1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 * Christian König 28 */ 29 #include <linux/seq_file.h> 30 #include <linux/slab.h> 31 #include <drm/drmP.h> 32 #include <drm/radeon_drm.h> 33 #include "radeon_reg.h" 34 #include "radeon.h" 35 #include "atom.h" 36 37 /* 38 * IB 39 * IBs (Indirect Buffers) and areas of GPU accessible memory where 40 * commands are stored. You can put a pointer to the IB in the 41 * command ring and the hw will fetch the commands from the IB 42 * and execute them. Generally userspace acceleration drivers 43 * produce command buffers which are send to the kernel and 44 * put in IBs for execution by the requested ring. 45 */ 46 static int radeon_debugfs_sa_init(struct radeon_device *rdev); 47 48 /** 49 * radeon_ib_get - request an IB (Indirect Buffer) 50 * 51 * @rdev: radeon_device pointer 52 * @ring: ring index the IB is associated with 53 * @ib: IB object returned 54 * @size: requested IB size 55 * 56 * Request an IB (all asics). IBs are allocated using the 57 * suballocator. 58 * Returns 0 on success, error on failure. 59 */ 60 int radeon_ib_get(struct radeon_device *rdev, int ring, 61 struct radeon_ib *ib, struct radeon_vm *vm, 62 unsigned size) 63 { 64 int i, r; 65 66 r = radeon_sa_bo_new(rdev, &rdev->ring_tmp_bo, &ib->sa_bo, size, 256, true); 67 if (r) { 68 dev_err(rdev->dev, "failed to get a new IB (%d)\n", r); 69 return r; 70 } 71 72 r = radeon_semaphore_create(rdev, &ib->semaphore); 73 if (r) { 74 return r; 75 } 76 77 ib->ring = ring; 78 ib->fence = NULL; 79 ib->ptr = radeon_sa_bo_cpu_addr(ib->sa_bo); 80 ib->vm = vm; 81 if (vm) { 82 /* ib pool is bound at RADEON_VA_IB_OFFSET in virtual address 83 * space and soffset is the offset inside the pool bo 84 */ 85 ib->gpu_addr = ib->sa_bo->soffset + RADEON_VA_IB_OFFSET; 86 } else { 87 ib->gpu_addr = radeon_sa_bo_gpu_addr(ib->sa_bo); 88 } 89 ib->is_const_ib = false; 90 for (i = 0; i < RADEON_NUM_RINGS; ++i) 91 ib->sync_to[i] = NULL; 92 93 return 0; 94 } 95 96 /** 97 * radeon_ib_free - free an IB (Indirect Buffer) 98 * 99 * @rdev: radeon_device pointer 100 * @ib: IB object to free 101 * 102 * Free an IB (all asics). 103 */ 104 void radeon_ib_free(struct radeon_device *rdev, struct radeon_ib *ib) 105 { 106 radeon_semaphore_free(rdev, &ib->semaphore, ib->fence); 107 radeon_sa_bo_free(rdev, &ib->sa_bo, ib->fence); 108 radeon_fence_unref(&ib->fence); 109 } 110 111 /** 112 * radeon_ib_sync_to - sync to fence before executing the IB 113 * 114 * @ib: IB object to add fence to 115 * @fence: fence to sync to 116 * 117 * Sync to the fence before executing the IB 118 */ 119 void radeon_ib_sync_to(struct radeon_ib *ib, struct radeon_fence *fence) 120 { 121 struct radeon_fence *other; 122 123 if (!fence) 124 return; 125 126 other = ib->sync_to[fence->ring]; 127 ib->sync_to[fence->ring] = radeon_fence_later(fence, other); 128 } 129 130 /** 131 * radeon_ib_schedule - schedule an IB (Indirect Buffer) on the ring 132 * 133 * @rdev: radeon_device pointer 134 * @ib: IB object to schedule 135 * @const_ib: Const IB to schedule (SI only) 136 * 137 * Schedule an IB on the associated ring (all asics). 138 * Returns 0 on success, error on failure. 