1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <drm/drmP.h>
29 #include <drm/radeon_drm.h>
30 #include "radeon.h"
31 #include "radeon_reg.h"
32 
33 /*
34  * GART
35  * The GART (Graphics Aperture Remapping Table) is an aperture
36  * in the GPU's address space.  System pages can be mapped into
37  * the aperture and look like contiguous pages from the GPU's
38  * perspective.  A page table maps the pages in the aperture
39  * to the actual backing pages in system memory.
40  *
41  * Radeon GPUs support both an internal GART, as described above,
42  * and AGP.  AGP works similarly, but the GART table is configured
43  * and maintained by the northbridge rather than the driver.
44  * Radeon hw has a separate AGP aperture that is programmed to
45  * point to the AGP aperture provided by the northbridge and the
46  * requests are passed through to the northbridge aperture.
47  * Both AGP and internal GART can be used at the same time, however
48  * that is not currently supported by the driver.
49  *
50  * This file handles the common internal GART management.
51  */
52 
53 /*
54  * Common GART table functions.
55  */
56 /**
57  * radeon_gart_table_ram_alloc - allocate system ram for gart page table
58  *
59  * @rdev: radeon_device pointer
60  *
61  * Allocate system memory for GART page table
62  * (r1xx-r3xx, non-pcie r4xx, rs400).  These asics require the
63  * gart table to be in system memory.
64  * Returns 0 for success, -ENOMEM for failure.
65  */
66 int radeon_gart_table_ram_alloc(struct radeon_device *rdev)
67 {
68 	void *ptr;
69 
70 	ptr = pci_alloc_consistent(rdev->pdev, rdev->gart.table_size,
71 				   &rdev->gart.table_addr);
72 	if (ptr == NULL) {
73 		return -ENOMEM;
74 	}
75 #ifdef CONFIG_X86
76 	if (rdev->family == CHIP_RS400 || rdev->family == CHIP_RS480 ||
77 	    rdev->family == CHIP_RS690 || rdev->family == CHIP_RS740) {
78 		set_memory_uc((unsigned long)ptr,
79 			      rdev->gart.table_size >> PAGE_SHIFT);
80 	}
81 #endif
82 	rdev->gart.ptr = ptr;
83 	memset((void *)rdev->gart.ptr, 0, rdev->gart.table_size);
84 	return 0;
85 }
86 
87 /**
88  * radeon_gart_table_ram_free - free system ram for gart page table
89  *
90  * @rdev: radeon_device pointer
91  *
92  * Free system memory for GART page table
93  * (r1xx-r3xx, non-pcie r4xx, rs400).  These asics require the
94  * gart table to be in system memory.
95  */
96 void radeon_gart_table_ram_free(struct radeon_device *rdev)
97 {
98 	if (rdev->gart.ptr == NULL) {
99 		return;
100 	}
101 #ifdef CONFIG_X86
102 	if (rdev->family == CHIP_RS400 || rdev->family == CHIP_RS480 ||
103 	    rdev->family == CHIP_RS690 || rdev->family == CHIP_RS740) {
104 		set_memory_wb((unsigned long)rdev->gart.ptr,
105 			      rdev->gart.table_size >> PAGE_SHIFT);
106 	}
107 #endif
108 	pci_free_consistent(rdev->pdev, rdev->gart.table_size,
109 			    (void *)rdev->gart.ptr,
110 			    rdev->gart.table_addr);
111 	rdev->gart.ptr = NULL;
112 	rdev->gart.table_addr = 0;
113 }
114 
115 /**
116  * radeon_gart_table_vram_alloc - allocate vram for gart page table
117  *
118  * @rdev: radeon_device pointer
119  *
120  * Allocate video memory for GART page table
121  * (pcie r4xx, r5xx+).  These asics require the
122  * gart table to be in video memory.
123  * Returns 0 for success, error for failure.
124  */
125 int radeon_gart_table_vram_alloc(struct radeon_device *rdev)
126 {
127 	int r;
128 
129 	if (rdev->gart.robj == NULL) {
130 		r = radeon_bo_create(rdev, rdev->gart.table_size,
131 				     PAGE_SIZE, true, RADEON_GEM_DOMAIN_VRAM,
132 				     NULL, &rdev->gart.robj);
133 		if (r) {
134 			return r;
135 		}
136 	}
137 	return 0;
138 }
139 
140 /**
141  * radeon_gart_table_vram_pin - pin gart page table in vram
142  *
143  * @rdev: radeon_device pointer
144  *
145  * Pin the GART page table in vram so it will not be moved
146  * by the memory manager (pcie r4xx, r5xx+).  These asics require the
147  * gart table to be in video memory.
148  * Returns 0 for success, error for failure.
149  */
150 int radeon_gart_table_vram_pin(struct radeon_device *rdev)
151 {
152 	uint64_t gpu_addr;
153 	int r;
154 
155 	r = radeon_bo_reserve(rdev->gart.robj, false);
156 	if (unlikely(r != 0))
157 		return r;
158 	r = radeon_bo_pin(rdev->gart.robj,
159 				RADEON_GEM_DOMAIN_VRAM, &gpu_addr);
160 	if (r) {
161 		radeon_bo_unreserve(rdev->gart.robj);
162 		return r;
163 	}
164 	r = radeon_bo_kmap(rdev->gart.robj, &rdev->gart.ptr);
165 	if (r)
166 		radeon_bo_unpin(rdev->gart.robj);
167 	radeon_bo_unreserve(rdev->gart.robj);
168 	rdev->gart.table_addr = gpu_addr;
169 	return r;
170 }
171 
172 /**
173  * radeon_gart_table_vram_unpin - unpin gart page table in vram
174  *
175  * @rdev: radeon_device pointer
176  *
177  * Unpin the GART page table in vram (pcie r4xx, r5xx+).
178  * These asics require the gart table to be in video memory.
