1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <drm/drmP.h>
29 #include <drm/radeon_drm.h>
30 #include "radeon.h"
31 #include "radeon_reg.h"
32 
33 /*
34  * GART
35  * The GART (Graphics Aperture Remapping Table) is an aperture
36  * in the GPU's address space.  System pages can be mapped into
37  * the aperture and look like contiguous pages from the GPU's
38  * perspective.  A page table maps the pages in the aperture
39  * to the actual backing pages in system memory.
40  *
41  * Radeon GPUs support both an internal GART, as described above,
42  * and AGP.  AGP works similarly, but the GART table is configured
43  * and maintained by the northbridge rather than the driver.
44  * Radeon hw has a separate AGP aperture that is programmed to
45  * point to the AGP aperture provided by the northbridge and the
46  * requests are passed through to the northbridge aperture.
47  * Both AGP and internal GART can be used at the same time, however
48  * that is not currently supported by the driver.
49  *
50  * This file handles the common internal GART management.
51  */
52 
53 /*
54  * Common GART table functions.
55  */
56 /**
57  * radeon_gart_table_ram_alloc - allocate system ram for gart page table
58  *
59  * @rdev: radeon_device pointer
60  *
61  * Allocate system memory for GART page table
62  * (r1xx-r3xx, non-pcie r4xx, rs400).  These asics require the
63  * gart table to be in system memory.
64  * Returns 0 for success, -ENOMEM for failure.
65  */
66 int radeon_gart_table_ram_alloc(struct radeon_device *rdev)
67 {
68 	void *ptr;
69 
70 	ptr = pci_alloc_consistent(rdev->pdev, rdev->gart.table_size,
71 				   &rdev->gart.table_addr);
72 	if (ptr == NULL) {
73 		return -ENOMEM;
74 	}
75 #ifdef CONFIG_X86
76 	if (rdev->family == CHIP_RS400 || rdev->family == CHIP_RS480 ||
77 	    rdev->family == CHIP_RS690 || rdev->family == CHIP_RS740) {
78 		set_memory_uc((unsigned long)ptr,
79 			      rdev->gart.table_size >> PAGE_SHIFT);
80 	}
81 #endif
82 	rdev->gart.ptr = ptr;
83 	memset((void *)rdev->gart.ptr, 0, rdev->gart.table_size);
84 	return 0;
85 }
86 
87 /**
88  * radeon_gart_table_ram_free - free system ram for gart page table
89  *
90  * @rdev: radeon_device pointer
91  *
92  * Free system memory for GART page table
93  * (r1xx-r3xx, non-pcie r4xx, rs400).  These asics require the
94  * gart table to be in system memory.
95  */
96 void radeon_gart_table_ram_free(struct radeon_device *rdev)
97 {
98 	if (rdev->gart.ptr == NULL) {
99 		return;
100 	}
101 #ifdef CONFIG_X86
102 	if (rdev->family == CHIP_RS400 || rdev->family == CHIP_RS480 ||
103 	    rdev->family == CHIP_RS690 || rdev->family == CHIP_RS740) {
104 		set_memory_wb((unsigned long)rdev->gart.ptr,
105 			      rdev->gart.table_size >> PAGE_SHIFT);
106 	}
107 #endif
108 	pci_free_consistent(rdev->pdev, rdev->gart.table_size,
109 			    (void *)rdev->gart.ptr,
110 			    rdev->gart.table_addr);
111 	rdev->gart.ptr = NULL;
112 	rdev->gart.table_addr = 0;
113 }
114 
115 /**
116  * radeon_gart_table_vram_alloc - allocate vram for gart page table
117  *
118  * @rdev: radeon_device pointer
119  *
120  * Allocate video memory for GART page table
121  * (pcie r4xx, r5xx+).  These asics require the
122  * gart table to be in video memory.
123  * Returns 0 for success, error for failure.
124  */
125 int radeon_gart_table_vram_alloc(struct radeon_device *rdev)
126 {
127 	int r;
128 
129 	if (rdev->gart.robj == NULL) {
130 		r = radeon_bo_create(rdev, rdev->gart.table_size,
131 				     PAGE_SIZE, true, RADEON_GEM_DOMAIN_VRAM,
132 				     NULL, &rdev->gart.robj);
133 		if (r) {
134 			return r;
135 		}
136 	}
137 	return 0;
138 }
139 
140 /**
141  * radeon_gart_table_vram_pin - pin gart page table in vram
142  *
143  * @rdev: radeon_device pointer
144  *
145  * Pin the GART page table in vram so it will not be moved
146  * by the memory manager (pcie r4xx, r5xx+).  These asics require the
147  * gart table to be in video memory.
148  * Returns 0 for success, error for failure.
149  */
150 int radeon_gart_table_vram_pin(struct radeon_device *rdev)
151 {
152 	uint64_t gpu_addr;
153 	int r;
154 
155 	r = radeon_bo_reserve(rdev->gart.robj, false);
156 	if (unlikely(r != 0))
157 		return r;
158 	r = radeon_bo_pin(rdev->gart.robj,
159 				RADEON_GEM_DOMAIN_VRAM, &gpu_addr);
160 	if (r) {
161 		radeon_bo_unreserve(rdev->gart.robj);
162 		return r;
163 	}
164 	r = radeon_bo_kmap(rdev->gart.robj, &rdev->gart.ptr);
165 	if (r)
166 		radeon_bo_unpin(rdev->gart.robj);
167 	radeon_bo_unreserve(rdev->gart.robj);
168 	rdev->gart.table_addr = gpu_addr;
169 	return r;
170 }
171 
172 /**
173  * radeon_gart_table_vram_unpin - unpin gart page table in vram
174  *
175  * @rdev: radeon_device pointer
176  *
177  * Unpin the GART page table in vram (pcie r4xx, r5xx+).
178  * These asics require the gart table to be in video memory.
