1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 * Christian König 28 */ 29 #include <linux/seq_file.h> 30 #include <linux/slab.h> 31 #include <drm/drmP.h> 32 #include <drm/radeon_drm.h> 33 #include "radeon_reg.h" 34 #include "radeon.h" 35 #include "atom.h" 36 37 /* 38 * IB 39 * IBs (Indirect Buffers) and areas of GPU accessible memory where 40 * commands are stored. You can put a pointer to the IB in the 41 * command ring and the hw will fetch the commands from the IB 42 * and execute them. Generally userspace acceleration drivers 43 * produce command buffers which are send to the kernel and 44 * put in IBs for execution by the requested ring. 45 */ 46 static int radeon_debugfs_sa_init(struct radeon_device *rdev); 47 48 /** 49 * radeon_ib_get - request an IB (Indirect Buffer) 50 * 51 * @rdev: radeon_device pointer 52 * @ring: ring index the IB is associated with 53 * @ib: IB object returned 54 * @size: requested IB size 55 * 56 * Request an IB (all asics). IBs are allocated using the 57 * suballocator. 58 * Returns 0 on success, error on failure. 59 */ 60 int radeon_ib_get(struct radeon_device *rdev, int ring, 61 struct radeon_ib *ib, struct radeon_vm *vm, 62 unsigned size) 63 { 64 int i, r; 65 66 r = radeon_sa_bo_new(rdev, &rdev->ring_tmp_bo, &ib->sa_bo, size, 256, true); 67 if (r) { 68 dev_err(rdev->dev, "failed to get a new IB (%d)\n", r); 69 return r; 70 } 71 72 r = radeon_semaphore_create(rdev, &ib->semaphore); 73 if (r) { 74 return r; 75 } 76 77 ib->ring = ring; 78 ib->fence = NULL; 79 ib->ptr = radeon_sa_bo_cpu_addr(ib->sa_bo); 80 ib->vm = vm; 81 if (vm) { 82 /* ib pool is bound at RADEON_VA_IB_OFFSET in virtual address 83 * space and soffset is the offset inside the pool bo 84 */ 85 ib->gpu_addr = ib->sa_bo->soffset + RADEON_VA_IB_OFFSET; 86 } else { 87 ib->gpu_addr = radeon_sa_bo_gpu_addr(ib->sa_bo); 88 } 89 ib->is_const_ib = false; 90 for (i = 0; i < RADEON_NUM_RINGS; ++i) 91 ib->sync_to[i] = NULL; 92 93 return 0; 94 } 95 96 /** 97 * radeon_ib_free - free an IB (Indirect Buffer) 98 * 99 * @rdev: radeon_device pointer 100 * @ib: IB object to free 101 * 102 * Free an IB (all asics). 103 */ 104 void radeon_ib_free(struct radeon_device *rdev, struct radeon_ib *ib) 105 { 106 radeon_semaphore_free(rdev, &ib->semaphore, ib->fence); 107 radeon_sa_bo_free(rdev, &ib->sa_bo, ib->fence); 108 radeon_fence_unref(&ib->fence); 109 } 110 111 /** 112 * radeon_ib_sync_to - sync to fence before executing the IB 113 * 114 * @ib: IB object to add fence to 115 * @fence: fence to sync to 116 * 117 * Sync to the fence before executing the IB 118 */ 119 void radeon_ib_sync_to(struct radeon_ib *ib, struct radeon_fence *fence) 120 { 121 struct radeon_fence *other; 122 123 if (!fence) 124 return; 125 126 other = ib->sync_to[fence->ring]; 127 ib->sync_to[fence->ring] = radeon_fence_later(fence, other); 128 } 129 130 /** 131 * radeon_ib_schedule - schedule an IB (Indirect Buffer) on the ring 132 * 133 * @rdev: radeon_device pointer 134 * @ib: IB object to schedule 135 * @const_ib: Const IB to schedule (SI only) 136 * 137 * Schedule an IB on the associated ring (all asics). 138 * Returns 0 on success, error on failure. 