179  */
180 void radeon_gart_table_vram_unpin(struct radeon_device *rdev)
181 {
182 	int r;
183 
184 	if (rdev->gart.robj == NULL) {
185 		return;
186 	}
187 	r = radeon_bo_reserve(rdev->gart.robj, false);
188 	if (likely(r == 0)) {
189 		radeon_bo_kunmap(rdev->gart.robj);
190 		radeon_bo_unpin(rdev->gart.robj);
191 		radeon_bo_unreserve(rdev->gart.robj);
192 		rdev->gart.ptr = NULL;
193 	}
194 }
195 
196 /**
197  * radeon_gart_table_vram_free - free gart page table vram
198  *
199  * @rdev: radeon_device pointer
200  *
201  * Free the video memory used for the GART page table
202  * (pcie r4xx, r5xx+).  These asics require the gart table to
203  * be in video memory.
204  */
205 void radeon_gart_table_vram_free(struct radeon_device *rdev)
206 {
207 	if (rdev->gart.robj == NULL) {
208 		return;
209 	}
210 	radeon_bo_unref(&rdev->gart.robj);
211 }
212 
213 /*
214  * Common gart functions.
215  */
216 /**
217  * radeon_gart_unbind - unbind pages from the gart page table
218  *
219  * @rdev: radeon_device pointer
220  * @offset: offset into the GPU's gart aperture
221  * @pages: number of pages to unbind
222  *
223  * Unbinds the requested pages from the gart page table and
224  * replaces them with the dummy page (all asics).
225  */
226 void radeon_gart_unbind(struct radeon_device *rdev, unsigned offset,
227 			int pages)
228 {
229 	unsigned t;
230 	unsigned p;
231 	int i, j;
232 	u64 page_base;
233 
234 	if (!rdev->gart.ready) {
235 		WARN(1, "trying to unbind memory from uninitialized GART !\n");
236 		return;
237 	}
238 	t = offset / RADEON_GPU_PAGE_SIZE;
239 	p = t / (PAGE_SIZE / RADEON_GPU_PAGE_SIZE);
240 	for (i = 0; i < pages; i++, p++) {
241 		if (rdev->gart.pages[p]) {
242 			rdev->gart.pages[p] = NULL;
243 			rdev->gart.pages_addr[p] = rdev->dummy_page.addr;
244 			page_base = rdev->gart.pages_addr[p];
245 			for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) {
246 				if (rdev->gart.ptr) {
247 					radeon_gart_set_page(rdev, t, page_base);
248 				}
249 				page_base += RADEON_GPU_PAGE_SIZE;
250 			}
251 		}
252 	}
253 	mb();
254 	radeon_gart_tlb_flush(rdev);
255 }
256 
257 /**
258  * radeon_gart_bind - bind pages into the gart page table
259  *
260  * @rdev: radeon_device pointer
261  * @offset: offset into the GPU's gart aperture
262  * @pages: number of pages to bind
263  * @pagelist: pages to bind
264  * @dma_addr: DMA addresses of pages
265  *
266  * Binds the requested pages to the gart page table
267  * (all asics).
268  * Returns 0 for success, -EINVAL for failure.
269  */
270 int radeon_gart_bind(struct radeon_device *rdev, unsigned offset,
271 		     int pages, struct page **pagelist, dma_addr_t *dma_addr)
272 {
273 	unsigned t;
274 	unsigned p;
275 	uint64_t page_base;
276 	int i, j;
277 
278 	if (!rdev->gart.ready) {
279 		WARN(1, "trying to bind memory to uninitialized GART !\n");
280 		return -EINVAL;
281 	}
282 	t = offset / RADEON_GPU_PAGE_SIZE;
283 	p = t / (PAGE_SIZE / RADEON_GPU_PAGE_SIZE);
284 
285 	for (i = 0; i < pages; i++, p++) {
286 		rdev->gart.pages_addr[p] = dma_addr[i];
287 		rdev->gart.pages[p] = pagelist[i];
288 		if (rdev->gart.ptr) {
289 			page_base = rdev->gart.pages_addr[p];
290 			for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) {
291 				radeon_gart_set_page(rdev, t, page_base);
292 				page_base += RADEON_GPU_PAGE_SIZE;
293 			}
294 		}
295 	}
296 	mb();
297 	radeon_gart_tlb_flush(rdev);
298 	return 0;
299 }
300 
301 /**
302  * radeon_gart_restore - bind all pages in the gart page table
303  *
304  * @rdev: radeon_device pointer
305  *
306  * Binds all pages in the gart page table (all asics).
307  * Used to rebuild the gart table on device startup or resume.
308  */
309 void radeon_gart_restore(struct radeon_device *rdev)
310 {
311 	int i, j, t;
312 	u64 page_base;
313 
314 	if (!rdev->gart.ptr) {
315 		return;
316 	}
317 	for (i = 0, t = 0; i < rdev->gart.num_cpu_pages; i++) {
318 		page_base = rdev->gart.pages_addr[i];
319 		for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) {
320 			radeon_gart_set_page(rdev, t, page_base);
321 			page_base += RADEON_GPU_PAGE_SIZE;
322 		}
323 	}
324 	mb();
325 	radeon_gart_tlb_flush(rdev);
326 }
327 
328 /**
329  * radeon_gart_init - init the driver info for managing the gart
330  *
331  * @rdev: radeon_device pointer
332  *
333  * Allocate the dummy page and init the gart driver info (all asics).
334  * Returns 0 for success, error for failure.