179  */
180 void radeon_gart_table_vram_unpin(struct radeon_device *rdev)
181 {
182 	int r;
183 
184 	if (rdev->gart.robj == NULL) {
185 		return;
186 	}
187 	r = radeon_bo_reserve(rdev->gart.robj, false);
188 	if (likely(r == 0)) {
189 		radeon_bo_kunmap(rdev->gart.robj);
190 		radeon_bo_unpin(rdev->gart.robj);
191 		radeon_bo_unreserve(rdev->gart.robj);
192 		rdev->gart.ptr = NULL;
193 	}
194 }
195 
196 /**
197  * radeon_gart_table_vram_free - free gart page table vram
198  *
199  * @rdev: radeon_device pointer
200  *
201  * Free the video memory used for the GART page table
202  * (pcie r4xx, r5xx+).  These asics require the gart table to
203  * be in video memory.
204  */
205 void radeon_gart_table_vram_free(struct radeon_device *rdev)
206 {
207 	if (rdev->gart.robj == NULL) {
208 		return;
209 	}
210 	radeon_gart_table_vram_unpin(rdev);
211 	radeon_bo_unref(&rdev->gart.robj);
212 }
213 
214 /*
215  * Common gart functions.
216  */
217 /**
218  * radeon_gart_unbind - unbind pages from the gart page table
219  *
220  * @rdev: radeon_device pointer
221  * @offset: offset into the GPU's gart aperture
222  * @pages: number of pages to unbind
223  *
224  * Unbinds the requested pages from the gart page table and
225  * replaces them with the dummy page (all asics).
226  */
227 void radeon_gart_unbind(struct radeon_device *rdev, unsigned offset,
228 			int pages)
229 {
230 	unsigned t;
231 	unsigned p;
232 	int i, j;
233 	u64 page_base;
234 
235 	if (!rdev->gart.ready) {
236 		WARN(1, "trying to unbind memory from uninitialized GART !\n");
237 		return;
238 	}
239 	t = offset / RADEON_GPU_PAGE_SIZE;
240 	p = t / (PAGE_SIZE / RADEON_GPU_PAGE_SIZE);
241 	for (i = 0; i < pages; i++, p++) {
242 		if (rdev->gart.pages[p]) {
243 			rdev->gart.pages[p] = NULL;
244 			rdev->gart.pages_addr[p] = rdev->dummy_page.addr;
245 			page_base = rdev->gart.pages_addr[p];
246 			for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) {
247 				if (rdev->gart.ptr) {
248 					radeon_gart_set_page(rdev, t, page_base);
249 				}
250 				page_base += RADEON_GPU_PAGE_SIZE;
251 			}
252 		}
253 	}
254 	mb();
255 	radeon_gart_tlb_flush(rdev);
256 }
257 
258 /**
259  * radeon_gart_bind - bind pages into the gart page table
260  *
261  * @rdev: radeon_device pointer
262  * @offset: offset into the GPU's gart aperture
263  * @pages: number of pages to bind
264  * @pagelist: pages to bind
265  * @dma_addr: DMA addresses of pages
266  *
267  * Binds the requested pages to the gart page table
268  * (all asics).
269  * Returns 0 for success, -EINVAL for failure.
270  */
271 int radeon_gart_bind(struct radeon_device *rdev, unsigned offset,
272 		     int pages, struct page **pagelist, dma_addr_t *dma_addr)
273 {
274 	unsigned t;
275 	unsigned p;
276 	uint64_t page_base;
277 	int i, j;
278 
279 	if (!rdev->gart.ready) {
280 		WARN(1, "trying to bind memory to uninitialized GART !\n");
281 		return -EINVAL;
282 	}
283 	t = offset / RADEON_GPU_PAGE_SIZE;
284 	p = t / (PAGE_SIZE / RADEON_GPU_PAGE_SIZE);
285 
286 	for (i = 0; i < pages; i++, p++) {
287 		rdev->gart.pages_addr[p] = dma_addr[i];
288 		rdev->gart.pages[p] = pagelist[i];
289 		if (rdev->gart.ptr) {
290 			page_base = rdev->gart.pages_addr[p];
291 			for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) {
292 				radeon_gart_set_page(rdev, t, page_base);
293 				page_base += RADEON_GPU_PAGE_SIZE;
294 			}
295 		}
296 	}
297 	mb();
298 	radeon_gart_tlb_flush(rdev);
299 	return 0;
300 }
301 
302 /**
303  * radeon_gart_restore - bind all pages in the gart page table
304  *
305  * @rdev: radeon_device pointer
306  *
307  * Binds all pages in the gart page table (all asics).
308  * Used to rebuild the gart table on device startup or resume.
309  */
310 void radeon_gart_restore(struct radeon_device *rdev)
311 {
312 	int i, j, t;
313 	u64 page_base;
314 
315 	if (!rdev->gart.ptr) {
316 		return;
317 	}
318 	for (i = 0, t = 0; i < rdev->gart.num_cpu_pages; i++) {
319 		page_base = rdev->gart.pages_addr[i];
320 		for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) {
321 			radeon_gart_set_page(rdev, t, page_base);
322 			page_base += RADEON_GPU_PAGE_SIZE;
323 		}
324 	}
325 	mb();
326 	radeon_gart_tlb_flush(rdev);
327 }
328 
329 /**
330  * radeon_gart_init - init the driver info for managing the gart
331  *
332  * @rdev: radeon_device pointer
333  *
334  * Allocate the dummy page and init the gart driver info (all asics).
335  * Returns 0 for success, error for failure.
