1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  *          Christian König
28  */
29 #include <linux/seq_file.h>
30 #include <linux/slab.h>
31 #include <drm/drmP.h>
32 #include <drm/radeon_drm.h>
33 #include "radeon_reg.h"
34 #include "radeon.h"
35 #include "atom.h"
36 
37 /*
38  * IB
39  * IBs (Indirect Buffers) and areas of GPU accessible memory where
40  * commands are stored.  You can put a pointer to the IB in the
41  * command ring and the hw will fetch the commands from the IB
42  * and execute them.  Generally userspace acceleration drivers
43  * produce command buffers which are send to the kernel and
44  * put in IBs for execution by the requested ring.
45  */
46 static int radeon_debugfs_sa_init(struct radeon_device *rdev);
47 
48 /**
49  * radeon_ib_get - request an IB (Indirect Buffer)
50  *
51  * @rdev: radeon_device pointer
52  * @ring: ring index the IB is associated with
53  * @ib: IB object returned
54  * @size: requested IB size
55  *
56  * Request an IB (all asics).  IBs are allocated using the
57  * suballocator.
58  * Returns 0 on success, error on failure.
59  */
60 int radeon_ib_get(struct radeon_device *rdev, int ring,
61 		  struct radeon_ib *ib, struct radeon_vm *vm,
62 		  unsigned size)
63 {
64 	int r;
65 
66 	r = radeon_sa_bo_new(rdev, &rdev->ring_tmp_bo, &ib->sa_bo, size, 256, true);
67 	if (r) {
68 		dev_err(rdev->dev, "failed to get a new IB (%d)\n", r);
69 		return r;
70 	}
71 
72 	r = radeon_semaphore_create(rdev, &ib->semaphore);
73 	if (r) {
74 		return r;
75 	}
76 
77 	ib->ring = ring;
78 	ib->fence = NULL;
79 	ib->ptr = radeon_sa_bo_cpu_addr(ib->sa_bo);
80 	ib->vm = vm;
81 	if (vm) {
82 		/* ib pool is bound at RADEON_VA_IB_OFFSET in virtual address
83 		 * space and soffset is the offset inside the pool bo
84 		 */
85 		ib->gpu_addr = ib->sa_bo->soffset + RADEON_VA_IB_OFFSET;
86 	} else {
87 		ib->gpu_addr = radeon_sa_bo_gpu_addr(ib->sa_bo);
88 	}
89 	ib->is_const_ib = false;
90 
91 	return 0;
92 }
93 
94 /**
95  * radeon_ib_free - free an IB (Indirect Buffer)
96  *
97  * @rdev: radeon_device pointer
98  * @ib: IB object to free
99  *
100  * Free an IB (all asics).
101  */
102 void radeon_ib_free(struct radeon_device *rdev, struct radeon_ib *ib)
103 {
104 	radeon_semaphore_free(rdev, &ib->semaphore, ib->fence);
105 	radeon_sa_bo_free(rdev, &ib->sa_bo, ib->fence);
106 	radeon_fence_unref(&ib->fence);
107 }
108 
109 /**
110  * radeon_ib_schedule - schedule an IB (Indirect Buffer) on the ring
111  *
112  * @rdev: radeon_device pointer
113  * @ib: IB object to schedule
114  * @const_ib: Const IB to schedule (SI only)
115  *
116  * Schedule an IB on the associated ring (all asics).
117  * Returns 0 on success, error on failure.
118  *
119  * On SI, there are two parallel engines fed from the primary ring,
120  * the CE (Constant Engine) and the DE (Drawing Engine).  Since
121  * resource descriptors have moved to memory, the CE allows you to
122  * prime the caches while the DE is updating register state so that
123  * the resource descriptors will be already in cache when the draw is
124  * processed.  To accomplish this, the userspace driver submits two
125  * IBs, one for the CE and one for the DE.  If there is a CE IB (called
126  * a CONST_IB), it will be put on the ring prior to the DE IB.  Prior
127  * to SI there was just a DE IB.
