1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <drm/drmP.h> 29 #include <drm/radeon_drm.h> 30 #include "radeon.h" 31 #include "radeon_trace.h" 32 33 /* 34 * GPUVM 35 * GPUVM is similar to the legacy gart on older asics, however 36 * rather than there being a single global gart table 37 * for the entire GPU, there are multiple VM page tables active 38 * at any given time. The VM page tables can contain a mix 39 * vram pages and system memory pages and system memory pages 40 * can be mapped as snooped (cached system pages) or unsnooped 41 * (uncached system pages). 42 * Each VM has an ID associated with it and there is a page table 43 * associated with each VMID. When execting a command buffer, 44 * the kernel tells the the ring what VMID to use for that command 45 * buffer. VMIDs are allocated dynamically as commands are submitted. 46 * The userspace drivers maintain their own address space and the kernel 47 * sets up their pages tables accordingly when they submit their 48 * command buffers and a VMID is assigned. 49 * Cayman/Trinity support up to 8 active VMs at any given time; 50 * SI supports 16. 51 */ 52 53 /** 54 * radeon_vm_num_pde - return the number of page directory entries 55 * 56 * @rdev: radeon_device pointer 57 * 58 * Calculate the number of page directory entries (cayman+). 59 */ 60 static unsigned radeon_vm_num_pdes(struct radeon_device *rdev) 61 { 62 return rdev->vm_manager.max_pfn >> radeon_vm_block_size; 63 } 64 65 /** 66 * radeon_vm_directory_size - returns the size of the page directory in bytes 67 * 68 * @rdev: radeon_device pointer 69 * 70 * Calculate the size of the page directory in bytes (cayman+). 71 */ 72 static unsigned radeon_vm_directory_size(struct radeon_device *rdev) 73 { 74 return RADEON_GPU_PAGE_ALIGN(radeon_vm_num_pdes(rdev) * 8); 75 } 76 77 /** 78 * radeon_vm_manager_init - init the vm manager 79 * 80 * @rdev: radeon_device pointer 81 * 82 * Init the vm manager (cayman+). 83 * Returns 0 for success, error for failure. 84 */ 85 int radeon_vm_manager_init(struct radeon_device *rdev) 86 { 87 int r; 88 89 if (!rdev->vm_manager.enabled) { 90 r = radeon_asic_vm_init(rdev); 91 if (r) 92 return r; 93 94 rdev->vm_manager.enabled = true; 95 } 96 return 0; 97 } 98 99 /** 100 * radeon_vm_manager_fini - tear down the vm manager 101 * 102 * @rdev: radeon_device pointer 103 * 104 * Tear down the VM manager (cayman+). 105 */ 106 void radeon_vm_manager_fini(struct radeon_device *rdev) 107 { 108 int i; 109 110 if (!rdev->vm_manager.enabled) 111 return; 112 113 for (i = 0; i < RADEON_NUM_VM; ++i) 114 radeon_fence_unref(&rdev->vm_manager.active[i]); 115 radeon_asic_vm_fini(rdev); 116 rdev->vm_manager.enabled = false; 117 } 118 119 /** 120 * radeon_vm_get_bos - add the vm BOs to a validation list 121 * 122 * @vm: vm providing the BOs 123 * @head: head of validation list 124 * 125 * Add the page directory to the list of BOs to 126 * validate for command submission (cayman+). 127 */ 128 struct radeon_bo_list *radeon_vm_get_bos(struct radeon_device *rdev, 129 struct radeon_vm *vm, 130 struct list_head *head) 131 { 132 struct radeon_bo_list *list; 133 unsigned i, idx; 134 135 list = drm_malloc_ab(vm->max_pde_used + 2, 136 sizeof(struct radeon_bo_list)); 137 if (!list) 138 return NULL; 139 140 /* add the vm page table to the list */ 141 list[0].robj = vm->page_directory; 142 list[0].prefered_domains = RADEON_GEM_DOMAIN_VRAM; 143 list[0].allowed_domains = RADEON_GEM_DOMAIN_VRAM; 144 list[0].tv.bo = &vm->page_directory->tbo; 145 list[0].tv.shared = true; 146 list[0].tiling_flags = 0; 147 list_add(&list[0].tv.head, head); 148 149 for (i = 0, idx = 1; i <= vm->max_pde_used; i++) { 150 if (!vm->page_tables[i].bo) 151 continue; 152 153 list[idx].robj = vm->page_tables[i].bo; 154 list[idx].prefered_domains = RADEON_GEM_DOMAIN_VRAM; 155 list[idx].allowed_domains = RADEON_GEM_DOMAIN_VRAM; 156 list[idx].tv.bo = &list[idx].robj->tbo; 157 list[idx].tv.shared = true; 158 list[idx].tiling_flags = 0; 159 list_add(&list[idx++].tv.head, head); 160 } 161 162 return list; 163 } 164 165 /** 166 * radeon_vm_grab_id - allocate the next free VMID 167 * 168 * @rdev: radeon_device pointer 169 * @vm: vm to allocate id for 170 * @ring: ring we want to submit job to 171 * 172 * Allocate an id for the vm (cayman+). 