335  */
336 int radeon_gart_init(struct radeon_device *rdev)
337 {
338 	int r, i;
339 
340 	if (rdev->gart.pages) {
341 		return 0;
342 	}
343 	/* We need PAGE_SIZE >= RADEON_GPU_PAGE_SIZE */
344 	if (PAGE_SIZE < RADEON_GPU_PAGE_SIZE) {
345 		DRM_ERROR("Page size is smaller than GPU page size!\n");
346 		return -EINVAL;
347 	}
348 	r = radeon_dummy_page_init(rdev);
349 	if (r)
350 		return r;
351 	/* Compute table size */
352 	rdev->gart.num_cpu_pages = rdev->mc.gtt_size / PAGE_SIZE;
353 	rdev->gart.num_gpu_pages = rdev->mc.gtt_size / RADEON_GPU_PAGE_SIZE;
354 	DRM_INFO("GART: num cpu pages %u, num gpu pages %u\n",
355 		 rdev->gart.num_cpu_pages, rdev->gart.num_gpu_pages);
356 	/* Allocate pages table */
357 	rdev->gart.pages = vzalloc(sizeof(void *) * rdev->gart.num_cpu_pages);
358 	if (rdev->gart.pages == NULL) {
359 		radeon_gart_fini(rdev);
360 		return -ENOMEM;
361 	}
362 	rdev->gart.pages_addr = vzalloc(sizeof(dma_addr_t) *
363 					rdev->gart.num_cpu_pages);
364 	if (rdev->gart.pages_addr == NULL) {
365 		radeon_gart_fini(rdev);
366 		return -ENOMEM;
367 	}
368 	/* set GART entry to point to the dummy page by default */
369 	for (i = 0; i < rdev->gart.num_cpu_pages; i++) {
370 		rdev->gart.pages_addr[i] = rdev->dummy_page.addr;
371 	}
372 	return 0;
373 }
374 
375 /**
376  * radeon_gart_fini - tear down the driver info for managing the gart
377  *
378  * @rdev: radeon_device pointer
379  *
380  * Tear down the gart driver info and free the dummy page (all asics).
381  */
382 void radeon_gart_fini(struct radeon_device *rdev)
383 {
384 	if (rdev->gart.pages && rdev->gart.pages_addr && rdev->gart.ready) {
385 		/* unbind pages */
386 		radeon_gart_unbind(rdev, 0, rdev->gart.num_cpu_pages);
387 	}
388 	rdev->gart.ready = false;
389 	vfree(rdev->gart.pages);
390 	vfree(rdev->gart.pages_addr);
391 	rdev->gart.pages = NULL;
392 	rdev->gart.pages_addr = NULL;
393 
394 	radeon_dummy_page_fini(rdev);
395 }
396 
397 /*
398  * GPUVM
399  * GPUVM is similar to the legacy gart on older asics, however
400  * rather than there being a single global gart table
401  * for the entire GPU, there are multiple VM page tables active
402  * at any given time.  The VM page tables can contain a mix
403  * vram pages and system memory pages and system memory pages
404  * can be mapped as snooped (cached system pages) or unsnooped
405  * (uncached system pages).
406  * Each VM has an ID associated with it and there is a page table
407  * associated with each VMID.  When execting a command buffer,
408  * the kernel tells the the ring what VMID to use for that command
409  * buffer.  VMIDs are allocated dynamically as commands are submitted.
410  * The userspace drivers maintain their own address space and the kernel
411  * sets up their pages tables accordingly when they submit their
412  * command buffers and a VMID is assigned.
413  * Cayman/Trinity support up to 8 active VMs at any given time;
414  * SI supports 16.
415  */
416 
417 /*
418  * vm helpers
419  *
420  * TODO bind a default page at vm initialization for default address
421  */
422 
423 /**
424  * radeon_vm_num_pde - return the number of page directory entries
425  *
426  * @rdev: radeon_device pointer
427  *
428  * Calculate the number of page directory entries (cayman+).
429  */
430 static unsigned radeon_vm_num_pdes(struct radeon_device *rdev)
431 {
432 	return rdev->vm_manager.max_pfn >> RADEON_VM_BLOCK_SIZE;
433 }
434 
435 /**
436  * radeon_vm_directory_size - returns the size of the page directory in bytes
437  *
438  * @rdev: radeon_device pointer
439  *
440  * Calculate the size of the page directory in bytes (cayman+).
441  */
442 static unsigned radeon_vm_directory_size(struct radeon_device *rdev)
443 {
444 	return RADEON_GPU_PAGE_ALIGN(radeon_vm_num_pdes(rdev) * 8);
445 }
446 
447 /**
448  * radeon_vm_manager_init - init the vm manager
449  *
450  * @rdev: radeon_device pointer
451  *
452  * Init the vm manager (cayman+).
453  * Returns 0 for success, error for failure.
454  */
455 int radeon_vm_manager_init(struct radeon_device *rdev)
456 {
457 	struct radeon_vm *vm;
458 	struct radeon_bo_va *bo_va;
459 	int r;
460 	unsigned size;
461 
462 	if (!rdev->vm_manager.enabled) {
463 		/* allocate enough for 2 full VM pts */
464 		size = radeon_vm_directory_size(rdev);
465 		size += rdev->vm_manager.max_pfn * 8;
466 		size *= 2;
467 		r = radeon_sa_bo_manager_init(rdev, &rdev->vm_manager.sa_manager,
468 					      RADEON_GPU_PAGE_ALIGN(size),
469 					      RADEON_VM_PTB_ALIGN_SIZE,
470 					      RADEON_GEM_DOMAIN_VRAM);
471 		if (r) {
472 			dev_err(rdev->dev, "failed to allocate vm bo (%dKB)\n",
473 				(rdev->vm_manager.max_pfn * 8) >> 10);
474 			return r;
475 		}
476 
477 		r = radeon_asic_vm_init(rdev);
478 		if (r)
479 			return r;
480 
481 		rdev->vm_manager.enabled = true;
482 
483 		r = radeon_sa_bo_manager_start(rdev, &rdev->vm_manager.sa_manager);
484 		if (r)
485 			return r;
486 	}
487 
488 	/* restore page table */
489 	list_for_each_entry(vm, &rdev->vm_manager.lru_vm, list) {
490 		if (vm->page_directory == NULL)
491 			continue;
492 
493 		list_for_each_entry(bo_va, &vm->va, vm_list) {
494 			bo_va->valid = false;
495 		}
496 	}
497 	return 0;
498 }
499 
500 /**
501  * radeon_vm_free_pt - free the page table for a specific vm
502  *
503  * @rdev: radeon_device pointer
504  * @vm: vm to unbind
505  *
506  * Free the page table of a specific vm (cayman+).
