1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  *          Christian König
28  */
29 #include <linux/seq_file.h>
30 #include <linux/slab.h>
31 #include <drm/drmP.h>
32 #include <drm/radeon_drm.h>
33 #include "radeon_reg.h"
34 #include "radeon.h"
35 #include "atom.h"
36 
37 /*
38  * IB
39  * IBs (Indirect Buffers) and areas of GPU accessible memory where
40  * commands are stored.  You can put a pointer to the IB in the
41  * command ring and the hw will fetch the commands from the IB
42  * and execute them.  Generally userspace acceleration drivers
43  * produce command buffers which are send to the kernel and
44  * put in IBs for execution by the requested ring.
45  */
46 static int radeon_debugfs_sa_init(struct radeon_device *rdev);
47 
48 /**
49  * radeon_ib_get - request an IB (Indirect Buffer)
50  *
51  * @rdev: radeon_device pointer
52  * @ring: ring index the IB is associated with
53  * @ib: IB object returned
54  * @size: requested IB size
55  *
56  * Request an IB (all asics).  IBs are allocated using the
57  * suballocator.
58  * Returns 0 on success, error on failure.
59  */
60 int radeon_ib_get(struct radeon_device *rdev, int ring,
61 		  struct radeon_ib *ib, struct radeon_vm *vm,
62 		  unsigned size)
63 {
64 	int i, r;
65 
66 	r = radeon_sa_bo_new(rdev, &rdev->ring_tmp_bo, &ib->sa_bo, size, 256, true);
67 	if (r) {
68 		dev_err(rdev->dev, "failed to get a new IB (%d)\n", r);
69 		return r;
70 	}
71 
72 	r = radeon_semaphore_create(rdev, &ib->semaphore);
73 	if (r) {
74 		return r;
75 	}
76 
77 	ib->ring = ring;
78 	ib->fence = NULL;
79 	ib->ptr = radeon_sa_bo_cpu_addr(ib->sa_bo);
80 	ib->vm = vm;
81 	if (vm) {
82 		/* ib pool is bound at RADEON_VA_IB_OFFSET in virtual address
83 		 * space and soffset is the offset inside the pool bo
84 		 */
85 		ib->gpu_addr = ib->sa_bo->soffset + RADEON_VA_IB_OFFSET;
86 	} else {
87 		ib->gpu_addr = radeon_sa_bo_gpu_addr(ib->sa_bo);
88 	}
89 	ib->is_const_ib = false;
90 	for (i = 0; i < RADEON_NUM_RINGS; ++i)
91 		ib->sync_to[i] = NULL;
92 
93 	return 0;
94 }
95 
96 /**
97  * radeon_ib_free - free an IB (Indirect Buffer)
98  *
99  * @rdev: radeon_device pointer
100  * @ib: IB object to free
101  *
102  * Free an IB (all asics).
103  */
104 void radeon_ib_free(struct radeon_device *rdev, struct radeon_ib *ib)
105 {
106 	radeon_semaphore_free(rdev, &ib->semaphore, ib->fence);
107 	radeon_sa_bo_free(rdev, &ib->sa_bo, ib->fence);
108 	radeon_fence_unref(&ib->fence);
109 }
110 
111 /**
112  * radeon_ib_schedule - schedule an IB (Indirect Buffer) on the ring
113  *
114  * @rdev: radeon_device pointer
115  * @ib: IB object to schedule
116  * @const_ib: Const IB to schedule (SI only)
117  *
118  * Schedule an IB on the associated ring (all asics).
119  * Returns 0 on success, error on failure.
120  *
121  * On SI, there are two parallel engines fed from the primary ring,
122  * the CE (Constant Engine) and the DE (Drawing Engine).  Since
123  * resource descriptors have moved to memory, the CE allows you to
124  * prime the caches while the DE is updating register state so that
125  * the resource descriptors will be already in cache when the draw is
126  * processed.  To accomplish this, the userspace driver submits two
127  * IBs, one for the CE and one for the DE.  If there is a CE IB (called
128  * a CONST_IB), it will be put on the ring prior to the DE IB.  Prior
129  * to SI there was just a DE IB.