128  */
129 int radeon_ib_schedule(struct radeon_device *rdev, struct radeon_ib *ib,
130 		       struct radeon_ib *const_ib)
131 {
132 	struct radeon_ring *ring = &rdev->ring[ib->ring];
133 	int r = 0;
134 
135 	if (!ib->length_dw || !ring->ready) {
136 		/* TODO: Nothings in the ib we should report. */
137 		dev_err(rdev->dev, "couldn't schedule ib\n");
138 		return -EINVAL;
139 	}
140 
141 	/* 64 dwords should be enough for fence too */
142 	r = radeon_ring_lock(rdev, ring, 64 + RADEON_NUM_RINGS * 8);
143 	if (r) {
144 		dev_err(rdev->dev, "scheduling IB failed (%d).\n", r);
145 		return r;
146 	}
147 
148 	/* sync with other rings */
149 	r = radeon_semaphore_sync_rings(rdev, ib->semaphore, ib->ring);
150 	if (r) {
151 		dev_err(rdev->dev, "failed to sync rings (%d)\n", r);
152 		radeon_ring_unlock_undo(rdev, ring);
153 		return r;
154 	}
155 
156 	/* if we can't remember our last VM flush then flush now! */
157 	/* XXX figure out why we have to flush for every IB */
158 	if (ib->vm /*&& !ib->vm->last_flush*/) {
159 		radeon_ring_vm_flush(rdev, ib->ring, ib->vm);
160 	}
161 	if (const_ib) {
162 		radeon_ring_ib_execute(rdev, const_ib->ring, const_ib);
163 		radeon_semaphore_free(rdev, &const_ib->semaphore, NULL);
164 	}
165 	radeon_ring_ib_execute(rdev, ib->ring, ib);
166 	r = radeon_fence_emit(rdev, &ib->fence, ib->ring);
167 	if (r) {
168 		dev_err(rdev->dev, "failed to emit fence for new IB (%d)\n", r);
169 		radeon_ring_unlock_undo(rdev, ring);
170 		return r;
171 	}
172 	if (const_ib) {
173 		const_ib->fence = radeon_fence_ref(ib->fence);
174 	}
175 	/* we just flushed the VM, remember that */
176 	if (ib->vm && !ib->vm->last_flush) {
177 		ib->vm->last_flush = radeon_fence_ref(ib->fence);
178 	}
179 	radeon_ring_unlock_commit(rdev, ring);
180 	return 0;
181 }
182 
183 /**
184  * radeon_ib_pool_init - Init the IB (Indirect Buffer) pool
185  *
186  * @rdev: radeon_device pointer
187  *
188  * Initialize the suballocator to manage a pool of memory
189  * for use as IBs (all asics).
190  * Returns 0 on success, error on failure.
191  */
192 int radeon_ib_pool_init(struct radeon_device *rdev)
193 {
194 	int r;
195 
196 	if (rdev->ib_pool_ready) {
197 		return 0;
198 	}
199 	r = radeon_sa_bo_manager_init(rdev, &rdev->ring_tmp_bo,
200 				      RADEON_IB_POOL_SIZE*64*1024,
201 				      RADEON_GPU_PAGE_SIZE,
202 				      RADEON_GEM_DOMAIN_GTT);
203 	if (r) {
204 		return r;
205 	}
206 
207 	r = radeon_sa_bo_manager_start(rdev, &rdev->ring_tmp_bo);
208 	if (r) {
209 		return r;
210 	}
211 
212 	rdev->ib_pool_ready = true;
213 	if (radeon_debugfs_sa_init(rdev)) {
214 		dev_err(rdev->dev, "failed to register debugfs file for SA\n");
215 	}
216 	return 0;
217 }
218 
219 /**
220  * radeon_ib_pool_fini - Free the IB (Indirect Buffer) pool
221  *
222  * @rdev: radeon_device pointer
223  *
224  * Tear down the suballocator managing the pool of memory
225  * for use as IBs (all asics).
226  */
227 void radeon_ib_pool_fini(struct radeon_device *rdev)
228 {
229 	if (rdev->ib_pool_ready) {
230 		radeon_sa_bo_manager_suspend(rdev, &rdev->ring_tmp_bo);
231 		radeon_sa_bo_manager_fini(rdev, &rdev->ring_tmp_bo);
232 		rdev->ib_pool_ready = false;
233 	}
234 }
235 
236 /**
237  * radeon_ib_ring_tests - test IBs on the rings
238  *
239  * @rdev: radeon_device pointer
240  *
241  * Test an IB (Indirect Buffer) on each ring.
242  * If the test fails, disable the ring.