139 * 140 * On SI, there are two parallel engines fed from the primary ring, 141 * the CE (Constant Engine) and the DE (Drawing Engine). Since 142 * resource descriptors have moved to memory, the CE allows you to 143 * prime the caches while the DE is updating register state so that 144 * the resource descriptors will be already in cache when the draw is 145 * processed. To accomplish this, the userspace driver submits two 146 * IBs, one for the CE and one for the DE. If there is a CE IB (called 147 * a CONST_IB), it will be put on the ring prior to the DE IB. Prior 148 * to SI there was just a DE IB. 149 */ 150 int radeon_ib_schedule(struct radeon_device *rdev, struct radeon_ib *ib, 151 struct radeon_ib *const_ib) 152 { 153 struct radeon_ring *ring = &rdev->ring[ib->ring]; 154 bool need_sync = false; 155 int i, r = 0; 156 157 if (!ib->length_dw || !ring->ready) { 158 /* TODO: Nothings in the ib we should report. */ 159 dev_err(rdev->dev, "couldn't schedule ib\n"); 160 return -EINVAL; 161 } 162 163 /* 64 dwords should be enough for fence too */ 164 r = radeon_ring_lock(rdev, ring, 64 + RADEON_NUM_RINGS * 8); 165 if (r) { 166 dev_err(rdev->dev, "scheduling IB failed (%d).\n", r); 167 return r; 168 } 169 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 170 struct radeon_fence *fence = ib->sync_to[i]; 171 if (radeon_fence_need_sync(fence, ib->ring)) { 172 need_sync = true; 173 radeon_semaphore_sync_rings(rdev, ib->semaphore, 174 fence->ring, ib->ring); 175 radeon_fence_note_sync(fence, ib->ring); 176 } 177 } 178 /* immediately free semaphore when we don't need to sync */ 179 if (!need_sync) { 180 radeon_semaphore_free(rdev, &ib->semaphore, NULL); 181 } 182 /* if we can't remember our last VM flush then flush now! */ 183 /* XXX figure out why we have to flush for every IB */ 184 if (ib->vm /*&& !ib->vm->last_flush*/) { 185 radeon_ring_vm_flush(rdev, ib->ring, ib->vm); 186 } 187 if (const_ib) { 188 radeon_ring_ib_execute(rdev, const_ib->ring, const_ib); 189 radeon_semaphore_free(rdev, &const_ib->semaphore, NULL); 190 } 191 radeon_ring_ib_execute(rdev, ib->ring, ib); 192 r = radeon_fence_emit(rdev, &ib->fence, ib->ring); 193 if (r) { 194 dev_err(rdev->dev, "failed to emit fence for new IB (%d)\n", r); 195 radeon_ring_unlock_undo(rdev, ring); 196 return r; 197 } 198 if (const_ib) { 199 const_ib->fence = radeon_fence_ref(ib->fence); 200 } 201 /* we just flushed the VM, remember that */ 202 if (ib->vm && !ib->vm->last_flush) { 203 ib->vm->last_flush = radeon_fence_ref(ib->fence); 204 } 205 radeon_ring_unlock_commit(rdev, ring); 206 return 0; 207 } 208 209 /** 210 * radeon_ib_pool_init - Init the IB (Indirect Buffer) pool 211 * 212 * @rdev: radeon_device pointer 213 * 214 * Initialize the suballocator to manage a pool of memory 215 * for use as IBs (all asics). 216 * Returns 0 on success, error on failure. 217 */ 218 int radeon_ib_pool_init(struct radeon_device *rdev) 219 { 220 int r; 221 222 if (rdev->ib_pool_ready) { 223 return 0; 224 } 225 r = radeon_sa_bo_manager_init(rdev, &rdev->ring_tmp_bo, 226 RADEON_IB_POOL_SIZE*64*1024, 227 RADEON_GPU_PAGE_SIZE, 228 RADEON_GEM_DOMAIN_GTT); 229 if (r) { 230 return r; 231 } 232 233 r = radeon_sa_bo_manager_start(rdev, &rdev->ring_tmp_bo); 234 if (r) { 235 return r; 236 } 237 238 rdev->ib_pool_ready = true; 239 if (radeon_debugfs_sa_init(rdev)) { 240 dev_err(rdev->dev, "failed to register debugfs file for SA\n"); 241 } 242 return 0; 243 } 244 245 /** 246 * radeon_ib_pool_fini - Free the IB (Indirect Buffer) pool 247 * 248 * @rdev: radeon_device pointer 249 * 250 * Tear down the suballocator managing the pool of memory 251 * for use as IBs (all asics). 