336  */
337 int radeon_gart_init(struct radeon_device *rdev)
338 {
339 	int r, i;
340 
341 	if (rdev->gart.pages) {
342 		return 0;
343 	}
344 	/* We need PAGE_SIZE >= RADEON_GPU_PAGE_SIZE */
345 	if (PAGE_SIZE < RADEON_GPU_PAGE_SIZE) {
346 		DRM_ERROR("Page size is smaller than GPU page size!\n");
347 		return -EINVAL;
348 	}
349 	r = radeon_dummy_page_init(rdev);
350 	if (r)
351 		return r;
352 	/* Compute table size */
353 	rdev->gart.num_cpu_pages = rdev->mc.gtt_size / PAGE_SIZE;
354 	rdev->gart.num_gpu_pages = rdev->mc.gtt_size / RADEON_GPU_PAGE_SIZE;
355 	DRM_INFO("GART: num cpu pages %u, num gpu pages %u\n",
356 		 rdev->gart.num_cpu_pages, rdev->gart.num_gpu_pages);
357 	/* Allocate pages table */
358 	rdev->gart.pages = vzalloc(sizeof(void *) * rdev->gart.num_cpu_pages);
359 	if (rdev->gart.pages == NULL) {
360 		radeon_gart_fini(rdev);
361 		return -ENOMEM;
362 	}
363 	rdev->gart.pages_addr = vzalloc(sizeof(dma_addr_t) *
364 					rdev->gart.num_cpu_pages);
365 	if (rdev->gart.pages_addr == NULL) {
366 		radeon_gart_fini(rdev);
367 		return -ENOMEM;
368 	}
369 	/* set GART entry to point to the dummy page by default */
370 	for (i = 0; i < rdev->gart.num_cpu_pages; i++) {
371 		rdev->gart.pages_addr[i] = rdev->dummy_page.addr;
372 	}
373 	return 0;
374 }
375 
376 /**
377  * radeon_gart_fini - tear down the driver info for managing the gart
378  *
379  * @rdev: radeon_device pointer
380  *
381  * Tear down the gart driver info and free the dummy page (all asics).
382  */
383 void radeon_gart_fini(struct radeon_device *rdev)
384 {
385 	if (rdev->gart.pages && rdev->gart.pages_addr && rdev->gart.ready) {
386 		/* unbind pages */
387 		radeon_gart_unbind(rdev, 0, rdev->gart.num_cpu_pages);
388 	}
389 	rdev->gart.ready = false;
390 	vfree(rdev->gart.pages);
391 	vfree(rdev->gart.pages_addr);
392 	rdev->gart.pages = NULL;
393 	rdev->gart.pages_addr = NULL;
394 
395 	radeon_dummy_page_fini(rdev);
396 }
397 
398 /*
399  * GPUVM
400  * GPUVM is similar to the legacy gart on older asics, however
401  * rather than there being a single global gart table
402  * for the entire GPU, there are multiple VM page tables active
403  * at any given time.  The VM page tables can contain a mix
404  * vram pages and system memory pages and system memory pages
405  * can be mapped as snooped (cached system pages) or unsnooped
406  * (uncached system pages).
407  * Each VM has an ID associated with it and there is a page table
408  * associated with each VMID.  When execting a command buffer,
409  * the kernel tells the the ring what VMID to use for that command
410  * buffer.  VMIDs are allocated dynamically as commands are submitted.
411  * The userspace drivers maintain their own address space and the kernel
412  * sets up their pages tables accordingly when they submit their
413  * command buffers and a VMID is assigned.
414  * Cayman/Trinity support up to 8 active VMs at any given time;
415  * SI supports 16.
416  */
417 
418 /*
419  * vm helpers
420  *
421  * TODO bind a default page at vm initialization for default address
422  */
423 
424 /**
425  * radeon_vm_num_pde - return the number of page directory entries
426  *
427  * @rdev: radeon_device pointer
428  *
429  * Calculate the number of page directory entries (cayman+).
430  */
431 static unsigned radeon_vm_num_pdes(struct radeon_device *rdev)
432 {
433 	return rdev->vm_manager.max_pfn >> RADEON_VM_BLOCK_SIZE;
434 }
435 
436 /**
437  * radeon_vm_directory_size - returns the size of the page directory in bytes
438  *
439  * @rdev: radeon_device pointer
440  *
441  * Calculate the size of the page directory in bytes (cayman+).
442  */
443 static unsigned radeon_vm_directory_size(struct radeon_device *rdev)
444 {
445 	return RADEON_GPU_PAGE_ALIGN(radeon_vm_num_pdes(rdev) * 8);
446 }
447 
448 /**
449  * radeon_vm_manager_init - init the vm manager
450  *
451  * @rdev: radeon_device pointer
452  *
453  * Init the vm manager (cayman+).
454  * Returns 0 for success, error for failure.
455  */
456 int radeon_vm_manager_init(struct radeon_device *rdev)
457 {
458 	struct radeon_vm *vm;
459 	struct radeon_bo_va *bo_va;
460 	int r;
461 	unsigned size;
462 
463 	if (!rdev->vm_manager.enabled) {
464 		/* allocate enough for 2 full VM pts */
465 		size = radeon_vm_directory_size(rdev);
466 		size += rdev->vm_manager.max_pfn * 8;
467 		size *= 2;
468 		r = radeon_sa_bo_manager_init(rdev, &rdev->vm_manager.sa_manager,
469 					      RADEON_GPU_PAGE_ALIGN(size),
470 					      RADEON_GEM_DOMAIN_VRAM);
471 		if (r) {
472 			dev_err(rdev->dev, "failed to allocate vm bo (%dKB)\n",
473 				(rdev->vm_manager.max_pfn * 8) >> 10);
474 			return r;
475 		}
476 
477 		r = radeon_asic_vm_init(rdev);
478 		if (r)
479 			return r;
480 
481 		rdev->vm_manager.enabled = true;
482 
483 		r = radeon_sa_bo_manager_start(rdev, &rdev->vm_manager.sa_manager);
484 		if (r)
485 			return r;
486 	}
487 
488 	/* restore page table */
489 	list_for_each_entry(vm, &rdev->vm_manager.lru_vm, list) {
490 		if (vm->page_directory == NULL)
491 			continue;
492 
493 		list_for_each_entry(bo_va, &vm->va, vm_list) {
494 			bo_va->valid = false;
495 		}
496 	}
497 	return 0;
498 }
499 
500 /**
501  * radeon_vm_free_pt - free the page table for a specific vm
502  *
503  * @rdev: radeon_device pointer
504  * @vm: vm to unbind
505  *
506  * Free the page table of a specific vm (cayman+).