130  */
131 int radeon_ib_schedule(struct radeon_device *rdev, struct radeon_ib *ib,
132 		       struct radeon_ib *const_ib)
133 {
134 	struct radeon_ring *ring = &rdev->ring[ib->ring];
135 	bool need_sync = false;
136 	int i, r = 0;
137 
138 	if (!ib->length_dw || !ring->ready) {
139 		/* TODO: Nothings in the ib we should report. */
140 		dev_err(rdev->dev, "couldn't schedule ib\n");
141 		return -EINVAL;
142 	}
143 
144 	/* 64 dwords should be enough for fence too */
145 	r = radeon_ring_lock(rdev, ring, 64 + RADEON_NUM_RINGS * 8);
146 	if (r) {
147 		dev_err(rdev->dev, "scheduling IB failed (%d).\n", r);
148 		return r;
149 	}
150 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
151 		struct radeon_fence *fence = ib->sync_to[i];
152 		if (radeon_fence_need_sync(fence, ib->ring)) {
153 			need_sync = true;
154 			radeon_semaphore_sync_rings(rdev, ib->semaphore,
155 						    fence->ring, ib->ring);
156 			radeon_fence_note_sync(fence, ib->ring);
157 		}
158 	}
159 	/* immediately free semaphore when we don't need to sync */
160 	if (!need_sync) {
161 		radeon_semaphore_free(rdev, &ib->semaphore, NULL);
162 	}
163 	/* if we can't remember our last VM flush then flush now! */
164 	if (ib->vm && !ib->vm->last_flush) {
165 		radeon_ring_vm_flush(rdev, ib->ring, ib->vm);
166 	}
167 	if (const_ib) {
168 		radeon_ring_ib_execute(rdev, const_ib->ring, const_ib);
169 		radeon_semaphore_free(rdev, &const_ib->semaphore, NULL);
170 	}
171 	radeon_ring_ib_execute(rdev, ib->ring, ib);
172 	r = radeon_fence_emit(rdev, &ib->fence, ib->ring);
173 	if (r) {
174 		dev_err(rdev->dev, "failed to emit fence for new IB (%d)\n", r);
175 		radeon_ring_unlock_undo(rdev, ring);
176 		return r;
177 	}
178 	if (const_ib) {
179 		const_ib->fence = radeon_fence_ref(ib->fence);
180 	}
181 	/* we just flushed the VM, remember that */
182 	if (ib->vm && !ib->vm->last_flush) {
183 		ib->vm->last_flush = radeon_fence_ref(ib->fence);
184 	}
185 	radeon_ring_unlock_commit(rdev, ring);
186 	return 0;
187 }
188 
189 /**
190  * radeon_ib_pool_init - Init the IB (Indirect Buffer) pool
191  *
192  * @rdev: radeon_device pointer
193  *
194  * Initialize the suballocator to manage a pool of memory
195  * for use as IBs (all asics).
196  * Returns 0 on success, error on failure.
197  */
198 int radeon_ib_pool_init(struct radeon_device *rdev)
199 {
200 	int r;
201 
202 	if (rdev->ib_pool_ready) {
203 		return 0;
204 	}
205 	r = radeon_sa_bo_manager_init(rdev, &rdev->ring_tmp_bo,
206 				      RADEON_IB_POOL_SIZE*64*1024,
207 				      RADEON_GEM_DOMAIN_GTT);
208 	if (r) {
209 		return r;
210 	}
211 
212 	r = radeon_sa_bo_manager_start(rdev, &rdev->ring_tmp_bo);
213 	if (r) {
214 		return r;
215 	}
216 
217 	rdev->ib_pool_ready = true;
218 	if (radeon_debugfs_sa_init(rdev)) {
219 		dev_err(rdev->dev, "failed to register debugfs file for SA\n");
220 	}
221 	return 0;
222 }
223 
224 /**
225  * radeon_ib_pool_fini - Free the IB (Indirect Buffer) pool
226  *
227  * @rdev: radeon_device pointer
228  *
229  * Tear down the suballocator managing the pool of memory
230  * for use as IBs (all asics).
231  */
232 void radeon_ib_pool_fini(struct radeon_device *rdev)
233 {
234 	if (rdev->ib_pool_ready) {
235 		radeon_sa_bo_manager_suspend(rdev, &rdev->ring_tmp_bo);
236 		radeon_sa_bo_manager_fini(rdev, &rdev->ring_tmp_bo);
237 		rdev->ib_pool_ready = false;
238 	}
239 }
240 
241 /**
242  * radeon_ib_ring_tests - test IBs on the rings
243  *
244  * @rdev: radeon_device pointer
245  *
246  * Test an IB (Indirect Buffer) on each ring.
