1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <drm/drmP.h> 29 #include <drm/radeon_drm.h> 30 #include "radeon.h" 31 #include "radeon_trace.h" 32 33 /* 34 * GPUVM 35 * GPUVM is similar to the legacy gart on older asics, however 36 * rather than there being a single global gart table 37 * for the entire GPU, there are multiple VM page tables active 38 * at any given time. The VM page tables can contain a mix 39 * vram pages and system memory pages and system memory pages 40 * can be mapped as snooped (cached system pages) or unsnooped 41 * (uncached system pages). 42 * Each VM has an ID associated with it and there is a page table 43 * associated with each VMID. When execting a command buffer, 44 * the kernel tells the the ring what VMID to use for that command 45 * buffer. VMIDs are allocated dynamically as commands are submitted. 46 * The userspace drivers maintain their own address space and the kernel 47 * sets up their pages tables accordingly when they submit their 48 * command buffers and a VMID is assigned. 49 * Cayman/Trinity support up to 8 active VMs at any given time; 50 * SI supports 16. 51 */ 52 53 /** 54 * radeon_vm_num_pde - return the number of page directory entries 55 * 56 * @rdev: radeon_device pointer 57 * 58 * Calculate the number of page directory entries (cayman+). 59 */ 60 static unsigned radeon_vm_num_pdes(struct radeon_device *rdev) 61 { 62 return rdev->vm_manager.max_pfn >> radeon_vm_block_size; 63 } 64 65 /** 66 * radeon_vm_directory_size - returns the size of the page directory in bytes 67 * 68 * @rdev: radeon_device pointer 69 * 70 * Calculate the size of the page directory in bytes (cayman+). 71 */ 72 static unsigned radeon_vm_directory_size(struct radeon_device *rdev) 73 { 74 return RADEON_GPU_PAGE_ALIGN(radeon_vm_num_pdes(rdev) * 8); 75 } 76 77 /** 78 * radeon_vm_manager_init - init the vm manager 79 * 80 * @rdev: radeon_device pointer 81 * 82 * Init the vm manager (cayman+). 83 * Returns 0 for success, error for failure. 84 */ 85 int radeon_vm_manager_init(struct radeon_device *rdev) 86 { 87 int r; 88 89 if (!rdev->vm_manager.enabled) { 90 r = radeon_asic_vm_init(rdev); 91 if (r) 92 return r; 93 94 rdev->vm_manager.enabled = true; 95 } 96 return 0; 97 } 98 99 /** 100 * radeon_vm_manager_fini - tear down the vm manager 101 * 102 * @rdev: radeon_device pointer 103 * 104 * Tear down the VM manager (cayman+). 105 */ 106 void radeon_vm_manager_fini(struct radeon_device *rdev) 107 { 108 int i; 109 110 if (!rdev->vm_manager.enabled) 111 return; 112 113 for (i = 0; i < RADEON_NUM_VM; ++i) 114 radeon_fence_unref(&rdev->vm_manager.active[i]); 115 radeon_asic_vm_fini(rdev); 116 rdev->vm_manager.enabled = false; 117 } 118 119 /** 120 * radeon_vm_get_bos - add the vm BOs to a validation list 121 * 122 * @vm: vm providing the BOs 123 * @head: head of validation list 124 * 125 * Add the page directory to the list of BOs to 126 * validate for command submission (cayman+). 127 */ 128 struct radeon_bo_list *radeon_vm_get_bos(struct radeon_device *rdev, 129 struct radeon_vm *vm, 130 struct list_head *head) 131 { 132 struct radeon_bo_list *list; 133 unsigned i, idx; 134 135 list = kvmalloc_array(vm->max_pde_used + 2, 136 sizeof(struct radeon_bo_list), GFP_KERNEL); 137 if (!list) 138 return NULL; 139 140 /* add the vm page table to the list */ 141 list[0].robj = vm->page_directory; 142 list[0].preferred_domains = RADEON_GEM_DOMAIN_VRAM; 143 list[0].allowed_domains = RADEON_GEM_DOMAIN_VRAM; 144 list[0].tv.bo = &vm->page_directory->tbo; 145 list[0].tv.shared = true; 146 list[0].tiling_flags = 0; 147 list_add(&list[0].tv.head, head); 148 149 for (i = 0, idx = 1; i <= vm->max_pde_used; i++) { 150 if (!vm->page_tables[i].bo) 151 continue; 152 153 list[idx].robj = vm->page_tables[i].bo; 154 list[idx].preferred_domains = RADEON_GEM_DOMAIN_VRAM; 155 list[idx].allowed_domains = RADEON_GEM_DOMAIN_VRAM; 156 list[idx].tv.bo = &list[idx].robj->tbo; 157 list[idx].tv.shared = true; 158 list[idx].tiling_flags = 0; 159 list_add(&list[idx++].tv.head, head); 160 } 161 162 return list; 163 } 164 165 /** 166 * radeon_vm_grab_id - allocate the next free VMID 167 * 168 * @rdev: radeon_device pointer 169 * @vm: vm to allocate id for 170 * @ring: ring we want to submit job to 171 * 172 * Allocate an id for the vm (cayman+). 173 * Returns the fence we need to sync to (if any). 