243  * Returns 0 on success, error if the primary GFX ring
244  * IB test fails.
245  */
246 int radeon_ib_ring_tests(struct radeon_device *rdev)
247 {
248 	unsigned i;
249 	int r;
250 
251 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
252 		struct radeon_ring *ring = &rdev->ring[i];
253 
254 		if (!ring->ready)
255 			continue;
256 
257 		r = radeon_ib_test(rdev, i, ring);
258 		if (r) {
259 			ring->ready = false;
260 
261 			if (i == RADEON_RING_TYPE_GFX_INDEX) {
262 				/* oh, oh, that's really bad */
263 				DRM_ERROR("radeon: failed testing IB on GFX ring (%d).\n", r);
264 		                rdev->accel_working = false;
265 				return r;
266 
267 			} else {
268 				/* still not good, but we can live with it */
269 				DRM_ERROR("radeon: failed testing IB on ring %d (%d).\n", i, r);
270 			}
271 		}
272 	}
273 	return 0;
274 }
275 
276 /*
277  * Rings
278  * Most engines on the GPU are fed via ring buffers.  Ring
279  * buffers are areas of GPU accessible memory that the host
280  * writes commands into and the GPU reads commands out of.
281  * There is a rptr (read pointer) that determines where the
282  * GPU is currently reading, and a wptr (write pointer)
283  * which determines where the host has written.  When the
284  * pointers are equal, the ring is idle.  When the host
285  * writes commands to the ring buffer, it increments the
286  * wptr.  The GPU then starts fetching commands and executes
287  * them until the pointers are equal again.
288  */
289 static int radeon_debugfs_ring_init(struct radeon_device *rdev, struct radeon_ring *ring);
290 
291 /**
292  * radeon_ring_write - write a value to the ring
293  *
294  * @ring: radeon_ring structure holding ring information
295  * @v: dword (dw) value to write
296  *
297  * Write a value to the requested ring buffer (all asics).
298  */
299 void radeon_ring_write(struct radeon_ring *ring, uint32_t v)
300 {
301 #if DRM_DEBUG_CODE
302 	if (ring->count_dw <= 0) {
303 		DRM_ERROR("radeon: writing more dwords to the ring than expected!\n");
304 	}
305 #endif
306 	ring->ring[ring->wptr++] = v;
307 	ring->wptr &= ring->ptr_mask;
308 	ring->count_dw--;
309 	ring->ring_free_dw--;
310 }
311 
312 /**
313  * radeon_ring_supports_scratch_reg - check if the ring supports
314  * writing to scratch registers
315  *
316  * @rdev: radeon_device pointer
317  * @ring: radeon_ring structure holding ring information
318  *
319  * Check if a specific ring supports writing to scratch registers (all asics).
320  * Returns true if the ring supports writing to scratch regs, false if not.
321  */
322 bool radeon_ring_supports_scratch_reg(struct radeon_device *rdev,
323 				      struct radeon_ring *ring)
324 {
325 	switch (ring->idx) {
326 	case RADEON_RING_TYPE_GFX_INDEX:
327 	case CAYMAN_RING_TYPE_CP1_INDEX:
328 	case CAYMAN_RING_TYPE_CP2_INDEX:
329 		return true;
330 	default:
331 		return false;
332 	}
333 }
334 
335 u32 radeon_ring_generic_get_rptr(struct radeon_device *rdev,
336 				 struct radeon_ring *ring)
337 {
338 	u32 rptr;
339 
340 	if (rdev->wb.enabled)
341 		rptr = le32_to_cpu(rdev->wb.wb[ring->rptr_offs/4]);
342 	else
343 		rptr = RREG32(ring->rptr_reg);
344 
345 	return rptr;
346 }
347 
348 u32 radeon_ring_generic_get_wptr(struct radeon_device *rdev,
349 				 struct radeon_ring *ring)
350 {
351 	u32 wptr;
352 
353 	wptr = RREG32(ring->wptr_reg);
354 
355 	return wptr;
356 }
357 
358 void radeon_ring_generic_set_wptr(struct radeon_device *rdev,
359 				  struct radeon_ring *ring)
360 {
361 	WREG32(ring->wptr_reg, ring->wptr);
362 	(void)RREG32(ring->wptr_reg);
363 }
364 
365 /**
366  * radeon_ring_free_size - update the free size
367  *
368  * @rdev: radeon_device pointer
369  * @ring: radeon_ring structure holding ring information
370  *
371  * Update the free dw slots in the ring buffer (all asics).