247  * If the test fails, disable the ring.
248  * Returns 0 on success, error if the primary GFX ring
249  * IB test fails.
250  */
251 int radeon_ib_ring_tests(struct radeon_device *rdev)
252 {
253 	unsigned i;
254 	int r;
255 
256 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
257 		struct radeon_ring *ring = &rdev->ring[i];
258 
259 		if (!ring->ready)
260 			continue;
261 
262 		r = radeon_ib_test(rdev, i, ring);
263 		if (r) {
264 			ring->ready = false;
265 
266 			if (i == RADEON_RING_TYPE_GFX_INDEX) {
267 				/* oh, oh, that's really bad */
268 				DRM_ERROR("radeon: failed testing IB on GFX ring (%d).\n", r);
269 		                rdev->accel_working = false;
270 				return r;
271 
272 			} else {
273 				/* still not good, but we can live with it */
274 				DRM_ERROR("radeon: failed testing IB on ring %d (%d).\n", i, r);
275 			}
276 		}
277 	}
278 	return 0;
279 }
280 
281 /*
282  * Rings
283  * Most engines on the GPU are fed via ring buffers.  Ring
284  * buffers are areas of GPU accessible memory that the host
285  * writes commands into and the GPU reads commands out of.
286  * There is a rptr (read pointer) that determines where the
287  * GPU is currently reading, and a wptr (write pointer)
288  * which determines where the host has written.  When the
289  * pointers are equal, the ring is idle.  When the host
290  * writes commands to the ring buffer, it increments the
291  * wptr.  The GPU then starts fetching commands and executes
292  * them until the pointers are equal again.
293  */
294 static int radeon_debugfs_ring_init(struct radeon_device *rdev, struct radeon_ring *ring);
295 
296 /**
297  * radeon_ring_write - write a value to the ring
298  *
299  * @ring: radeon_ring structure holding ring information
300  * @v: dword (dw) value to write
301  *
302  * Write a value to the requested ring buffer (all asics).
303  */
304 void radeon_ring_write(struct radeon_ring *ring, uint32_t v)
305 {
306 #if DRM_DEBUG_CODE
307 	if (ring->count_dw <= 0) {
308 		DRM_ERROR("radeon: writing more dwords to the ring than expected!\n");
309 	}
310 #endif
311 	ring->ring[ring->wptr++] = v;
312 	ring->wptr &= ring->ptr_mask;
313 	ring->count_dw--;
314 	ring->ring_free_dw--;
315 }
316 
317 /**
318  * radeon_ring_supports_scratch_reg - check if the ring supports
319  * writing to scratch registers
320  *
321  * @rdev: radeon_device pointer
322  * @ring: radeon_ring structure holding ring information
323  *
324  * Check if a specific ring supports writing to scratch registers (all asics).
325  * Returns true if the ring supports writing to scratch regs, false if not.
326  */
327 bool radeon_ring_supports_scratch_reg(struct radeon_device *rdev,
328 				      struct radeon_ring *ring)
329 {
330 	switch (ring->idx) {
331 	case RADEON_RING_TYPE_GFX_INDEX:
332 	case CAYMAN_RING_TYPE_CP1_INDEX:
333 	case CAYMAN_RING_TYPE_CP2_INDEX:
334 		return true;
335 	default:
336 		return false;
337 	}
338 }
339 
340 /**
341  * radeon_ring_free_size - update the free size
342  *
343  * @rdev: radeon_device pointer
344  * @ring: radeon_ring structure holding ring information
345  *
346  * Update the free dw slots in the ring buffer (all asics).