174 * 175 * Global and local mutex must be locked! 176 */ 177 struct radeon_fence *radeon_vm_grab_id(struct radeon_device *rdev, 178 struct radeon_vm *vm, int ring) 179 { 180 struct radeon_fence *best[RADEON_NUM_RINGS] = {}; 181 struct radeon_vm_id *vm_id = &vm->ids[ring]; 182 183 unsigned choices[2] = {}; 184 unsigned i; 185 186 /* check if the id is still valid */ 187 if (vm_id->id && vm_id->last_id_use && 188 vm_id->last_id_use == rdev->vm_manager.active[vm_id->id]) 189 return NULL; 190 191 /* we definately need to flush */ 192 vm_id->pd_gpu_addr = ~0ll; 193 194 /* skip over VMID 0, since it is the system VM */ 195 for (i = 1; i < rdev->vm_manager.nvm; ++i) { 196 struct radeon_fence *fence = rdev->vm_manager.active[i]; 197 198 if (fence == NULL) { 199 /* found a free one */ 200 vm_id->id = i; 201 trace_radeon_vm_grab_id(i, ring); 202 return NULL; 203 } 204 205 if (radeon_fence_is_earlier(fence, best[fence->ring])) { 206 best[fence->ring] = fence; 207 choices[fence->ring == ring ? 0 : 1] = i; 208 } 209 } 210 211 for (i = 0; i < 2; ++i) { 212 if (choices[i]) { 213 vm_id->id = choices[i]; 214 trace_radeon_vm_grab_id(choices[i], ring); 215 return rdev->vm_manager.active[choices[i]]; 216 } 217 } 218 219 /* should never happen */ 220 BUG(); 221 return NULL; 222 } 223 224 /** 225 * radeon_vm_flush - hardware flush the vm 226 * 227 * @rdev: radeon_device pointer 228 * @vm: vm we want to flush 229 * @ring: ring to use for flush 230 * @updates: last vm update that is waited for 231 * 232 * Flush the vm (cayman+). 233 * 234 * Global and local mutex must be locked! 235 */ 236 void radeon_vm_flush(struct radeon_device *rdev, 237 struct radeon_vm *vm, 238 int ring, struct radeon_fence *updates) 239 { 240 uint64_t pd_addr = radeon_bo_gpu_offset(vm->page_directory); 241 struct radeon_vm_id *vm_id = &vm->ids[ring]; 242 243 if (pd_addr != vm_id->pd_gpu_addr || !vm_id->flushed_updates || 244 radeon_fence_is_earlier(vm_id->flushed_updates, updates)) { 245 246 trace_radeon_vm_flush(pd_addr, ring, vm->ids[ring].id); 247 radeon_fence_unref(&vm_id->flushed_updates); 248 vm_id->flushed_updates = radeon_fence_ref(updates); 249 vm_id->pd_gpu_addr = pd_addr; 250 radeon_ring_vm_flush(rdev, &rdev->ring[ring], 251 vm_id->id, vm_id->pd_gpu_addr); 252 253 } 254 } 255 256 /** 257 * radeon_vm_fence - remember fence for vm 258 * 259 * @rdev: radeon_device pointer 260 * @vm: vm we want to fence 261 * @fence: fence to remember 262 * 263 * Fence the vm (cayman+). 264 * Set the fence used to protect page table and id. 265 * 266 * Global and local mutex must be locked! 267 */ 268 void radeon_vm_fence(struct radeon_device *rdev, 269 struct radeon_vm *vm, 270 struct radeon_fence *fence) 271 { 272 unsigned vm_id = vm->ids[fence->ring].id; 273 274 radeon_fence_unref(&rdev->vm_manager.active[vm_id]); 275 rdev->vm_manager.active[vm_id] = radeon_fence_ref(fence); 276 277 radeon_fence_unref(&vm->ids[fence->ring].last_id_use); 278 vm->ids[fence->ring].last_id_use = radeon_fence_ref(fence); 279 } 280 281 /** 282 * radeon_vm_bo_find - find the bo_va for a specific vm & bo 283 * 284 * @vm: requested vm 285 * @bo: requested buffer object 286 * 287 * Find @bo inside the requested vm (cayman+). 288 * Search inside the @bos vm list for the requested vm 289 * Returns the found bo_va or NULL if none is found 290 * 291 * Object has to be reserved! 292 */ 293 struct radeon_bo_va *radeon_vm_bo_find(struct radeon_vm *vm, 294 struct radeon_bo *bo) 295 { 296 struct radeon_bo_va *bo_va; 297 298 list_for_each_entry(bo_va, &bo->va, bo_list) { 299 if (bo_va->vm == vm) { 300 return bo_va; 301 } 302 } 303 return NULL; 304 } 305 306 /** 307 * radeon_vm_bo_add - add a bo to a specific vm 308 * 309 * @rdev: radeon_device pointer 310 * @vm: requested vm 311 * @bo: radeon buffer object 312 * 313 * Add @bo into the requested vm (cayman+). 314 * Add @bo to the list of bos associated with the vm 315 * Returns newly added bo_va or NULL for failure 316 * 317 * Object has to be reserved! 