139 * 140 * On SI, there are two parallel engines fed from the primary ring, 141 * the CE (Constant Engine) and the DE (Drawing Engine). Since 142 * resource descriptors have moved to memory, the CE allows you to 143 * prime the caches while the DE is updating register state so that 144 * the resource descriptors will be already in cache when the draw is 145 * processed. To accomplish this, the userspace driver submits two 146 * IBs, one for the CE and one for the DE. If there is a CE IB (called 147 * a CONST_IB), it will be put on the ring prior to the DE IB. Prior 148 * to SI there was just a DE IB. 149 */ 150 int radeon_ib_schedule(struct radeon_device *rdev, struct radeon_ib *ib, 151 struct radeon_ib *const_ib) 152 { 153 struct radeon_ring *ring = &rdev->ring[ib->ring]; 154 bool need_sync = false; 155 int i, r = 0; 156 157 if (!ib->length_dw || !ring->ready) { 158 /* TODO: Nothings in the ib we should report. */ 159 dev_err(rdev->dev, "couldn't schedule ib\n"); 160 return -EINVAL; 161 } 162 163 /* 64 dwords should be enough for fence too */ 164 r = radeon_ring_lock(rdev, ring, 64 + RADEON_NUM_RINGS * 8); 165 if (r) { 166 dev_err(rdev->dev, "scheduling IB failed (%d).\n", r); 167 return r; 168 } 169 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 170 struct radeon_fence *fence = ib->sync_to[i]; 171 if (radeon_fence_need_sync(fence, ib->ring)) { 172 need_sync = true; 173 radeon_semaphore_sync_rings(rdev, ib->semaphore, 174 fence->ring, ib->ring); 175 radeon_fence_note_sync(fence, ib->ring); 176 } 177 } 178 /* immediately free semaphore when we don't need to sync */ 179 if (!need_sync) { 180 radeon_semaphore_free(rdev, &ib->semaphore, NULL); 181 } 182 /* if we can't remember our last VM flush then flush now! */ 183 if (ib->vm && !ib->vm->last_flush) { 184 radeon_ring_vm_flush(rdev, ib->ring, ib->vm); 185 } 186 if (const_ib) { 187 radeon_ring_ib_execute(rdev, const_ib->ring, const_ib); 188 radeon_semaphore_free(rdev, &const_ib->semaphore, NULL); 189 } 190 radeon_ring_ib_execute(rdev, ib->ring, ib); 191 r = radeon_fence_emit(rdev, &ib->fence, ib->ring); 192 if (r) { 193 dev_err(rdev->dev, "failed to emit fence for new IB (%d)\n", r); 194 radeon_ring_unlock_undo(rdev, ring); 195 return r; 196 } 197 if (const_ib) { 198 const_ib->fence = radeon_fence_ref(ib->fence); 199 } 200 /* we just flushed the VM, remember that */ 201 if (ib->vm && !ib->vm->last_flush) { 202 ib->vm->last_flush = radeon_fence_ref(ib->fence); 203 } 204 radeon_ring_unlock_commit(rdev, ring); 205 return 0; 206 } 207 208 /** 209 * radeon_ib_pool_init - Init the IB (Indirect Buffer) pool 210 * 211 * @rdev: radeon_device pointer 212 * 213 * Initialize the suballocator to manage a pool of memory 214 * for use as IBs (all asics). 215 * Returns 0 on success, error on failure. 216 */ 217 int radeon_ib_pool_init(struct radeon_device *rdev) 218 { 219 int r; 220 221 if (rdev->ib_pool_ready) { 222 return 0; 223 } 224 r = radeon_sa_bo_manager_init(rdev, &rdev->ring_tmp_bo, 225 RADEON_IB_POOL_SIZE*64*1024, 226 RADEON_GEM_DOMAIN_GTT); 227 if (r) { 228 return r; 229 } 230 231 r = radeon_sa_bo_manager_start(rdev, &rdev->ring_tmp_bo); 232 if (r) { 233 return r; 234 } 235 236 rdev->ib_pool_ready = true; 237 if (radeon_debugfs_sa_init(rdev)) { 238 dev_err(rdev->dev, "failed to register debugfs file for SA\n"); 239 } 240 return 0; 241 } 242 243 /** 244 * radeon_ib_pool_fini - Free the IB (Indirect Buffer) pool 245 * 246 * @rdev: radeon_device pointer 247 * 248 * Tear down the suballocator managing the pool of memory 249 * for use as IBs (all asics). 