372  */
373 void radeon_ring_free_size(struct radeon_device *rdev, struct radeon_ring *ring)
374 {
375 	ring->rptr = radeon_ring_get_rptr(rdev, ring);
376 	/* This works because ring_size is a power of 2 */
377 	ring->ring_free_dw = (ring->rptr + (ring->ring_size / 4));
378 	ring->ring_free_dw -= ring->wptr;
379 	ring->ring_free_dw &= ring->ptr_mask;
380 	if (!ring->ring_free_dw) {
381 		ring->ring_free_dw = ring->ring_size / 4;
382 	}
383 }
384 
385 /**
386  * radeon_ring_alloc - allocate space on the ring buffer
387  *
388  * @rdev: radeon_device pointer
389  * @ring: radeon_ring structure holding ring information
390  * @ndw: number of dwords to allocate in the ring buffer
391  *
392  * Allocate @ndw dwords in the ring buffer (all asics).
393  * Returns 0 on success, error on failure.
394  */
395 int radeon_ring_alloc(struct radeon_device *rdev, struct radeon_ring *ring, unsigned ndw)
396 {
397 	int r;
398 
399 	/* make sure we aren't trying to allocate more space than there is on the ring */
400 	if (ndw > (ring->ring_size / 4))
401 		return -ENOMEM;
402 	/* Align requested size with padding so unlock_commit can
403 	 * pad safely */
404 	radeon_ring_free_size(rdev, ring);
405 	if (ring->ring_free_dw == (ring->ring_size / 4)) {
406 		/* This is an empty ring update lockup info to avoid
407 		 * false positive.
408 		 */
409 		radeon_ring_lockup_update(ring);
410 	}
411 	ndw = (ndw + ring->align_mask) & ~ring->align_mask;
412 	while (ndw > (ring->ring_free_dw - 1)) {
413 		radeon_ring_free_size(rdev, ring);
414 		if (ndw < ring->ring_free_dw) {
415 			break;
416 		}
417 		r = radeon_fence_wait_next_locked(rdev, ring->idx);
418 		if (r)
419 			return r;
420 	}
421 	ring->count_dw = ndw;
422 	ring->wptr_old = ring->wptr;
423 	return 0;
424 }
425 
426 /**
427  * radeon_ring_lock - lock the ring and allocate space on it
428  *
429  * @rdev: radeon_device pointer
430  * @ring: radeon_ring structure holding ring information
431  * @ndw: number of dwords to allocate in the ring buffer
432  *
433  * Lock the ring and allocate @ndw dwords in the ring buffer
434  * (all asics).
435  * Returns 0 on success, error on failure.
436  */
437 int radeon_ring_lock(struct radeon_device *rdev, struct radeon_ring *ring, unsigned ndw)
438 {
439 	int r;
440 
441 	mutex_lock(&rdev->ring_lock);
442 	r = radeon_ring_alloc(rdev, ring, ndw);
443 	if (r) {
444 		mutex_unlock(&rdev->ring_lock);
445 		return r;
446 	}
447 	return 0;
448 }
449 
450 /**
451  * radeon_ring_commit - tell the GPU to execute the new
452  * commands on the ring buffer
453  *
454  * @rdev: radeon_device pointer
455  * @ring: radeon_ring structure holding ring information
456  *
457  * Update the wptr (write pointer) to tell the GPU to
458  * execute new commands on the ring buffer (all asics).
459  */
460 void radeon_ring_commit(struct radeon_device *rdev, struct radeon_ring *ring)
461 {
462 	/* We pad to match fetch size */
463 	while (ring->wptr & ring->align_mask) {
464 		radeon_ring_write(ring, ring->nop);
465 	}
466 	DRM_MEMORYBARRIER();
467 	radeon_ring_set_wptr(rdev, ring);
468 }
469 
470 /**
471  * radeon_ring_unlock_commit - tell the GPU to execute the new
472  * commands on the ring buffer and unlock it
473  *
474  * @rdev: radeon_device pointer
475  * @ring: radeon_ring structure holding ring information
476  *
477  * Call radeon_ring_commit() then unlock the ring (all asics).