507  *
508  * Global and local mutex must be lock!
509  */
510 static void radeon_vm_free_pt(struct radeon_device *rdev,
511 				    struct radeon_vm *vm)
512 {
513 	struct radeon_bo_va *bo_va;
514 	int i;
515 
516 	if (!vm->page_directory)
517 		return;
518 
519 	list_del_init(&vm->list);
520 	radeon_sa_bo_free(rdev, &vm->page_directory, vm->fence);
521 
522 	list_for_each_entry(bo_va, &vm->va, vm_list) {
523 		bo_va->valid = false;
524 	}
525 
526 	if (vm->page_tables == NULL)
527 		return;
528 
529 	for (i = 0; i < radeon_vm_num_pdes(rdev); i++)
530 		radeon_sa_bo_free(rdev, &vm->page_tables[i], vm->fence);
531 
532 	kfree(vm->page_tables);
533 }
534 
535 /**
536  * radeon_vm_manager_fini - tear down the vm manager
537  *
538  * @rdev: radeon_device pointer
539  *
540  * Tear down the VM manager (cayman+).
541  */
542 void radeon_vm_manager_fini(struct radeon_device *rdev)
543 {
544 	struct radeon_vm *vm, *tmp;
545 	int i;
546 
547 	if (!rdev->vm_manager.enabled)
548 		return;
549 
550 	mutex_lock(&rdev->vm_manager.lock);
551 	/* free all allocated page tables */
552 	list_for_each_entry_safe(vm, tmp, &rdev->vm_manager.lru_vm, list) {
553 		mutex_lock(&vm->mutex);
554 		radeon_vm_free_pt(rdev, vm);
555 		mutex_unlock(&vm->mutex);
556 	}
557 	for (i = 0; i < RADEON_NUM_VM; ++i) {
558 		radeon_fence_unref(&rdev->vm_manager.active[i]);
559 	}
560 	radeon_asic_vm_fini(rdev);
561 	mutex_unlock(&rdev->vm_manager.lock);
562 
563 	radeon_sa_bo_manager_suspend(rdev, &rdev->vm_manager.sa_manager);
564 	radeon_sa_bo_manager_fini(rdev, &rdev->vm_manager.sa_manager);
565 	rdev->vm_manager.enabled = false;
566 }
567 
568 /**
569  * radeon_vm_evict - evict page table to make room for new one
570  *
571  * @rdev: radeon_device pointer
572  * @vm: VM we want to allocate something for
573  *
574  * Evict a VM from the lru, making sure that it isn't @vm. (cayman+).
575  * Returns 0 for success, -ENOMEM for failure.
576  *
577  * Global and local mutex must be locked!
578  */
579 static int radeon_vm_evict(struct radeon_device *rdev, struct radeon_vm *vm)
580 {
581 	struct radeon_vm *vm_evict;
582 
583 	if (list_empty(&rdev->vm_manager.lru_vm))
584 		return -ENOMEM;
585 
586 	vm_evict = list_first_entry(&rdev->vm_manager.lru_vm,
587 				    struct radeon_vm, list);
588 	if (vm_evict == vm)
589 		return -ENOMEM;
590 
591 	mutex_lock(&vm_evict->mutex);
592 	radeon_vm_free_pt(rdev, vm_evict);
593 	mutex_unlock(&vm_evict->mutex);
594 	return 0;
595 }
596 
597 /**
598  * radeon_vm_alloc_pt - allocates a page table for a VM
599  *
600  * @rdev: radeon_device pointer
601  * @vm: vm to bind
602  *
603  * Allocate a page table for the requested vm (cayman+).
604  * Returns 0 for success, error for failure.
605  *
606  * Global and local mutex must be locked!
607  */
608 int radeon_vm_alloc_pt(struct radeon_device *rdev, struct radeon_vm *vm)
609 {
610 	unsigned pd_size, pts_size;
611 	u64 *pd_addr;
612 	int r;
613 
614 	if (vm == NULL) {
615 		return -EINVAL;
616 	}
617 
618 	if (vm->page_directory != NULL) {
619 		return 0;
620 	}
621 
622 retry:
623 	pd_size = RADEON_GPU_PAGE_ALIGN(radeon_vm_directory_size(rdev));
624 	r = radeon_sa_bo_new(rdev, &rdev->vm_manager.sa_manager,
625 			     &vm->page_directory, pd_size,
626 			     RADEON_GPU_PAGE_SIZE, false);
627 	if (r == -ENOMEM) {
628 		r = radeon_vm_evict(rdev, vm);
629 		if (r)
630 			return r;
631 		goto retry;
632 
633 	} else if (r) {
634 		return r;
635 	}
636 
637 	vm->pd_gpu_addr = radeon_sa_bo_gpu_addr(vm->page_directory);
638 
639 	/* Initially clear the page directory */
640 	pd_addr = radeon_sa_bo_cpu_addr(vm->page_directory);
641 	memset(pd_addr, 0, pd_size);
642 
643 	pts_size = radeon_vm_num_pdes(rdev) * sizeof(struct radeon_sa_bo *);
644 	vm->page_tables = kzalloc(pts_size, GFP_KERNEL);
645 
646 	if (vm->page_tables == NULL) {
647 		DRM_ERROR("Cannot allocate memory for page table array\n");
648 		radeon_sa_bo_free(rdev, &vm->page_directory, vm->fence);
649 		return -ENOMEM;
650 	}
651 
652 	return 0;
653 }
654 
655 /**
656  * radeon_vm_add_to_lru - add VMs page table to LRU list
657  *
658  * @rdev: radeon_device pointer
659  * @vm: vm to add to LRU
660  *
661  * Add the allocated page table to the LRU list (cayman+).
662  *
663  * Global mutex must be locked!