347  */
348 void radeon_ring_free_size(struct radeon_device *rdev, struct radeon_ring *ring)
349 {
350 	u32 rptr;
351 
352 	if (rdev->wb.enabled)
353 		rptr = le32_to_cpu(rdev->wb.wb[ring->rptr_offs/4]);
354 	else
355 		rptr = RREG32(ring->rptr_reg);
356 	ring->rptr = (rptr & ring->ptr_reg_mask) >> ring->ptr_reg_shift;
357 	/* This works because ring_size is a power of 2 */
358 	ring->ring_free_dw = (ring->rptr + (ring->ring_size / 4));
359 	ring->ring_free_dw -= ring->wptr;
360 	ring->ring_free_dw &= ring->ptr_mask;
361 	if (!ring->ring_free_dw) {
362 		ring->ring_free_dw = ring->ring_size / 4;
363 	}
364 }
365 
366 /**
367  * radeon_ring_alloc - allocate space on the ring buffer
368  *
369  * @rdev: radeon_device pointer
370  * @ring: radeon_ring structure holding ring information
371  * @ndw: number of dwords to allocate in the ring buffer
372  *
373  * Allocate @ndw dwords in the ring buffer (all asics).
374  * Returns 0 on success, error on failure.
375  */
376 int radeon_ring_alloc(struct radeon_device *rdev, struct radeon_ring *ring, unsigned ndw)
377 {
378 	int r;
379 
380 	/* make sure we aren't trying to allocate more space than there is on the ring */
381 	if (ndw > (ring->ring_size / 4))
382 		return -ENOMEM;
383 	/* Align requested size with padding so unlock_commit can
384 	 * pad safely */
385 	ndw = (ndw + ring->align_mask) & ~ring->align_mask;
386 	while (ndw > (ring->ring_free_dw - 1)) {
387 		radeon_ring_free_size(rdev, ring);
388 		if (ndw < ring->ring_free_dw) {
389 			break;
390 		}
391 		r = radeon_fence_wait_next_locked(rdev, ring->idx);
392 		if (r)
393 			return r;
394 	}
395 	ring->count_dw = ndw;
396 	ring->wptr_old = ring->wptr;
397 	return 0;
398 }
399 
400 /**
401  * radeon_ring_lock - lock the ring and allocate space on it
402  *
403  * @rdev: radeon_device pointer
404  * @ring: radeon_ring structure holding ring information
405  * @ndw: number of dwords to allocate in the ring buffer
406  *
407  * Lock the ring and allocate @ndw dwords in the ring buffer
408  * (all asics).
409  * Returns 0 on success, error on failure.
410  */
411 int radeon_ring_lock(struct radeon_device *rdev, struct radeon_ring *ring, unsigned ndw)
412 {
413 	int r;
414 
415 	mutex_lock(&rdev->ring_lock);
416 	r = radeon_ring_alloc(rdev, ring, ndw);
417 	if (r) {
418 		mutex_unlock(&rdev->ring_lock);
419 		return r;
420 	}
421 	return 0;
422 }
423 
424 /**
425  * radeon_ring_commit - tell the GPU to execute the new
426  * commands on the ring buffer
427  *
428  * @rdev: radeon_device pointer
429  * @ring: radeon_ring structure holding ring information
430  *
431  * Update the wptr (write pointer) to tell the GPU to
432  * execute new commands on the ring buffer (all asics).
433  */
434 void radeon_ring_commit(struct radeon_device *rdev, struct radeon_ring *ring)
435 {
436 	/* We pad to match fetch size */
437 	while (ring->wptr & ring->align_mask) {
438 		radeon_ring_write(ring, ring->nop);
439 	}
440 	DRM_MEMORYBARRIER();
441 	WREG32(ring->wptr_reg, (ring->wptr << ring->ptr_reg_shift) & ring->ptr_reg_mask);
442 	(void)RREG32(ring->wptr_reg);
443 }
444 
445 /**
446  * radeon_ring_unlock_commit - tell the GPU to execute the new
447  * commands on the ring buffer and unlock it
448  *
449  * @rdev: radeon_device pointer
450  * @ring: radeon_ring structure holding ring information
451  *
452  * Call radeon_ring_commit() then unlock the ring (all asics).
453  */
454 void radeon_ring_unlock_commit(struct radeon_device *rdev, struct radeon_ring *ring)
455 {
456 	radeon_ring_commit(rdev, ring);
457 	mutex_unlock(&rdev->ring_lock);
458 }
459 
460 /**
461  * radeon_ring_undo - reset the wptr
462  *
463  * @ring: radeon_ring structure holding ring information
464  *
465  * Reset the driver's copy of the wptr (all asics).