252 */ 253 void radeon_ib_pool_fini(struct radeon_device *rdev) 254 { 255 if (rdev->ib_pool_ready) { 256 radeon_sa_bo_manager_suspend(rdev, &rdev->ring_tmp_bo); 257 radeon_sa_bo_manager_fini(rdev, &rdev->ring_tmp_bo); 258 rdev->ib_pool_ready = false; 259 } 260 } 261 262 /** 263 * radeon_ib_ring_tests - test IBs on the rings 264 * 265 * @rdev: radeon_device pointer 266 * 267 * Test an IB (Indirect Buffer) on each ring. 268 * If the test fails, disable the ring. 269 * Returns 0 on success, error if the primary GFX ring 270 * IB test fails. 271 */ 272 int radeon_ib_ring_tests(struct radeon_device *rdev) 273 { 274 unsigned i; 275 int r; 276 277 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 278 struct radeon_ring *ring = &rdev->ring[i]; 279 280 if (!ring->ready) 281 continue; 282 283 r = radeon_ib_test(rdev, i, ring); 284 if (r) { 285 ring->ready = false; 286 287 if (i == RADEON_RING_TYPE_GFX_INDEX) { 288 /* oh, oh, that's really bad */ 289 DRM_ERROR("radeon: failed testing IB on GFX ring (%d).\n", r); 290 rdev->accel_working = false; 291 return r; 292 293 } else { 294 /* still not good, but we can live with it */ 295 DRM_ERROR("radeon: failed testing IB on ring %d (%d).\n", i, r); 296 } 297 } 298 } 299 return 0; 300 } 301 302 /* 303 * Rings 304 * Most engines on the GPU are fed via ring buffers. Ring 305 * buffers are areas of GPU accessible memory that the host 306 * writes commands into and the GPU reads commands out of. 307 * There is a rptr (read pointer) that determines where the 308 * GPU is currently reading, and a wptr (write pointer) 309 * which determines where the host has written. When the 310 * pointers are equal, the ring is idle. When the host 311 * writes commands to the ring buffer, it increments the 312 * wptr. The GPU then starts fetching commands and executes 313 * them until the pointers are equal again. 314 */ 315 static int radeon_debugfs_ring_init(struct radeon_device *rdev, struct radeon_ring *ring); 316 317 /** 318 * radeon_ring_write - write a value to the ring 319 * 320 * @ring: radeon_ring structure holding ring information 321 * @v: dword (dw) value to write 322 * 323 * Write a value to the requested ring buffer (all asics). 324 */ 325 void radeon_ring_write(struct radeon_ring *ring, uint32_t v) 326 { 327 #if DRM_DEBUG_CODE 328 if (ring->count_dw <= 0) { 329 DRM_ERROR("radeon: writing more dwords to the ring than expected!\n"); 330 } 331 #endif 332 ring->ring[ring->wptr++] = v; 333 ring->wptr &= ring->ptr_mask; 334 ring->count_dw--; 335 ring->ring_free_dw--; 336 } 337 338 /** 339 * radeon_ring_supports_scratch_reg - check if the ring supports 340 * writing to scratch registers 341 * 342 * @rdev: radeon_device pointer 343 * @ring: radeon_ring structure holding ring information 344 * 345 * Check if a specific ring supports writing to scratch registers (all asics). 346 * Returns true if the ring supports writing to scratch regs, false if not. 347 */ 348 bool radeon_ring_supports_scratch_reg(struct radeon_device *rdev, 349 struct radeon_ring *ring) 350 { 351 switch (ring->idx) { 352 case RADEON_RING_TYPE_GFX_INDEX: 353 case CAYMAN_RING_TYPE_CP1_INDEX: 354 case CAYMAN_RING_TYPE_CP2_INDEX: 355 return true; 356 default: 357 return false; 358 } 359 } 360 361 u32 radeon_ring_generic_get_rptr(struct radeon_device *rdev, 362 struct radeon_ring *ring) 363 { 364 u32 rptr; 365 366 if (rdev->wb.enabled) 