250 */ 251 void radeon_ib_pool_fini(struct radeon_device *rdev) 252 { 253 if (rdev->ib_pool_ready) { 254 radeon_sa_bo_manager_suspend(rdev, &rdev->ring_tmp_bo); 255 radeon_sa_bo_manager_fini(rdev, &rdev->ring_tmp_bo); 256 rdev->ib_pool_ready = false; 257 } 258 } 259 260 /** 261 * radeon_ib_ring_tests - test IBs on the rings 262 * 263 * @rdev: radeon_device pointer 264 * 265 * Test an IB (Indirect Buffer) on each ring. 266 * If the test fails, disable the ring. 267 * Returns 0 on success, error if the primary GFX ring 268 * IB test fails. 269 */ 270 int radeon_ib_ring_tests(struct radeon_device *rdev) 271 { 272 unsigned i; 273 int r; 274 275 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 276 struct radeon_ring *ring = &rdev->ring[i]; 277 278 if (!ring->ready) 279 continue; 280 281 r = radeon_ib_test(rdev, i, ring); 282 if (r) { 283 ring->ready = false; 284 285 if (i == RADEON_RING_TYPE_GFX_INDEX) { 286 /* oh, oh, that's really bad */ 287 DRM_ERROR("radeon: failed testing IB on GFX ring (%d).\n", r); 288 rdev->accel_working = false; 289 return r; 290 291 } else { 292 /* still not good, but we can live with it */ 293 DRM_ERROR("radeon: failed testing IB on ring %d (%d).\n", i, r); 294 } 295 } 296 } 297 return 0; 298 } 299 300 /* 301 * Rings 302 * Most engines on the GPU are fed via ring buffers. Ring 303 * buffers are areas of GPU accessible memory that the host 304 * writes commands into and the GPU reads commands out of. 305 * There is a rptr (read pointer) that determines where the 306 * GPU is currently reading, and a wptr (write pointer) 307 * which determines where the host has written. When the 308 * pointers are equal, the ring is idle. When the host 309 * writes commands to the ring buffer, it increments the 310 * wptr. The GPU then starts fetching commands and executes 311 * them until the pointers are equal again. 312 */ 313 static int radeon_debugfs_ring_init(struct radeon_device *rdev, struct radeon_ring *ring); 314 315 /** 316 * radeon_ring_write - write a value to the ring 317 * 318 * @ring: radeon_ring structure holding ring information 319 * @v: dword (dw) value to write 320 * 321 * Write a value to the requested ring buffer (all asics). 322 */ 323 void radeon_ring_write(struct radeon_ring *ring, uint32_t v) 324 { 325 #if DRM_DEBUG_CODE 326 if (ring->count_dw <= 0) { 327 DRM_ERROR("radeon: writing more dwords to the ring than expected!\n"); 328 } 329 #endif 330 ring->ring[ring->wptr++] = v; 331 ring->wptr &= ring->ptr_mask; 332 ring->count_dw--; 333 ring->ring_free_dw--; 334 } 335 336 /** 337 * radeon_ring_supports_scratch_reg - check if the ring supports 338 * writing to scratch registers 339 * 340 * @rdev: radeon_device pointer 341 * @ring: radeon_ring structure holding ring information 342 * 343 * Check if a specific ring supports writing to scratch registers (all asics). 344 * Returns true if the ring supports writing to scratch regs, false if not. 345 */ 346 bool radeon_ring_supports_scratch_reg(struct radeon_device *rdev, 347 struct radeon_ring *ring) 348 { 349 switch (ring->idx) { 350 case RADEON_RING_TYPE_GFX_INDEX: 351 case CAYMAN_RING_TYPE_CP1_INDEX: 352 case CAYMAN_RING_TYPE_CP2_INDEX: 353 return true; 354 default: 355 return false; 356 } 357 } 358 359 /** 360 * radeon_ring_free_size - update the free size 361 * 362 * @rdev: radeon_device pointer 363 * @ring: radeon_ring structure holding ring information 364 * 365 * Update the free dw slots in the ring buffer (all asics). 