466  */
467 void radeon_ring_undo(struct radeon_ring *ring)
468 {
469 	ring->wptr = ring->wptr_old;
470 }
471 
472 /**
473  * radeon_ring_unlock_undo - reset the wptr and unlock the ring
474  *
475  * @ring: radeon_ring structure holding ring information
476  *
477  * Call radeon_ring_undo() then unlock the ring (all asics).
478  */
479 void radeon_ring_unlock_undo(struct radeon_device *rdev, struct radeon_ring *ring)
480 {
481 	radeon_ring_undo(ring);
482 	mutex_unlock(&rdev->ring_lock);
483 }
484 
485 /**
486  * radeon_ring_force_activity - add some nop packets to the ring
487  *
488  * @rdev: radeon_device pointer
489  * @ring: radeon_ring structure holding ring information
490  *
491  * Add some nop packets to the ring to force activity (all asics).
492  * Used for lockup detection to see if the rptr is advancing.
493  */
494 void radeon_ring_force_activity(struct radeon_device *rdev, struct radeon_ring *ring)
495 {
496 	int r;
497 
498 	radeon_ring_free_size(rdev, ring);
499 	if (ring->rptr == ring->wptr) {
500 		r = radeon_ring_alloc(rdev, ring, 1);
501 		if (!r) {
502 			radeon_ring_write(ring, ring->nop);
503 			radeon_ring_commit(rdev, ring);
504 		}
505 	}
506 }
507 
508 /**
509  * radeon_ring_lockup_update - update lockup variables
510  *
511  * @ring: radeon_ring structure holding ring information
512  *
513  * Update the last rptr value and timestamp (all asics).
514  */
515 void radeon_ring_lockup_update(struct radeon_ring *ring)
516 {
517 	ring->last_rptr = ring->rptr;
518 	ring->last_activity = jiffies;
519 }
520 
521 /**
522  * radeon_ring_test_lockup() - check if ring is lockedup by recording information
523  * @rdev:       radeon device structure
524  * @ring:       radeon_ring structure holding ring information
525  *
526  * We don't need to initialize the lockup tracking information as we will either
527  * have CP rptr to a different value of jiffies wrap around which will force
528  * initialization of the lockup tracking informations.
529  *
530  * A possible false positivie is if we get call after while and last_cp_rptr ==
531  * the current CP rptr, even if it's unlikely it might happen. To avoid this
532  * if the elapsed time since last call is bigger than 2 second than we return
533  * false and update the tracking information. Due to this the caller must call
534  * radeon_ring_test_lockup several time in less than 2sec for lockup to be reported
535  * the fencing code should be cautious about that.
536  *
537  * Caller should write to the ring to force CP to do something so we don't get
538  * false positive when CP is just gived nothing to do.
539  *
540  **/
541 bool radeon_ring_test_lockup(struct radeon_device *rdev, struct radeon_ring *ring)
542 {
543 	unsigned long cjiffies, elapsed;
544 	uint32_t rptr;
545 
546 	cjiffies = jiffies;
547 	if (!time_after(cjiffies, ring->last_activity)) {
548 		/* likely a wrap around */
549 		radeon_ring_lockup_update(ring);
550 		return false;
551 	}
552 	rptr = RREG32(ring->rptr_reg);
553 	ring->rptr = (rptr & ring->ptr_reg_mask) >> ring->ptr_reg_shift;
554 	if (ring->rptr != ring->last_rptr) {
555 		/* CP is still working no lockup */
556 		radeon_ring_lockup_update(ring);
557 		return false;
558 	}
559 	elapsed = jiffies_to_msecs(cjiffies - ring->last_activity);
560 	if (radeon_lockup_timeout && elapsed >= radeon_lockup_timeout) {
561 		dev_err(rdev->dev, "GPU lockup CP stall for more than %lumsec\n", elapsed);
562 		return true;
563 	}
564 	/* give a chance to the GPU ... */
565 	return false;
566 }
567 
568 /**
569  * radeon_ring_backup - Back up the content of a ring
570  *
571  * @rdev: radeon_device pointer
572  * @ring: the ring we want to back up
573  *
574  * Saves all unprocessed commits from a ring, returns the number of dwords saved.