367 rptr = le32_to_cpu(rdev->wb.wb[ring->rptr_offs/4]); 368 else 369 rptr = RREG32(ring->rptr_reg); 370 371 return rptr; 372 } 373 374 u32 radeon_ring_generic_get_wptr(struct radeon_device *rdev, 375 struct radeon_ring *ring) 376 { 377 u32 wptr; 378 379 wptr = RREG32(ring->wptr_reg); 380 381 return wptr; 382 } 383 384 void radeon_ring_generic_set_wptr(struct radeon_device *rdev, 385 struct radeon_ring *ring) 386 { 387 WREG32(ring->wptr_reg, ring->wptr); 388 (void)RREG32(ring->wptr_reg); 389 } 390 391 /** 392 * radeon_ring_free_size - update the free size 393 * 394 * @rdev: radeon_device pointer 395 * @ring: radeon_ring structure holding ring information 396 * 397 * Update the free dw slots in the ring buffer (all asics). 398 */ 399 void radeon_ring_free_size(struct radeon_device *rdev, struct radeon_ring *ring) 400 { 401 ring->rptr = radeon_ring_get_rptr(rdev, ring); 402 /* This works because ring_size is a power of 2 */ 403 ring->ring_free_dw = (ring->rptr + (ring->ring_size / 4)); 404 ring->ring_free_dw -= ring->wptr; 405 ring->ring_free_dw &= ring->ptr_mask; 406 if (!ring->ring_free_dw) { 407 ring->ring_free_dw = ring->ring_size / 4; 408 } 409 } 410 411 /** 412 * radeon_ring_alloc - allocate space on the ring buffer 413 * 414 * @rdev: radeon_device pointer 415 * @ring: radeon_ring structure holding ring information 416 * @ndw: number of dwords to allocate in the ring buffer 417 * 418 * Allocate @ndw dwords in the ring buffer (all asics). 419 * Returns 0 on success, error on failure. 420 */ 421 int radeon_ring_alloc(struct radeon_device *rdev, struct radeon_ring *ring, unsigned ndw) 422 { 423 int r; 424 425 /* make sure we aren't trying to allocate more space than there is on the ring */ 426 if (ndw > (ring->ring_size / 4)) 427 return -ENOMEM; 428 /* Align requested size with padding so unlock_commit can 429 * pad safely */ 430 radeon_ring_free_size(rdev, ring); 431 if (ring->ring_free_dw == (ring->ring_size / 4)) { 432 /* This is an empty ring update lockup info to avoid 433 * false positive. 434 */ 435 radeon_ring_lockup_update(ring); 436 } 437 ndw = (ndw + ring->align_mask) & ~ring->align_mask; 438 while (ndw > (ring->ring_free_dw - 1)) { 439 radeon_ring_free_size(rdev, ring); 440 if (ndw < ring->ring_free_dw) { 441 break; 442 } 443 r = radeon_fence_wait_next_locked(rdev, ring->idx); 444 if (r) 445 return r; 446 } 447 ring->count_dw = ndw; 448 ring->wptr_old = ring->wptr; 449 return 0; 450 } 451 452 /** 453 * radeon_ring_lock - lock the ring and allocate space on it 454 * 455 * @rdev: radeon_device pointer 456 * @ring: radeon_ring structure holding ring information 457 * @ndw: number of dwords to allocate in the ring buffer 458 * 459 * Lock the ring and allocate @ndw dwords in the ring buffer 460 * (all asics). 461 * Returns 0 on success, error on failure. 462 */ 463 int radeon_ring_lock(struct radeon_device *rdev, struct radeon_ring *ring, unsigned ndw) 464 { 465 int r; 466 467 mutex_lock(&rdev->ring_lock); 468 r = radeon_ring_alloc(rdev, ring, ndw); 469 if (r) { 470 mutex_unlock(&rdev->ring_lock); 471 return r; 472 } 473 return 0; 474 } 475 476 /** 477 * radeon_ring_commit - tell the GPU to execute the new 478 * commands on the ring buffer 479 * 480 * @rdev: radeon_device pointer 481 * @ring: radeon_ring structure holding ring information 482 * 483 * Update the wptr (write pointer) to tell the GPU to 484 * execute new commands on the ring buffer (all asics). 