173 * Returns the fence we need to sync to (if any). 174 * 175 * Global and local mutex must be locked! 176 */ 177 struct radeon_fence *radeon_vm_grab_id(struct radeon_device *rdev, 178 struct radeon_vm *vm, int ring) 179 { 180 struct radeon_fence *best[RADEON_NUM_RINGS] = {}; 181 struct radeon_vm_id *vm_id = &vm->ids[ring]; 182 183 unsigned choices[2] = {}; 184 unsigned i; 185 186 /* check if the id is still valid */ 187 if (vm_id->id && vm_id->last_id_use && 188 vm_id->last_id_use == rdev->vm_manager.active[vm_id->id]) 189 return NULL; 190 191 /* we definately need to flush */ 192 vm_id->pd_gpu_addr = ~0ll; 193 194 /* skip over VMID 0, since it is the system VM */ 195 for (i = 1; i < rdev->vm_manager.nvm; ++i) { 196 struct radeon_fence *fence = rdev->vm_manager.active[i]; 197 198 if (fence == NULL) { 199 /* found a free one */ 200 vm_id->id = i; 201 trace_radeon_vm_grab_id(i, ring); 202 return NULL; 203 } 204 205 if (radeon_fence_is_earlier(fence, best[fence->ring])) { 206 best[fence->ring] = fence; 207 choices[fence->ring == ring ? 0 : 1] = i; 208 } 209 } 210 211 for (i = 0; i < 2; ++i) { 212 if (choices[i]) { 213 vm_id->id = choices[i]; 214 trace_radeon_vm_grab_id(choices[i], ring); 215 return rdev->vm_manager.active[choices[i]]; 216 } 217 } 218 219 /* should never happen */ 220 BUG(); 221 return NULL; 222 } 223 224 /** 225 * radeon_vm_flush - hardware flush the vm 226 * 227 * @rdev: radeon_device pointer 228 * @vm: vm we want to flush 229 * @ring: ring to use for flush 230 * @updates: last vm update that is waited for 231 * 232 * Flush the vm (cayman+). 233 * 234 * Global and local mutex must be locked! 235 */ 236 void radeon_vm_flush(struct radeon_device *rdev, 237 struct radeon_vm *vm, 238 int ring, struct radeon_fence *updates) 239 { 240 uint64_t pd_addr = radeon_bo_gpu_offset(vm->page_directory); 241 struct radeon_vm_id *vm_id = &vm->ids[ring]; 242 243 if (pd_addr != vm_id->pd_gpu_addr || !vm_id->flushed_updates || 244 radeon_fence_is_earlier(vm_id->flushed_updates, updates)) { 245 246 trace_radeon_vm_flush(pd_addr, ring, vm->ids[ring].id); 247 radeon_fence_unref(&vm_id->flushed_updates); 248 vm_id->flushed_updates = radeon_fence_ref(updates); 249 vm_id->pd_gpu_addr = pd_addr; 250 radeon_ring_vm_flush(rdev, &rdev->ring[ring], 251 vm_id->id, vm_id->pd_gpu_addr); 252 253 } 254 } 255 256 /** 257 * radeon_vm_fence - remember fence for vm 258 * 259 * @rdev: radeon_device pointer 260 * @vm: vm we want to fence 261 * @fence: fence to remember 262 * 263 * Fence the vm (cayman+). 264 * Set the fence used to protect page table and id. 265 * 266 * Global and local mutex must be locked! 267 */ 268 void radeon_vm_fence(struct radeon_device *rdev, 269 struct radeon_vm *vm, 270 struct radeon_fence *fence) 271 { 272 unsigned vm_id = vm->ids[fence->ring].id; 273 274 radeon_fence_unref(&rdev->vm_manager.active[vm_id]); 275 rdev->vm_manager.active[vm_id] = radeon_fence_ref(fence); 276 277 radeon_fence_unref(&vm->ids[fence->ring].last_id_use); 278 vm->ids[fence->ring].last_id_use = radeon_fence_ref(fence); 279 } 280 281 /** 282 * radeon_vm_bo_find - find the bo_va for a specific vm & bo 283 * 284 * @vm: requested vm 285 * @bo: requested buffer object 286 * 287 * Find @bo inside the requested vm (cayman+). 288 * Search inside the @bos vm list for the requested vm 289 * Returns the found bo_va or NULL if none is found 290 * 291 * Object has to be reserved! 292 */ 293 struct radeon_bo_va *radeon_vm_bo_find(struct radeon_vm *vm, 294 struct radeon_bo *bo) 295 { 296 struct radeon_bo_va *bo_va; 297 298 list_for_each_entry(bo_va, &bo->va, bo_list) { 299 if (bo_va->vm == vm) { 300 return bo_va; 301 } 302 } 303 return NULL; 304 } 305 306 /** 307 * radeon_vm_bo_add - add a bo to a specific vm 308 * 309 * @rdev: radeon_device pointer 310 * @vm: requested vm 311 * @bo: radeon buffer object 312 * 313 * Add @bo into the requested vm (cayman+). 314 * Add @bo to the list of bos associated with the vm 315 * Returns newly added bo_va or NULL for failure 316 * 317 * Object has to be reserved! 