664  */
665 void radeon_vm_add_to_lru(struct radeon_device *rdev, struct radeon_vm *vm)
666 {
667 	list_del_init(&vm->list);
668 	list_add_tail(&vm->list, &rdev->vm_manager.lru_vm);
669 }
670 
671 /**
672  * radeon_vm_grab_id - allocate the next free VMID
673  *
674  * @rdev: radeon_device pointer
675  * @vm: vm to allocate id for
676  * @ring: ring we want to submit job to
677  *
678  * Allocate an id for the vm (cayman+).
679  * Returns the fence we need to sync to (if any).
680  *
681  * Global and local mutex must be locked!
682  */
683 struct radeon_fence *radeon_vm_grab_id(struct radeon_device *rdev,
684 				       struct radeon_vm *vm, int ring)
685 {
686 	struct radeon_fence *best[RADEON_NUM_RINGS] = {};
687 	unsigned choices[2] = {};
688 	unsigned i;
689 
690 	/* check if the id is still valid */
691 	if (vm->fence && vm->fence == rdev->vm_manager.active[vm->id])
692 		return NULL;
693 
694 	/* we definately need to flush */
695 	radeon_fence_unref(&vm->last_flush);
696 
697 	/* skip over VMID 0, since it is the system VM */
698 	for (i = 1; i < rdev->vm_manager.nvm; ++i) {
699 		struct radeon_fence *fence = rdev->vm_manager.active[i];
700 
701 		if (fence == NULL) {
702 			/* found a free one */
703 			vm->id = i;
704 			return NULL;
705 		}
706 
707 		if (radeon_fence_is_earlier(fence, best[fence->ring])) {
708 			best[fence->ring] = fence;
709 			choices[fence->ring == ring ? 0 : 1] = i;
710 		}
711 	}
712 
713 	for (i = 0; i < 2; ++i) {
714 		if (choices[i]) {
715 			vm->id = choices[i];
716 			return rdev->vm_manager.active[choices[i]];
717 		}
718 	}
719 
720 	/* should never happen */
721 	BUG();
722 	return NULL;
723 }
724 
725 /**
726  * radeon_vm_fence - remember fence for vm
727  *
728  * @rdev: radeon_device pointer
729  * @vm: vm we want to fence
730  * @fence: fence to remember
731  *
732  * Fence the vm (cayman+).
733  * Set the fence used to protect page table and id.
734  *
735  * Global and local mutex must be locked!
736  */
737 void radeon_vm_fence(struct radeon_device *rdev,
738 		     struct radeon_vm *vm,
739 		     struct radeon_fence *fence)
740 {
741 	radeon_fence_unref(&rdev->vm_manager.active[vm->id]);
742 	rdev->vm_manager.active[vm->id] = radeon_fence_ref(fence);
743 
744 	radeon_fence_unref(&vm->fence);
745 	vm->fence = radeon_fence_ref(fence);
746 }
747 
748 /**
749  * radeon_vm_bo_find - find the bo_va for a specific vm & bo
750  *
751  * @vm: requested vm
752  * @bo: requested buffer object
753  *
754  * Find @bo inside the requested vm (cayman+).
755  * Search inside the @bos vm list for the requested vm
756  * Returns the found bo_va or NULL if none is found
757  *
758  * Object has to be reserved!
759  */
760 struct radeon_bo_va *radeon_vm_bo_find(struct radeon_vm *vm,
761 				       struct radeon_bo *bo)
762 {
763 	struct radeon_bo_va *bo_va;
764 
765 	list_for_each_entry(bo_va, &bo->va, bo_list) {
766 		if (bo_va->vm == vm) {
767 			return bo_va;
768 		}
769 	}
770 	return NULL;
771 }
772 
773 /**
774  * radeon_vm_bo_add - add a bo to a specific vm
775  *
776  * @rdev: radeon_device pointer
777  * @vm: requested vm
778  * @bo: radeon buffer object
779  *
780  * Add @bo into the requested vm (cayman+).
781  * Add @bo to the list of bos associated with the vm
782  * Returns newly added bo_va or NULL for failure
783  *
784  * Object has to be reserved!
785  */
786 struct radeon_bo_va *radeon_vm_bo_add(struct radeon_device *rdev,
787 				      struct radeon_vm *vm,
788 				      struct radeon_bo *bo)
789 {
790 	struct radeon_bo_va *bo_va;
791 
792 	bo_va = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL);
793 	if (bo_va == NULL) {
794 		return NULL;
795 	}
796 	bo_va->vm = vm;
797 	bo_va->bo = bo;
798 	bo_va->soffset = 0;
799 	bo_va->eoffset = 0;
800 	bo_va->flags = 0;
801 	bo_va->valid = false;
802 	bo_va->ref_count = 1;
803 	INIT_LIST_HEAD(&bo_va->bo_list);
804 	INIT_LIST_HEAD(&bo_va->vm_list);
805 
806 	mutex_lock(&vm->mutex);
807 	list_add(&bo_va->vm_list, &vm->va);
808 	list_add_tail(&bo_va->bo_list, &bo->va);
809 	mutex_unlock(&vm->mutex);
810 
811 	return bo_va;
812 }
813 
814 /**
815  * radeon_vm_bo_set_addr - set bos virtual address inside a vm
816  *
817  * @rdev: radeon_device pointer
818  * @bo_va: bo_va to store the address
819  * @soffset: requested offset of the buffer in the VM address space
820  * @flags: attributes of pages (read/write/valid/etc.)
821  *
822  * Set offset of @bo_va (cayman+).
823  * Validate and set the offset requested within the vm address space.
824  * Returns 0 for success, error for failure.
825  *
826  * Object has to be reserved!