485 */ 486 void radeon_ring_commit(struct radeon_device *rdev, struct radeon_ring *ring) 487 { 488 /* We pad to match fetch size */ 489 while (ring->wptr & ring->align_mask) { 490 radeon_ring_write(ring, ring->nop); 491 } 492 DRM_MEMORYBARRIER(); 493 radeon_ring_set_wptr(rdev, ring); 494 } 495 496 /** 497 * radeon_ring_unlock_commit - tell the GPU to execute the new 498 * commands on the ring buffer and unlock it 499 * 500 * @rdev: radeon_device pointer 501 * @ring: radeon_ring structure holding ring information 502 * 503 * Call radeon_ring_commit() then unlock the ring (all asics). 504 */ 505 void radeon_ring_unlock_commit(struct radeon_device *rdev, struct radeon_ring *ring) 506 { 507 radeon_ring_commit(rdev, ring); 508 mutex_unlock(&rdev->ring_lock); 509 } 510 511 /** 512 * radeon_ring_undo - reset the wptr 513 * 514 * @ring: radeon_ring structure holding ring information 515 * 516 * Reset the driver's copy of the wptr (all asics). 517 */ 518 void radeon_ring_undo(struct radeon_ring *ring) 519 { 520 ring->wptr = ring->wptr_old; 521 } 522 523 /** 524 * radeon_ring_unlock_undo - reset the wptr and unlock the ring 525 * 526 * @ring: radeon_ring structure holding ring information 527 * 528 * Call radeon_ring_undo() then unlock the ring (all asics). 529 */ 530 void radeon_ring_unlock_undo(struct radeon_device *rdev, struct radeon_ring *ring) 531 { 532 radeon_ring_undo(ring); 533 mutex_unlock(&rdev->ring_lock); 534 } 535 536 /** 537 * radeon_ring_force_activity - add some nop packets to the ring 538 * 539 * @rdev: radeon_device pointer 540 * @ring: radeon_ring structure holding ring information 541 * 542 * Add some nop packets to the ring to force activity (all asics). 543 * Used for lockup detection to see if the rptr is advancing. 544 */ 545 void radeon_ring_force_activity(struct radeon_device *rdev, struct radeon_ring *ring) 546 { 547 int r; 548 549 radeon_ring_free_size(rdev, ring); 550 if (ring->rptr == ring->wptr) { 551 r = radeon_ring_alloc(rdev, ring, 1); 552 if (!r) { 553 radeon_ring_write(ring, ring->nop); 554 radeon_ring_commit(rdev, ring); 555 } 556 } 557 } 558 559 /** 560 * radeon_ring_lockup_update - update lockup variables 561 * 562 * @ring: radeon_ring structure holding ring information 563 * 564 * Update the last rptr value and timestamp (all asics). 565 */ 566 void radeon_ring_lockup_update(struct radeon_ring *ring) 567 { 568 ring->last_rptr = ring->rptr; 569 ring->last_activity = jiffies; 570 } 571 572 /** 573 * radeon_ring_test_lockup() - check if ring is lockedup by recording information 574 * @rdev: radeon device structure 575 * @ring: radeon_ring structure holding ring information 576 * 577 * We don't need to initialize the lockup tracking information as we will either 578 * have CP rptr to a different value of jiffies wrap around which will force 579 * initialization of the lockup tracking informations. 