318 */ 319 struct radeon_bo_va *radeon_vm_bo_add(struct radeon_device *rdev, 320 struct radeon_vm *vm, 321 struct radeon_bo *bo) 322 { 323 struct radeon_bo_va *bo_va; 324 325 bo_va = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL); 326 if (bo_va == NULL) { 327 return NULL; 328 } 329 bo_va->vm = vm; 330 bo_va->bo = bo; 331 bo_va->it.start = 0; 332 bo_va->it.last = 0; 333 bo_va->flags = 0; 334 bo_va->ref_count = 1; 335 INIT_LIST_HEAD(&bo_va->bo_list); 336 INIT_LIST_HEAD(&bo_va->vm_status); 337 338 mutex_lock(&vm->mutex); 339 list_add_tail(&bo_va->bo_list, &bo->va); 340 mutex_unlock(&vm->mutex); 341 342 return bo_va; 343 } 344 345 /** 346 * radeon_vm_set_pages - helper to call the right asic function 347 * 348 * @rdev: radeon_device pointer 349 * @ib: indirect buffer to fill with commands 350 * @pe: addr of the page entry 351 * @addr: dst addr to write into pe 352 * @count: number of page entries to update 353 * @incr: increase next addr by incr bytes 354 * @flags: hw access flags 355 * 356 * Traces the parameters and calls the right asic functions 357 * to setup the page table using the DMA. 358 */ 359 static void radeon_vm_set_pages(struct radeon_device *rdev, 360 struct radeon_ib *ib, 361 uint64_t pe, 362 uint64_t addr, unsigned count, 363 uint32_t incr, uint32_t flags) 364 { 365 trace_radeon_vm_set_page(pe, addr, count, incr, flags); 366 367 if ((flags & R600_PTE_GART_MASK) == R600_PTE_GART_MASK) { 368 uint64_t src = rdev->gart.table_addr + (addr >> 12) * 8; 369 radeon_asic_vm_copy_pages(rdev, ib, pe, src, count); 370 371 } else if ((flags & R600_PTE_SYSTEM) || (count < 3)) { 372 radeon_asic_vm_write_pages(rdev, ib, pe, addr, 373 count, incr, flags); 374 375 } else { 376 radeon_asic_vm_set_pages(rdev, ib, pe, addr, 377 count, incr, flags); 378 } 379 } 380 381 /** 382 * radeon_vm_clear_bo - initially clear the page dir/table 383 * 384 * @rdev: radeon_device pointer 385 * @bo: bo to clear 386 */ 387 static int radeon_vm_clear_bo(struct radeon_device *rdev, 388 struct radeon_bo *bo) 389 { 390 struct radeon_ib ib; 391 unsigned entries; 392 uint64_t addr; 393 int r; 394 395 r = radeon_bo_reserve(bo, false); 396 if (r) 397 return r; 398 399 r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false); 400 if (r) 401 goto error_unreserve; 402 403 addr = radeon_bo_gpu_offset(bo); 404 entries = radeon_bo_size(bo) / 8; 405 406 r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, 256); 407 if (r) 408 goto error_unreserve; 409 410 ib.length_dw = 0; 411 412 radeon_vm_set_pages(rdev, &ib, addr, 0, entries, 0, 0); 413 radeon_asic_vm_pad_ib(rdev, &ib); 414 WARN_ON(ib.length_dw > 64); 415 416 r = radeon_ib_schedule(rdev, &ib, NULL, false); 417 if (r) 418 goto error_free; 419 420 ib.fence->is_vm_update = true; 421 radeon_bo_fence(bo, ib.fence, false); 422 423 error_free: 424 radeon_ib_free(rdev, &ib); 425 426 error_unreserve: 427 radeon_bo_unreserve(bo); 428 return r; 429 } 430 431 /** 432 * radeon_vm_bo_set_addr - set bos virtual address inside a vm 433 * 434 * @rdev: radeon_device pointer 435 * @bo_va: bo_va to store the address 436 * @soffset: requested offset of the buffer in the VM address space 437 * @flags: attributes of pages (read/write/valid/etc.) 438 * 439 * Set offset of @bo_va (cayman+). 440 * Validate and set the offset requested within the vm address space. 441 * Returns 0 for success, error for failure. 442 * 443 * Object has to be reserved and gets unreserved by this function! 444 */ 445 int radeon_vm_bo_set_addr(struct radeon_device *rdev, 446 struct radeon_bo_va *bo_va, 447 uint64_t soffset, 448 uint32_t flags) 449 { 450 uint64_t size = radeon_bo_size(bo_va->bo); 451 struct radeon_vm *vm = bo_va->vm; 452 unsigned last_pfn, pt_idx; 453 uint64_t eoffset; 454 int r; 455 456 if (soffset) { 457 /* make sure object fit at this offset */ 458 eoffset = soffset + size; 459 if (soffset >= eoffset) { 460 return -EINVAL; 461 } 462 463 last_pfn = eoffset / RADEON_GPU_PAGE_SIZE; 464 if (last_pfn > rdev->vm_manager.max_pfn) { 465 dev_err(rdev->dev, "va above limit (0x%08X > 0x%08X)\n", 466 last_pfn, rdev->vm_manager.max_pfn); 467 return -EINVAL; 468 } 469 470 } else { 471 eoffset = last_pfn = 0; 472 } 473 474 mutex_lock(&vm->mutex); 475 soffset /= RADEON_GPU_PAGE_SIZE; 476 eoffset /= RADEON_GPU_PAGE_SIZE; 477 if (soffset || eoffset) { 478 struct interval_tree_node *it; 479 it = interval_tree_iter_first(&vm->va, soffset, eoffset - 1); 480 if (it && it != &bo_va->it) { 481 struct radeon_bo_va *tmp; 482 tmp = container_of(it, struct radeon_bo_va, it); 483 /* bo and tmp overlap, invalid offset */ 