1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <drm/drmP.h>
29 #include <drm/radeon_drm.h>
30 #include "radeon.h"
31 #include "radeon_reg.h"
32 
33 /*
34  * GART
35  * The GART (Graphics Aperture Remapping Table) is an aperture
36  * in the GPU's address space.  System pages can be mapped into
37  * the aperture and look like contiguous pages from the GPU's
38  * perspective.  A page table maps the pages in the aperture
39  * to the actual backing pages in system memory.
40  *
41  * Radeon GPUs support both an internal GART, as described above,
42  * and AGP.  AGP works similarly, but the GART table is configured
43  * and maintained by the northbridge rather than the driver.
44  * Radeon hw has a separate AGP aperture that is programmed to
45  * point to the AGP aperture provided by the northbridge and the
46  * requests are passed through to the northbridge aperture.
47  * Both AGP and internal GART can be used at the same time, however
48  * that is not currently supported by the driver.
49  *
50  * This file handles the common internal GART management.
51  */
52 
53 /*
54  * Common GART table functions.
55  */
56 /**
57  * radeon_gart_table_ram_alloc - allocate system ram for gart page table
58  *
59  * @rdev: radeon_device pointer
60  *
61  * Allocate system memory for GART page table
62  * (r1xx-r3xx, non-pcie r4xx, rs400).  These asics require the
63  * gart table to be in system memory.
64  * Returns 0 for success, -ENOMEM for failure.
65  */
66 int radeon_gart_table_ram_alloc(struct radeon_device *rdev)
67 {
68 	void *ptr;
69 
70 	ptr = pci_alloc_consistent(rdev->pdev, rdev->gart.table_size,
71 				   &rdev->gart.table_addr);
72 	if (ptr == NULL) {
73 		return -ENOMEM;
74 	}
75 #ifdef CONFIG_X86
76 	if (rdev->family == CHIP_RS400 || rdev->family == CHIP_RS480 ||
77 	    rdev->family == CHIP_RS690 || rdev->family == CHIP_RS740) {
78 		set_memory_uc((unsigned long)ptr,
79 			      rdev->gart.table_size >> PAGE_SHIFT);
80 	}
81 #endif
82 	rdev->gart.ptr = ptr;
83 	memset((void *)rdev->gart.ptr, 0, rdev->gart.table_size);
84 	return 0;
85 }
86 
87 /**
88  * radeon_gart_table_ram_free - free system ram for gart page table
89  *
90  * @rdev: radeon_device pointer
91  *
92  * Free system memory for GART page table
93  * (r1xx-r3xx, non-pcie r4xx, rs400).  These asics require the
94  * gart table to be in system memory.
95  */
96 void radeon_gart_table_ram_free(struct radeon_device *rdev)
97 {
98 	if (rdev->gart.ptr == NULL) {
99 		return;
100 	}
101 #ifdef CONFIG_X86
102 	if (rdev->family == CHIP_RS400 || rdev->family == CHIP_RS480 ||
103 	    rdev->family == CHIP_RS690 || rdev->family == CHIP_RS740) {
104 		set_memory_wb((unsigned long)rdev->gart.ptr,
105 			      rdev->gart.table_size >> PAGE_SHIFT);
106 	}
107 #endif
108 	pci_free_consistent(rdev->pdev, rdev->gart.table_size,
109 			    (void *)rdev->gart.ptr,
110 			    rdev->gart.table_addr);
111 	rdev->gart.ptr = NULL;
112 	rdev->gart.table_addr = 0;
113 }
114 
115 /**
116  * radeon_gart_table_vram_alloc - allocate vram for gart page table
117  *
118  * @rdev: radeon_device pointer
119  *
120  * Allocate video memory for GART page table
121  * (pcie r4xx, r5xx+).  These asics require the
122  * gart table to be in video memory.
123  * Returns 0 for success, error for failure.
124  */
125 int radeon_gart_table_vram_alloc(struct radeon_device *rdev)
126 {
127 	int r;
128 
129 	if (rdev->gart.robj == NULL) {
130 		r = radeon_bo_create(rdev, rdev->gart.table_size,
131 				     PAGE_SIZE, true, RADEON_GEM_DOMAIN_VRAM,
132 				     NULL, &rdev->gart.robj);
133 		if (r) {
134 			return r;
135 		}
136 	}
137 	return 0;
138 }
139 
140 /**
141  * radeon_gart_table_vram_pin - pin gart page table in vram
142  *
143  * @rdev: radeon_device pointer
144  *
145  * Pin the GART page table in vram so it will not be moved
146  * by the memory manager (pcie r4xx, r5xx+).  These asics require the
147  * gart table to be in video memory.
148  * Returns 0 for success, error for failure.