366 */ 367 void radeon_ring_free_size(struct radeon_device *rdev, struct radeon_ring *ring) 368 { 369 u32 rptr; 370 371 if (rdev->wb.enabled) 372 rptr = le32_to_cpu(rdev->wb.wb[ring->rptr_offs/4]); 373 else 374 rptr = RREG32(ring->rptr_reg); 375 ring->rptr = (rptr & ring->ptr_reg_mask) >> ring->ptr_reg_shift; 376 /* This works because ring_size is a power of 2 */ 377 ring->ring_free_dw = (ring->rptr + (ring->ring_size / 4)); 378 ring->ring_free_dw -= ring->wptr; 379 ring->ring_free_dw &= ring->ptr_mask; 380 if (!ring->ring_free_dw) { 381 ring->ring_free_dw = ring->ring_size / 4; 382 } 383 } 384 385 /** 386 * radeon_ring_alloc - allocate space on the ring buffer 387 * 388 * @rdev: radeon_device pointer 389 * @ring: radeon_ring structure holding ring information 390 * @ndw: number of dwords to allocate in the ring buffer 391 * 392 * Allocate @ndw dwords in the ring buffer (all asics). 393 * Returns 0 on success, error on failure. 394 */ 395 int radeon_ring_alloc(struct radeon_device *rdev, struct radeon_ring *ring, unsigned ndw) 396 { 397 int r; 398 399 /* make sure we aren't trying to allocate more space than there is on the ring */ 400 if (ndw > (ring->ring_size / 4)) 401 return -ENOMEM; 402 /* Align requested size with padding so unlock_commit can 403 * pad safely */ 404 ndw = (ndw + ring->align_mask) & ~ring->align_mask; 405 while (ndw > (ring->ring_free_dw - 1)) { 406 radeon_ring_free_size(rdev, ring); 407 if (ndw < ring->ring_free_dw) { 408 break; 409 } 410 r = radeon_fence_wait_next_locked(rdev, ring->idx); 411 if (r) 412 return r; 413 } 414 ring->count_dw = ndw; 415 ring->wptr_old = ring->wptr; 416 return 0; 417 } 418 419 /** 420 * radeon_ring_lock - lock the ring and allocate space on it 421 * 422 * @rdev: radeon_device pointer 423 * @ring: radeon_ring structure holding ring information 424 * @ndw: number of dwords to allocate in the ring buffer 425 * 426 * Lock the ring and allocate @ndw dwords in the ring buffer 427 * (all asics). 428 * Returns 0 on success, error on failure. 429 */ 430 int radeon_ring_lock(struct radeon_device *rdev, struct radeon_ring *ring, unsigned ndw) 431 { 432 int r; 433 434 mutex_lock(&rdev->ring_lock); 435 r = radeon_ring_alloc(rdev, ring, ndw); 436 if (r) { 437 mutex_unlock(&rdev->ring_lock); 438 return r; 439 } 440 return 0; 441 } 442 443 /** 444 * radeon_ring_commit - tell the GPU to execute the new 445 * commands on the ring buffer 446 * 447 * @rdev: radeon_device pointer 448 * @ring: radeon_ring structure holding ring information 449 * 450 * Update the wptr (write pointer) to tell the GPU to 451 * execute new commands on the ring buffer (all asics). 452 */ 453 void radeon_ring_commit(struct radeon_device *rdev, struct radeon_ring *ring) 454 { 455 /* We pad to match fetch size */ 456 while (ring->wptr & ring->align_mask) { 457 radeon_ring_write(ring, ring->nop); 458 } 459 DRM_MEMORYBARRIER(); 460 WREG32(ring->wptr_reg, (ring->wptr << ring->ptr_reg_shift) & ring->ptr_reg_mask); 461 (void)RREG32(ring->wptr_reg); 462 } 463 464 /** 465 * radeon_ring_unlock_commit - tell the GPU to execute the new 466 * commands on the ring buffer and unlock it 467 * 468 * @rdev: radeon_device pointer 469 * @ring: radeon_ring structure holding ring information 470 * 471 * Call radeon_ring_commit() then unlock the ring (all asics). 