484 dev_err(rdev->dev, "bo %p va 0x%010Lx conflict with " 485 "(bo %p 0x%010lx 0x%010lx)\n", bo_va->bo, 486 soffset, tmp->bo, tmp->it.start, tmp->it.last); 487 mutex_unlock(&vm->mutex); 488 return -EINVAL; 489 } 490 } 491 492 if (bo_va->it.start || bo_va->it.last) { 493 spin_lock(&vm->status_lock); 494 if (list_empty(&bo_va->vm_status)) { 495 /* add a clone of the bo_va to clear the old address */ 496 struct radeon_bo_va *tmp; 497 spin_unlock(&vm->status_lock); 498 tmp = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL); 499 if (!tmp) { 500 mutex_unlock(&vm->mutex); 501 return -ENOMEM; 502 } 503 tmp->it.start = bo_va->it.start; 504 tmp->it.last = bo_va->it.last; 505 tmp->vm = vm; 506 tmp->bo = radeon_bo_ref(bo_va->bo); 507 spin_lock(&vm->status_lock); 508 list_add(&tmp->vm_status, &vm->freed); 509 } 510 spin_unlock(&vm->status_lock); 511 512 interval_tree_remove(&bo_va->it, &vm->va); 513 bo_va->it.start = 0; 514 bo_va->it.last = 0; 515 } 516 517 if (soffset || eoffset) { 518 bo_va->it.start = soffset; 519 bo_va->it.last = eoffset - 1; 520 interval_tree_insert(&bo_va->it, &vm->va); 521 spin_lock(&vm->status_lock); 522 list_add(&bo_va->vm_status, &vm->cleared); 523 spin_unlock(&vm->status_lock); 524 } 525 526 bo_va->flags = flags; 527 528 soffset >>= radeon_vm_block_size; 529 eoffset >>= radeon_vm_block_size; 530 531 BUG_ON(eoffset >= radeon_vm_num_pdes(rdev)); 532 533 if (eoffset > vm->max_pde_used) 534 vm->max_pde_used = eoffset; 535 536 radeon_bo_unreserve(bo_va->bo); 537 538 /* walk over the address space and allocate the page tables */ 539 for (pt_idx = soffset; pt_idx <= eoffset; ++pt_idx) { 540 struct radeon_bo *pt; 541 542 if (vm->page_tables[pt_idx].bo) 543 continue; 544 545 /* drop mutex to allocate and clear page table */ 546 mutex_unlock(&vm->mutex); 547 548 r = radeon_bo_create(rdev, RADEON_VM_PTE_COUNT * 8, 549 RADEON_GPU_PAGE_SIZE, true, 550 RADEON_GEM_DOMAIN_VRAM, 0, 551 NULL, NULL, &pt); 552 if (r) 553 return r; 554 555 r = radeon_vm_clear_bo(rdev, pt); 556 if (r) { 557 radeon_bo_unref(&pt); 558 radeon_bo_reserve(bo_va->bo, false); 559 return r; 560 } 561 562 /* aquire mutex again */ 563 mutex_lock(&vm->mutex); 564 if (vm->page_tables[pt_idx].bo) { 565 /* someone else allocated the pt in the meantime */ 566 mutex_unlock(&vm->mutex); 567 radeon_bo_unref(&pt); 568 mutex_lock(&vm->mutex); 569 continue; 570 } 571 572 vm->page_tables[pt_idx].addr = 0; 573 vm->page_tables[pt_idx].bo = pt; 574 } 575 576 mutex_unlock(&vm->mutex); 577 return 0; 578 } 579 580 /** 581 * radeon_vm_map_gart - get the physical address of a gart page 582 * 583 * @rdev: radeon_device pointer 584 * @addr: the unmapped addr 585 * 586 * Look up the physical address of the page that the pte resolves 587 * to (cayman+). 588 * Returns the physical address of the page. 589 */ 590 uint64_t radeon_vm_map_gart(struct radeon_device *rdev, uint64_t addr) 591 { 592 uint64_t result; 593 594 /* page table offset */ 595 result = rdev->gart.pages_entry[addr >> RADEON_GPU_PAGE_SHIFT]; 596 result &= ~RADEON_GPU_PAGE_MASK; 597 598 return result; 599 } 600 601 /** 602 * radeon_vm_page_flags - translate page flags to what the hw uses 603 * 604 * @flags: flags comming from userspace 605 * 606 * Translate the flags the userspace ABI uses to hw flags. 607 */ 608 static uint32_t radeon_vm_page_flags(uint32_t flags) 609 { 610 uint32_t hw_flags = 0; 611 hw_flags |= (flags & RADEON_VM_PAGE_VALID) ? R600_PTE_VALID : 0; 612 hw_flags |= (flags & RADEON_VM_PAGE_READABLE) ? R600_PTE_READABLE : 0; 613 hw_flags |= (flags & RADEON_VM_PAGE_WRITEABLE) ? R600_PTE_WRITEABLE : 0; 614 if (flags & RADEON_VM_PAGE_SYSTEM) { 615 hw_flags |= R600_PTE_SYSTEM; 616 hw_flags |= (flags & RADEON_VM_PAGE_SNOOPED) ? R600_PTE_SNOOPED : 0; 617 } 618 return hw_flags; 619 } 620 621 /** 622 * radeon_vm_update_pdes - make sure that page directory is valid 623 * 624 * @rdev: radeon_device pointer 625 * @vm: requested vm 626 * @start: start of GPU address range 627 * @end: end of GPU address range 628 * 629 * Allocates new page tables if necessary 630 * and updates the page directory (cayman+). 631 * Returns 0 for success, error for failure. 632 * 633 * Global and local mutex must be locked! 