149  */
150 int radeon_gart_table_vram_pin(struct radeon_device *rdev)
151 {
152 	uint64_t gpu_addr;
153 	int r;
154 
155 	r = radeon_bo_reserve(rdev->gart.robj, false);
156 	if (unlikely(r != 0))
157 		return r;
158 	r = radeon_bo_pin(rdev->gart.robj,
159 				RADEON_GEM_DOMAIN_VRAM, &gpu_addr);
160 	if (r) {
161 		radeon_bo_unreserve(rdev->gart.robj);
162 		return r;
163 	}
164 	r = radeon_bo_kmap(rdev->gart.robj, &rdev->gart.ptr);
165 	if (r)
166 		radeon_bo_unpin(rdev->gart.robj);
167 	radeon_bo_unreserve(rdev->gart.robj);
168 	rdev->gart.table_addr = gpu_addr;
169 	return r;
170 }
171 
172 /**
173  * radeon_gart_table_vram_unpin - unpin gart page table in vram
174  *
175  * @rdev: radeon_device pointer
176  *
177  * Unpin the GART page table in vram (pcie r4xx, r5xx+).
178  * These asics require the gart table to be in video memory.
179  */
180 void radeon_gart_table_vram_unpin(struct radeon_device *rdev)
181 {
182 	int r;
183 
184 	if (rdev->gart.robj == NULL) {
185 		return;
186 	}
187 	r = radeon_bo_reserve(rdev->gart.robj, false);
188 	if (likely(r == 0)) {
189 		radeon_bo_kunmap(rdev->gart.robj);
190 		radeon_bo_unpin(rdev->gart.robj);
191 		radeon_bo_unreserve(rdev->gart.robj);
192 		rdev->gart.ptr = NULL;
193 	}
194 }
195 
196 /**
197  * radeon_gart_table_vram_free - free gart page table vram
198  *
199  * @rdev: radeon_device pointer
200  *
201  * Free the video memory used for the GART page table
202  * (pcie r4xx, r5xx+).  These asics require the gart table to
203  * be in video memory.
204  */
205 void radeon_gart_table_vram_free(struct radeon_device *rdev)
206 {
207 	if (rdev->gart.robj == NULL) {
208 		return;
209 	}
210 	radeon_bo_unref(&rdev->gart.robj);
211 }
212 
213 /*
214  * Common gart functions.
215  */
216 /**
217  * radeon_gart_unbind - unbind pages from the gart page table
218  *
219  * @rdev: radeon_device pointer
220  * @offset: offset into the GPU's gart aperture
221  * @pages: number of pages to unbind
222  *
223  * Unbinds the requested pages from the gart page table and
224  * replaces them with the dummy page (all asics).
225  */
226 void radeon_gart_unbind(struct radeon_device *rdev, unsigned offset,
227 			int pages)
228 {
229 	unsigned t;
230 	unsigned p;
231 	int i, j;
232 	u64 page_base;
233 
234 	if (!rdev->gart.ready) {
235 		WARN(1, "trying to unbind memory from uninitialized GART !\n");
236 		return;
237 	}
238 	t = offset / RADEON_GPU_PAGE_SIZE;
239 	p = t / (PAGE_SIZE / RADEON_GPU_PAGE_SIZE);
240 	for (i = 0; i < pages; i++, p++) {
241 		if (rdev->gart.pages[p]) {
242 			rdev->gart.pages[p] = NULL;
243 			rdev->gart.pages_addr[p] = rdev->dummy_page.addr;
244 			page_base = rdev->gart.pages_addr[p];
245 			for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) {
246 				if (rdev->gart.ptr) {
247 					radeon_gart_set_page(rdev, t, page_base);
248 				}
249 				page_base += RADEON_GPU_PAGE_SIZE;
250 			}
251 		}
252 	}
253 	mb();
254 	radeon_gart_tlb_flush(rdev);
255 }
256 
257 /**
258  * radeon_gart_bind - bind pages into the gart page table
259  *
260  * @rdev: radeon_device pointer
261  * @offset: offset into the GPU's gart aperture
262  * @pages: number of pages to bind
263  * @pagelist: pages to bind
264  * @dma_addr: DMA addresses of pages
265  *
266  * Binds the requested pages to the gart page table
267  * (all asics).
268  * Returns 0 for success, -EINVAL for failure.
269  */
270 int radeon_gart_bind(struct radeon_device *rdev, unsigned offset,
271 		     int pages, struct page **pagelist, dma_addr_t *dma_addr)
272 {
273 	unsigned t;
274 	unsigned p;
275 	uint64_t page_base;
276 	int i, j;
277 
278 	if (!rdev->gart.ready) {
279 		WARN(1, "trying to bind memory to uninitialized GART !\n");
280 		return -EINVAL;
281 	}
282 	t = offset / RADEON_GPU_PAGE_SIZE;
283 	p = t / (PAGE_SIZE / RADEON_GPU_PAGE_SIZE);
284 
285 	for (i = 0; i < pages; i++, p++) {
286 		rdev->gart.pages_addr[p] = dma_addr[i];
287 		rdev->gart.pages[p] = pagelist[i];
288 		if (rdev->gart.ptr) {
289 			page_base = rdev->gart.pages_addr[p];
290 			for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) {
291 				radeon_gart_set_page(rdev, t, page_base);
292 				page_base += RADEON_GPU_PAGE_SIZE;
293 			}
294 		}
295 	}
296 	mb();
297 	radeon_gart_tlb_flush(rdev);
298 	return 0;
299 }
300 
301 /**
302  * radeon_gart_restore - bind all pages in the gart page table
303  *
304  * @rdev: radeon_device pointer
305  *
306  * Binds all pages in the gart page table (all asics).