580 * 581 * A possible false positivie is if we get call after while and last_cp_rptr == 582 * the current CP rptr, even if it's unlikely it might happen. To avoid this 583 * if the elapsed time since last call is bigger than 2 second than we return 584 * false and update the tracking information. Due to this the caller must call 585 * radeon_ring_test_lockup several time in less than 2sec for lockup to be reported 586 * the fencing code should be cautious about that. 587 * 588 * Caller should write to the ring to force CP to do something so we don't get 589 * false positive when CP is just gived nothing to do. 590 * 591 **/ 592 bool radeon_ring_test_lockup(struct radeon_device *rdev, struct radeon_ring *ring) 593 { 594 unsigned long cjiffies, elapsed; 595 596 cjiffies = jiffies; 597 if (!time_after(cjiffies, ring->last_activity)) { 598 /* likely a wrap around */ 599 radeon_ring_lockup_update(ring); 600 return false; 601 } 602 ring->rptr = radeon_ring_get_rptr(rdev, ring); 603 if (ring->rptr != ring->last_rptr) { 604 /* CP is still working no lockup */ 605 radeon_ring_lockup_update(ring); 606 return false; 607 } 608 elapsed = jiffies_to_msecs(cjiffies - ring->last_activity); 609 if (radeon_lockup_timeout && elapsed >= radeon_lockup_timeout) { 610 dev_err(rdev->dev, "GPU lockup CP stall for more than %lumsec\n", elapsed); 611 return true; 612 } 613 /* give a chance to the GPU ... */ 614 return false; 615 } 616 617 /** 618 * radeon_ring_backup - Back up the content of a ring 619 * 620 * @rdev: radeon_device pointer 621 * @ring: the ring we want to back up 622 * 623 * Saves all unprocessed commits from a ring, returns the number of dwords saved. 624 */ 625 unsigned radeon_ring_backup(struct radeon_device *rdev, struct radeon_ring *ring, 626 uint32_t **data) 627 { 628 unsigned size, ptr, i; 629 630 /* just in case lock the ring */ 631 mutex_lock(&rdev->ring_lock); 632 *data = NULL; 633 634 if (ring->ring_obj == NULL) { 635 mutex_unlock(&rdev->ring_lock); 636 return 0; 637 } 638 639 /* it doesn't make sense to save anything if all fences are signaled */ 640 if (!radeon_fence_count_emitted(rdev, ring->idx)) { 641 mutex_unlock(&rdev->ring_lock); 642 return 0; 643 } 644 645 /* calculate the number of dw on the ring */ 646 if (ring->rptr_save_reg) 647 ptr = RREG32(ring->rptr_save_reg); 648 else if (rdev->wb.enabled) 649 ptr = le32_to_cpu(*ring->next_rptr_cpu_addr); 650 else { 651 /* no way to read back the next rptr */ 652 mutex_unlock(&rdev->ring_lock); 653 return 0; 654 } 655 656 size = ring->wptr + (ring->ring_size / 4); 657 size -= ptr; 658 size &= ring->ptr_mask; 659 if (size == 0) { 660 mutex_unlock(&rdev->ring_lock); 661 return 0; 662 } 663 664 /* and then save the content of the ring */ 665 *data = kmalloc_array(size, sizeof(uint32_t), GFP_KERNEL); 666 if (!*data) { 667 mutex_unlock(&rdev->ring_lock); 668 return 0; 669 } 670 for (i = 0; i < size; ++i) { 671 (*data)[i] = ring->ring[ptr++]; 672 ptr &= ring->ptr_mask; 673 } 674 675 mutex_unlock(&rdev->ring_lock); 676 return size; 677 } 678 679 /** 680 * radeon_ring_restore - append saved commands to the ring again 681 * 682 * @rdev: radeon_device pointer 683 * @ring: ring to append commands to 684 * @size: number of dwords we want to write 685 * @data: saved commands 686 * 687 * Allocates space on the ring and restore the previously saved commands. 688 */ 689 int radeon_ring_restore(struct radeon_device *rdev, struct radeon_ring *ring, 690 unsigned size, uint32_t *data) 691 { 692 int i, r; 693 694 if (!size || !data) 695 return 0; 696 697 /* restore the saved ring content */ 698 r = radeon_ring_lock(rdev, ring, size); 699 if (r) 700 return r; 701 702 for (i = 0; i < size; ++i) { 703 radeon_ring_write(ring, data[i]); 704 } 705 706 radeon_ring_unlock_commit(rdev, ring); 707 kfree(data); 708 return 0; 709 } 710 711 /** 712 * radeon_ring_init - init driver ring struct. 