634 */ 635 int radeon_vm_update_page_directory(struct radeon_device *rdev, 636 struct radeon_vm *vm) 637 { 638 struct radeon_bo *pd = vm->page_directory; 639 uint64_t pd_addr = radeon_bo_gpu_offset(pd); 640 uint32_t incr = RADEON_VM_PTE_COUNT * 8; 641 uint64_t last_pde = ~0, last_pt = ~0; 642 unsigned count = 0, pt_idx, ndw; 643 struct radeon_ib ib; 644 int r; 645 646 /* padding, etc. */ 647 ndw = 64; 648 649 /* assume the worst case */ 650 ndw += vm->max_pde_used * 6; 651 652 /* update too big for an IB */ 653 if (ndw > 0xfffff) 654 return -ENOMEM; 655 656 r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, ndw * 4); 657 if (r) 658 return r; 659 ib.length_dw = 0; 660 661 /* walk over the address space and update the page directory */ 662 for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) { 663 struct radeon_bo *bo = vm->page_tables[pt_idx].bo; 664 uint64_t pde, pt; 665 666 if (bo == NULL) 667 continue; 668 669 pt = radeon_bo_gpu_offset(bo); 670 if (vm->page_tables[pt_idx].addr == pt) 671 continue; 672 vm->page_tables[pt_idx].addr = pt; 673 674 pde = pd_addr + pt_idx * 8; 675 if (((last_pde + 8 * count) != pde) || 676 ((last_pt + incr * count) != pt)) { 677 678 if (count) { 679 radeon_vm_set_pages(rdev, &ib, last_pde, 680 last_pt, count, incr, 681 R600_PTE_VALID); 682 } 683 684 count = 1; 685 last_pde = pde; 686 last_pt = pt; 687 } else { 688 ++count; 689 } 690 } 691 692 if (count) 693 radeon_vm_set_pages(rdev, &ib, last_pde, last_pt, count, 694 incr, R600_PTE_VALID); 695 696 if (ib.length_dw != 0) { 697 radeon_asic_vm_pad_ib(rdev, &ib); 698 699 radeon_sync_resv(rdev, &ib.sync, pd->tbo.resv, true); 700 WARN_ON(ib.length_dw > ndw); 701 r = radeon_ib_schedule(rdev, &ib, NULL, false); 702 if (r) { 703 radeon_ib_free(rdev, &ib); 704 return r; 705 } 706 ib.fence->is_vm_update = true; 707 radeon_bo_fence(pd, ib.fence, false); 708 } 709 radeon_ib_free(rdev, &ib); 710 711 return 0; 712 } 713 714 /** 715 * radeon_vm_frag_ptes - add fragment information to PTEs 716 * 717 * @rdev: radeon_device pointer 718 * @ib: IB for the update 719 * @pe_start: first PTE to handle 720 * @pe_end: last PTE to handle 721 * @addr: addr those PTEs should point to 722 * @flags: hw mapping flags 723 * 724 * Global and local mutex must be locked! 725 */ 726 static void radeon_vm_frag_ptes(struct radeon_device *rdev, 727 struct radeon_ib *ib, 728 uint64_t pe_start, uint64_t pe_end, 729 uint64_t addr, uint32_t flags) 730 { 731 /** 732 * The MC L1 TLB supports variable sized pages, based on a fragment 733 * field in the PTE. When this field is set to a non-zero value, page 734 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 735 * flags are considered valid for all PTEs within the fragment range 736 * and corresponding mappings are assumed to be physically contiguous. 737 * 738 * The L1 TLB can store a single PTE for the whole fragment, 739 * significantly increasing the space available for translation 740 * caching. This leads to large improvements in throughput when the 741 * TLB is under pressure. 742 * 743 * The L2 TLB distributes small and large fragments into two 744 * asymmetric partitions. The large fragment cache is significantly 745 * larger. Thus, we try to use large fragments wherever possible. 746 * Userspace can support this by aligning virtual base address and 747 * allocation size to the fragment size. 748 */ 749 750 /* NI is optimized for 256KB fragments, SI and newer for 64KB */ 751 uint64_t frag_flags = ((rdev->family == CHIP_CAYMAN) || 752 (rdev->family == CHIP_ARUBA)) ? 753 R600_PTE_FRAG_256KB : R600_PTE_FRAG_64KB; 754 uint64_t frag_align = ((rdev->family == CHIP_CAYMAN) || 755 (rdev->family == CHIP_ARUBA)) ? 0x200 : 0x80; 756 757 uint64_t frag_start = ALIGN(pe_start, frag_align); 758 uint64_t frag_end = pe_end & ~(frag_align - 1); 759 760 unsigned count; 761 762 /* system pages are non continuously */ 763 if ((flags & R600_PTE_SYSTEM) || !