478  */
479 void radeon_ring_unlock_commit(struct radeon_device *rdev, struct radeon_ring *ring)
480 {
481 	radeon_ring_commit(rdev, ring);
482 	mutex_unlock(&rdev->ring_lock);
483 }
484 
485 /**
486  * radeon_ring_undo - reset the wptr
487  *
488  * @ring: radeon_ring structure holding ring information
489  *
490  * Reset the driver's copy of the wptr (all asics).
491  */
492 void radeon_ring_undo(struct radeon_ring *ring)
493 {
494 	ring->wptr = ring->wptr_old;
495 }
496 
497 /**
498  * radeon_ring_unlock_undo - reset the wptr and unlock the ring
499  *
500  * @ring: radeon_ring structure holding ring information
501  *
502  * Call radeon_ring_undo() then unlock the ring (all asics).
503  */
504 void radeon_ring_unlock_undo(struct radeon_device *rdev, struct radeon_ring *ring)
505 {
506 	radeon_ring_undo(ring);
507 	mutex_unlock(&rdev->ring_lock);
508 }
509 
510 /**
511  * radeon_ring_force_activity - add some nop packets to the ring
512  *
513  * @rdev: radeon_device pointer
514  * @ring: radeon_ring structure holding ring information
515  *
516  * Add some nop packets to the ring to force activity (all asics).
517  * Used for lockup detection to see if the rptr is advancing.
518  */
519 void radeon_ring_force_activity(struct radeon_device *rdev, struct radeon_ring *ring)
520 {
521 	int r;
522 
523 	radeon_ring_free_size(rdev, ring);
524 	if (ring->rptr == ring->wptr) {
525 		r = radeon_ring_alloc(rdev, ring, 1);
526 		if (!r) {
527 			radeon_ring_write(ring, ring->nop);
528 			radeon_ring_commit(rdev, ring);
529 		}
530 	}
531 }
532 
533 /**
534  * radeon_ring_lockup_update - update lockup variables
535  *
536  * @ring: radeon_ring structure holding ring information
537  *
538  * Update the last rptr value and timestamp (all asics).
539  */
540 void radeon_ring_lockup_update(struct radeon_ring *ring)
541 {
542 	ring->last_rptr = ring->rptr;
543 	ring->last_activity = jiffies;
544 }
545 
546 /**
547  * radeon_ring_test_lockup() - check if ring is lockedup by recording information
548  * @rdev:       radeon device structure
549  * @ring:       radeon_ring structure holding ring information
550  *
551  * We don't need to initialize the lockup tracking information as we will either
552  * have CP rptr to a different value of jiffies wrap around which will force
553  * initialization of the lockup tracking informations.
554  *
555  * A possible false positivie is if we get call after while and last_cp_rptr ==
556  * the current CP rptr, even if it's unlikely it might happen. To avoid this
557  * if the elapsed time since last call is bigger than 2 second than we return
558  * false and update the tracking information. Due to this the caller must call
559  * radeon_ring_test_lockup several time in less than 2sec for lockup to be reported
560  * the fencing code should be cautious about that.
561  *
562  * Caller should write to the ring to force CP to do something so we don't get
563  * false positive when CP is just gived nothing to do.
564  *
565  **/
566 bool radeon_ring_test_lockup(struct radeon_device *rdev, struct radeon_ring *ring)
567 {
568 	unsigned long cjiffies, elapsed;
569 
570 	cjiffies = jiffies;
571 	if (!time_after(cjiffies, ring->last_activity)) {
572 		/* likely a wrap around */
573 		radeon_ring_lockup_update(ring);
574 		return false;
575 	}
576 	ring->rptr = radeon_ring_get_rptr(rdev, ring);
577 	if (ring->rptr != ring->last_rptr) {
578 		/* CP is still working no lockup */
579 		radeon_ring_lockup_update(ring);
580 		return false;
581 	}
582 	elapsed = jiffies_to_msecs(cjiffies - ring->last_activity);
583 	if (radeon_lockup_timeout && elapsed >= radeon_lockup_timeout) {
584 		dev_err(rdev->dev, "GPU lockup CP stall for more than %lumsec\n", elapsed);
585 		return true;
586 	}
587 	/* give a chance to the GPU ... */
588 	return false;
589 }
590 
591 /**
592  * radeon_ring_backup - Back up the content of a ring
593  *
594  * @rdev: radeon_device pointer
595  * @ring: the ring we want to back up
596  *
597  * Saves all unprocessed commits from a ring, returns the number of dwords saved.