318 */ 319 struct radeon_bo_va *radeon_vm_bo_add(struct radeon_device *rdev, 320 struct radeon_vm *vm, 321 struct radeon_bo *bo) 322 { 323 struct radeon_bo_va *bo_va; 324 325 bo_va = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL); 326 if (bo_va == NULL) { 327 return NULL; 328 } 329 bo_va->vm = vm; 330 bo_va->bo = bo; 331 bo_va->it.start = 0; 332 bo_va->it.last = 0; 333 bo_va->flags = 0; 334 bo_va->ref_count = 1; 335 INIT_LIST_HEAD(&bo_va->bo_list); 336 INIT_LIST_HEAD(&bo_va->vm_status); 337 338 mutex_lock(&vm->mutex); 339 list_add_tail(&bo_va->bo_list, &bo->va); 340 mutex_unlock(&vm->mutex); 341 342 return bo_va; 343 } 344 345 /** 346 * radeon_vm_set_pages - helper to call the right asic function 347 * 348 * @rdev: radeon_device pointer 349 * @ib: indirect buffer to fill with commands 350 * @pe: addr of the page entry 351 * @addr: dst addr to write into pe 352 * @count: number of page entries to update 353 * @incr: increase next addr by incr bytes 354 * @flags: hw access flags 355 * 356 * Traces the parameters and calls the right asic functions 357 * to setup the page table using the DMA. 358 */ 359 static void radeon_vm_set_pages(struct radeon_device *rdev, 360 struct radeon_ib *ib, 361 uint64_t pe, 362 uint64_t addr, unsigned count, 363 uint32_t incr, uint32_t flags) 364 { 365 trace_radeon_vm_set_page(pe, addr, count, incr, flags); 366 367 if ((flags & R600_PTE_GART_MASK) == R600_PTE_GART_MASK) { 368 uint64_t src = rdev->gart.table_addr + (addr >> 12) * 8; 369 radeon_asic_vm_copy_pages(rdev, ib, pe, src, count); 370 371 } else if ((flags & R600_PTE_SYSTEM) || (count < 3)) { 372 radeon_asic_vm_write_pages(rdev, ib, pe, addr, 373 count, incr, flags); 374 375 } else { 376 radeon_asic_vm_set_pages(rdev, ib, pe, addr, 377 count, incr, flags); 378 } 379 } 380 381 /** 382 * radeon_vm_clear_bo - initially clear the page dir/table 383 * 384 * @rdev: radeon_device pointer 385 * @bo: bo to clear 386 */ 387 static int radeon_vm_clear_bo(struct radeon_device *rdev, 388 struct radeon_bo *bo) 389 { 390 struct ttm_operation_ctx ctx = { true, false }; 391 struct radeon_ib ib; 392 unsigned entries; 393 uint64_t addr; 394 int r; 395 396 r = radeon_bo_reserve(bo, false); 397 if (r) 398 return r; 399 400 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 401 if (r) 402 goto error_unreserve; 403 404 addr = radeon_bo_gpu_offset(bo); 405 entries = radeon_bo_size(bo) / 8; 406 407 r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, 256); 408 if (r) 409 goto error_unreserve; 410 411 ib.length_dw = 0; 412 413 radeon_vm_set_pages(rdev, &ib, addr, 0, entries, 0, 0); 414 radeon_asic_vm_pad_ib(rdev, &ib); 415 WARN_ON(ib.length_dw > 64); 416 417 r = radeon_ib_schedule(rdev, &ib, NULL, false); 418 if (r) 419 goto error_free; 420 421 ib.fence->is_vm_update = true; 422 radeon_bo_fence(bo, ib.fence, false); 423 424 error_free: 425 radeon_ib_free(rdev, &ib); 426 427 error_unreserve: 428 radeon_bo_unreserve(bo); 429 return r; 430 } 431 432 /** 433 * radeon_vm_bo_set_addr - set bos virtual address inside a vm 434 * 435 * @rdev: radeon_device pointer 436 * @bo_va: bo_va to store the address 437 * @soffset: requested offset of the buffer in the VM address space 438 * @flags: attributes of pages (read/write/valid/etc.) 439 * 440 * Set offset of @bo_va (cayman+). 441 * Validate and set the offset requested within the vm address space. 442 * Returns 0 for success, error for failure. 443 * 444 * Object has to be reserved and gets unreserved by this function! 445 */ 446 int radeon_vm_bo_set_addr(struct radeon_device *rdev, 447 struct radeon_bo_va *bo_va, 448 uint64_t soffset, 449 uint32_t flags) 450 { 451 uint64_t size = radeon_bo_size(bo_va->bo); 452 struct radeon_vm *vm = bo_va->vm; 453 unsigned last_pfn, pt_idx; 454 uint64_t eoffset; 455 int r; 456 457 if (soffset) { 458 /* make sure object fit at this offset */ 459 eoffset = soffset + size - 1; 460 if (soffset >= eoffset) { 461 r = -EINVAL; 462 goto error_unreserve; 463 } 464 465 last_pfn = eoffset / RADEON_GPU_PAGE_SIZE; 466 if (last_pfn >= rdev->vm_manager.max_pfn) { 467 dev_err(rdev->dev, "va above limit (0x%08X >= 0x%08X)\n", 468 last_pfn, rdev->vm_manager.max_pfn); 469 r = -EINVAL; 470 goto error_unreserve; 471 } 472 473 } else { 474 eoffset = last_pfn = 0; 475 } 476 477 mutex_lock(&vm->mutex); 478 soffset /= RADEON_GPU_PAGE_SIZE; 479 eoffset /= RADEON_GPU_PAGE_SIZE; 480 if (soffset || eoffset) { 481 struct interval_tree_node *it; 482 it = interval_tree_iter_first(&vm->va, soffset, eoffset); 483 if (it && it != &bo_va->it) { 484 struct radeon_bo_va *tmp; 485 tmp = container_of(it, struct radeon_bo_va, it); 486 /* bo and tmp