507  *
508  * Global and local mutex must be lock!
509  */
510 static void radeon_vm_free_pt(struct radeon_device *rdev,
511 				    struct radeon_vm *vm)
512 {
513 	struct radeon_bo_va *bo_va;
514 	int i;
515 
516 	if (!vm->page_directory)
517 		return;
518 
519 	list_del_init(&vm->list);
520 	radeon_sa_bo_free(rdev, &vm->page_directory, vm->fence);
521 
522 	list_for_each_entry(bo_va, &vm->va, vm_list) {
523 		bo_va->valid = false;
524 	}
525 
526 	if (vm->page_tables == NULL)
527 		return;
528 
529 	for (i = 0; i < radeon_vm_num_pdes(rdev); i++)
530 		radeon_sa_bo_free(rdev, &vm->page_tables[i], vm->fence);
531 
532 	kfree(vm->page_tables);
533 }
534 
535 /**
536  * radeon_vm_manager_fini - tear down the vm manager
537  *
538  * @rdev: radeon_device pointer
539  *
540  * Tear down the VM manager (cayman+).
541  */
542 void radeon_vm_manager_fini(struct radeon_device *rdev)
543 {
544 	struct radeon_vm *vm, *tmp;
545 	int i;
546 
547 	if (!rdev->vm_manager.enabled)
548 		return;
549 
550 	mutex_lock(&rdev->vm_manager.lock);
551 	/* free all allocated page tables */
552 	list_for_each_entry_safe(vm, tmp, &rdev->vm_manager.lru_vm, list) {
553 		mutex_lock(&vm->mutex);
554 		radeon_vm_free_pt(rdev, vm);
555 		mutex_unlock(&vm->mutex);
556 	}
557 	for (i = 0; i < RADEON_NUM_VM; ++i) {
558 		radeon_fence_unref(&rdev->vm_manager.active[i]);
559 	}
560 	radeon_asic_vm_fini(rdev);
561 	mutex_unlock(&rdev->vm_manager.lock);
562 
563 	radeon_sa_bo_manager_suspend(rdev, &rdev->vm_manager.sa_manager);
564 	radeon_sa_bo_manager_fini(rdev, &rdev->vm_manager.sa_manager);
565 	rdev->vm_manager.enabled = false;
566 }
567 
568 /**
569  * radeon_vm_evict - evict page table to make room for new one
570  *
571  * @rdev: radeon_device pointer
572  * @vm: VM we want to allocate something for
573  *
574  * Evict a VM from the lru, making sure that it isn't @vm. (cayman+).
575  * Returns 0 for success, -ENOMEM for failure.
576  *
577  * Global and local mutex must be locked!
578  */
579 static int radeon_vm_evict(struct radeon_device *rdev, struct radeon_vm *vm)
580 {
581 	struct radeon_vm *vm_evict;
582 
583 	if (list_empty(&rdev->vm_manager.lru_vm))
584 		return -ENOMEM;
585 
586 	vm_evict = list_first_entry(&rdev->vm_manager.lru_vm,
587 				    struct radeon_vm, list);
588 	if (vm_evict == vm)
589 		return -ENOMEM;
590 
591 	mutex_lock(&vm_evict->mutex);
592 	radeon_vm_free_pt(rdev, vm_evict);
593 	mutex_unlock(&vm_evict->mutex);
594 	return 0;
595 }
596 
597 /**
598  * radeon_vm_alloc_pt - allocates a page table for a VM
599  *
600  * @rdev: radeon_device pointer
601  * @vm: vm to bind
602  *
603  * Allocate a page table for the requested vm (cayman+).
604  * Returns 0 for success, error for failure.
605  *
606  * Global and local mutex must be locked!
607  */
608 int radeon_vm_alloc_pt(struct radeon_device *rdev, struct radeon_vm *vm)
609 {
610 	unsigned pd_size, pts_size;
611 	u64 *pd_addr;
612 	int r;
613 
614 	if (vm == NULL) {
615 		return -EINVAL;
616 	}
617 
618 	if (vm->page_directory != NULL) {
619 		return 0;
620 	}
621 
622 retry:
623 	pd_size = radeon_vm_directory_size(rdev);
624 	r = radeon_sa_bo_new(rdev, &rdev->vm_manager.sa_manager,
625 			     &vm->page_directory, pd_size,
626 			     RADEON_VM_PTB_ALIGN_SIZE, false);
627 	if (r == -ENOMEM) {
628 		r = radeon_vm_evict(rdev, vm);
629 		if (r)
630 			return r;
631 		goto retry;
632 
633 	} else if (r) {
634 		return r;
635 	}
636 
637 	vm->pd_gpu_addr = radeon_sa_bo_gpu_addr(vm->page_directory);
638 
639 	/* Initially clear the page directory */
640 	pd_addr = radeon_sa_bo_cpu_addr(vm->page_directory);
641 	memset(pd_addr, 0, pd_size);
642 
643 	pts_size = radeon_vm_num_pdes(rdev) * sizeof(struct radeon_sa_bo *);
644 	vm->page_tables = kzalloc(pts_size, GFP_KERNEL);
645 
646 	if (vm->page_tables == NULL) {
647 		DRM_ERROR("Cannot allocate memory for page table array\n");
648 		radeon_sa_bo_free(rdev, &vm->page_directory, vm->fence);
649 		return -ENOMEM;
650 	}
651 
652 	return 0;
653 }
654 
655 /**
656  * radeon_vm_add_to_lru - add VMs page table to LRU list
657  *
658  * @rdev: radeon_device pointer
659  * @vm: vm to add to LRU
660  *
661  * Add the allocated page table to the LRU list (cayman+).