(flags & R600_PTE_VALID) || 764 (frag_start >= frag_end)) { 765 766 count = (pe_end - pe_start) / 8; 767 radeon_vm_set_pages(rdev, ib, pe_start, addr, count, 768 RADEON_GPU_PAGE_SIZE, flags); 769 return; 770 } 771 772 /* handle the 4K area at the beginning */ 773 if (pe_start != frag_start) { 774 count = (frag_start - pe_start) / 8; 775 radeon_vm_set_pages(rdev, ib, pe_start, addr, count, 776 RADEON_GPU_PAGE_SIZE, flags); 777 addr += RADEON_GPU_PAGE_SIZE * count; 778 } 779 780 /* handle the area in the middle */ 781 count = (frag_end - frag_start) / 8; 782 radeon_vm_set_pages(rdev, ib, frag_start, addr, count, 783 RADEON_GPU_PAGE_SIZE, flags | frag_flags); 784 785 /* handle the 4K area at the end */ 786 if (frag_end != pe_end) { 787 addr += RADEON_GPU_PAGE_SIZE * count; 788 count = (pe_end - frag_end) / 8; 789 radeon_vm_set_pages(rdev, ib, frag_end, addr, count, 790 RADEON_GPU_PAGE_SIZE, flags); 791 } 792 } 793 794 /** 795 * radeon_vm_update_ptes - make sure that page tables are valid 796 * 797 * @rdev: radeon_device pointer 798 * @vm: requested vm 799 * @start: start of GPU address range 800 * @end: end of GPU address range 801 * @dst: destination address to map to 802 * @flags: mapping flags 803 * 804 * Update the page tables in the range @start - @end (cayman+). 805 * 806 * Global and local mutex must be locked! 807 */ 808 static int radeon_vm_update_ptes(struct radeon_device *rdev, 809 struct radeon_vm *vm, 810 struct radeon_ib *ib, 811 uint64_t start, uint64_t end, 812 uint64_t dst, uint32_t flags) 813 { 814 uint64_t mask = RADEON_VM_PTE_COUNT - 1; 815 uint64_t last_pte = ~0, last_dst = ~0; 816 unsigned count = 0; 817 uint64_t addr; 818 819 /* walk over the address space and update the page tables */ 820 for (addr = start; addr < end; ) { 821 uint64_t pt_idx = addr >> radeon_vm_block_size; 822 struct radeon_bo *pt = vm->page_tables[pt_idx].bo; 823 unsigned nptes; 824 uint64_t pte; 825 int r; 826 827 radeon_sync_resv(rdev, &ib->sync, pt->tbo.resv, true); 828 r = reservation_object_reserve_shared(pt->tbo.resv); 829 if (r) 830 return r; 831 832 if ((addr & ~mask) == (end & ~mask)) 833 nptes = end - addr; 834 else 835 nptes = RADEON_VM_PTE_COUNT - (addr & mask); 836 837 pte = radeon_bo_gpu_offset(pt); 838 pte += (addr & mask) * 8; 839 840 if ((last_pte + 8 * count) != pte) { 841 842 if (count) { 843 radeon_vm_frag_ptes(rdev, ib, last_pte, 844 last_pte + 8 * count, 845 last_dst, flags); 846 } 847 848 count = nptes; 849 last_pte = pte; 850 last_dst = dst; 851 } else { 852 count += nptes; 853 } 854 855 addr += nptes; 856 dst += nptes * RADEON_GPU_PAGE_SIZE; 857 } 858 859 if (count) { 860 radeon_vm_frag_ptes(rdev, ib, last_pte, 861 last_pte + 8 * count, 862 last_dst, flags); 863 } 864 865 return 0; 866 } 867 868 /** 869 * radeon_vm_fence_pts - fence page tables after an update 870 * 871 * @vm: requested vm 872 * @start: start of GPU address range 873 * @end: end of GPU address range 874 * @fence: fence to use 875 * 876 * Fence the page tables in the range @start - @end (cayman+). 877 * 878 * Global and local mutex must be locked! 879 */ 880 static void radeon_vm_fence_pts(struct radeon_vm *vm, 881 uint64_t start, uint64_t end, 882 struct radeon_fence *fence) 883 { 884 unsigned i; 885 886 start >>= radeon_vm_block_size; 887 end >>= radeon_vm_block_size; 888 889 for (i = start; i <= end; ++i) 890 radeon_bo_fence(vm->page_tables[i].bo, fence, true); 891 } 892 893 /** 894 * radeon_vm_bo_update - map a bo into the vm page table 895 * 896 * @rdev: radeon_device pointer 897 * @vm: requested vm 898 * @bo: radeon buffer object 899 * @mem: ttm mem 900 * 901 * Fill in the page table entries for @bo (cayman+). 902 * Returns 0 for success, -EINVAL for failure. 903 * 904 * Object have to be reserved and mutex must be locked! 905 */ 906 int radeon_vm_bo_update(struct radeon_device *rdev, 907 struct radeon_bo_va *bo_va, 908 struct ttm_mem_reg *mem) 909 { 910 struct radeon_vm *vm = bo_va->vm; 911 struct radeon_ib ib; 912 unsigned nptes, ncmds, ndw; 913 uint64_t addr; 914 uint32_t flags; 915 int r; 916 917 if (!bo_va->it.start) { 918 dev_err(rdev->dev, "bo %p don't has a mapping in vm %p\n", 919 bo_va->bo, vm); 920 return -EINVAL; 921 } 922 923 spin_lock(&vm->status_lock); 924 if (mem) { 925 if (list_empty(&bo_va->vm_status)) { 926 spin_unlock(&vm->status_lock); 927 return 0; 928 } 929 list_del_init(&bo_va->vm_status); 930 } else { 931 list_del(&bo_va->vm_status); 932 list_add(&bo_va->vm_status, &vm->cleared); 933 } 934 spin_unlock(&vm->status_lock); 935 936 bo_va->flags &= ~RADEON_VM_PAGE_VALID; 937 bo_va->flags &= ~RADEON_VM_PAGE_SYSTEM; 938 bo_va->flags &= ~RADEON_VM_PAGE_SNOOPED; 939 if (bo_va->bo && radeon_ttm_tt_is_readonly(bo_va->bo->tbo.ttm)) 940 bo_va->flags &= ~RADEON_VM_PAGE_WRITEABLE; 941 942 if (mem) { 943 addr = mem->start << PAGE_SHIFT; 944 if (mem->mem_type != TTM_PL_SYSTEM) { 945 bo_va->flags |= RADEON_VM_PAGE_VALID; 946 } 947 if (mem->mem_type == TTM_PL_TT) { 948 bo_va->flags |= RADEON_VM_PAGE_SYSTEM; 949 if (!