overlap, invalid offset */ 487 dev_err(rdev->dev, "bo %p va 0x%010Lx conflict with " 488 "(bo %p 0x%010lx 0x%010lx)\n", bo_va->bo, 489 soffset, tmp->bo, tmp->it.start, tmp->it.last); 490 mutex_unlock(&vm->mutex); 491 r = -EINVAL; 492 goto error_unreserve; 493 } 494 } 495 496 if (bo_va->it.start || bo_va->it.last) { 497 /* add a clone of the bo_va to clear the old address */ 498 struct radeon_bo_va *tmp; 499 tmp = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL); 500 if (!tmp) { 501 mutex_unlock(&vm->mutex); 502 r = -ENOMEM; 503 goto error_unreserve; 504 } 505 tmp->it.start = bo_va->it.start; 506 tmp->it.last = bo_va->it.last; 507 tmp->vm = vm; 508 tmp->bo = radeon_bo_ref(bo_va->bo); 509 510 interval_tree_remove(&bo_va->it, &vm->va); 511 spin_lock(&vm->status_lock); 512 bo_va->it.start = 0; 513 bo_va->it.last = 0; 514 list_del_init(&bo_va->vm_status); 515 list_add(&tmp->vm_status, &vm->freed); 516 spin_unlock(&vm->status_lock); 517 } 518 519 if (soffset || eoffset) { 520 spin_lock(&vm->status_lock); 521 bo_va->it.start = soffset; 522 bo_va->it.last = eoffset; 523 list_add(&bo_va->vm_status, &vm->cleared); 524 spin_unlock(&vm->status_lock); 525 interval_tree_insert(&bo_va->it, &vm->va); 526 } 527 528 bo_va->flags = flags; 529 530 soffset >>= radeon_vm_block_size; 531 eoffset >>= radeon_vm_block_size; 532 533 BUG_ON(eoffset >= radeon_vm_num_pdes(rdev)); 534 535 if (eoffset > vm->max_pde_used) 536 vm->max_pde_used = eoffset; 537 538 radeon_bo_unreserve(bo_va->bo); 539 540 /* walk over the address space and allocate the page tables */ 541 for (pt_idx = soffset; pt_idx <= eoffset; ++pt_idx) { 542 struct radeon_bo *pt; 543 544 if (vm->page_tables[pt_idx].bo) 545 continue; 546 547 /* drop mutex to allocate and clear page table */ 548 mutex_unlock(&vm->mutex); 549 550 r = radeon_bo_create(rdev, RADEON_VM_PTE_COUNT * 8, 551 RADEON_GPU_PAGE_SIZE, true, 552 RADEON_GEM_DOMAIN_VRAM, 0, 553 NULL, NULL, &pt); 554 if (r) 555 return r; 556 557 r = radeon_vm_clear_bo(rdev, pt); 558 if (r) { 559 radeon_bo_unref(&pt); 560 return r; 561 } 562 563 /* aquire mutex again */ 564 mutex_lock(&vm->mutex); 565 if (vm->page_tables[pt_idx].bo) { 566 /* someone else allocated the pt in the meantime */ 567 mutex_unlock(&vm->mutex); 568 radeon_bo_unref(&pt); 569 mutex_lock(&vm->mutex); 570 continue; 571 } 572 573 vm->page_tables[pt_idx].addr = 0; 574 vm->page_tables[pt_idx].bo = pt; 575 } 576 577 mutex_unlock(&vm->mutex); 578 return 0; 579 580 error_unreserve: 581 radeon_bo_unreserve(bo_va->bo); 582 return r; 583 } 584 585 /** 586 * radeon_vm_map_gart - get the physical address of a gart page 587 * 588 * @rdev: radeon_device pointer 589 * @addr: the unmapped addr 590 * 591 * Look up the physical address of the page that the pte resolves 592 * to (cayman+). 593 * Returns the physical address of the page. 594 */ 595 uint64_t radeon_vm_map_gart(struct radeon_device *rdev, uint64_t addr) 596 { 597 uint64_t result; 598 599 /* page table offset */ 600 result = rdev->gart.pages_entry[addr >> RADEON_GPU_PAGE_SHIFT]; 601 result &= ~RADEON_GPU_PAGE_MASK; 602 603 return result; 604 } 605 606 /** 607 * radeon_vm_page_flags - translate page flags to what the hw uses 608 * 609 * @flags: flags comming from userspace 610 * 611 * Translate the flags the userspace ABI uses to hw flags. 612 */ 613 static uint32_t radeon_vm_page_flags(uint32_t flags) 614 { 615 uint32_t hw_flags = 0; 616 617 hw_flags |= (flags & RADEON_VM_PAGE_VALID) ? R600_PTE_VALID : 0; 618 hw_flags |= (flags & RADEON_VM_PAGE_READABLE) ? R600_PTE_READABLE : 0; 619 hw_flags |= (flags & RADEON_VM_PAGE_WRITEABLE) ? R600_PTE_WRITEABLE : 0; 620 if (flags & RADEON_VM_PAGE_SYSTEM) { 621 hw_flags |= R600_PTE_SYSTEM; 622 hw_flags |= (flags & RADEON_VM_PAGE_SNOOPED) ? R600_PTE_SNOOPED : 0; 623 } 624 return hw_flags; 625 } 626 627 /** 628 * radeon_vm_update_pdes - make sure that page directory is valid 629 * 630 * @rdev: radeon_device pointer 631 * @vm: requested vm 632 * @start: start of GPU address range 633 * @end: end of GPU address range 634 * 635 * Allocates new page tables if necessary 636 * and updates the page directory (cayman+). 637 * Returns 0 for success, error for failure. 638 * 639 * Global and local mutex must be locked! 