662  *
663  * Global mutex must be locked!
664  */
665 void radeon_vm_add_to_lru(struct radeon_device *rdev, struct radeon_vm *vm)
666 {
667 	list_del_init(&vm->list);
668 	list_add_tail(&vm->list, &rdev->vm_manager.lru_vm);
669 }
670 
671 /**
672  * radeon_vm_grab_id - allocate the next free VMID
673  *
674  * @rdev: radeon_device pointer
675  * @vm: vm to allocate id for
676  * @ring: ring we want to submit job to
677  *
678  * Allocate an id for the vm (cayman+).
679  * Returns the fence we need to sync to (if any).
680  *
681  * Global and local mutex must be locked!
682  */
683 struct radeon_fence *radeon_vm_grab_id(struct radeon_device *rdev,
684 				       struct radeon_vm *vm, int ring)
685 {
686 	struct radeon_fence *best[RADEON_NUM_RINGS] = {};
687 	unsigned choices[2] = {};
688 	unsigned i;
689 
690 	/* check if the id is still valid */
691 	if (vm->fence && vm->fence == rdev->vm_manager.active[vm->id])
692 		return NULL;
693 
694 	/* we definately need to flush */
695 	radeon_fence_unref(&vm->last_flush);
696 
697 	/* skip over VMID 0, since it is the system VM */
698 	for (i = 1; i < rdev->vm_manager.nvm; ++i) {
699 		struct radeon_fence *fence = rdev->vm_manager.active[i];
700 
701 		if (fence == NULL) {
702 			/* found a free one */
703 			vm->id = i;
704 			return NULL;
705 		}
706 
707 		if (radeon_fence_is_earlier(fence, best[fence->ring])) {
708 			best[fence->ring] = fence;
709 			choices[fence->ring == ring ? 0 : 1] = i;
710 		}
711 	}
712 
713 	for (i = 0; i < 2; ++i) {
714 		if (choices[i]) {
715 			vm->id = choices[i];
716 			return rdev->vm_manager.active[choices[i]];
717 		}
718 	}
719 
720 	/* should never happen */
721 	BUG();
722 	return NULL;
723 }
724 
725 /**
726  * radeon_vm_fence - remember fence for vm
727  *
728  * @rdev: radeon_device pointer
729  * @vm: vm we want to fence
730  * @fence: fence to remember
731  *
732  * Fence the vm (cayman+).
733  * Set the fence used to protect page table and id.
734  *
735  * Global and local mutex must be locked!
736  */
737 void radeon_vm_fence(struct radeon_device *rdev,
738 		     struct radeon_vm *vm,
739 		     struct radeon_fence *fence)
740 {
741 	radeon_fence_unref(&rdev->vm_manager.active[vm->id]);
742 	rdev->vm_manager.active[vm->id] = radeon_fence_ref(fence);
743 
744 	radeon_fence_unref(&vm->fence);
745 	vm->fence = radeon_fence_ref(fence);
746 }
747 
748 /**
749  * radeon_vm_bo_find - find the bo_va for a specific vm & bo
750  *
751  * @vm: requested vm
752  * @bo: requested buffer object
753  *
754  * Find @bo inside the requested vm (cayman+).
755  * Search inside the @bos vm list for the requested vm
756  * Returns the found bo_va or NULL if none is found
757  *
758  * Object has to be reserved!
759  */
760 struct radeon_bo_va *radeon_vm_bo_find(struct radeon_vm *vm,
761 				       struct radeon_bo *bo)
762 {
763 	struct radeon_bo_va *bo_va;
764 
765 	list_for_each_entry(bo_va, &bo->va, bo_list) {
766 		if (bo_va->vm == vm) {
767 			return bo_va;
768 		}
769 	}
770 	return NULL;
771 }
772 
773 /**
774  * radeon_vm_bo_add - add a bo to a specific vm
775  *
776  * @rdev: radeon_device pointer
777  * @vm: requested vm
778  * @bo: radeon buffer object
779  *
780  * Add @bo into the requested vm (cayman+).
781  * Add @bo to the list of bos associated with the vm
782  * Returns newly added bo_va or NULL for failure
783  *
784  * Object has to be reserved!
785  */
786 struct radeon_bo_va *radeon_vm_bo_add(struct radeon_device *rdev,
787 				      struct radeon_vm *vm,
788 				      struct radeon_bo *bo)
789 {
790 	struct radeon_bo_va *bo_va;
791 
792 	bo_va = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL);
793 	if (bo_va == NULL) {
794 		return NULL;
795 	}
796 	bo_va->vm = vm;
797 	bo_va->bo = bo;
798 	bo_va->soffset = 0;
799 	bo_va->eoffset = 0;
800 	bo_va->flags = 0;
801 	bo_va->valid = false;
802 	bo_va->ref_count = 1;
803 	INIT_LIST_HEAD(&bo_va->bo_list);
804 	INIT_LIST_HEAD(&bo_va->vm_list);
805 
806 	mutex_lock(&vm->mutex);
807 	list_add(&bo_va->vm_list, &vm->va);
808 	list_add_tail(&bo_va->bo_list, &bo->va);
809 	mutex_unlock(&vm->mutex);
810 
811 	return bo_va;
812 }
813 
814 /**
815  * radeon_vm_bo_set_addr - set bos virtual address inside a vm
816  *
817  * @rdev: radeon_device pointer
818  * @bo_va: bo_va to store the address
819  * @soffset: requested offset of the buffer in the VM address space
820  * @flags: attributes of pages (read/write/valid/etc.)
821  *
822  * Set offset of @bo_va (cayman+).
823  * Validate and set the offset requested within the vm address space.
824  * Returns 0 for success, error for failure.
825  *
826  * Object has to be reserved!