575  */
576 unsigned radeon_ring_backup(struct radeon_device *rdev, struct radeon_ring *ring,
577 			    uint32_t **data)
578 {
579 	unsigned size, ptr, i;
580 
581 	/* just in case lock the ring */
582 	mutex_lock(&rdev->ring_lock);
583 	*data = NULL;
584 
585 	if (ring->ring_obj == NULL) {
586 		mutex_unlock(&rdev->ring_lock);
587 		return 0;
588 	}
589 
590 	/* it doesn't make sense to save anything if all fences are signaled */
591 	if (!radeon_fence_count_emitted(rdev, ring->idx)) {
592 		mutex_unlock(&rdev->ring_lock);
593 		return 0;
594 	}
595 
596 	/* calculate the number of dw on the ring */
597 	if (ring->rptr_save_reg)
598 		ptr = RREG32(ring->rptr_save_reg);
599 	else if (rdev->wb.enabled)
600 		ptr = le32_to_cpu(*ring->next_rptr_cpu_addr);
601 	else {
602 		/* no way to read back the next rptr */
603 		mutex_unlock(&rdev->ring_lock);
604 		return 0;
605 	}
606 
607 	size = ring->wptr + (ring->ring_size / 4);
608 	size -= ptr;
609 	size &= ring->ptr_mask;
610 	if (size == 0) {
611 		mutex_unlock(&rdev->ring_lock);
612 		return 0;
613 	}
614 
615 	/* and then save the content of the ring */
616 	*data = kmalloc_array(size, sizeof(uint32_t), GFP_KERNEL);
617 	if (!*data) {
618 		mutex_unlock(&rdev->ring_lock);
619 		return 0;
620 	}
621 	for (i = 0; i < size; ++i) {
622 		(*data)[i] = ring->ring[ptr++];
623 		ptr &= ring->ptr_mask;
624 	}
625 
626 	mutex_unlock(&rdev->ring_lock);
627 	return size;
628 }
629 
630 /**
631  * radeon_ring_restore - append saved commands to the ring again
632  *
633  * @rdev: radeon_device pointer
634  * @ring: ring to append commands to
635  * @size: number of dwords we want to write
636  * @data: saved commands
637  *
638  * Allocates space on the ring and restore the previously saved commands.
639  */
640 int radeon_ring_restore(struct radeon_device *rdev, struct radeon_ring *ring,
641 			unsigned size, uint32_t *data)
642 {
643 	int i, r;
644 
645 	if (!size || !data)
646 		return 0;
647 
648 	/* restore the saved ring content */
649 	r = radeon_ring_lock(rdev, ring, size);
650 	if (r)
651 		return r;
652 
653 	for (i = 0; i < size; ++i) {
654 		radeon_ring_write(ring, data[i]);
655 	}
656 
657 	radeon_ring_unlock_commit(rdev, ring);
658 	kfree(data);
659 	return 0;
660 }
661 
662 /**
663  * radeon_ring_init - init driver ring struct.
664  *
665  * @rdev: radeon_device pointer
666  * @ring: radeon_ring structure holding ring information
667  * @ring_size: size of the ring
668  * @rptr_offs: offset of the rptr writeback location in the WB buffer
669  * @rptr_reg: MMIO offset of the rptr register
670  * @wptr_reg: MMIO offset of the wptr register
671  * @ptr_reg_shift: bit offset of the rptr/wptr values
672  * @ptr_reg_mask: bit mask of the rptr/wptr values
673  * @nop: nop packet for this ring
674  *
675  * Initialize the driver information for the selected ring (all asics).
676  * Returns 0 on success, error on failure.