640 */ 641 int radeon_vm_update_page_directory(struct radeon_device *rdev, 642 struct radeon_vm *vm) 643 { 644 struct radeon_bo *pd = vm->page_directory; 645 uint64_t pd_addr = radeon_bo_gpu_offset(pd); 646 uint32_t incr = RADEON_VM_PTE_COUNT * 8; 647 uint64_t last_pde = ~0, last_pt = ~0; 648 unsigned count = 0, pt_idx, ndw; 649 struct radeon_ib ib; 650 int r; 651 652 /* padding, etc. */ 653 ndw = 64; 654 655 /* assume the worst case */ 656 ndw += vm->max_pde_used * 6; 657 658 /* update too big for an IB */ 659 if (ndw > 0xfffff) 660 return -ENOMEM; 661 662 r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, ndw * 4); 663 if (r) 664 return r; 665 ib.length_dw = 0; 666 667 /* walk over the address space and update the page directory */ 668 for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) { 669 struct radeon_bo *bo = vm->page_tables[pt_idx].bo; 670 uint64_t pde, pt; 671 672 if (bo == NULL) 673 continue; 674 675 pt = radeon_bo_gpu_offset(bo); 676 if (vm->page_tables[pt_idx].addr == pt) 677 continue; 678 vm->page_tables[pt_idx].addr = pt; 679 680 pde = pd_addr + pt_idx * 8; 681 if (((last_pde + 8 * count) != pde) || 682 ((last_pt + incr * count) != pt)) { 683 684 if (count) { 685 radeon_vm_set_pages(rdev, &ib, last_pde, 686 last_pt, count, incr, 687 R600_PTE_VALID); 688 } 689 690 count = 1; 691 last_pde = pde; 692 last_pt = pt; 693 } else { 694 ++count; 695 } 696 } 697 698 if (count) 699 radeon_vm_set_pages(rdev, &ib, last_pde, last_pt, count, 700 incr, R600_PTE_VALID); 701 702 if (ib.length_dw != 0) { 703 radeon_asic_vm_pad_ib(rdev, &ib); 704 705 radeon_sync_resv(rdev, &ib.sync, pd->tbo.resv, true); 706 WARN_ON(ib.length_dw > ndw); 707 r = radeon_ib_schedule(rdev, &ib, NULL, false); 708 if (r) { 709 radeon_ib_free(rdev, &ib); 710 return r; 711 } 712 ib.fence->is_vm_update = true; 713 radeon_bo_fence(pd, ib.fence, false); 714 } 715 radeon_ib_free(rdev, &ib); 716 717 return 0; 718 } 719 720 /** 721 * radeon_vm_frag_ptes - add fragment information to PTEs 722 * 723 * @rdev: radeon_device pointer 724 * @ib: IB for the update 725 * @pe_start: first PTE to handle 726 * @pe_end: last PTE to handle 727 * @addr: addr those PTEs should point to 728 * @flags: hw mapping flags 729 * 730 * Global and local mutex must be locked! 731 */ 732 static void radeon_vm_frag_ptes(struct radeon_device *rdev, 733 struct radeon_ib *ib, 734 uint64_t pe_start, uint64_t pe_end, 735 uint64_t addr, uint32_t flags) 736 { 737 /** 738 * The MC L1 TLB supports variable sized pages, based on a fragment 739 * field in the PTE. When this field is set to a non-zero value, page 740 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 741 * flags are considered valid for all PTEs within the fragment range 742 * and corresponding mappings are assumed to be physically contiguous. 743 * 744 * The L1 TLB can store a single PTE for the whole fragment, 745 * significantly increasing the space available for translation 746 * caching. This leads to large improvements in throughput when the 747 * TLB is under pressure. 748 * 749 * The L2 TLB distributes small and large fragments into two 750 * asymmetric partitions. The large fragment cache is significantly 751 * larger. Thus, we try to use large fragments wherever possible. 752 * Userspace can support this by aligning virtual base address and 753 * allocation size to the fragment size. 754 */ 755 756 /* NI is optimized for 256KB fragments, SI and newer for 64KB */ 757 uint64_t frag_flags = ((rdev->family == CHIP_CAYMAN) || 758 (rdev->family == CHIP_ARUBA)) ? 759 R600_PTE_FRAG_256KB : R600_PTE_FRAG_64KB; 760 uint64_t frag_align = ((rdev->family == CHIP_CAYMAN) || 761 (rdev->family == CHIP_ARUBA)) ? 0x200 : 0x80; 762 763 uint64_t frag_start = ALIGN(pe_start, frag_align); 764 uint64_t frag_end = pe_end & ~(frag_align - 1); 765 766 unsigned count; 767 768 /* system pages are non continuously */ 769 if ((flags & R600_PTE_SYSTEM) || !