827  */
828 int radeon_vm_bo_set_addr(struct radeon_device *rdev,
829 			  struct radeon_bo_va *bo_va,
830 			  uint64_t soffset,
831 			  uint32_t flags)
832 {
833 	uint64_t size = radeon_bo_size(bo_va->bo);
834 	uint64_t eoffset, last_offset = 0;
835 	struct radeon_vm *vm = bo_va->vm;
836 	struct radeon_bo_va *tmp;
837 	struct list_head *head;
838 	unsigned last_pfn;
839 
840 	if (soffset) {
841 		/* make sure object fit at this offset */
842 		eoffset = soffset + size;
843 		if (soffset >= eoffset) {
844 			return -EINVAL;
845 		}
846 
847 		last_pfn = eoffset / RADEON_GPU_PAGE_SIZE;
848 		if (last_pfn > rdev->vm_manager.max_pfn) {
849 			dev_err(rdev->dev, "va above limit (0x%08X > 0x%08X)\n",
850 				last_pfn, rdev->vm_manager.max_pfn);
851 			return -EINVAL;
852 		}
853 
854 	} else {
855 		eoffset = last_pfn = 0;
856 	}
857 
858 	mutex_lock(&vm->mutex);
859 	head = &vm->va;
860 	last_offset = 0;
861 	list_for_each_entry(tmp, &vm->va, vm_list) {
862 		if (bo_va == tmp) {
863 			/* skip over currently modified bo */
864 			continue;
865 		}
866 
867 		if (soffset >= last_offset && eoffset <= tmp->soffset) {
868 			/* bo can be added before this one */
869 			break;
870 		}
871 		if (eoffset > tmp->soffset && soffset < tmp->eoffset) {
872 			/* bo and tmp overlap, invalid offset */
873 			dev_err(rdev->dev, "bo %p va 0x%08X conflict with (bo %p 0x%08X 0x%08X)\n",
874 				bo_va->bo, (unsigned)bo_va->soffset, tmp->bo,
875 				(unsigned)tmp->soffset, (unsigned)tmp->eoffset);
876 			mutex_unlock(&vm->mutex);
877 			return -EINVAL;
878 		}
879 		last_offset = tmp->eoffset;
880 		head = &tmp->vm_list;
881 	}
882 
883 	bo_va->soffset = soffset;
884 	bo_va->eoffset = eoffset;
885 	bo_va->flags = flags;
886 	bo_va->valid = false;
887 	list_move(&bo_va->vm_list, head);
888 
889 	mutex_unlock(&vm->mutex);
890 	return 0;
891 }
892 
893 /**
894  * radeon_vm_map_gart - get the physical address of a gart page
895  *
896  * @rdev: radeon_device pointer
897  * @addr: the unmapped addr
898  *
899  * Look up the physical address of the page that the pte resolves
900  * to (cayman+).
901  * Returns the physical address of the page.
902  */
903 uint64_t radeon_vm_map_gart(struct radeon_device *rdev, uint64_t addr)
904 {
905 	uint64_t result;
906 
907 	/* page table offset */
908 	result = rdev->gart.pages_addr[addr >> PAGE_SHIFT];
909 
910 	/* in case cpu page size != gpu page size*/
911 	result |= addr & (~PAGE_MASK);
912 
913 	return result;
914 }
915 
916 /**
917  * radeon_vm_update_pdes - make sure that page directory is valid
918  *
919  * @rdev: radeon_device pointer
920  * @vm: requested vm
921  * @start: start of GPU address range
922  * @end: end of GPU address range
923  *
924  * Allocates new page tables if necessary
925  * and updates the page directory (cayman+).
926  * Returns 0 for success, error for failure.
927  *
928  * Global and local mutex must be locked!
929  */
930 static int radeon_vm_update_pdes(struct radeon_device *rdev,
931 				 struct radeon_vm *vm,
932 				 uint64_t start, uint64_t end)
933 {
934 	static const uint32_t incr = RADEON_VM_PTE_COUNT * 8;
935 
936 	uint64_t last_pde = ~0, last_pt = ~0;
937 	unsigned count = 0;
938 	uint64_t pt_idx;
939 	int r;
940 
941 	start = (start / RADEON_GPU_PAGE_SIZE) >> RADEON_VM_BLOCK_SIZE;
942 	end = (end / RADEON_GPU_PAGE_SIZE) >> RADEON_VM_BLOCK_SIZE;
943 
944 	/* walk over the address space and update the page directory */
945 	for (pt_idx = start; pt_idx <= end; ++pt_idx) {
946 		uint64_t pde, pt;
947 
948 		if (vm->page_tables[pt_idx])
949 			continue;
950 
951 retry:
952 		r = radeon_sa_bo_new(rdev, &rdev->vm_manager.sa_manager,
953 				     &vm->page_tables[pt_idx],
954 				     RADEON_VM_PTE_COUNT * 8,
955 				     RADEON_GPU_PAGE_SIZE, false);
956 
957 		if (r == -ENOMEM) {
958 			r = radeon_vm_evict(rdev, vm);
959 			if (r)
960 				return r;
961 			goto retry;
962 		} else if (r) {
963 			return r;
964 		}
965 
966 		pde = vm->pd_gpu_addr + pt_idx * 8;
967 
968 		pt = radeon_sa_bo_gpu_addr(vm->page_tables[pt_idx]);
969 
970 		if (((last_pde + 8 * count) != pde) ||
971 		    ((last_pt + incr * count) != pt)) {
972 
973 			if (count) {
974 				radeon_asic_vm_set_page(rdev, last_pde,
975 							last_pt, count, incr,
976 							RADEON_VM_PAGE_VALID);
977 			}
978 
979 			count = 1;
980 			last_pde = pde;
981 			last_pt = pt;
982 		} else {
983 			++count;
984 		}
985 	}
986 
987 	if (count) {
988 		radeon_asic_vm_set_page(rdev, last_pde, last_pt, count,
989 					incr, RADEON_VM_PAGE_VALID);
990 
991 	}
992 
993 	return 0;
994 }
995 
996 /**
997  * radeon_vm_update_ptes - make sure that page tables are valid
998  *
999  * @rdev: radeon_device pointer
1000  * @vm: requested vm
1001  * @start: start of GPU address range
1002  * @end: end of GPU address range
1003  * @dst: destination address to map to
1004  * @flags: mapping flags
1005  *
1006  * Update the page tables in the range @start - @end (cayman+).