307  * Used to rebuild the gart table on device startup or resume.
308  */
309 void radeon_gart_restore(struct radeon_device *rdev)
310 {
311 	int i, j, t;
312 	u64 page_base;
313 
314 	if (!rdev->gart.ptr) {
315 		return;
316 	}
317 	for (i = 0, t = 0; i < rdev->gart.num_cpu_pages; i++) {
318 		page_base = rdev->gart.pages_addr[i];
319 		for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) {
320 			radeon_gart_set_page(rdev, t, page_base);
321 			page_base += RADEON_GPU_PAGE_SIZE;
322 		}
323 	}
324 	mb();
325 	radeon_gart_tlb_flush(rdev);
326 }
327 
328 /**
329  * radeon_gart_init - init the driver info for managing the gart
330  *
331  * @rdev: radeon_device pointer
332  *
333  * Allocate the dummy page and init the gart driver info (all asics).
334  * Returns 0 for success, error for failure.
335  */
336 int radeon_gart_init(struct radeon_device *rdev)
337 {
338 	int r, i;
339 
340 	if (rdev->gart.pages) {
341 		return 0;
342 	}
343 	/* We need PAGE_SIZE >= RADEON_GPU_PAGE_SIZE */
344 	if (PAGE_SIZE < RADEON_GPU_PAGE_SIZE) {
345 		DRM_ERROR("Page size is smaller than GPU page size!\n");
346 		return -EINVAL;
347 	}
348 	r = radeon_dummy_page_init(rdev);
349 	if (r)
350 		return r;
351 	/* Compute table size */
352 	rdev->gart.num_cpu_pages = rdev->mc.gtt_size / PAGE_SIZE;
353 	rdev->gart.num_gpu_pages = rdev->mc.gtt_size / RADEON_GPU_PAGE_SIZE;
354 	DRM_INFO("GART: num cpu pages %u, num gpu pages %u\n",
355 		 rdev->gart.num_cpu_pages, rdev->gart.num_gpu_pages);
356 	/* Allocate pages table */
357 	rdev->gart.pages = vzalloc(sizeof(void *) * rdev->gart.num_cpu_pages);
358 	if (rdev->gart.pages == NULL) {
359 		radeon_gart_fini(rdev);
360 		return -ENOMEM;
361 	}
362 	rdev->gart.pages_addr = vzalloc(sizeof(dma_addr_t) *
363 					rdev->gart.num_cpu_pages);
364 	if (rdev->gart.pages_addr == NULL) {
365 		radeon_gart_fini(rdev);
366 		return -ENOMEM;
367 	}
368 	/* set GART entry to point to the dummy page by default */
369 	for (i = 0; i < rdev->gart.num_cpu_pages; i++) {
370 		rdev->gart.pages_addr[i] = rdev->dummy_page.addr;
371 	}
372 	return 0;
373 }
374 
375 /**
376  * radeon_gart_fini - tear down the driver info for managing the gart
377  *
378  * @rdev: radeon_device pointer
379  *
380  * Tear down the gart driver info and free the dummy page (all asics).
381  */
382 void radeon_gart_fini(struct radeon_device *rdev)
383 {
384 	if (rdev->gart.pages && rdev->gart.pages_addr && rdev->gart.ready) {
385 		/* unbind pages */
386 		radeon_gart_unbind(rdev, 0, rdev->gart.num_cpu_pages);
387 	}
388 	rdev->gart.ready = false;
389 	vfree(rdev->gart.pages);
390 	vfree(rdev->gart.pages_addr);
391 	rdev->gart.pages = NULL;
392 	rdev->gart.pages_addr = NULL;
393 
394 	radeon_dummy_page_fini(rdev);
395 }
396 
397 /*
398  * GPUVM
399  * GPUVM is similar to the legacy gart on older asics, however
400  * rather than there being a single global gart table
401  * for the entire GPU, there are multiple VM page tables active
402  * at any given time.  The VM page tables can contain a mix
403  * vram pages and system memory pages and system memory pages
404  * can be mapped as snooped (cached system pages) or unsnooped
405  * (uncached system pages).
406  * Each VM has an ID associated with it and there is a page table
407  * associated with each VMID.  When execting a command buffer,
408  * the kernel tells the the ring what VMID to use for that command
409  * buffer.  VMIDs are allocated dynamically as commands are submitted.