827  */
828 int radeon_vm_bo_set_addr(struct radeon_device *rdev,
829 			  struct radeon_bo_va *bo_va,
830 			  uint64_t soffset,
831 			  uint32_t flags)
832 {
833 	uint64_t size = radeon_bo_size(bo_va->bo);
834 	uint64_t eoffset, last_offset = 0;
835 	struct radeon_vm *vm = bo_va->vm;
836 	struct radeon_bo_va *tmp;
837 	struct list_head *head;
838 	unsigned last_pfn;
839 
840 	if (soffset) {
841 		/* make sure object fit at this offset */
842 		eoffset = soffset + size;
843 		if (soffset >= eoffset) {
844 			return -EINVAL;
845 		}
846 
847 		last_pfn = eoffset / RADEON_GPU_PAGE_SIZE;
848 		if (last_pfn > rdev->vm_manager.max_pfn) {
849 			dev_err(rdev->dev, "va above limit (0x%08X > 0x%08X)\n",
850 				last_pfn, rdev->vm_manager.max_pfn);
851 			return -EINVAL;
852 		}
853 
854 	} else {
855 		eoffset = last_pfn = 0;
856 	}
857 
858 	mutex_lock(&vm->mutex);
859 	head = &vm->va;
860 	last_offset = 0;
861 	list_for_each_entry(tmp, &vm->va, vm_list) {
862 		if (bo_va == tmp) {
863 			/* skip over currently modified bo */
864 			continue;
865 		}
866 
867 		if (soffset >= last_offset && eoffset <= tmp->soffset) {
868 			/* bo can be added before this one */
869 			break;
870 		}
871 		if (eoffset > tmp->soffset && soffset < tmp->eoffset) {
872 			/* bo and tmp overlap, invalid offset */
873 			dev_err(rdev->dev, "bo %p va 0x%08X conflict with (bo %p 0x%08X 0x%08X)\n",
874 				bo_va->bo, (unsigned)bo_va->soffset, tmp->bo,
875 				(unsigned)tmp->soffset, (unsigned)tmp->eoffset);
876 			mutex_unlock(&vm->mutex);
877 			return -EINVAL;
878 		}
879 		last_offset = tmp->eoffset;
880 		head = &tmp->vm_list;
881 	}
882 
883 	bo_va->soffset = soffset;
884 	bo_va->eoffset = eoffset;
885 	bo_va->flags = flags;
886 	bo_va->valid = false;
887 	list_move(&bo_va->vm_list, head);
888 
889 	mutex_unlock(&vm->mutex);
890 	return 0;
891 }
892 
893 /**
894  * radeon_vm_map_gart - get the physical address of a gart page
895  *
896  * @rdev: radeon_device pointer
897  * @addr: the unmapped addr
898  *
899  * Look up the physical address of the page that the pte resolves
900  * to (cayman+).
901  * Returns the physical address of the page.
902  */
903 uint64_t radeon_vm_map_gart(struct radeon_device *rdev, uint64_t addr)
904 {
905 	uint64_t result;
906 
907 	/* page table offset */
908 	result = rdev->gart.pages_addr[addr >> PAGE_SHIFT];
909 
910 	/* in case cpu page size != gpu page size*/
911 	result |= addr & (~PAGE_MASK);
912 
913 	return result;
914 }
915 
916 /**
917  * radeon_vm_update_pdes - make sure that page directory is valid
918  *
919  * @rdev: radeon_device pointer
920  * @vm: requested vm
921  * @start: start of GPU address range
922  * @end: end of GPU address range
923  *
924  * Allocates new page tables if necessary
925  * and updates the page directory (cayman+).
926  * Returns 0 for success, error for failure.
927  *
928  * Global and local mutex must be locked!
929  */
930 static int radeon_vm_update_pdes(struct radeon_device *rdev,
931 				 struct radeon_vm *vm,
932 				 struct radeon_ib *ib,
933 				 uint64_t start, uint64_t end)
934 {
935 	static const uint32_t incr = RADEON_VM_PTE_COUNT * 8;
936 
937 	uint64_t last_pde = ~0, last_pt = ~0;
938 	unsigned count = 0;
939 	uint64_t pt_idx;
940 	int r;
941 
942 	start = (start / RADEON_GPU_PAGE_SIZE) >> RADEON_VM_BLOCK_SIZE;
943 	end = (end / RADEON_GPU_PAGE_SIZE) >> RADEON_VM_BLOCK_SIZE;
944 
945 	/* walk over the address space and update the page directory */
946 	for (pt_idx = start; pt_idx <= end; ++pt_idx) {
947 		uint64_t pde, pt;
948 
949 		if (vm->page_tables[pt_idx])
950 			continue;
951 
952 retry:
953 		r = radeon_sa_bo_new(rdev, &rdev->vm_manager.sa_manager,
954 				     &vm->page_tables[pt_idx],
955 				     RADEON_VM_PTE_COUNT * 8,
956 				     RADEON_GPU_PAGE_SIZE, false);
957 
958 		if (r == -ENOMEM) {
959 			r = radeon_vm_evict(rdev, vm);
960 			if (r)
961 				return r;
962 			goto retry;
963 		} else if (r) {
964 			return r;
965 		}
966 
967 		pde = vm->pd_gpu_addr + pt_idx * 8;
968 
969 		pt = radeon_sa_bo_gpu_addr(vm->page_tables[pt_idx]);
970 
971 		if (((last_pde + 8 * count) != pde) ||
972 		    ((last_pt + incr * count) != pt)) {
973 
974 			if (count) {
975 				radeon_asic_vm_set_page(rdev, ib, last_pde,
976 							last_pt, count, incr,
977 							RADEON_VM_PAGE_VALID);
978 			}
979 
980 			count = 1;
981 			last_pde = pde;
982 			last_pt = pt;
983 		} else {
984 			++count;
985 		}
986 	}
987 
988 	if (count) {
989 		radeon_asic_vm_set_page(rdev, ib, last_pde, last_pt, count,
990 					incr, RADEON_VM_PAGE_VALID);
991 
992 	}
993 
994 	return 0;
995 }
996 
997 /**
998  * radeon_vm_update_ptes - make sure that page tables are valid
999  *
1000  * @rdev: radeon_device pointer
1001  * @vm: requested vm
1002  * @start: start of GPU address range
1003  * @end: end of GPU address range
1004  * @dst: destination address to map to
1005  * @flags: mapping flags
1006  *
1007  * Update the page tables in the range @start - @end (cayman+).