713 * 714 * @rdev: radeon_device pointer 715 * @ring: radeon_ring structure holding ring information 716 * @ring_size: size of the ring 717 * @rptr_offs: offset of the rptr writeback location in the WB buffer 718 * @rptr_reg: MMIO offset of the rptr register 719 * @wptr_reg: MMIO offset of the wptr register 720 * @nop: nop packet for this ring 721 * 722 * Initialize the driver information for the selected ring (all asics). 723 * Returns 0 on success, error on failure. 724 */ 725 int radeon_ring_init(struct radeon_device *rdev, struct radeon_ring *ring, unsigned ring_size, 726 unsigned rptr_offs, unsigned rptr_reg, unsigned wptr_reg, u32 nop) 727 { 728 int r; 729 730 ring->ring_size = ring_size; 731 ring->rptr_offs = rptr_offs; 732 ring->rptr_reg = rptr_reg; 733 ring->wptr_reg = wptr_reg; 734 ring->nop = nop; 735 /* Allocate ring buffer */ 736 if (ring->ring_obj == NULL) { 737 r = radeon_bo_create(rdev, ring->ring_size, PAGE_SIZE, true, 738 RADEON_GEM_DOMAIN_GTT, 739 NULL, &ring->ring_obj); 740 if (r) { 741 dev_err(rdev->dev, "(%d) ring create failed\n", r); 742 return r; 743 } 744 r = radeon_bo_reserve(ring->ring_obj, false); 745 if (unlikely(r != 0)) 746 return r; 747 r = radeon_bo_pin(ring->ring_obj, RADEON_GEM_DOMAIN_GTT, 748 &ring->gpu_addr); 749 if (r) { 750 radeon_bo_unreserve(ring->ring_obj); 751 dev_err(rdev->dev, "(%d) ring pin failed\n", r); 752 return r; 753 } 754 r = radeon_bo_kmap(ring->ring_obj, 755 (void **)&ring->ring); 756 radeon_bo_unreserve(ring->ring_obj); 757 if (r) { 758 dev_err(rdev->dev, "(%d) ring map failed\n", r); 759 return r; 760 } 761 } 762 ring->ptr_mask = (ring->ring_size / 4) - 1; 763 ring->ring_free_dw = ring->ring_size / 4; 764 if (rdev->wb.enabled) { 765 u32 index = RADEON_WB_RING0_NEXT_RPTR + (ring->idx * 4); 766 ring->next_rptr_gpu_addr = rdev->wb.gpu_addr + index; 767 ring->next_rptr_cpu_addr = &rdev->wb.wb[index/4]; 768 } 769 if (radeon_debugfs_ring_init(rdev, ring)) { 770 DRM_ERROR("Failed to register debugfs file for rings !\n"); 771 } 772 radeon_ring_lockup_update(ring); 773 return 0; 774 } 775 776 /** 777 * radeon_ring_fini - tear down the driver ring struct. 778 * 779 * @rdev: radeon_device pointer 780 * @ring: radeon_ring structure holding ring information 781 * 782 * Tear down the driver information for the selected ring (all asics). 783 */ 784 void radeon_ring_fini(struct radeon_device *rdev, struct radeon_ring *ring) 785 { 786 int r; 787 struct radeon_bo *ring_obj; 788 789 mutex_lock(&rdev->ring_lock); 790 ring_obj = ring->ring_obj; 791 ring->ready = false; 792 ring->ring = NULL; 793 ring->ring_obj = NULL; 794 mutex_unlock(&rdev->ring_lock); 795 796 if (ring_obj) { 797 r = radeon_bo_reserve(ring_obj, false); 798 if (likely(r == 0)) { 799 radeon_bo_kunmap(ring_obj); 800 radeon_bo_unpin(ring_obj); 801 radeon_bo_unreserve(ring_obj); 802 } 803 radeon_bo_unref(&ring_obj); 804 } 805 } 806 807 /* 808 * Debugfs info 809 */ 810 #if defined(CONFIG_DEBUG_FS) 811 812 static int radeon_debugfs_ring_info(struct seq_file *m, void *data) 813 { 814 struct drm_info_node *node = (struct drm_info_node *) m->private; 815 struct drm_device *dev = node->minor->dev; 816 struct radeon_device *rdev = dev->dev_private; 817 int ridx = *(int*)node->info_ent->data; 818 struct radeon_ring *ring = &rdev->ring[ridx]; 819 unsigned count, i, j; 820 u32 tmp; 821 822 radeon_ring_free_size(rdev, ring); 823 count = (ring->ring_size / 4) - ring->ring_free_dw; 824 tmp = radeon_ring_get_wptr(rdev, ring); 825 seq_printf(m, "wptr(0x%04x): 0x%08x [%5d]\n", ring->wptr_reg, tmp, tmp); 826 tmp = radeon_ring_get_rptr(rdev, ring); 827 seq_printf(m, "rptr(0x%04x): 0x%08x [%5d]\n", ring->rptr_reg, tmp, tmp); 828 if (ring->rptr_save_reg) { 829 seq_printf(m, "rptr next(0x%04x): 0x%08x\n", ring->rptr_save_reg, 830 RREG32(ring->rptr_save_reg)); 831 } 832 seq_printf(m, "driver's copy of the wptr: 0x%08x [%5d]\n", ring->wptr, ring->wptr); 833 seq_printf(m, "driver's copy of the rptr: 0x%08x [%5d]\n", ring->rptr, ring->rptr); 834 seq_printf(m, "last semaphore signal addr : 0x%016llx\n", ring->last_semaphore_signal_addr); 835 seq_printf(m, "last semaphore wait addr : 0x%016llx\n", ring->last_semaphore_wait_addr); 836 seq_printf(m, "%u free dwords in ring\n", ring->ring_free_dw); 837 seq_printf(m, "%u dwords in ring\n", count); 838 /* print 8 dw before current rptr as often it's the last executed 839 * packet that is the root issue 840 */ 841 i = (ring->rptr + ring->ptr_mask + 1 - 32) & ring->ptr_mask; 842 if (ring->ready) { 843 for (j = 0; j <= (count + 32); j++) { 844 seq_printf(m, "r[%5d]=0x%08x\n", i, ring->ring[i]); 845 i = (i + 1) & ring->ptr_mask; 846 } 847 } 848 return 0; 849 } 850 851 static int radeon_gfx_index = RADEON_RING_TYPE_GFX_INDEX; 852 static int cayman_cp1_index = CAYMAN_RING_TYPE_CP1_INDEX; 853 static int cayman_cp2_index = CAYMAN_RING_TYPE_CP2_INDEX; 854 static int radeon_dma1_index = R600_RING_TYPE_DMA_INDEX; 855 static int radeon_dma2_index = CAYMAN_RING_TYPE_DMA1_INDEX; 856 static int r600_uvd_index = R600_RING_TYPE_UVD_INDEX; 857 858 static struct drm_info_list radeon_debugfs_ring_info_list[] = { 859 {"radeon_ring_gfx", radeon_debugfs_ring_info, 0, &radeon_gfx_index}, 860 {"radeon_ring_cp1", radeon_debugfs_ring_info, 0, &cayman_cp1_index}, 861 {"radeon_ring_cp2", radeon_debugfs_ring_info, 0, &cayman_cp2_index}, 862 {"radeon_ring_dma1", radeon_debugfs_ring_info, 0, &radeon_dma1_index}, 863 {"radeon_ring_dma2", radeon_debugfs_ring_info, 0, &radeon_dma2_index}, 864 {"radeon_ring_uvd", radeon_debugfs_ring_info, 0, &r600_uvd_index}, 865 }; 866 867 static int radeon_debugfs_sa_info(struct seq_file *m, void *data) 868 { 869 struct drm_info_node *node = (struct drm_info_node *) m->private; 870 struct drm_device *dev = node->minor->dev; 871 struct radeon_device *rdev = dev->dev_private; 872 873 radeon_sa_bo_dump_debug_info(&rdev->ring_tmp_bo, m); 874 875 return 0; 876 877 } 878 879 static struct drm_info_list radeon_debugfs_sa_list[] = { 880 {"radeon_sa_info", &radeon_debugfs_sa_info, 0, NULL}, 881 }; 882 883 #endif 884 885 static int radeon_debugfs_ring_init(struct radeon_device *rdev, struct radeon_ring *ring) 886 { 887 #if defined(CONFIG_DEBUG_FS) 888 unsigned i; 889 for (i = 0; i < ARRAY_SIZE(radeon_debugfs_ring_info_list); ++i) { 890 struct drm_info_list *info = &radeon_debugfs_ring_info_list[i]; 891 int ridx = *(int*)radeon_debugfs_ring_info_list[i].data; 892 unsigned r; 893 894 if (&rdev->ring[ridx] != ring) 895 continue; 896 897 r = radeon_debugfs_add_files(rdev, info, 1); 898 if (r) 899 return r; 900 } 901 #endif 902 return 0; 903 } 904 905 static int radeon_debugfs_sa_init(struct radeon_device *rdev) 906 { 907 #if defined(CONFIG_DEBUG_FS) 908 return radeon_debugfs_add_files(rdev, radeon_debugfs_sa_list, 1); 909 #else 910 return 0; 911 #endif 912 } 913