(bo_va->bo->flags & (RADEON_GEM_GTT_WC | RADEON_GEM_GTT_UC))) 950 bo_va->flags |= RADEON_VM_PAGE_SNOOPED; 951 952 } else { 953 addr += rdev->vm_manager.vram_base_offset; 954 } 955 } else { 956 addr = 0; 957 } 958 959 trace_radeon_vm_bo_update(bo_va); 960 961 nptes = bo_va->it.last - bo_va->it.start + 1; 962 963 /* reserve space for one command every (1 << BLOCK_SIZE) entries 964 or 2k dwords (whatever is smaller) */ 965 ncmds = (nptes >> min(radeon_vm_block_size, 11)) + 1; 966 967 /* padding, etc. */ 968 ndw = 64; 969 970 flags = radeon_vm_page_flags(bo_va->flags); 971 if ((flags & R600_PTE_GART_MASK) == R600_PTE_GART_MASK) { 972 /* only copy commands needed */ 973 ndw += ncmds * 7; 974 975 } else if (flags & R600_PTE_SYSTEM) { 976 /* header for write data commands */ 977 ndw += ncmds * 4; 978 979 /* body of write data command */ 980 ndw += nptes * 2; 981 982 } else { 983 /* set page commands needed */ 984 ndw += ncmds * 10; 985 986 /* two extra commands for begin/end of fragment */ 987 ndw += 2 * 10; 988 } 989 990 /* update too big for an IB */ 991 if (ndw > 0xfffff) 992 return -ENOMEM; 993 994 r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, ndw * 4); 995 if (r) 996 return r; 997 ib.length_dw = 0; 998 999 if (!(bo_va->flags & RADEON_VM_PAGE_VALID)) { 1000 unsigned i; 1001 1002 for (i = 0; i < RADEON_NUM_RINGS; ++i) 1003 radeon_sync_fence(&ib.sync, vm->ids[i].last_id_use); 1004 } 1005 1006 r = radeon_vm_update_ptes(rdev, vm, &ib, bo_va->it.start, 1007 bo_va->it.last + 1, addr, 1008 radeon_vm_page_flags(bo_va->flags)); 1009 if (r) { 1010 radeon_ib_free(rdev, &ib); 1011 return r; 1012 } 1013 1014 radeon_asic_vm_pad_ib(rdev, &ib); 1015 WARN_ON(ib.length_dw > ndw); 1016 1017 r = radeon_ib_schedule(rdev, &ib, NULL, false); 1018 if (r) { 1019 radeon_ib_free(rdev, &ib); 1020 return r; 1021 } 1022 ib.fence->is_vm_update = true; 1023 radeon_vm_fence_pts(vm, bo_va->it.start, bo_va->it.last + 1, ib.fence); 1024 radeon_fence_unref(&bo_va->last_pt_update); 1025 bo_va->last_pt_update = radeon_fence_ref(ib.fence); 1026 radeon_ib_free(rdev, &ib); 1027 1028 return 0; 1029 } 1030 1031 /** 1032 * radeon_vm_clear_freed - clear freed BOs in the PT 1033 * 1034 * @rdev: radeon_device pointer 1035 * @vm: requested vm 1036 * 1037 * Make sure all freed BOs are cleared in the PT. 1038 * Returns 0 for success. 1039 * 1040 * PTs have to be reserved and mutex must be locked! 1041 */ 1042 int radeon_vm_clear_freed(struct radeon_device *rdev, 1043 struct radeon_vm *vm) 1044 { 1045 struct radeon_bo_va *bo_va; 1046 int r = 0; 1047 1048 spin_lock(&vm->status_lock); 1049 while (!list_empty(&vm->freed)) { 1050 bo_va = list_first_entry(&vm->freed, 1051 struct radeon_bo_va, vm_status); 1052 spin_unlock(&vm->status_lock); 1053 1054 r = radeon_vm_bo_update(rdev, bo_va, NULL); 1055 radeon_bo_unref(&bo_va->bo); 1056 radeon_fence_unref(&bo_va->last_pt_update); 1057 spin_lock(&vm->status_lock); 1058 list_del(&bo_va->vm_status); 1059 kfree(bo_va); 1060 if (r) 1061 break; 1062 1063 } 1064 spin_unlock(&vm->status_lock); 1065 return r; 1066 1067 } 1068 1069 /** 1070 * radeon_vm_clear_invalids - clear invalidated BOs in the PT 1071 * 1072 * @rdev: radeon_device pointer 1073 * @vm: requested vm 1074 * 1075 * Make sure all invalidated BOs are cleared in the PT. 1076 * Returns 0 for success. 1077 * 1078 * PTs have to be reserved and mutex must be locked! 1079 */ 1080 int radeon_vm_clear_invalids(struct radeon_device *rdev, 1081 struct radeon_vm *vm) 1082 { 1083 struct radeon_bo_va *bo_va; 1084 int r; 1085 1086 spin_lock(&vm->status_lock); 1087 while (!list_empty(&vm->invalidated)) { 1088 bo_va = list_first_entry(&vm->invalidated, 1089 struct radeon_bo_va, vm_status); 1090 spin_unlock(&vm->status_lock); 1091 1092 r = radeon_vm_bo_update(rdev, bo_va, NULL); 1093 if (r) 1094 return r; 1095 1096 spin_lock(&vm->status_lock); 1097 } 1098 spin_unlock(&vm->status_lock); 1099 1100 return 0; 1101 } 1102 1103 /** 1104 * radeon_vm_bo_rmv - remove a bo to a specific vm 1105 * 1106 * @rdev: radeon_device pointer 1107 * @bo_va: requested bo_va 1108 * 1109 * Remove @bo_va->bo from the requested vm (cayman+). 