(flags & R600_PTE_VALID) || 770 (frag_start >= frag_end)) { 771 772 count = (pe_end - pe_start) / 8; 773 radeon_vm_set_pages(rdev, ib, pe_start, addr, count, 774 RADEON_GPU_PAGE_SIZE, flags); 775 return; 776 } 777 778 /* handle the 4K area at the beginning */ 779 if (pe_start != frag_start) { 780 count = (frag_start - pe_start) / 8; 781 radeon_vm_set_pages(rdev, ib, pe_start, addr, count, 782 RADEON_GPU_PAGE_SIZE, flags); 783 addr += RADEON_GPU_PAGE_SIZE * count; 784 } 785 786 /* handle the area in the middle */ 787 count = (frag_end - frag_start) / 8; 788 radeon_vm_set_pages(rdev, ib, frag_start, addr, count, 789 RADEON_GPU_PAGE_SIZE, flags | frag_flags); 790 791 /* handle the 4K area at the end */ 792 if (frag_end != pe_end) { 793 addr += RADEON_GPU_PAGE_SIZE * count; 794 count = (pe_end - frag_end) / 8; 795 radeon_vm_set_pages(rdev, ib, frag_end, addr, count, 796 RADEON_GPU_PAGE_SIZE, flags); 797 } 798 } 799 800 /** 801 * radeon_vm_update_ptes - make sure that page tables are valid 802 * 803 * @rdev: radeon_device pointer 804 * @vm: requested vm 805 * @start: start of GPU address range 806 * @end: end of GPU address range 807 * @dst: destination address to map to 808 * @flags: mapping flags 809 * 810 * Update the page tables in the range @start - @end (cayman+). 811 * 812 * Global and local mutex must be locked! 813 */ 814 static int radeon_vm_update_ptes(struct radeon_device *rdev, 815 struct radeon_vm *vm, 816 struct radeon_ib *ib, 817 uint64_t start, uint64_t end, 818 uint64_t dst, uint32_t flags) 819 { 820 uint64_t mask = RADEON_VM_PTE_COUNT - 1; 821 uint64_t last_pte = ~0, last_dst = ~0; 822 unsigned count = 0; 823 uint64_t addr; 824 825 /* walk over the address space and update the page tables */ 826 for (addr = start; addr < end; ) { 827 uint64_t pt_idx = addr >> radeon_vm_block_size; 828 struct radeon_bo *pt = vm->page_tables[pt_idx].bo; 829 unsigned nptes; 830 uint64_t pte; 831 int r; 832 833 radeon_sync_resv(rdev, &ib->sync, pt->tbo.resv, true); 834 r = reservation_object_reserve_shared(pt->tbo.resv); 835 if (r) 836 return r; 837 838 if ((addr & ~mask) == (end & ~mask)) 839 nptes = end - addr; 840 else 841 nptes = RADEON_VM_PTE_COUNT - (addr & mask); 842 843 pte = radeon_bo_gpu_offset(pt); 844 pte += (addr & mask) * 8; 845 846 if ((last_pte + 8 * count) != pte) { 847 848 if (count) { 849 radeon_vm_frag_ptes(rdev, ib, last_pte, 850 last_pte + 8 * count, 851 last_dst, flags); 852 } 853 854 count = nptes; 855 last_pte = pte; 856 last_dst = dst; 857 } else { 858 count += nptes; 859 } 860 861 addr += nptes; 862 dst += nptes * RADEON_GPU_PAGE_SIZE; 863 } 864 865 if (count) { 866 radeon_vm_frag_ptes(rdev, ib, last_pte, 867 last_pte + 8 * count, 868 last_dst, flags); 869 } 870 871 return 0; 872 } 873 874 /** 875 * radeon_vm_fence_pts - fence page tables after an update 876 * 877 * @vm: requested vm 878 * @start: start of GPU address range 879 * @end: end of GPU address range 880 * @fence: fence to use 881 * 882 * Fence the page tables in the range @start - @end (cayman+). 883 * 884 * Global and local mutex must be locked! 885 */ 886 static void radeon_vm_fence_pts(struct radeon_vm *vm, 887 uint64_t start, uint64_t end, 888 struct radeon_fence *fence) 889 { 890 unsigned i; 891 892 start >>= radeon_vm_block_size; 893 end = (end - 1) >> radeon_vm_block_size; 894 895 for (i = start; i <= end; ++i) 896 radeon_bo_fence(vm->page_tables[i].bo, fence, true); 897 } 898 899 /** 900 * radeon_vm_bo_update - map a bo into the vm page table 901 * 902 * @rdev: radeon_device pointer 903 * @vm: requested vm 904 * @bo: radeon buffer object 905 * @mem: ttm mem 906 * 907 * Fill in the page table entries for @bo (cayman+). 908 * Returns 0 for success, -EINVAL for failure. 909 * 910 * Object have to be reserved and mutex must be locked! 911 */ 912 int radeon_vm_bo_update(struct radeon_device *rdev, 913 struct radeon_bo_va *bo_va, 914 struct ttm_mem_reg *mem) 915 { 916 struct radeon_vm *vm = bo_va->vm; 917 struct radeon_ib ib; 918 unsigned nptes, ncmds, ndw; 919 uint64_t addr; 920 uint32_t flags; 921 int r; 922 923 if (!bo_va->it.start) { 924 dev_err(rdev->dev, "bo %p don't has a mapping in vm %p\n", 925 bo_va->bo, vm); 926 return -EINVAL; 927 } 928 929 spin_lock(&vm->status_lock); 930 if (mem) { 931 if (list_empty(&bo_va->vm_status)) { 932 spin_unlock(&vm->status_lock); 933 return 0; 934 } 935 list_del_init(&bo_va->vm_status); 936 } else { 937 list_del(&bo_va->vm_status); 938 list_add(&bo_va->vm_status, &vm->cleared); 939 } 940 spin_unlock(&vm->status_lock); 941 942 bo_va->flags &= ~RADEON_VM_PAGE_VALID; 943 bo_va->flags &= ~RADEON_VM_PAGE_SYSTEM; 944 bo_va->flags &= ~RADEON_VM_PAGE_SNOOPED; 945 if (bo_va->bo && radeon_ttm_tt_is_readonly(bo_va->bo->tbo.ttm)) 946 bo_va->flags &= ~RADEON_VM_PAGE_WRITEABLE; 947 948 if (mem) { 949 addr = mem->start << PAGE_SHIFT; 950 if (mem->mem_type != TTM_PL_SYSTEM) { 951 bo_va->flags |= RADEON_VM_PAGE_VALID; 952 } 953 if (mem->mem_type == TTM_PL_TT) { 954 bo_va->flags |= RADEON_VM_PAGE_SYSTEM; 955 if (!