410  * The userspace drivers maintain their own address space and the kernel
411  * sets up their pages tables accordingly when they submit their
412  * command buffers and a VMID is assigned.
413  * Cayman/Trinity support up to 8 active VMs at any given time;
414  * SI supports 16.
415  */
416 
417 /*
418  * vm helpers
419  *
420  * TODO bind a default page at vm initialization for default address
421  */
422 
423 /**
424  * radeon_vm_num_pde - return the number of page directory entries
425  *
426  * @rdev: radeon_device pointer
427  *
428  * Calculate the number of page directory entries (cayman+).
429  */
430 static unsigned radeon_vm_num_pdes(struct radeon_device *rdev)
431 {
432 	return rdev->vm_manager.max_pfn >> RADEON_VM_BLOCK_SIZE;
433 }
434 
435 /**
436  * radeon_vm_directory_size - returns the size of the page directory in bytes
437  *
438  * @rdev: radeon_device pointer
439  *
440  * Calculate the size of the page directory in bytes (cayman+).
441  */
442 static unsigned radeon_vm_directory_size(struct radeon_device *rdev)
443 {
444 	return RADEON_GPU_PAGE_ALIGN(radeon_vm_num_pdes(rdev) * 8);
445 }
446 
447 /**
448  * radeon_vm_manager_init - init the vm manager
449  *
450  * @rdev: radeon_device pointer
451  *
452  * Init the vm manager (cayman+).
453  * Returns 0 for success, error for failure.
454  */
455 int radeon_vm_manager_init(struct radeon_device *rdev)
456 {
457 	struct radeon_vm *vm;
458 	struct radeon_bo_va *bo_va;
459 	int r;
460 	unsigned size;
461 
462 	if (!rdev->vm_manager.enabled) {
463 		/* allocate enough for 2 full VM pts */
464 		size = radeon_vm_directory_size(rdev);
465 		size += rdev->vm_manager.max_pfn * 8;
466 		size *= 2;
467 		r = radeon_sa_bo_manager_init(rdev, &rdev->vm_manager.sa_manager,
468 					      RADEON_GPU_PAGE_ALIGN(size),
469 					      RADEON_VM_PTB_ALIGN_SIZE,
470 					      RADEON_GEM_DOMAIN_VRAM);
471 		if (r) {
472 			dev_err(rdev->dev, "failed to allocate vm bo (%dKB)\n",
473 				(rdev->vm_manager.max_pfn * 8) >> 10);
474 			return r;
475 		}
476 
477 		r = radeon_asic_vm_init(rdev);
478 		if (r)
479 			return r;
480 
481 		rdev->vm_manager.enabled = true;
482 
483 		r = radeon_sa_bo_manager_start(rdev, &rdev->vm_manager.sa_manager);
484 		if (r)
485 			return r;
486 	}
487 
488 	/* restore page table */
489 	list_for_each_entry(vm, &rdev->vm_manager.lru_vm, list) {
490 		if (vm->page_directory == NULL)
491 			continue;
492 
493 		list_for_each_entry(bo_va, &vm->va, vm_list) {
494 			bo_va->valid = false;
495 		}
496 	}
497 	return 0;
498 }
499 
500 /**
501  * radeon_vm_free_pt - free the page table for a specific vm
502  *
503  * @rdev: radeon_device pointer
504  * @vm: vm to unbind
505  *
506  * Free the page table of a specific vm (cayman+).
507  *
508  * Global and local mutex must be lock!
509  */
510 static void radeon_vm_free_pt(struct radeon_device *rdev,
511 				    struct radeon_vm *vm)
512 {
513 	struct radeon_bo_va *bo_va;
514 	int i;
515 
516 	if (!vm->page_directory)
517 		return;
518 
519 	list_del_init(&vm->list);
520 	radeon_sa_bo_free(rdev, &vm->page_directory, vm->fence);
521 
522 	list_for_each_entry(bo_va, &vm->va, vm_list) {
523 		bo_va->valid = false;
524 	}
525 
526 	if (vm->page_tables == NULL)
527 		return;
528 
529 	for (i = 0; i < radeon_vm_num_pdes(rdev); i++)
530 		radeon_sa_bo_free(rdev, &vm->page_tables[i], vm->fence);
531 
532 	kfree(vm->page_tables);
533 }
534 
535 /**
536  * radeon_vm_manager_fini - tear down the vm manager
537  *
538  * @rdev: radeon_device pointer
539  *
540  * Tear down the VM manager (cayman+).