1007  *
1008  * Global and local mutex must be locked!
1009  */
1010 static void radeon_vm_update_ptes(struct radeon_device *rdev,
1011 				  struct radeon_vm *vm,
1012 				  uint64_t start, uint64_t end,
1013 				  uint64_t dst, uint32_t flags)
1014 {
1015 	static const uint64_t mask = RADEON_VM_PTE_COUNT - 1;
1016 
1017 	uint64_t last_pte = ~0, last_dst = ~0;
1018 	unsigned count = 0;
1019 	uint64_t addr;
1020 
1021 	start = start / RADEON_GPU_PAGE_SIZE;
1022 	end = end / RADEON_GPU_PAGE_SIZE;
1023 
1024 	/* walk over the address space and update the page tables */
1025 	for (addr = start; addr < end; ) {
1026 		uint64_t pt_idx = addr >> RADEON_VM_BLOCK_SIZE;
1027 		unsigned nptes;
1028 		uint64_t pte;
1029 
1030 		if ((addr & ~mask) == (end & ~mask))
1031 			nptes = end - addr;
1032 		else
1033 			nptes = RADEON_VM_PTE_COUNT - (addr & mask);
1034 
1035 		pte = radeon_sa_bo_gpu_addr(vm->page_tables[pt_idx]);
1036 		pte += (addr & mask) * 8;
1037 
1038 		if ((last_pte + 8 * count) != pte) {
1039 
1040 			if (count) {
1041 				radeon_asic_vm_set_page(rdev, last_pte,
1042 							last_dst, count,
1043 							RADEON_GPU_PAGE_SIZE,
1044 							flags);
1045 			}
1046 
1047 			count = nptes;
1048 			last_pte = pte;
1049 			last_dst = dst;
1050 		} else {
1051 			count += nptes;
1052 		}
1053 
1054 		addr += nptes;
1055 		dst += nptes * RADEON_GPU_PAGE_SIZE;
1056 	}
1057 
1058 	if (count) {
1059 		radeon_asic_vm_set_page(rdev, last_pte,	last_dst, count,
1060 					RADEON_GPU_PAGE_SIZE, flags);
1061 	}
1062 }
1063 
1064 /**
1065  * radeon_vm_bo_update_pte - map a bo into the vm page table
1066  *
1067  * @rdev: radeon_device pointer
1068  * @vm: requested vm
1069  * @bo: radeon buffer object
1070  * @mem: ttm mem
1071  *
1072  * Fill in the page table entries for @bo (cayman+).
1073  * Returns 0 for success, -EINVAL for failure.
1074  *
1075  * Object have to be reserved & global and local mutex must be locked!
1076  */
1077 int radeon_vm_bo_update_pte(struct radeon_device *rdev,
1078 			    struct radeon_vm *vm,
1079 			    struct radeon_bo *bo,
1080 			    struct ttm_mem_reg *mem)
1081 {
1082 	unsigned ridx = rdev->asic->vm.pt_ring_index;
1083 	struct radeon_ring *ring = &rdev->ring[ridx];
1084 	struct radeon_semaphore *sem = NULL;
1085 	struct radeon_bo_va *bo_va;
1086 	unsigned nptes, npdes, ndw;
1087 	uint64_t addr;
1088 	int r;
1089 
1090 	/* nothing to do if vm isn't bound */
1091 	if (vm->page_directory == NULL)
1092 		return 0;
1093 
1094 	bo_va = radeon_vm_bo_find(vm, bo);
1095 	if (bo_va == NULL) {
1096 		dev_err(rdev->dev, "bo %p not in vm %p\n", bo, vm);
1097 		return -EINVAL;
1098 	}
1099 
1100 	if (!bo_va->soffset) {
1101 		dev_err(rdev->dev, "bo %p don't has a mapping in vm %p\n",
1102 			bo, vm);
1103 		return -EINVAL;
1104 	}
1105 
1106 	if ((bo_va->valid && mem) || (!bo_va->valid && mem == NULL))
1107 		return 0;
1108 
1109 	bo_va->flags &= ~RADEON_VM_PAGE_VALID;
1110 	bo_va->flags &= ~RADEON_VM_PAGE_SYSTEM;
1111 	if (mem) {
1112 		addr = mem->start << PAGE_SHIFT;
1113 		if (mem->mem_type != TTM_PL_SYSTEM) {
1114 			bo_va->flags |= RADEON_VM_PAGE_VALID;
1115 			bo_va->valid = true;
1116 		}
1117 		if (mem->mem_type == TTM_PL_TT) {
1118 			bo_va->flags |= RADEON_VM_PAGE_SYSTEM;
1119 		} else {
1120 			addr += rdev->vm_manager.vram_base_offset;
1121 		}
1122 	} else {
1123 		addr = 0;
1124 		bo_va->valid = false;
1125 	}
1126 
1127 	if (vm->fence && radeon_fence_signaled(vm->fence)) {
1128 		radeon_fence_unref(&vm->fence);
1129 	}
1130 
1131 	if (vm->fence && vm->fence->ring != ridx) {
1132 		r = radeon_semaphore_create(rdev, &sem);
1133 		if (r) {
1134 			return r;
1135 		}
1136 	}
1137 
1138 	nptes = radeon_bo_ngpu_pages(bo);
1139 
1140 	/* assume two extra pdes in case the mapping overlaps the borders */
1141 	npdes = (nptes >> RADEON_VM_BLOCK_SIZE) + 2;
1142 
1143 	/* estimate number of dw needed */
1144 	/* semaphore, fence and padding */
1145 	ndw = 32;
1146 
1147 	if (RADEON_VM_BLOCK_SIZE > 11)
1148 		/* reserve space for one header for every 2k dwords */
1149 		ndw += (nptes >> 11) * 4;
1150 	else
1151 		/* reserve space for one header for