598  */
599 unsigned radeon_ring_backup(struct radeon_device *rdev, struct radeon_ring *ring,
600 			    uint32_t **data)
601 {
602 	unsigned size, ptr, i;
603 
604 	/* just in case lock the ring */
605 	mutex_lock(&rdev->ring_lock);
606 	*data = NULL;
607 
608 	if (ring->ring_obj == NULL) {
609 		mutex_unlock(&rdev->ring_lock);
610 		return 0;
611 	}
612 
613 	/* it doesn't make sense to save anything if all fences are signaled */
614 	if (!radeon_fence_count_emitted(rdev, ring->idx)) {
615 		mutex_unlock(&rdev->ring_lock);
616 		return 0;
617 	}
618 
619 	/* calculate the number of dw on the ring */
620 	if (ring->rptr_save_reg)
621 		ptr = RREG32(ring->rptr_save_reg);
622 	else if (rdev->wb.enabled)
623 		ptr = le32_to_cpu(*ring->next_rptr_cpu_addr);
624 	else {
625 		/* no way to read back the next rptr */
626 		mutex_unlock(&rdev->ring_lock);
627 		return 0;
628 	}
629 
630 	size = ring->wptr + (ring->ring_size / 4);
631 	size -= ptr;
632 	size &= ring->ptr_mask;
633 	if (size == 0) {
634 		mutex_unlock(&rdev->ring_lock);
635 		return 0;
636 	}
637 
638 	/* and then save the content of the ring */
639 	*data = kmalloc_array(size, sizeof(uint32_t), GFP_KERNEL);
640 	if (!*data) {
641 		mutex_unlock(&rdev->ring_lock);
642 		return 0;
643 	}
644 	for (i = 0; i < size; ++i) {
645 		(*data)[i] = ring->ring[ptr++];
646 		ptr &= ring->ptr_mask;
647 	}
648 
649 	mutex_unlock(&rdev->ring_lock);
650 	return size;
651 }
652 
653 /**
654  * radeon_ring_restore - append saved commands to the ring again
655  *
656  * @rdev: radeon_device pointer
657  * @ring: ring to append commands to
658  * @size: number of dwords we want to write
659  * @data: saved commands
660  *
661  * Allocates space on the ring and restore the previously saved commands.
662  */
663 int radeon_ring_restore(struct radeon_device *rdev, struct radeon_ring *ring,
664 			unsigned size, uint32_t *data)
665 {
666 	int i, r;
667 
668 	if (!size || !data)
669 		return 0;
670 
671 	/* restore the saved ring content */
672 	r = radeon_ring_lock(rdev, ring, size);
673 	if (r)
674 		return r;
675 
676 	for (i = 0; i < size; ++i) {
677 		radeon_ring_write(ring, data[i]);
678 	}
679 
680 	radeon_ring_unlock_commit(rdev, ring);
681 	kfree(data);
682 	return 0;
683 }
684 
685 /**
686  * radeon_ring_init - init driver ring struct.
687  *
688  * @rdev: radeon_device pointer
689  * @ring: radeon_ring structure holding ring information
690  * @ring_size: size of the ring
691  * @rptr_offs: offset of the rptr writeback location in the WB buffer
692  * @rptr_reg: MMIO offset of the rptr register
693  * @wptr_reg: MMIO offset of the wptr register
694  * @nop: nop packet for this ring
695  *
696  * Initialize the driver information for the selected ring (all asics).
697  * Returns 0 on success, error on failure.