541  */
542 void radeon_vm_manager_fini(struct radeon_device *rdev)
543 {
544 	struct radeon_vm *vm, *tmp;
545 	int i;
546 
547 	if (!rdev->vm_manager.enabled)
548 		return;
549 
550 	mutex_lock(&rdev->vm_manager.lock);
551 	/* free all allocated page tables */
552 	list_for_each_entry_safe(vm, tmp, &rdev->vm_manager.lru_vm, list) {
553 		mutex_lock(&vm->mutex);
554 		radeon_vm_free_pt(rdev, vm);
555 		mutex_unlock(&vm->mutex);
556 	}
557 	for (i = 0; i < RADEON_NUM_VM; ++i) {
558 		radeon_fence_unref(&rdev->vm_manager.active[i]);
559 	}
560 	radeon_asic_vm_fini(rdev);
561 	mutex_unlock(&rdev->vm_manager.lock);
562 
563 	radeon_sa_bo_manager_suspend(rdev, &rdev->vm_manager.sa_manager);
564 	radeon_sa_bo_manager_fini(rdev, &rdev->vm_manager.sa_manager);
565 	rdev->vm_manager.enabled = false;
566 }
567 
568 /**
569  * radeon_vm_evict - evict page table to make room for new one
570  *
571  * @rdev: radeon_device pointer
572  * @vm: VM we want to allocate something for
573  *
574  * Evict a VM from the lru, making sure that it isn't @vm. (cayman+).
575  * Returns 0 for success, -ENOMEM for failure.
576  *
577  * Global and local mutex must be locked!
578  */
579 static int radeon_vm_evict(struct radeon_device *rdev, struct radeon_vm *vm)
580 {
581 	struct radeon_vm *vm_evict;
582 
583 	if (list_empty(&rdev->vm_manager.lru_vm))
584 		return -ENOMEM;
585 
586 	vm_evict = list_first_entry(&rdev->vm_manager.lru_vm,
587 				    struct radeon_vm, list);
588 	if (vm_evict == vm)
589 		return -ENOMEM;
590 
591 	mutex_lock(&vm_evict->mutex);
592 	radeon_vm_free_pt(rdev, vm_evict);
593 	mutex_unlock(&vm_evict->mutex);
594 	return 0;
595 }
596 
597 /**
598  * radeon_vm_alloc_pt - allocates a page table for a VM
599  *
600  * @rdev: radeon_device pointer
601  * @vm: vm to bind
602  *
603  * Allocate a page table for the requested vm (cayman+).
604  * Returns 0 for success, error for failure.
605  *
606  * Global and local mutex must be locked!
607  */
608 int radeon_vm_alloc_pt(struct radeon_device *rdev, struct radeon_vm *vm)
609 {
610 	unsigned pd_size, pd_entries, pts_size;
611 	struct radeon_ib ib;
612 	int r;
613 
614 	if (vm == NULL) {
615 		return -EINVAL;
616 	}
617 
618 	if (vm->page_directory != NULL) {
619 		return 0;
620 	}
621 
622 	pd_size = radeon_vm_directory_size(rdev);
623 	pd_entries = radeon_vm_num_pdes(rdev);
624 
625 retry:
626 	r = radeon_sa_bo_new(rdev, &rdev->vm_manager.sa_manager,
627 			     &vm->page_directory, pd_size,
628 			     RADEON_VM_PTB_ALIGN_SIZE, false);
629 	if (r == -ENOMEM) {
630 		r = radeon_vm_evict(rdev, vm);
631 		if (r)
632 			return r;
633 		goto retry;
634 
635 	} else if (r) {
636 		return r;
637 	}
638 
639 	vm->pd_gpu_addr = radeon_sa_bo_gpu_addr(vm->page_directory);
640 
641 	/* Initially clear the page directory */
642 	r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib,
643 			  NULL, pd_entries * 2 + 64);
644 	if (r) {
645 		radeon_sa_bo_free(rdev, &vm->page_directory, vm->fence);
646 		return r;
647 	}
648 
649 	ib.length_dw = 0;
650 
651 	radeon_asic_vm_set_page(rdev, &ib, vm->pd_gpu_addr,
652 				0, pd_entries, 0, 0);
653 
654 	radeon_semaphore_sync_to(ib.semaphore, vm->fence);
655 	r = radeon_ib_schedule(rdev, &ib, NULL);
656 	if (r) {
657 		radeon_ib_free(rdev, &ib);
658 		radeon_sa_bo_free(rdev, &vm->page_directory, vm->fence);
659 		return r;
660 	}
661 	radeon_fence_unref(&vm->fence);
662 	vm->fence = radeon_fence_ref(ib.fence);
663 	radeon_ib_free(rdev, &ib);
664 	radeon_fence_unref(&vm->last_flush);
665 
666 	/* allocate page table array */
667 	pts_size = radeon_vm_num_pdes(rdev) * sizeof(struct radeon_sa_bo *);
668 	vm->page_tables = kzalloc(pts_size, GFP_KERNEL);
669 
670 	if (vm->page_tables == NULL) {
671 		DRM_ERROR("Cannot allocate memory for page table array\n");
672 		radeon_sa_bo_free(rdev, &vm->page_directory, vm->fence);
673 		return -ENOMEM;
674 	}
675 
676 	return 0;
677 }
678 
679 /**
680  * radeon_vm_add_to_lru - add VMs page table to LRU list
681  *
682  * @rdev: radeon_device pointer
683  * @vm: vm to add to LRU
684  *
685  * Add the allocated page table to the LRU list (cayman+).