472 */ 473 void radeon_ring_unlock_commit(struct radeon_device *rdev, struct radeon_ring *ring) 474 { 475 radeon_ring_commit(rdev, ring); 476 mutex_unlock(&rdev->ring_lock); 477 } 478 479 /** 480 * radeon_ring_undo - reset the wptr 481 * 482 * @ring: radeon_ring structure holding ring information 483 * 484 * Reset the driver's copy of the wptr (all asics). 485 */ 486 void radeon_ring_undo(struct radeon_ring *ring) 487 { 488 ring->wptr = ring->wptr_old; 489 } 490 491 /** 492 * radeon_ring_unlock_undo - reset the wptr and unlock the ring 493 * 494 * @ring: radeon_ring structure holding ring information 495 * 496 * Call radeon_ring_undo() then unlock the ring (all asics). 497 */ 498 void radeon_ring_unlock_undo(struct radeon_device *rdev, struct radeon_ring *ring) 499 { 500 radeon_ring_undo(ring); 501 mutex_unlock(&rdev->ring_lock); 502 } 503 504 /** 505 * radeon_ring_force_activity - add some nop packets to the ring 506 * 507 * @rdev: radeon_device pointer 508 * @ring: radeon_ring structure holding ring information 509 * 510 * Add some nop packets to the ring to force activity (all asics). 511 * Used for lockup detection to see if the rptr is advancing. 512 */ 513 void radeon_ring_force_activity(struct radeon_device *rdev, struct radeon_ring *ring) 514 { 515 int r; 516 517 radeon_ring_free_size(rdev, ring); 518 if (ring->rptr == ring->wptr) { 519 r = radeon_ring_alloc(rdev, ring, 1); 520 if (!r) { 521 radeon_ring_write(ring, ring->nop); 522 radeon_ring_commit(rdev, ring); 523 } 524 } 525 } 526 527 /** 528 * radeon_ring_lockup_update - update lockup variables 529 * 530 * @ring: radeon_ring structure holding ring information 531 * 532 * Update the last rptr value and timestamp (all asics). 533 */ 534 void radeon_ring_lockup_update(struct radeon_ring *ring) 535 { 536 ring->last_rptr = ring->rptr; 537 ring->last_activity = jiffies; 538 } 539 540 /** 541 * radeon_ring_test_lockup() - check if ring is lockedup by recording information 542 * @rdev: radeon device structure 543 * @ring: radeon_ring structure holding ring information 544 * 545 * We don't need to initialize the lockup tracking information as we will either 546 * have CP rptr to a different value of jiffies wrap around which will force 547 * initialization of the lockup tracking informations. 548 * 549 * A possible false positivie is if we get call after while and last_cp_rptr == 550 * the current CP rptr, even if it's unlikely it might happen. To avoid this 551 * if the elapsed time since last call is bigger than 2 second than we return 552 * false and update the tracking information. Due to this the caller must call 553 * radeon_ring_test_lockup several time in less than 2sec for lockup to be reported 554 * the fencing code should be cautious about that. 555 * 556 * Caller should write to the ring to force CP to do something so we don't get 557 * false positive when CP is just gived nothing to do. 558 * 559 **/ 560 bool radeon_ring_test_lockup(struct radeon_device *rdev, struct radeon_ring *ring) 561 { 562 unsigned long cjiffies, elapsed; 563 uint32_t rptr; 564 565 cjiffies = jiffies; 566 if (!time_after(cjiffies, ring->last_activity)) { 567 /* likely a wrap around */ 568 radeon_ring_lockup_update(ring); 