677  */
678 int radeon_ring_init(struct radeon_device *rdev, struct radeon_ring *ring, unsigned ring_size,
679 		     unsigned rptr_offs, unsigned rptr_reg, unsigned wptr_reg,
680 		     u32 ptr_reg_shift, u32 ptr_reg_mask, u32 nop)
681 {
682 	int r;
683 
684 	ring->ring_size = ring_size;
685 	ring->rptr_offs = rptr_offs;
686 	ring->rptr_reg = rptr_reg;
687 	ring->wptr_reg = wptr_reg;
688 	ring->ptr_reg_shift = ptr_reg_shift;
689 	ring->ptr_reg_mask = ptr_reg_mask;
690 	ring->nop = nop;
691 	/* Allocate ring buffer */
692 	if (ring->ring_obj == NULL) {
693 		r = radeon_bo_create(rdev, ring->ring_size, PAGE_SIZE, true,
694 				     RADEON_GEM_DOMAIN_GTT,
695 				     NULL, &ring->ring_obj);
696 		if (r) {
697 			dev_err(rdev->dev, "(%d) ring create failed\n", r);
698 			return r;
699 		}
700 		r = radeon_bo_reserve(ring->ring_obj, false);
701 		if (unlikely(r != 0))
702 			return r;
703 		r = radeon_bo_pin(ring->ring_obj, RADEON_GEM_DOMAIN_GTT,
704 					&ring->gpu_addr);
705 		if (r) {
706 			radeon_bo_unreserve(ring->ring_obj);
707 			dev_err(rdev->dev, "(%d) ring pin failed\n", r);
708 			return r;
709 		}
710 		r = radeon_bo_kmap(ring->ring_obj,
711 				       (void **)&ring->ring);
712 		radeon_bo_unreserve(ring->ring_obj);
713 		if (r) {
714 			dev_err(rdev->dev, "(%d) ring map failed\n", r);
715 			return r;
716 		}
717 	}
718 	ring->ptr_mask = (ring->ring_size / 4) - 1;
719 	ring->ring_free_dw = ring->ring_size / 4;
720 	if (rdev->wb.enabled) {
721 		u32 index = RADEON_WB_RING0_NEXT_RPTR + (ring->idx * 4);
722 		ring->next_rptr_gpu_addr = rdev->wb.gpu_addr + index;
723 		ring->next_rptr_cpu_addr = &rdev->wb.wb[index/4];
724 	}
725 	if (radeon_debugfs_ring_init(rdev, ring)) {
726 		DRM_ERROR("Failed to register debugfs file for rings !\n");
727 	}
728 	radeon_ring_lockup_update(ring);
729 	return 0;
730 }
731 
732 /**
733  * radeon_ring_fini - tear down the driver ring struct.
734  *
735  * @rdev: radeon_device pointer
736  * @ring: radeon_ring structure holding ring information
737  *
738  * Tear down the driver information for the selected ring (all asics).
739  */
740 void radeon_ring_fini(struct radeon_device *rdev, struct radeon_ring *ring)
741 {
742 	int r;
743 	struct radeon_bo *ring_obj;
744 
745 	mutex_lock(&rdev->ring_lock);
746 	ring_obj = ring->ring_obj;
747 	ring->ready = false;
748 	ring->ring = NULL;
749 	ring->ring_obj = NULL;
750 	mutex_unlock(&rdev->ring_lock);
751 
752 	if (ring_obj) {
753 		r = radeon_bo_reserve(ring_obj, false);
754 		if (likely(r == 0)) {
755 			radeon_bo_kunmap(ring_obj);
756 			radeon_bo_unpin(ring_obj);
757 			radeon_bo_unreserve(ring_obj);
758 		}
759 		radeon_bo_unref(&ring_obj);
760 	}
761 }
762 
763 /*
764  * Debugfs info
765  */
766 #if defined(CONFIG_DEBUG_FS)
767 
768 static int radeon_debugfs_ring_info(struct seq_file *m, void *data)
769 {
770 	struct drm_info_node *node = (struct drm_info_node *) m->private;
771 	struct drm_device *dev = node->minor->dev;
772 	struct radeon_device *rdev = dev->dev_private;
773 	int ridx = *(int*)node->info_ent->data;
774 	struct radeon_ring *ring = &rdev->ring[ridx];
775 	unsigned count, i, j;
776 	u32 tmp;
777 
778 	radeon_ring_free_size(rdev, ring);
779 	count = (ring->ring_size / 4) - ring->ring_free_dw;
780 	tmp = RREG32(ring->wptr_reg) >> ring->ptr_reg_shift;