686  *
687  * Global mutex must be locked!
688  */
689 void radeon_vm_add_to_lru(struct radeon_device *rdev, struct radeon_vm *vm)
690 {
691 	list_del_init(&vm->list);
692 	list_add_tail(&vm->list, &rdev->vm_manager.lru_vm);
693 }
694 
695 /**
696  * radeon_vm_grab_id - allocate the next free VMID
697  *
698  * @rdev: radeon_device pointer
699  * @vm: vm to allocate id for
700  * @ring: ring we want to submit job to
701  *
702  * Allocate an id for the vm (cayman+).
703  * Returns the fence we need to sync to (if any).
704  *
705  * Global and local mutex must be locked!
706  */
707 struct radeon_fence *radeon_vm_grab_id(struct radeon_device *rdev,
708 				       struct radeon_vm *vm, int ring)
709 {
710 	struct radeon_fence *best[RADEON_NUM_RINGS] = {};
711 	unsigned choices[2] = {};
712 	unsigned i;
713 
714 	/* check if the id is still valid */
715 	if (vm->fence && vm->fence == rdev->vm_manager.active[vm->id])
716 		return NULL;
717 
718 	/* we definately need to flush */
719 	radeon_fence_unref(&vm->last_flush);
720 
721 	/* skip over VMID 0, since it is the system VM */
722 	for (i = 1; i < rdev->vm_manager.nvm; ++i) {
723 		struct radeon_fence *fence = rdev->vm_manager.active[i];
724 
725 		if (fence == NULL) {
726 			/* found a free one */
727 			vm->id = i;
728 			return NULL;
729 		}
730 
731 		if (radeon_fence_is_earlier(fence, best[fence->ring])) {
732 			best[fence->ring] = fence;
733 			choices[fence->ring == ring ? 0 : 1] = i;
734 		}
735 	}
736 
737 	for (i = 0; i < 2; ++i) {
738 		if (choices[i]) {
739 			vm->id = choices[i];
740 			return rdev->vm_manager.active[choices[i]];
741 		}
742 	}
743 
744 	/* should never happen */
745 	BUG();
746 	return NULL;
747 }
748 
749 /**
750  * radeon_vm_fence - remember fence for vm
751  *
752  * @rdev: radeon_device pointer
753  * @vm: vm we want to fence
754  * @fence: fence to remember
755  *
756  * Fence the vm (cayman+).
757  * Set the fence used to protect page table and id.
758  *
759  * Global and local mutex must be locked!
760  */
761 void radeon_vm_fence(struct radeon_device *rdev,
762 		     struct radeon_vm *vm,
763 		     struct radeon_fence *fence)
764 {
765 	radeon_fence_unref(&rdev->vm_manager.active[vm->id]);
766 	rdev->vm_manager.active[vm->id] = radeon_fence_ref(fence);
767 
768 	radeon_fence_unref(&vm->fence);
769 	vm->fence = radeon_fence_ref(fence);
770 }
771 
772 /**
773  * radeon_vm_bo_find - find the bo_va for a specific vm & bo
774  *
775  * @vm: requested vm
776  * @bo: requested buffer object
777  *
778  * Find @bo inside the requested vm (cayman+).
779  * Search inside the @bos vm list for the requested vm
780  * Returns the found bo_va or NULL if none is found
781  *
782  * Object has to be reserved!
783  */
784 struct radeon_bo_va *radeon_vm_bo_find(struct radeon_vm *vm,
785 				       struct radeon_bo *bo)
786 {
787 	struct radeon_bo_va *bo_va;
788 
789 	list_for_each_entry(bo_va, &bo->va, bo_list) {
790 		if (bo_va->vm == vm) {
791 			return bo_va;
792 		}
793 	}
794 	return NULL;
795 }
796 
797 /**
798  * radeon_vm_bo_add - add a bo to a specific vm
799  *
800  * @rdev: radeon_device pointer
801  * @vm: requested vm
802  * @bo: radeon buffer object
803  *
804  * Add @bo into the requested vm (cayman+).
805  * Add @bo to the list of bos associated with the vm
806  * Returns newly added bo_va or NULL for failure
807  *
808  * Object has to be reserved!