1008  *
1009  * Global and local mutex must be locked!
1010  */
1011 static void radeon_vm_update_ptes(struct radeon_device *rdev,
1012 				  struct radeon_vm *vm,
1013 				  struct radeon_ib *ib,
1014 				  uint64_t start, uint64_t end,
1015 				  uint64_t dst, uint32_t flags)
1016 {
1017 	static const uint64_t mask = RADEON_VM_PTE_COUNT - 1;
1018 
1019 	uint64_t last_pte = ~0, last_dst = ~0;
1020 	unsigned count = 0;
1021 	uint64_t addr;
1022 
1023 	start = start / RADEON_GPU_PAGE_SIZE;
1024 	end = end / RADEON_GPU_PAGE_SIZE;
1025 
1026 	/* walk over the address space and update the page tables */
1027 	for (addr = start; addr < end; ) {
1028 		uint64_t pt_idx = addr >> RADEON_VM_BLOCK_SIZE;
1029 		unsigned nptes;
1030 		uint64_t pte;
1031 
1032 		if ((addr & ~mask) == (end & ~mask))
1033 			nptes = end - addr;
1034 		else
1035 			nptes = RADEON_VM_PTE_COUNT - (addr & mask);
1036 
1037 		pte = radeon_sa_bo_gpu_addr(vm->page_tables[pt_idx]);
1038 		pte += (addr & mask) * 8;
1039 
1040 		if ((last_pte + 8 * count) != pte) {
1041 
1042 			if (count) {
1043 				radeon_asic_vm_set_page(rdev, ib, last_pte,
1044 							last_dst, count,
1045 							RADEON_GPU_PAGE_SIZE,
1046 							flags);
1047 			}
1048 
1049 			count = nptes;
1050 			last_pte = pte;
1051 			last_dst = dst;
1052 		} else {
1053 			count += nptes;
1054 		}
1055 
1056 		addr += nptes;
1057 		dst += nptes * RADEON_GPU_PAGE_SIZE;
1058 	}
1059 
1060 	if (count) {
1061 		radeon_asic_vm_set_page(rdev, ib, last_pte,
1062 					last_dst, count,
1063 					RADEON_GPU_PAGE_SIZE, flags);
1064 	}
1065 }
1066 
1067 /**
1068  * radeon_vm_bo_update_pte - map a bo into the vm page table
1069  *
1070  * @rdev: radeon_device pointer
1071  * @vm: requested vm
1072  * @bo: radeon buffer object
1073  * @mem: ttm mem
1074  *
1075  * Fill in the page table entries for @bo (cayman+).
1076  * Returns 0 for success, -EINVAL for failure.
1077  *
1078  * Object have to be reserved & global and local mutex must be locked!
1079  */
1080 int radeon_vm_bo_update_pte(struct radeon_device *rdev,
1081 			    struct radeon_vm *vm,
1082 			    struct radeon_bo *bo,
1083 			    struct ttm_mem_reg *mem)
1084 {
1085 	unsigned ridx = rdev->asic->vm.pt_ring_index;
1086 	struct radeon_ib ib;
1087 	struct radeon_bo_va *bo_va;
1088 	unsigned nptes, npdes, ndw;
1089 	uint64_t addr;
1090 	int r;
1091 
1092 	/* nothing to do if vm isn't bound */
1093 	if (vm->page_directory == NULL)
1094 		return 0;
1095 
1096 	bo_va = radeon_vm_bo_find(vm, bo);
1097 	if (bo_va == NULL) {
1098 		dev_err(rdev->dev, "bo %p not in vm %p\n", bo, vm);
1099 		return -EINVAL;
1100 	}
1101 
1102 	if (!bo_va->soffset) {
1103 		dev_err(rdev->dev, "bo %p don't has a mapping in vm %p\n",
1104 			bo, vm);
1105 		return -EINVAL;
1106 	}
1107 
1108 	if ((bo_va->valid && mem) || (!bo_va->valid && mem == NULL))
1109 		return 0;
1110 
1111 	bo_va->flags &= ~RADEON_VM_PAGE_VALID;
1112 	bo_va->flags &= ~RADEON_VM_PAGE_SYSTEM;
1113 	if (mem) {
1114 		addr = mem->start << PAGE_SHIFT;
1115 		if (mem->mem_type != TTM_PL_SYSTEM) {
1116 			bo_va->flags |= RADEON_VM_PAGE_VALID;
1117 			bo_va->valid = true;
1118 		}
1119 		if (mem->mem_type == TTM_PL_TT) {
1120 			bo_va->flags |= RADEON_VM_PAGE_SYSTEM;
1121 		} else {
1122 			addr += rdev->vm_manager.vram_base_offset;
1123 		}
1124 	} else {
1125 		addr = 0;
1126 		bo_va->valid = false;
1127 	}
1128 
1129 	nptes = radeon_bo_ngpu_pages(bo);
1130 
1131 	/* assume two extra pdes in case the mapping overlaps the borders */
1132 	npdes = (nptes >> RADEON_VM_BLOCK_SIZE) + 2;
1133 
1134 	/* padding, etc. */
1135 	ndw = 64;
1136 
1137 	if (RADEON_VM_BLOCK_SIZE > 11)
1138 		/* reserve space for one header for every 2k dwords */
1139 		ndw += (nptes >> 11) * 4;
1140 	else
1141 		/* reserve space for one header for
1142 		    every (1 << BLOCK_SIZE) entries */
1143 		ndw += (nptes >> RADEON_VM_BLOCK_SIZE) * 4;
1144 