1152 		    every (1 << BLOCK_SIZE) entries */
1153 		ndw += (nptes >> RADEON_VM_BLOCK_SIZE) * 4;
1154 
1155 	/* reserve space for pte addresses */
1156 	ndw += nptes * 2;
1157 
1158 	/* reserve space for one header for every 2k dwords */
1159 	ndw += (npdes >> 11) * 4;
1160 
1161 	/* reserve space for pde addresses */
1162 	ndw += npdes * 2;
1163 
1164 	r = radeon_ring_lock(rdev, ring, ndw);
1165 	if (r) {
1166 		return r;
1167 	}
1168 
1169 	if (sem && radeon_fence_need_sync(vm->fence, ridx)) {
1170 		radeon_semaphore_sync_rings(rdev, sem, vm->fence->ring, ridx);
1171 		radeon_fence_note_sync(vm->fence, ridx);
1172 	}
1173 
1174 	r = radeon_vm_update_pdes(rdev, vm, bo_va->soffset, bo_va->eoffset);
1175 	if (r) {
1176 		radeon_ring_unlock_undo(rdev, ring);
1177 		return r;
1178 	}
1179 
1180 	radeon_vm_update_ptes(rdev, vm, bo_va->soffset, bo_va->eoffset,
1181 			      addr, bo_va->flags);
1182 
1183 	radeon_fence_unref(&vm->fence);
1184 	r = radeon_fence_emit(rdev, &vm->fence, ridx);
1185 	if (r) {
1186 		radeon_ring_unlock_undo(rdev, ring);
1187 		return r;
1188 	}
1189 	radeon_ring_unlock_commit(rdev, ring);
1190 	radeon_semaphore_free(rdev, &sem, vm->fence);
1191 	radeon_fence_unref(&vm->last_flush);
1192 
1193 	return 0;
1194 }
1195 
1196 /**
1197  * radeon_vm_bo_rmv - remove a bo to a specific vm
1198  *
1199  * @rdev: radeon_device pointer
1200  * @bo_va: requested bo_va
1201  *
1202  * Remove @bo_va->bo from the requested vm (cayman+).
1203  * Remove @bo_va->bo from the list of bos associated with the bo_va->vm and
1204  * remove the ptes for @bo_va in the page table.
1205  * Returns 0 for success.
1206  *
1207  * Object have to be reserved!
1208  */
1209 int radeon_vm_bo_rmv(struct radeon_device *rdev,
1210 		     struct radeon_bo_va *bo_va)
1211 {
1212 	int r;
1213 
1214 	mutex_lock(&rdev->vm_manager.lock);
1215 	mutex_lock(&bo_va->vm->mutex);
1216 	r = radeon_vm_bo_update_pte(rdev, bo_va->vm, bo_va->bo, NULL);
1217 	mutex_unlock(&rdev->vm_manager.lock);
1218 	list_del(&bo_va->vm_list);
1219 	mutex_unlock(&bo_va->vm->mutex);
1220 	list_del(&bo_va->bo_list);
1221 
1222 	kfree(bo_va);
1223 	return r;
1224 }
1225 
1226 /**
1227  * radeon_vm_bo_invalidate - mark the bo as invalid
1228  *
1229  * @rdev: radeon_device pointer
1230  * @vm: requested vm
1231  * @bo: radeon buffer object
1232  *
1233  * Mark @bo as invalid (cayman+).
1234  */
1235 void radeon_vm_bo_invalidate(struct radeon_device *rdev,
1236 			     struct radeon_bo *bo)
1237 {
1238 	struct radeon_bo_va *bo_va;
1239 
1240 	list_for_each_entry(bo_va, &bo->va, bo_list) {
1241 		bo_va->valid = false;
1242 	}
1243 }
1244 
1245 /**
1246  * radeon_vm_init - initialize a vm instance
1247  *
1248  * @rdev: radeon_device pointer
1249  * @vm: requested vm
1250  *
1251  * Init @vm fields (cayman+).
1252  */
1253 void radeon_vm_init(struct radeon_device *rdev, struct radeon_vm *vm)
1254 {
1255 	vm->id = 0;
1256 	vm->fence = NULL;
1257 	mutex_init(&vm->mutex);
1258 	INIT_LIST_HEAD(&vm->list);
1259 	INIT_LIST_HEAD(&vm->va);
1260 }
1261 
1262 /**
1263  * radeon_vm_fini - tear down a vm instance
1264  *
1265  * @rdev: radeon_device pointer
1266  * @vm: requested vm
1267  *
1268  * Tear down @vm (cayman+).
1269  * Unbind the VM and remove all bos from the vm bo list
1270  */
1271 void radeon_vm_fini(struct radeon_device *rdev, struct radeon_vm *vm)
1272 {
1273 	struct radeon_bo_va *bo_va, *tmp;
1274 	int r;
1275 
1276 	mutex_lock(&rdev->vm_manager.lock);
1277 	mutex_lock(&vm->mutex);
1278 	radeon_vm_free_pt(rdev, vm);
1279 	mutex_unlock(&rdev->vm_manager.lock);
1280 
1281 	if (!list_empty(&vm->va)) {
1282 		dev_err(rdev->dev, "still active bo inside vm\n");
1283 	}
1284 	list_for_each_entry_safe(bo_va, tmp, &vm->va, vm_list) {
1285 		list_del_init(&bo_va->vm_list);
1286 		r = radeon_bo_reserve(bo_va->bo, false);
1287 		if (!r) {
1288 			list_del_init(&bo_va->bo_list);
1289 			radeon_bo_unreserve(bo_va->bo);
1290 			kfree(bo_va);
1291 		}
1292 	}
1293 	radeon_fence_unref(&vm->fence);
1294 	radeon_fence_unref(&vm->last_flush);
1295 	mutex_unlock(&vm->mutex);
1296 }
1297