698  */
699 int radeon_ring_init(struct radeon_device *rdev, struct radeon_ring *ring, unsigned ring_size,
700 		     unsigned rptr_offs, unsigned rptr_reg, unsigned wptr_reg, u32 nop)
701 {
702 	int r;
703 
704 	ring->ring_size = ring_size;
705 	ring->rptr_offs = rptr_offs;
706 	ring->rptr_reg = rptr_reg;
707 	ring->wptr_reg = wptr_reg;
708 	ring->nop = nop;
709 	/* Allocate ring buffer */
710 	if (ring->ring_obj == NULL) {
711 		r = radeon_bo_create(rdev, ring->ring_size, PAGE_SIZE, true,
712 				     RADEON_GEM_DOMAIN_GTT,
713 				     NULL, &ring->ring_obj);
714 		if (r) {
715 			dev_err(rdev->dev, "(%d) ring create failed\n", r);
716 			return r;
717 		}
718 		r = radeon_bo_reserve(ring->ring_obj, false);
719 		if (unlikely(r != 0))
720 			return r;
721 		r = radeon_bo_pin(ring->ring_obj, RADEON_GEM_DOMAIN_GTT,
722 					&ring->gpu_addr);
723 		if (r) {
724 			radeon_bo_unreserve(ring->ring_obj);
725 			dev_err(rdev->dev, "(%d) ring pin failed\n", r);
726 			return r;
727 		}
728 		r = radeon_bo_kmap(ring->ring_obj,
729 				       (void **)&ring->ring);
730 		radeon_bo_unreserve(ring->ring_obj);
731 		if (r) {
732 			dev_err(rdev->dev, "(%d) ring map failed\n", r);
733 			return r;
734 		}
735 	}
736 	ring->ptr_mask = (ring->ring_size / 4) - 1;
737 	ring->ring_free_dw = ring->ring_size / 4;
738 	if (rdev->wb.enabled) {
739 		u32 index = RADEON_WB_RING0_NEXT_RPTR + (ring->idx * 4);
740 		ring->next_rptr_gpu_addr = rdev->wb.gpu_addr + index;
741 		ring->next_rptr_cpu_addr = &rdev->wb.wb[index/4];
742 	}
743 	if (radeon_debugfs_ring_init(rdev, ring)) {
744 		DRM_ERROR("Failed to register debugfs file for rings !\n");
745 	}
746 	radeon_ring_lockup_update(ring);
747 	return 0;
748 }
749 
750 /**
751  * radeon_ring_fini - tear down the driver ring struct.
752  *
753  * @rdev: radeon_device pointer
754  * @ring: radeon_ring structure holding ring information
755  *
756  * Tear down the driver information for the selected ring (all asics).
757  */
758 void radeon_ring_fini(struct radeon_device *rdev, struct radeon_ring *ring)
759 {
760 	int r;
761 	struct radeon_bo *ring_obj;
762 
763 	mutex_lock(&rdev->ring_lock);
764 	ring_obj = ring->ring_obj;
765 	ring->ready = false;
766 	ring->ring = NULL;
767 	ring->ring_obj = NULL;
768 	mutex_unlock(&rdev->ring_lock);
769 
770 	if (ring_obj) {
771 		r = radeon_bo_reserve(ring_obj, false);
772 		if (likely(r == 0)) {
773 			radeon_bo_kunmap(ring_obj);
774 			radeon_bo_unpin(ring_obj);
775 			radeon_bo_unreserve(ring_obj);
776 		}
777 		radeon_bo_unref(&ring_obj);
778 	}
779 }
780 
781 /*
782  * Debugfs info
783  */
784 #if defined(CONFIG_DEBUG_FS)
785 
786 static int radeon_debugfs_ring_info(struct seq_file *m, void *data)
787 {
788 	struct drm_info_node *node = (struct drm_info_node *) m->private;
789 	struct drm_device *dev = node->minor->dev;
790 	struct radeon_device *rdev = dev->dev_private;
791 	int ridx = *(int*)node->info_ent->data;
792 	struct radeon_ring *ring = &rdev->ring[ridx];
793 	unsigned count, i, j;
794 	u32 tmp;
795 
796 	radeon_ring_free_size(rdev, ring);
797 	count = (ring->ring_size / 4) - ring->ring_free_dw;
798 	tmp = radeon_ring_get_wptr(rdev, ring);
799 	seq_printf(m, "wptr(0x%04x): 0x%08x [%5d]\n", ring->wptr_reg, tmp, tmp);
800 	tmp = radeon_ring_get_rptr(rdev, ring);