1145 	/* reserve space for pte addresses */
1146 	ndw += nptes * 2;
1147 
1148 	/* reserve space for one header for every 2k dwords */
1149 	ndw += (npdes >> 11) * 4;
1150 
1151 	/* reserve space for pde addresses */
1152 	ndw += npdes * 2;
1153 
1154 	/* update too big for an IB */
1155 	if (ndw > 0xfffff)
1156 		return -ENOMEM;
1157 
1158 	r = radeon_ib_get(rdev, ridx, &ib, NULL, ndw * 4);
1159 	ib.length_dw = 0;
1160 
1161 	r = radeon_vm_update_pdes(rdev, vm, &ib, bo_va->soffset, bo_va->eoffset);
1162 	if (r) {
1163 		radeon_ib_free(rdev, &ib);
1164 		return r;
1165 	}
1166 
1167 	radeon_vm_update_ptes(rdev, vm, &ib, bo_va->soffset, bo_va->eoffset,
1168 			      addr, bo_va->flags);
1169 
1170 	radeon_ib_sync_to(&ib, vm->fence);
1171 	r = radeon_ib_schedule(rdev, &ib, NULL);
1172 	if (r) {
1173 		radeon_ib_free(rdev, &ib);
1174 		return r;
1175 	}
1176 	radeon_fence_unref(&vm->fence);
1177 	vm->fence = radeon_fence_ref(ib.fence);
1178 	radeon_ib_free(rdev, &ib);
1179 	radeon_fence_unref(&vm->last_flush);
1180 
1181 	return 0;
1182 }
1183 
1184 /**
1185  * radeon_vm_bo_rmv - remove a bo to a specific vm
1186  *
1187  * @rdev: radeon_device pointer
1188  * @bo_va: requested bo_va
1189  *
1190  * Remove @bo_va->bo from the requested vm (cayman+).
1191  * Remove @bo_va->bo from the list of bos associated with the bo_va->vm and
1192  * remove the ptes for @bo_va in the page table.
1193  * Returns 0 for success.
1194  *
1195  * Object have to be reserved!
1196  */
1197 int radeon_vm_bo_rmv(struct radeon_device *rdev,
1198 		     struct radeon_bo_va *bo_va)
1199 {
1200 	int r = 0;
1201 
1202 	mutex_lock(&rdev->vm_manager.lock);
1203 	mutex_lock(&bo_va->vm->mutex);
1204 	if (bo_va->soffset) {
1205 		r = radeon_vm_bo_update_pte(rdev, bo_va->vm, bo_va->bo, NULL);
1206 	}
1207 	mutex_unlock(&rdev->vm_manager.lock);
1208 	list_del(&bo_va->vm_list);
1209 	mutex_unlock(&bo_va->vm->mutex);
1210 	list_del(&bo_va->bo_list);
1211 
1212 	kfree(bo_va);
1213 	return r;
1214 }
1215 
1216 /**
1217  * radeon_vm_bo_invalidate - mark the bo as invalid
1218  *
1219  * @rdev: radeon_device pointer
1220  * @vm: requested vm
1221  * @bo: radeon buffer object
1222  *
1223  * Mark @bo as invalid (cayman+).
1224  */
1225 void radeon_vm_bo_invalidate(struct radeon_device *rdev,
1226 			     struct radeon_bo *bo)
1227 {
1228 	struct radeon_bo_va *bo_va;
1229 
1230 	list_for_each_entry(bo_va, &bo->va, bo_list) {
1231 		bo_va->valid = false;
1232 	}
1233 }
1234 
1235 /**
1236  * radeon_vm_init - initialize a vm instance
1237  *
1238  * @rdev: radeon_device pointer
1239  * @vm: requested vm
1240  *
1241  * Init @vm fields (cayman+).
1242  */
1243 void radeon_vm_init(struct radeon_device *rdev, struct radeon_vm *vm)
1244 {
1245 	vm->id = 0;
1246 	vm->fence = NULL;
1247 	mutex_init(&vm->mutex);
1248 	INIT_LIST_HEAD(&vm->list);
1249 	INIT_LIST_HEAD(&vm->va);
1250 }
1251 
1252 /**
1253  * radeon_vm_fini - tear down a vm instance
1254  *
1255  * @rdev: radeon_device pointer
1256  * @vm: requested vm
1257  *
1258  * Tear down @vm (cayman+).
1259  * Unbind the VM and remove all bos from the vm bo list
1260  */
1261 void radeon_vm_fini(struct radeon_device *rdev, struct radeon_vm *vm)
1262 {
1263 	struct radeon_bo_va *bo_va, *tmp;
1264 	int r;
1265 
1266 	mutex_lock(&rdev->vm_manager.lock);
1267 	mutex_lock(&vm->mutex);
1268 	radeon_vm_free_pt(rdev, vm);
1269 	mutex_unlock(&rdev->vm_manager.lock);
1270 
1271 	if (!list_empty(&vm->va)) {
1272 		dev_err(rdev->dev, "still active bo inside vm\n");
1273 	}
1274 	list_for_each_entry_safe(bo_va, tmp, &vm->va, vm_list) {
1275 		list_del_init(&bo_va->vm_list);
1276 		r = radeon_bo_reserve(bo_va->bo, false);
1277 		if (!r) {
1278 			list_del_init(&bo_va->bo_list);
1279 			radeon_bo_unreserve(bo_va->bo);
1280 			kfree(bo_va);
1281 		}
1282 	}
1283 	radeon_fence_unref(&vm->fence);
1284 	radeon_fence_unref(&vm->last_flush);
1285 	mutex_unlock(&vm->mutex);
1286 }
1287