569 return false; 570 } 571 rptr = RREG32(ring->rptr_reg); 572 ring->rptr = (rptr & ring->ptr_reg_mask) >> ring->ptr_reg_shift; 573 if (ring->rptr != ring->last_rptr) { 574 /* CP is still working no lockup */ 575 radeon_ring_lockup_update(ring); 576 return false; 577 } 578 elapsed = jiffies_to_msecs(cjiffies - ring->last_activity); 579 if (radeon_lockup_timeout && elapsed >= radeon_lockup_timeout) { 580 dev_err(rdev->dev, "GPU lockup CP stall for more than %lumsec\n", elapsed); 581 return true; 582 } 583 /* give a chance to the GPU ... */ 584 return false; 585 } 586 587 /** 588 * radeon_ring_backup - Back up the content of a ring 589 * 590 * @rdev: radeon_device pointer 591 * @ring: the ring we want to back up 592 * 593 * Saves all unprocessed commits from a ring, returns the number of dwords saved. 594 */ 595 unsigned radeon_ring_backup(struct radeon_device *rdev, struct radeon_ring *ring, 596 uint32_t **data) 597 { 598 unsigned size, ptr, i; 599 600 /* just in case lock the ring */ 601 mutex_lock(&rdev->ring_lock); 602 *data = NULL; 603 604 if (ring->ring_obj == NULL) { 605 mutex_unlock(&rdev->ring_lock); 606 return 0; 607 } 608 609 /* it doesn't make sense to save anything if all fences are signaled */ 610 if (!radeon_fence_count_emitted(rdev, ring->idx)) { 611 mutex_unlock(&rdev->ring_lock); 612 return 0; 613 } 614 615 /* calculate the number of dw on the ring */ 616 if (ring->rptr_save_reg) 617 ptr = RREG32(ring->rptr_save_reg); 618 else if (rdev->wb.enabled) 619 ptr = le32_to_cpu(*ring->next_rptr_cpu_addr); 620 else { 621 /* no way to read back the next rptr */ 622 mutex_unlock(&rdev->ring_lock); 623 return 0; 624 } 625 626 size = ring->wptr + (ring->ring_size / 4); 627 size -= ptr; 628 size &= ring->ptr_mask; 629 if (size == 0) { 630 mutex_unlock(&rdev->ring_lock); 631 return 0; 632 } 633 634 /* and then save the content of the ring */ 635 *data = kmalloc_array(size, sizeof(uint32_t), GFP_KERNEL); 636 if (!*data) { 637 mutex_unlock(&rdev->ring_lock); 638 return 0; 639 } 640 for (i = 0; i < size; ++i) { 641 (*data)[i] = ring->ring[ptr++]; 642 ptr &= ring->ptr_mask; 643 } 644 645 mutex_unlock(&rdev->ring_lock); 646 return size; 647 } 648 649 /** 650 * radeon_ring_restore - append saved commands to the ring again 651 * 652 * @rdev: radeon_device pointer 653 * @ring: ring to append commands to 654 * @size: number of dwords we want to write 655 * @data: saved commands 656 * 657 * Allocates space on the ring and restore the previously saved commands. 658 */ 659 int radeon_ring_restore(struct radeon_device *rdev, struct radeon_ring *ring, 660 unsigned size, uint32_t *data) 661 { 662 int i, r; 663 664 if (!size || !data) 665 return 0; 666 667 /* restore the saved ring content */ 668 r = radeon_ring_lock(rdev, ring, size); 669 if (r) 670 return r; 671 672 for (i = 0; i < size; ++i) { 673 radeon_ring_write(ring, data[i]); 674 } 675 676 radeon_ring_unlock_commit(rdev, ring); 677 kfree(data); 678 return 0; 679 } 680 681 /** 682 * radeon_ring_init - init driver ring struct. 683 * 684 * @rdev: radeon_device pointer 685 * @ring: radeon_ring structure holding ring information 686 * @ring_size: size of the ring 687 * @rptr_offs: offset of the rptr writeback location in the WB buffer 688 * @rptr_reg: MMIO offset of the rptr register 689 * @wptr_reg: MMIO offset of the wptr register 690 * @ptr_reg_shift: bit offset of the rptr/wptr values 691 * @ptr_reg_mask: bit mask of the rptr/wptr values 692 * @nop: nop packet for this ring 693 * 694 * Initialize the driver information for the selected ring (all asics). 