_ib_free(rdev, &ib);
1031 
1032 	return 0;
1033 }
1034 
1035 /**
1036  * radeon_vm_clear_freed - clear freed BOs in the PT
1037  *
1038  * @rdev: radeon_device pointer
1039  * @vm: requested vm
1040  *
1041  * Make sure all freed BOs are cleared in the PT.
1042  * Returns 0 for success.
1043  *
1044  * PTs have to be reserved and mutex must be locked!
1045  */
1046 int radeon_vm_clear_freed(struct radeon_device *rdev,
1047 			  struct radeon_vm *vm)
1048 {
1049 	struct radeon_bo_va *bo_va;
1050 	int r = 0;
1051 
1052 	spin_lock(&vm->status_lock);
1053 	while (!list_empty(&vm->freed)) {
1054 		bo_va = list_first_entry(&vm->freed,
1055 			struct radeon_bo_va, vm_status);
1056 		spin_unlock(&vm->status_lock);
1057 
1058 		r = radeon_vm_bo_update(rdev, bo_va, NULL);
1059 		radeon_bo_unref(&bo_va->bo);
1060 		radeon_fence_unref(&bo_va->last_pt_update);
1061 		spin_lock(&vm->status_lock);
1062 		list_del(&bo_va->vm_status);
1063 		kfree(bo_va);
1064 		if (r)
1065 			break;
1066 
1067 	}
1068 	spin_unlock(&vm->status_lock);
1069 	return r;
1070 
1071 }
1072 
1073 /**
1074  * radeon_vm_clear_invalids - clear invalidated BOs in the PT
1075  *
1076  * @rdev: radeon_device pointer
1077  * @vm: requested vm
1078  *
1079  * Make sure all invalidated BOs are cleared in the PT.
1080  * Returns 0 for success.
1081  *
1082  * PTs have to be reserved and mutex must be locked!
1083  */
1084 int radeon_vm_clear_invalids(struct radeon_device *rdev,
1085 			     struct radeon_vm *vm)
1086 {
1087 	struct radeon_bo_va *bo_va;
1088 	int r;
1089 
1090 	spin_lock(&vm->status_lock);
1091 	while (!list_empty(&vm->invalidated)) {
1092 		bo_va = list_first_entry(&vm->invalidated,
1093 			struct radeon_bo_va, vm_status);
1094 		spin_unlock(&vm->status_lock);
1095 
1096 		r = radeon_vm_bo_update(rdev, bo_va, NULL);
1097 		if (r)
1098 			return r;
1099 
1100 		spin_lock(&vm->status_lock);
1101 	}
1102 	spin_unlock(&vm->status_lock);
1103 
1104 	return 0;
1105 }
1106 
1107 /**
1108  * radeon_vm_bo_rmv - remove a bo to a specific vm
1109  *
1110  * @rdev: radeon_device pointer
1111  * @bo_va: requested bo_va
1112  *
1113  * Remove @bo_va->bo from the requested vm (cayman+).
1114  *
1115  * Object have to be reserved!
1116  */
1117 void radeon_vm_bo_rmv(struct radeon_device *rdev,
1118 		      struct radeon_bo_va *bo_va)
1119 {
1120 	struct radeon_vm *vm = bo_va->vm;
1121 
1122 	list_del(&bo_va->bo_list);
1123 
1124 	mutex_lock(&vm->mutex);
1125 	if (bo_va->it.start || bo_va->it.last)
1126 		interval_tree_remove(&bo_va->it, &vm->va);
1127 
1128 	spin_lock(&vm->status_lock);
1129 	list_del(&bo_va->vm_status);
1130 	if (bo_va->it.start || bo_va->it.last) {
1131 		bo_va->bo = radeon_bo_ref(bo_va->bo);
1132 		list_add(&bo_va->vm_status, &vm->freed);
1133 	} else {
1134 		radeon_fence_unref(&bo_va->last_pt_update);
1135 		kfree(bo_va);
1136 	}
1137 	spin_unlock(&vm->status_lock);
1138 
1139 	mutex_unlock(&vm->mutex);
1140 }
1141 
1142 /**
1143  * radeon_vm_bo_invalidate - mark the bo as invalid
1144  *
1145  * @rdev: radeon_device pointer
1146  * @vm: requested vm
1147  * @bo: radeon buffer object
1148  *
1149  * Mark @bo as invalid (cayman+).