781 	seq_printf(m, "wptr(0x%04x): 0x%08x [%5d]\n", ring->wptr_reg, tmp, tmp);
782 	tmp = RREG32(ring->rptr_reg) >> ring->ptr_reg_shift;
783 	seq_printf(m, "rptr(0x%04x): 0x%08x [%5d]\n", ring->rptr_reg, tmp, tmp);
784 	if (ring->rptr_save_reg) {
785 		seq_printf(m, "rptr next(0x%04x): 0x%08x\n", ring->rptr_save_reg,
786 			   RREG32(ring->rptr_save_reg));
787 	}
788 	seq_printf(m, "driver's copy of the wptr: 0x%08x [%5d]\n", ring->wptr, ring->wptr);
789 	seq_printf(m, "driver's copy of the rptr: 0x%08x [%5d]\n", ring->rptr, ring->rptr);
790 	seq_printf(m, "last semaphore signal addr : 0x%016llx\n", ring->last_semaphore_signal_addr);
791 	seq_printf(m, "last semaphore wait addr   : 0x%016llx\n", ring->last_semaphore_wait_addr);
792 	seq_printf(m, "%u free dwords in ring\n", ring->ring_free_dw);
793 	seq_printf(m, "%u dwords in ring\n", count);
794 	/* print 8 dw before current rptr as often it's the last executed
795 	 * packet that is the root issue
796 	 */
797 	i = (ring->rptr + ring->ptr_mask + 1 - 32) & ring->ptr_mask;
798 	for (j = 0; j <= (count + 32); j++) {
799 		seq_printf(m, "r[%5d]=0x%08x\n", i, ring->ring[i]);
800 		i = (i + 1) & ring->ptr_mask;
801 	}
802 	return 0;
803 }
804 
805 static int radeon_ring_type_gfx_index = RADEON_RING_TYPE_GFX_INDEX;
806 static int cayman_ring_type_cp1_index = CAYMAN_RING_TYPE_CP1_INDEX;
807 static int cayman_ring_type_cp2_index = CAYMAN_RING_TYPE_CP2_INDEX;
808 static int radeon_ring_type_dma1_index = R600_RING_TYPE_DMA_INDEX;
809 static int radeon_ring_type_dma2_index = CAYMAN_RING_TYPE_DMA1_INDEX;
810 
811 static struct drm_info_list radeon_debugfs_ring_info_list[] = {
812 	{"radeon_ring_gfx", radeon_debugfs_ring_info, 0, &radeon_ring_type_gfx_index},
813 	{"radeon_ring_cp1", radeon_debugfs_ring_info, 0, &cayman_ring_type_cp1_index},
814 	{"radeon_ring_cp2", radeon_debugfs_ring_info, 0, &cayman_ring_type_cp2_index},
815 	{"radeon_ring_dma1", radeon_debugfs_ring_info, 0, &radeon_ring_type_dma1_index},
816 	{"radeon_ring_dma2", radeon_debugfs_ring_info, 0, &radeon_ring_type_dma2_index},
817 };
818 
819 static int radeon_debugfs_sa_info(struct seq_file *m, void *data)
820 {
821 	struct drm_info_node *node = (struct drm_info_node *) m->private;
822 	struct drm_device *dev = node->minor->dev;
823 	struct radeon_device *rdev = dev->dev_private;
824 
825 	radeon_sa_bo_dump_debug_info(&rdev->ring_tmp_bo, m);
826 
827 	return 0;
828 
829 }
830 
831 static struct drm_info_list radeon_debugfs_sa_list[] = {
832         {"radeon_sa_info", &radeon_debugfs_sa_info, 0, NULL},
833 };
834 
835 #endif
836 
837 static int radeon_debugfs_ring_init(struct radeon_device *rdev, struct radeon_ring *ring)
838 {
839 #if defined(CONFIG_DEBUG_FS)
840 	unsigned i;
841 	for (i = 0; i < ARRAY_SIZE(radeon_debugfs_ring_info_list); ++i) {
842 		struct drm_info_list *info = &radeon_debugfs_ring_info_list[i];
843 		int ridx = *(int*)radeon_debugfs_ring_info_list[i].data;
844 		unsigned r;
845 
846 		if (&rdev->ring[ridx] != ring)
847 			continue;
848 
849 		r = radeon_debugfs_add_files(rdev, info, 1);
850 		if (r)
851 			return r;
852 	}
853 #endif
854 	return 0;
855 }
856 
857 static int radeon_debugfs_sa_init(struct radeon_device *rdev)
858 {
859 #if defined(CONFIG_DEBUG_FS)
860 	return radeon_debugfs_add_files(rdev, radeon_debugfs_sa_list, 1);
861 #else
862 	return 0;
863 #endif
864 }
865