809  */
810 struct radeon_bo_va *radeon_vm_bo_add(struct radeon_device *rdev,
811 				      struct radeon_vm *vm,
812 				      struct radeon_bo *bo)
813 {
814 	struct radeon_bo_va *bo_va;
815 
816 	bo_va = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL);
817 	if (bo_va == NULL) {
818 		return NULL;
819 	}
820 	bo_va->vm = vm;
821 	bo_va->bo = bo;
822 	bo_va->soffset = 0;
823 	bo_va->eoffset = 0;
824 	bo_va->flags = 0;
825 	bo_va->valid = false;
826 	bo_va->ref_count = 1;
827 	INIT_LIST_HEAD(&bo_va->bo_list);
828 	INIT_LIST_HEAD(&bo_va->vm_list);
829 
830 	mutex_lock(&vm->mutex);
831 	list_add(&bo_va->vm_list, &vm->va);
832 	list_add_tail(&bo_va->bo_list, &bo->va);
833 	mutex_unlock(&vm->mutex);
834 
835 	return bo_va;
836 }
837 
838 /**
839  * radeon_vm_bo_set_addr - set bos virtual address inside a vm
840  *
841  * @rdev: radeon_device pointer
842  * @bo_va: bo_va to store the address
843  * @soffset: requested offset of the buffer in the VM address space
844  * @flags: attributes of pages (read/write/valid/etc.)
845  *
846  * Set offset of @bo_va (cayman+).
847  * Validate and set the offset requested within the vm address space.
848  * Returns 0 for success, error for failure.
849  *
850  * Object has to be reserved!
851  */
852 int radeon_vm_bo_set_addr(struct radeon_device *rdev,
853 			  struct radeon_bo_va *bo_va,
854 			  uint64_t soffset,
855 			  uint32_t flags)
856 {
857 	uint64_t size = radeon_bo_size(bo_va->bo);
858 	uint64_t eoffset, last_offset = 0;
859 	struct radeon_vm *vm = bo_va->vm;
860 	struct radeon_bo_va *tmp;
861 	struct list_head *head;
862 	unsigned last_pfn;
863 
864 	if (soffset) {
865 		/* make sure object fit at this offset */
866 		eoffset = soffset + size;
867 		if (soffset >= eoffset) {
868 			return -EINVAL;
869 		}
870 
871 		last_pfn = eoffset / RADEON_GPU_PAGE_SIZE;
872 		if (last_pfn > rdev->vm_manager.max_pfn) {
873 			dev_err(rdev->dev, "va above limit (0x%08X > 0x%08X)\n",
874 				last_pfn, rdev->vm_manager.max_pfn);
875 			return -EINVAL;
876 		}
877 
878 	} else {
879 		eoffset = last_pfn = 0;
880 	}
881 
882 	mutex_lock(&vm->mutex);
883 	head = &vm->va;
884 	last_offset = 0;
885 	list_for_each_entry(tmp, &vm->va, vm_list) {
886 		if (bo_va == tmp) {
887 			/* skip over currently modified bo */
888 			continue;
889 		}
890 
891 		if (soffset >= last_offset && eoffset <= tmp->soffset) {
892 			/* bo can be added before this one */
893 			break;
894 		}
895 		if (eoffset > tmp->soffset && soffset < tmp->eoffset) {
896 			/* bo and tmp overlap, invalid offset */
897 			dev_err(rdev->dev, "bo %p va 0x%08X conflict with (bo %p 0x%08X 0x%08X)\n",
898 				bo_va->bo, (unsigned)bo_va->soffset, tmp->bo,
899 				(unsigned)tmp->soffset, (unsigned)tmp->eoffset);
900 			mutex_unlock(&vm->mutex);
901 			return -EINVAL;
902 		}
903 		last_offset = tmp->eoffset;
904 		head = &tmp->vm_list;
905 	}
906 
907 	bo_va->soffset = soffset;
908 	bo_va->eoffset = eoffset;
909 	bo_va->flags = flags;
910 	bo_va->valid = false;
911 	list_move(&bo_va->vm_list, head);
912 
913 	mutex_unlock(&vm->mutex);
914 	return 0;
915 }
916 
917 /**
918  * radeon_vm_map_gart - get the physical address of a gart page
919  *
920  * @rdev: radeon_device pointer
921  * @addr: the unmapped addr
922  *
923  * Look up the physical address of the page that the pte resolves
924  * to (cayman+).
925  * Returns the physical address of the page.
926  */
927 uint64_t radeon_vm_map_gart(struct radeon_device *rdev, uint64_t addr)
928 {
929 	uint64_t result;
930 
931 	/* page table offset */
932 	result = rdev->gart.pages_addr[addr >> PAGE_SHIFT];
933 
934 	/* in case cpu page size != gpu page size*/
935 	result |= addr & (~PAGE_MASK);
936 
937 	return result;
938 }
939 
940 /**
941  * radeon_vm_page_flags - translate page flags to what the hw uses
942  *
943  * @flags: flags comming from userspace
944  *
945  * Translate the flags the userspace ABI uses to hw flags.