801 	seq_printf(m, "rptr(0x%04x): 0x%08x [%5d]\n", ring->rptr_reg, tmp, tmp);
802 	if (ring->rptr_save_reg) {
803 		seq_printf(m, "rptr next(0x%04x): 0x%08x\n", ring->rptr_save_reg,
804 			   RREG32(ring->rptr_save_reg));
805 	}
806 	seq_printf(m, "driver's copy of the wptr: 0x%08x [%5d]\n", ring->wptr, ring->wptr);
807 	seq_printf(m, "driver's copy of the rptr: 0x%08x [%5d]\n", ring->rptr, ring->rptr);
808 	seq_printf(m, "last semaphore signal addr : 0x%016llx\n", ring->last_semaphore_signal_addr);
809 	seq_printf(m, "last semaphore wait addr   : 0x%016llx\n", ring->last_semaphore_wait_addr);
810 	seq_printf(m, "%u free dwords in ring\n", ring->ring_free_dw);
811 	seq_printf(m, "%u dwords in ring\n", count);
812 	/* print 8 dw before current rptr as often it's the last executed
813 	 * packet that is the root issue
814 	 */
815 	i = (ring->rptr + ring->ptr_mask + 1 - 32) & ring->ptr_mask;
816 	if (ring->ready) {
817 		for (j = 0; j <= (count + 32); j++) {
818 			seq_printf(m, "r[%5d]=0x%08x\n", i, ring->ring[i]);
819 			i = (i + 1) & ring->ptr_mask;
820 		}
821 	}
822 	return 0;
823 }
824 
825 static int radeon_gfx_index = RADEON_RING_TYPE_GFX_INDEX;
826 static int cayman_cp1_index = CAYMAN_RING_TYPE_CP1_INDEX;
827 static int cayman_cp2_index = CAYMAN_RING_TYPE_CP2_INDEX;
828 static int radeon_dma1_index = R600_RING_TYPE_DMA_INDEX;
829 static int radeon_dma2_index = CAYMAN_RING_TYPE_DMA1_INDEX;
830 static int r600_uvd_index = R600_RING_TYPE_UVD_INDEX;
831 
832 static struct drm_info_list radeon_debugfs_ring_info_list[] = {
833 	{"radeon_ring_gfx", radeon_debugfs_ring_info, 0, &radeon_gfx_index},
834 	{"radeon_ring_cp1", radeon_debugfs_ring_info, 0, &cayman_cp1_index},
835 	{"radeon_ring_cp2", radeon_debugfs_ring_info, 0, &cayman_cp2_index},
836 	{"radeon_ring_dma1", radeon_debugfs_ring_info, 0, &radeon_dma1_index},
837 	{"radeon_ring_dma2", radeon_debugfs_ring_info, 0, &radeon_dma2_index},
838 	{"radeon_ring_uvd", radeon_debugfs_ring_info, 0, &r600_uvd_index},
839 };
840 
841 static int radeon_debugfs_sa_info(struct seq_file *m, void *data)
842 {
843 	struct drm_info_node *node = (struct drm_info_node *) m->private;
844 	struct drm_device *dev = node->minor->dev;
845 	struct radeon_device *rdev = dev->dev_private;
846 
847 	radeon_sa_bo_dump_debug_info(&rdev->ring_tmp_bo, m);
848 
849 	return 0;
850 
851 }
852 
853 static struct drm_info_list radeon_debugfs_sa_list[] = {
854         {"radeon_sa_info", &radeon_debugfs_sa_info, 0, NULL},
855 };
856 
857 #endif
858 
859 static int radeon_debugfs_ring_init(struct radeon_device *rdev, struct radeon_ring *ring)
860 {
861 #if defined(CONFIG_DEBUG_FS)
862 	unsigned i;
863 	for (i = 0; i < ARRAY_SIZE(radeon_debugfs_ring_info_list); ++i) {
864 		struct drm_info_list *info = &radeon_debugfs_ring_info_list[i];
865 		int ridx = *(int*)radeon_debugfs_ring_info_list[i].data;
866 		unsigned r;
867 
868 		if (&rdev->ring[ridx] != ring)
869 			continue;
870 
871 		r = radeon_debugfs_add_files(rdev, info, 1);
872 		if (r)
873 			return r;
874 	}
875 #endif
876 	return 0;
877 }
878 
879 static int radeon_debugfs_sa_init(struct radeon_device *rdev)
880 {
881 #if defined(CONFIG_DEBUG_FS)
882 	return radeon_debugfs_add_files(rdev, radeon_debugfs_sa_list, 1);
883 #else
884 	return 0;
885 #endif
886 }
887