1110 * 1111 * Object have to be reserved! 1112 */ 1113 void radeon_vm_bo_rmv(struct radeon_device *rdev, 1114 struct radeon_bo_va *bo_va) 1115 { 1116 struct radeon_vm *vm = bo_va->vm; 1117 1118 list_del(&bo_va->bo_list); 1119 1120 mutex_lock(&vm->mutex); 1121 if (bo_va->it.start || bo_va->it.last) 1122 interval_tree_remove(&bo_va->it, &vm->va); 1123 1124 spin_lock(&vm->status_lock); 1125 if (list_empty(&bo_va->vm_status)) { 1126 bo_va->bo = radeon_bo_ref(bo_va->bo); 1127 list_add(&bo_va->vm_status, &vm->freed); 1128 } else { 1129 radeon_fence_unref(&bo_va->last_pt_update); 1130 list_del(&bo_va->vm_status); 1131 kfree(bo_va); 1132 } 1133 spin_unlock(&vm->status_lock); 1134 1135 mutex_unlock(&vm->mutex); 1136 } 1137 1138 /** 1139 * radeon_vm_bo_invalidate - mark the bo as invalid 1140 * 1141 * @rdev: radeon_device pointer 1142 * @vm: requested vm 1143 * @bo: radeon buffer object 1144 * 1145 * Mark @bo as invalid (cayman+). 1146 */ 1147 void radeon_vm_bo_invalidate(struct radeon_device *rdev, 1148 struct radeon_bo *bo) 1149 { 1150 struct radeon_bo_va *bo_va; 1151 1152 list_for_each_entry(bo_va, &bo->va, bo_list) { 1153 spin_lock(&bo_va->vm->status_lock); 1154 if (list_empty(&bo_va->vm_status)) 1155 list_add(&bo_va->vm_status, &bo_va->vm->invalidated); 1156 spin_unlock(&bo_va->vm->status_lock); 1157 } 1158 } 1159 1160 /** 1161 * radeon_vm_init - initialize a vm instance 1162 * 1163 * @rdev: radeon_device pointer 1164 * @vm: requested vm 1165 * 1166 * Init @vm fields (cayman+). 1167 */ 1168 int radeon_vm_init(struct radeon_device *rdev, struct radeon_vm *vm) 1169 { 1170 const unsigned align = min(RADEON_VM_PTB_ALIGN_SIZE, 1171 RADEON_VM_PTE_COUNT * 8); 1172 unsigned pd_size, pd_entries, pts_size; 1173 int i, r; 1174 1175 vm->ib_bo_va = NULL; 1176 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 1177 vm->ids[i].id = 0; 1178 vm->ids[i].flushed_updates = NULL; 1179 vm->ids[i].last_id_use = NULL; 1180 } 1181 mutex_init(&vm->mutex); 1182 vm->va = RB_ROOT; 1183 spin_lock_init(&vm->status_lock); 1184 INIT_LIST_HEAD(&vm->invalidated); 1185 INIT_LIST_HEAD(&vm->freed); 1186 INIT_LIST_HEAD(&vm->cleared); 1187 1188 pd_size = radeon_vm_directory_size(rdev); 1189 pd_entries = radeon_vm_num_pdes(rdev); 1190 1191 /* allocate page table array */ 1192 pts_size = pd_entries * sizeof(struct radeon_vm_pt); 1193 vm->page_tables = kzalloc(pts_size, GFP_KERNEL); 1194 if (vm->page_tables == NULL) { 1195 DRM_ERROR("Cannot allocate memory for page table array\n"); 1196 return -ENOMEM; 1197 } 1198 1199 r = radeon_bo_create(rdev, pd_size, align, true, 1200 RADEON_GEM_DOMAIN_VRAM, 0, NULL, 1201 NULL, &vm->page_directory); 1202 if (r) 1203 return r; 1204 1205 r = radeon_vm_clear_bo(rdev, vm->page_directory); 1206 if (r) { 1207 radeon_bo_unref(&vm->page_directory); 1208 vm->page_directory = NULL; 1209 return r; 1210 } 1211 1212 return 0; 1213 } 1214 1215 /** 1216 * radeon_vm_fini - tear down a vm instance 1217 * 1218 * @rdev: radeon_device pointer 1219 * @vm: requested vm 1220 * 1221 * Tear down @vm (cayman+). 1222 * Unbind the VM and remove all bos from the vm bo list 1223 */ 1224 void radeon_vm_fini(struct radeon_device *rdev, struct radeon_vm *vm) 1225 { 1226 struct radeon_bo_va *bo_va, *tmp; 1227 int i, r; 1228 1229 if (!RB_EMPTY_ROOT(&vm->va)) { 1230 dev_err(rdev->dev, "still active bo inside vm\n"); 1231 } 1232 rbtree_postorder_for_each_entry_safe(bo_va, tmp, &vm->va, it.rb) { 1233 interval_tree_remove(&bo_va->it, &vm->va); 1234 r = radeon_bo_reserve(bo_va->bo, false); 1235 if (!r) { 1236 list_del_init(&bo_va->bo_list); 1237 radeon_bo_unreserve(bo_va->bo); 1238 radeon_fence_unref(&bo_va->last_pt_update); 1239 kfree(bo_va); 1240 } 1241 } 1242 list_for_each_entry_safe(bo_va, tmp, &vm->freed, vm_status) { 1243 radeon_bo_unref(&bo_va->bo); 1244 radeon_fence_unref(&bo_va->last_pt_update); 1245 kfree(bo_va); 1246 } 1247 1248 for (i = 0; i < radeon_vm_num_pdes(rdev); i++) 1249 radeon_bo_unref(&vm->page_tables[i].bo); 1250 kfree(vm->page_tables); 1251 1252 radeon_bo_unref(&vm->page_directory); 1253 1254 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 1255 radeon_fence_unref(&vm->ids[i].flushed_updates); 1256 radeon_fence_unref(&vm->ids[i].last_id_use); 1257 } 1258 1259 mutex_destroy(&vm->mutex); 1260 } 1261