695 * Returns 0 on success, error on failure. 696 */ 697 int radeon_ring_init(struct radeon_device *rdev, struct radeon_ring *ring, unsigned ring_size, 698 unsigned rptr_offs, unsigned rptr_reg, unsigned wptr_reg, 699 u32 ptr_reg_shift, u32 ptr_reg_mask, u32 nop) 700 { 701 int r; 702 703 ring->ring_size = ring_size; 704 ring->rptr_offs = rptr_offs; 705 ring->rptr_reg = rptr_reg; 706 ring->wptr_reg = wptr_reg; 707 ring->ptr_reg_shift = ptr_reg_shift; 708 ring->ptr_reg_mask = ptr_reg_mask; 709 ring->nop = nop; 710 /* Allocate ring buffer */ 711 if (ring->ring_obj == NULL) { 712 r = radeon_bo_create(rdev, ring->ring_size, PAGE_SIZE, true, 713 RADEON_GEM_DOMAIN_GTT, 714 NULL, &ring->ring_obj); 715 if (r) { 716 dev_err(rdev->dev, "(%d) ring create failed\n", r); 717 return r; 718 } 719 r = radeon_bo_reserve(ring->ring_obj, false); 720 if (unlikely(r != 0)) 721 return r; 722 r = radeon_bo_pin(ring->ring_obj, RADEON_GEM_DOMAIN_GTT, 723 &ring->gpu_addr); 724 if (r) { 725 radeon_bo_unreserve(ring->ring_obj); 726 dev_err(rdev->dev, "(%d) ring pin failed\n", r); 727 return r; 728 } 729 r = radeon_bo_kmap(ring->ring_obj, 730 (void **)&ring->ring); 731 radeon_bo_unreserve(ring->ring_obj); 732 if (r) { 733 dev_err(rdev->dev, "(%d) ring map failed\n", r); 734 return r; 735 } 736 } 737 ring->ptr_mask = (ring->ring_size / 4) - 1; 738 ring->ring_free_dw = ring->ring_size / 4; 739 if (rdev->wb.enabled) { 740 u32 index = RADEON_WB_RING0_NEXT_RPTR + (ring->idx * 4); 741 ring->next_rptr_gpu_addr = rdev->wb.gpu_addr + index; 742 ring->next_rptr_cpu_addr = &rdev->wb.wb[index/4]; 743 } 744 if (radeon_debugfs_ring_init(rdev, ring)) { 745 DRM_ERROR("Failed to register debugfs file for rings !\n"); 746 } 747 radeon_ring_lockup_update(ring); 748 return 0; 749 } 750 751 /** 752 * radeon_ring_fini - tear down the driver ring struct. 753 * 754 * @rdev: radeon_device pointer 755 * @ring: radeon_ring structure holding ring information 756 * 757 * Tear down the driver information for the selected ring (all asics). 758 */ 759 void radeon_ring_fini(struct radeon_device *rdev, struct radeon_ring *ring) 760 { 761 int r; 762 struct radeon_bo *ring_obj; 763 764 mutex_lock(&rdev->ring_lock); 765 ring_obj = ring->ring_obj; 766 ring->ready = false; 767 ring->ring = NULL; 768 ring->ring_obj = NULL; 769 mutex_unlock(&rdev->ring_lock); 770 771 if (ring_obj) { 772 r = radeon_bo_reserve(ring_obj, false); 773 if (likely(r == 0)) { 774 radeon_bo_kunmap(ring_obj); 775 radeon_bo_unpin(ring_obj); 776 radeon_bo_unreserve(ring_obj); 777 } 778 radeon_bo_unref(&ring_obj); 779 } 780 } 781 782 /* 783 * Debugfs info 784 */ 785 #if defined(CONFIG_DEBUG_FS) 786 787 static int radeon_debugfs_ring_info(struct seq_file *m, void *data) 788 { 789 struct drm_info_node *node = (struct drm_info_node *) m->private; 790 struct drm_device *dev = node->minor->dev; 791 struct radeon_device *rdev = dev->dev_private; 792 int ridx = *(int*)node->info_ent->data; 793 struct radeon_ring *ring = &rdev->ring[ridx]; 794 unsigned count, i, j; 795 u32 tmp; 796 797 radeon_ring_free_size(rdev, ring); 798 count = (ring->ring_size / 4) - ring->ring_free_dw; 