(bo_va->bo->flags & (RADEON_GEM_GTT_WC | RADEON_GEM_GTT_UC))) 956 bo_va->flags |= RADEON_VM_PAGE_SNOOPED; 957 958 } else { 959 addr += rdev->vm_manager.vram_base_offset; 960 } 961 } else { 962 addr = 0; 963 } 964 965 trace_radeon_vm_bo_update(bo_va); 966 967 nptes = bo_va->it.last - bo_va->it.start + 1; 968 969 /* reserve space for one command every (1 << BLOCK_SIZE) entries 970 or 2k dwords (whatever is smaller) */ 971 ncmds = (nptes >> min(radeon_vm_block_size, 11)) + 1; 972 973 /* padding, etc. */ 974 ndw = 64; 975 976 flags = radeon_vm_page_flags(bo_va->flags); 977 if ((flags & R600_PTE_GART_MASK) == R600_PTE_GART_MASK) { 978 /* only copy commands needed */ 979 ndw += ncmds * 7; 980 981 } else if (flags & R600_PTE_SYSTEM) { 982 /* header for write data commands */ 983 ndw += ncmds * 4; 984 985 /* body of write data command */ 986 ndw += nptes * 2; 987 988 } else { 989 /* set page commands needed */ 990 ndw += ncmds * 10; 991 992 /* two extra commands for begin/end of fragment */ 993 ndw += 2 * 10; 994 } 995 996 /* update too big for an IB */ 997 if (ndw > 0xfffff) 998 return -ENOMEM; 999 1000 r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, ndw * 4); 1001 if (r) 1002 return r; 1003 ib.length_dw = 0; 1004 1005 if (!(bo_va->flags & RADEON_VM_PAGE_VALID)) { 1006 unsigned i; 1007 1008 for (i = 0; i < RADEON_NUM_RINGS; ++i) 1009 radeon_sync_fence(&ib.sync, vm->ids[i].last_id_use); 1010 } 1011 1012 r = radeon_vm_update_ptes(rdev, vm, &ib, bo_va->it.start, 1013 bo_va->it.last + 1, addr, 1014 radeon_vm_page_flags(bo_va->flags)); 1015 if (r) { 1016 radeon_ib_free(rdev, &ib); 1017 return r; 1018 } 1019 1020 radeon_asic_vm_pad_ib(rdev, &ib); 1021 WARN_ON(ib.length_dw > ndw); 1022 1023 r = radeon_ib_schedule(rdev, &ib, NULL, false); 1024 if (r) { 1025 radeon_ib_free(rdev, &ib); 1026 return r; 1027 } 1028 ib.fence->is_vm_update = true; 1029 radeon_vm_fence_pts(vm, bo_va->it.start, bo_va->it.last + 1, ib.fence); 1030 radeon_fence_unref(&bo_va->last_pt_update); 1031 bo_va->last_pt_update = radeon_fence_ref(ib.fence); 1032 radeon_ib_free(rdev, &ib); 1033 1034 return 0; 1035 } 1036 1037 /** 1038 * radeon_vm_clear_freed - clear freed BOs in the PT 1039 * 1040 * @rdev: radeon_device pointer 1041 * @vm: requested vm 1042 * 1043 * Make sure all freed BOs are cleared in the PT. 1044 * Returns 0 for success. 1045 * 1046 * PTs have to be reserved and mutex must be locked! 1047 */ 1048 int radeon_vm_clear_freed(struct radeon_device *rdev, 1049 struct radeon_vm *vm) 1050 { 1051 struct radeon_bo_va *bo_va; 1052 int r = 0; 1053 1054 spin_lock(&vm->status_lock); 1055 while (!list_empty(&vm->freed)) { 1056 bo_va = list_first_entry(&vm->freed, 1057 struct radeon_bo_va, vm_status); 1058 spin_unlock(&vm->status_lock); 1059 1060 r = radeon_vm_bo_update(rdev, bo_va, NULL); 1061 radeon_bo_unref(&bo_va->bo); 1062 radeon_fence_unref(&bo_va->last_pt_update); 1063 spin_lock(&vm->status_lock); 1064 list_del(&bo_va->vm_status); 1065 kfree(bo_va); 1066 if (r) 1067 break; 1068 1069 } 1070 spin_unlock(&vm->status_lock); 1071 return r; 1072 1073 } 1074 1075 /** 1076 * radeon_vm_clear_invalids - clear invalidated BOs in the PT 1077 * 1078 * @rdev: radeon_device pointer 1079 * @vm: requested vm 1080 * 1081 * Make sure all invalidated BOs are cleared in the PT. 1082 * Returns 0 for success. 1083 * 1084 * PTs have to be reserved and mutex must be locked! 1085 */ 1086 int radeon_vm_clear_invalids(struct radeon_device *rdev, 1087 struct radeon_vm *vm) 1088 { 1089 struct radeon_bo_va *bo_va; 1090 int r; 1091 1092 spin_lock(&vm->status_lock); 1093 while (!list_empty(&vm->invalidated)) { 1094 bo_va = list_first_entry(&vm->invalidated, 1095 struct radeon_bo_va, vm_status); 1096 spin_unlock(&vm->status_lock); 1097 1098 r = radeon_vm_bo_update(rdev, bo_va, NULL); 1099 if (r) 1100 return r; 1101 1102 spin_lock(&vm->status_lock); 1103 } 1104 spin_unlock(&vm->status_lock); 1105 1106 return 0; 1107 } 1108 1109 /** 1110 * radeon_vm_bo_rmv - remove a bo to a specific vm 1111 * 1112 * @rdev: radeon_device pointer 1113 * @bo_va: requested bo_va 1114 * 1115 * Remove @bo_va->bo from the requested vm (cayman+). 1116 * 1117 * Object have to be reserved! 