1150  */
1151 void radeon_vm_bo_invalidate(struct radeon_device *rdev,
1152 			     struct radeon_bo *bo)
1153 {
1154 	struct radeon_bo_va *bo_va;
1155 
1156 	list_for_each_entry(bo_va, &bo->va, bo_list) {
1157 		spin_lock(&bo_va->vm->status_lock);
1158 		if (list_empty(&bo_va->vm_status) &&
1159 		    (bo_va->it.start || bo_va->it.last))
1160 			list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
1161 		spin_unlock(&bo_va->vm->status_lock);
1162 	}
1163 }
1164 
1165 /**
1166  * radeon_vm_init - initialize a vm instance
1167  *
1168  * @rdev: radeon_device pointer
1169  * @vm: requested vm
1170  *
1171  * Init @vm fields (cayman+).
1172  */
1173 int radeon_vm_init(struct radeon_device *rdev, struct radeon_vm *vm)
1174 {
1175 	const unsigned align = min(RADEON_VM_PTB_ALIGN_SIZE,
1176 		RADEON_VM_PTE_COUNT * 8);
1177 	unsigned pd_size, pd_entries, pts_size;
1178 	int i, r;
1179 
1180 	vm->ib_bo_va = NULL;
1181 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
1182 		vm->ids[i].id = 0;
1183 		vm->ids[i].flushed_updates = NULL;
1184 		vm->ids[i].last_id_use = NULL;
1185 	}
1186 	mutex_init(&vm->mutex);
1187 	vm->va = RB_ROOT;
1188 	spin_lock_init(&vm->status_lock);
1189 	INIT_LIST_HEAD(&vm->invalidated);
1190 	INIT_LIST_HEAD(&vm->freed);
1191 	INIT_LIST_HEAD(&vm->cleared);
1192 
1193 	pd_size = radeon_vm_directory_size(rdev);
1194 	pd_entries = radeon_vm_num_pdes(rdev);
1195 
1196 	/* allocate page table array */
1197 	pts_size = pd_entries * sizeof(struct radeon_vm_pt);
1198 	vm->page_tables = kzalloc(pts_size, GFP_KERNEL);
1199 	if (vm->page_tables == NULL) {
1200 		DRM_ERROR("Cannot allocate memory for page table array\n");
1201 		return -ENOMEM;
1202 	}
1203 
1204 	r = radeon_bo_create(rdev, pd_size, align, true,
1205 			     RADEON_GEM_DOMAIN_VRAM, 0, NULL,
1206 			     NULL, &vm->page_directory);
1207 	if (r)
1208 		return r;
1209 
1210 	r = radeon_vm_clear_bo(rdev, vm->page_directory);
1211 	if (r) {
1212 		radeon_bo_unref(&vm->page_directory);
1213 		vm->page_directory = NULL;
1214 		return r;
1215 	}
1216 
1217 	return 0;
1218 }
1219 
1220 /**
1221  * radeon_vm_fini - tear down a vm instance
1222  *
1223  * @rdev: radeon_device pointer
1224  * @vm: requested vm
1225  *
1226  * Tear down @vm (cayman+).
1227  * Unbind the VM and remove all bos from the vm bo list
1228  */
1229 void radeon_vm_fini(struct radeon_device *rdev, struct radeon_vm *vm)
1230 {
1231 	struct radeon_bo_va *bo_va, *tmp;
1232 	int i, r;
1233 
1234 	if (!RB_EMPTY_ROOT(&vm->va)) {
1235 		dev_err(rdev->dev, "still active bo inside vm\n");
1236 	}
1237 	rbtree_postorder_for_each_entry_safe(bo_va, tmp, &vm->va, it.rb) {
1238 		interval_tree_remove(&bo_va->it, &vm->va);
1239 		r = radeon_bo_reserve(bo_va->bo, false);
1240 		if (!r) {
1241 			list_del_init(&bo_va->bo_list);
1242 			radeon_bo_unreserve(bo_va->bo);
1243 			radeon_fence_unref(&bo_va->last_pt_update);
1244 			kfree(bo_va);
1245 		}
1246 	}
1247 	list_for_each_entry_safe(bo_va, tmp, &vm->freed, vm_status) {
1248 		radeon_bo_unref(&bo_va->bo);
1249 		radeon_fence_unref(&bo_va->last_pt_update);
1250 		kfree(bo_va);
1251 	}
1252 
1253 	for (i = 0; i < radeon_vm_num_pdes(rdev); i++)
1254 		radeon_bo_unref(&vm->page_tables[i].bo);
1255 	kfree(vm->page_tables);
1256 
1257 	radeon_bo_unref(&vm->page_directory);
1258 
1259 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
1260 		radeon_fence_unref(&vm->ids[i].flushed_updates);
1261 		radeon_fence_unref(&vm->ids[i].last_id_use);
1262 	}
1263 
1264 	mutex_destroy(&vm->mutex);
1265 }
1266