799 tmp = RREG32(ring->wptr_reg) >> ring->ptr_reg_shift; 800 seq_printf(m, "wptr(0x%04x): 0x%08x [%5d]\n", ring->wptr_reg, tmp, tmp); 801 tmp = RREG32(ring->rptr_reg) >> ring->ptr_reg_shift; 802 seq_printf(m, "rptr(0x%04x): 0x%08x [%5d]\n", ring->rptr_reg, tmp, tmp); 803 if (ring->rptr_save_reg) { 804 seq_printf(m, "rptr next(0x%04x): 0x%08x\n", ring->rptr_save_reg, 805 RREG32(ring->rptr_save_reg)); 806 } 807 seq_printf(m, "driver's copy of the wptr: 0x%08x [%5d]\n", ring->wptr, ring->wptr); 808 seq_printf(m, "driver's copy of the rptr: 0x%08x [%5d]\n", ring->rptr, ring->rptr); 809 seq_printf(m, "last semaphore signal addr : 0x%016llx\n", ring->last_semaphore_signal_addr); 810 seq_printf(m, "last semaphore wait addr : 0x%016llx\n", ring->last_semaphore_wait_addr); 811 seq_printf(m, "%u free dwords in ring\n", ring->ring_free_dw); 812 seq_printf(m, "%u dwords in ring\n", count); 813 /* print 8 dw before current rptr as often it's the last executed 814 * packet that is the root issue 815 */ 816 i = (ring->rptr + ring->ptr_mask + 1 - 32) & ring->ptr_mask; 817 for (j = 0; j <= (count + 32); j++) { 818 seq_printf(m, "r[%5d]=0x%08x\n", i, ring->ring[i]); 819 i = (i + 1) & ring->ptr_mask; 820 } 821 return 0; 822 } 823 824 static int radeon_ring_type_gfx_index = RADEON_RING_TYPE_GFX_INDEX; 825 static int cayman_ring_type_cp1_index = CAYMAN_RING_TYPE_CP1_INDEX; 826 static int cayman_ring_type_cp2_index = CAYMAN_RING_TYPE_CP2_INDEX; 827 static int radeon_ring_type_dma1_index = R600_RING_TYPE_DMA_INDEX; 828 static int radeon_ring_type_dma2_index = CAYMAN_RING_TYPE_DMA1_INDEX; 829 830 static struct drm_info_list radeon_debugfs_ring_info_list[] = { 831 {"radeon_ring_gfx", radeon_debugfs_ring_info, 0, &radeon_ring_type_gfx_index}, 832 {"radeon_ring_cp1", radeon_debugfs_ring_info, 0, &cayman_ring_type_cp1_index}, 833 {"radeon_ring_cp2", radeon_debugfs_ring_info, 0, &cayman_ring_type_cp2_index}, 834 {"radeon_ring_dma1", radeon_debugfs_ring_info, 0, &radeon_ring_type_dma1_index}, 835 {"radeon_ring_dma2", radeon_debugfs_ring_info, 0, &radeon_ring_type_dma2_index}, 836 }; 837 838 static int radeon_debugfs_sa_info(struct seq_file *m, void *data) 839 { 840 struct drm_info_node *node = (struct drm_info_node *) m->private; 841 struct drm_device *dev = node->minor->dev; 842 struct radeon_device *rdev = dev->dev_private; 843 844 radeon_sa_bo_dump_debug_info(&rdev->ring_tmp_bo, m); 845 846 return 0; 847 848 } 849 850 static struct drm_info_list radeon_debugfs_sa_list[] = { 851 {"radeon_sa_info", &radeon_debugfs_sa_info, 0, NULL}, 852 }; 853 854 #endif 855 856 static int radeon_debugfs_ring_init(struct radeon_device *rdev, struct radeon_ring *ring) 857 { 858 #if defined(CONFIG_DEBUG_FS) 859 unsigned i; 860 for (i = 0; i < ARRAY_SIZE(radeon_debugfs_ring_info_list); ++i) { 861 struct drm_info_list *info = &radeon_debugfs_ring_info_list[i]; 862 int ridx = *(int*)radeon_debugfs_ring_info_list[i].data; 863 unsigned r; 864 865 if (&rdev->ring[ridx] != ring) 866 continue; 867 868 r = radeon_debugfs_add_files(rdev, info, 1); 869 if (r) 870 return r; 871 } 872 #endif 873 return 0; 874 } 875 876 static int radeon_debugfs_sa_init(struct radeon_device *rdev) 877 { 878 #if defined(CONFIG_DEBUG_FS) 879 return radeon_debugfs_add_files(rdev, radeon_debugfs_sa_list, 1); 880 #else 881 return 0; 882 #endif 883 } 884