1118 */ 1119 void radeon_vm_bo_rmv(struct radeon_device *rdev, 1120 struct radeon_bo_va *bo_va) 1121 { 1122 struct radeon_vm *vm = bo_va->vm; 1123 1124 list_del(&bo_va->bo_list); 1125 1126 mutex_lock(&vm->mutex); 1127 if (bo_va->it.start || bo_va->it.last) 1128 interval_tree_remove(&bo_va->it, &vm->va); 1129 1130 spin_lock(&vm->status_lock); 1131 list_del(&bo_va->vm_status); 1132 if (bo_va->it.start || bo_va->it.last) { 1133 bo_va->bo = radeon_bo_ref(bo_va->bo); 1134 list_add(&bo_va->vm_status, &vm->freed); 1135 } else { 1136 radeon_fence_unref(&bo_va->last_pt_update); 1137 kfree(bo_va); 1138 } 1139 spin_unlock(&vm->status_lock); 1140 1141 mutex_unlock(&vm->mutex); 1142 } 1143 1144 /** 1145 * radeon_vm_bo_invalidate - mark the bo as invalid 1146 * 1147 * @rdev: radeon_device pointer 1148 * @vm: requested vm 1149 * @bo: radeon buffer object 1150 * 1151 * Mark @bo as invalid (cayman+). 1152 */ 1153 void radeon_vm_bo_invalidate(struct radeon_device *rdev, 1154 struct radeon_bo *bo) 1155 { 1156 struct radeon_bo_va *bo_va; 1157 1158 list_for_each_entry(bo_va, &bo->va, bo_list) { 1159 spin_lock(&bo_va->vm->status_lock); 1160 if (list_empty(&bo_va->vm_status) && 1161 (bo_va->it.start || bo_va->it.last)) 1162 list_add(&bo_va->vm_status, &bo_va->vm->invalidated); 1163 spin_unlock(&bo_va->vm->status_lock); 1164 } 1165 } 1166 1167 /** 1168 * radeon_vm_init - initialize a vm instance 1169 * 1170 * @rdev: radeon_device pointer 1171 * @vm: requested vm 1172 * 1173 * Init @vm fields (cayman+). 1174 */ 1175 int radeon_vm_init(struct radeon_device *rdev, struct radeon_vm *vm) 1176 { 1177 const unsigned align = min(RADEON_VM_PTB_ALIGN_SIZE, 1178 RADEON_VM_PTE_COUNT * 8); 1179 unsigned pd_size, pd_entries, pts_size; 1180 int i, r; 1181 1182 vm->ib_bo_va = NULL; 1183 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 1184 vm->ids[i].id = 0; 1185 vm->ids[i].flushed_updates = NULL; 1186 vm->ids[i].last_id_use = NULL; 1187 } 1188 mutex_init(&vm->mutex); 1189 vm->va = RB_ROOT_CACHED; 1190 spin_lock_init(&vm->status_lock); 1191 INIT_LIST_HEAD(&vm->invalidated); 1192 INIT_LIST_HEAD(&vm->freed); 1193 INIT_LIST_HEAD(&vm->cleared); 1194 1195 pd_size = radeon_vm_directory_size(rdev); 1196 pd_entries = radeon_vm_num_pdes(rdev); 1197 1198 /* allocate page table array */ 1199 pts_size = pd_entries * sizeof(struct radeon_vm_pt); 1200 vm->page_tables = kzalloc(pts_size, GFP_KERNEL); 1201 if (vm->page_tables == NULL) { 1202 DRM_ERROR("Cannot allocate memory for page table array\n"); 1203 return -ENOMEM; 1204 } 1205 1206 r = radeon_bo_create(rdev, pd_size, align, true, 1207 RADEON_GEM_DOMAIN_VRAM, 0, NULL, 1208 NULL, &vm->page_directory); 1209 if (r) 1210 return r; 1211 1212 r = radeon_vm_clear_bo(rdev, vm->page_directory); 1213 if (r) { 1214 radeon_bo_unref(&vm->page_directory); 1215 vm->page_directory = NULL; 1216 return r; 1217 } 1218 1219 return 0; 1220 } 1221 1222 /** 1223 * radeon_vm_fini - tear down a vm instance 1224 * 1225 * @rdev: radeon_device pointer 1226 * @vm: requested vm 1227 * 1228 * Tear down @vm (cayman+). 1229 * Unbind the VM and remove all bos from the vm bo list 1230 */ 1231 void radeon_vm_fini(struct radeon_device *rdev, struct radeon_vm *vm) 1232 { 1233 struct radeon_bo_va *bo_va, *tmp; 1234 int i, r; 1235 1236 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 1237 dev_err(rdev->dev, "still active bo inside vm\n"); 1238 } 1239 rbtree_postorder_for_each_entry_safe(bo_va, tmp, 1240 &vm->va.rb_root, it.rb) { 1241 interval_tree_remove(&bo_va->it, &vm->va); 1242 r = radeon_bo_reserve(bo_va->bo, false); 1243 if (!r) { 1244 list_del_init(&bo_va->bo_list); 1245 radeon_bo_unreserve(bo_va->bo); 1246 radeon_fence_unref(&bo_va->last_pt_update); 1247 kfree(bo_va); 1248 } 1249 } 1250 list_for_each_entry_safe(bo_va, tmp, &vm->freed, vm_status) { 1251 radeon_bo_unref(&bo_va->bo); 1252 radeon_fence_unref(&bo_va->last_pt_update); 1253 kfree(bo_va); 1254 } 1255 1256 for (i = 0; i < radeon_vm_num_pdes(rdev); i++) 1257 radeon_bo_unref(&vm->page_tables[i].bo); 1258 kfree(vm->page_tables); 1259 1260 radeon_bo_unref(&vm->page_directory); 1261 1262 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 1263 radeon_fence_unref(&vm->ids[i].flushed_updates); 1264 radeon_fence_unref(&vm->ids[i].last_id_use); 1265 } 1266 1267 mutex_destroy(&vm->mutex); 1268 } 1269