946  */
947 static uint32_t radeon_vm_page_flags(uint32_t flags)
948 {
949         uint32_t hw_flags = 0;
950         hw_flags |= (flags & RADEON_VM_PAGE_VALID) ? R600_PTE_VALID : 0;
951         hw_flags |= (flags & RADEON_VM_PAGE_READABLE) ? R600_PTE_READABLE : 0;
952         hw_flags |= (flags & RADEON_VM_PAGE_WRITEABLE) ? R600_PTE_WRITEABLE : 0;
953         if (flags & RADEON_VM_PAGE_SYSTEM) {
954                 hw_flags |= R600_PTE_SYSTEM;
955                 hw_flags |= (flags & RADEON_VM_PAGE_SNOOPED) ? R600_PTE_SNOOPED : 0;
956         }
957         return hw_flags;
958 }
959 
960 /**
961  * radeon_vm_update_pdes - make sure that page directory is valid
962  *
963  * @rdev: radeon_device pointer
964  * @vm: requested vm
965  * @start: start of GPU address range
966  * @end: end of GPU address range
967  *
968  * Allocates new page tables if necessary
969  * and updates the page directory (cayman+).
970  * Returns 0 for success, error for failure.
971  *
972  * Global and local mutex must be locked!
973  */
974 static int radeon_vm_update_pdes(struct radeon_device *rdev,
975 				 struct radeon_vm *vm,
976 				 struct radeon_ib *ib,
977 				 uint64_t start, uint64_t end)
978 {
979 	static const uint32_t incr = RADEON_VM_PTE_COUNT * 8;
980 
981 	uint64_t last_pde = ~0, last_pt = ~0;
982 	unsigned count = 0;
983 	uint64_t pt_idx;
984 	int r;
985 
986 	start = (start / RADEON_GPU_PAGE_SIZE) >> RADEON_VM_BLOCK_SIZE;
987 	end = (end / RADEON_GPU_PAGE_SIZE) >> RADEON_VM_BLOCK_SIZE;
988 
989 	/* walk over the address space and update the page directory */
990 	for (pt_idx = start; pt_idx <= end; ++pt_idx) {
991 		uint64_t pde, pt;
992 
993 		if (vm->page_tables[pt_idx])
994 			continue;
995 
996 retry:
997 		r = radeon_sa_bo_new(rdev, &rdev->vm_manager.sa_manager,
998 				     &vm->page_tables[pt_idx],
999 				     RADEON_VM_PTE_COUNT * 8,
1000 				     RADEON_GPU_PAGE_SIZE, false);
1001 
1002 		if (r == -ENOMEM) {
1003 			r = radeon_vm_evict(rdev, vm);
1004 			if (r)
1005 				return r;
1006 			goto retry;
1007 		} else if (r) {
1008 			return r;
1009 		}
1010 
1011 		pde = vm->pd_gpu_addr + pt_idx * 8;
1012 
1013 		pt = radeon_sa_bo_gpu_addr(vm->page_tables[pt_idx]);
1014 
1015 		if (((last_pde + 8 * count) != pde) ||
1016 		    ((last_pt + incr * count) != pt)) {
1017 
1018 			if (count) {
1019 				radeon_asic_vm_set_page(rdev, ib, last_pde,
1020 							last_pt, count, incr,
1021 							R600_PTE_VALID);
1022 
1023 				count *= RADEON_VM_PTE_COUNT;
1024 				radeon_asic_vm_set_page(rdev, ib, last_pt, 0,
1025 							count, 0, 0);
1026 			}
1027 
1028 			count = 1;
1029 			last_pde = pde;
1030 			last_pt = pt;
1031 		} else {
1032 			++count;
1033 		}
1034 	}
1035 
1036 	if (count) {
1037 		radeon_asic_vm_set_page(rdev, ib, last_pde, last_pt, count,
1038 					incr, R600_PTE_VALID);
1039 
1040 		count *= RADEON_VM_PTE_COUNT;
1041 		radeon_asic_vm_set_page(rdev, ib, last_pt, 0,
1042 					count, 0, 0);
1043 	}
1044 
1045 	return 0;
1046 }
1047 
1048 /**
1049  * radeon_vm_update_ptes - make sure that page tables are valid
1050  *
1051  * @rdev: radeon_device pointer
1052  * @vm: requested vm
1053  * @start: start of GPU address range
1054  * @end: end of GPU address range
1055  * @dst: destination address to map to
1056  * @flags: mapping flags
1057  *
1058  * Update the page tables in the range @start - @end (cayman+).
1059  *
1060  * Global and local mutex must be locked!
1061  */
1062 static void radeon_vm_update_ptes(struct radeon_device *rdev,
1063 				  struct radeon_vm *vm,
1064 				  struct radeon_ib *ib,
1065 				  uint64_t start, uint64_t end,
1066 				  uint64_t dst, uint32_t flags)
1067 {
1068 	static const uint64_t mask = RADEON_VM_PTE_COUNT - 1;
1069 
1070 	uint64_t last_pte = ~0, last_dst = ~0;
1071 	unsigned count = 0;
1072 	uint64_t addr;
1073 
1074 	start = start / RADEON_GPU_PAGE_SIZE;
1075 	end = end / RADEON_GPU_PAGE_SIZE;
1076 
1077 	/* walk over the address space and update the page tables */
1078 	for (addr = start; addr < end; ) {
1079 		uint64_t pt_idx = addr >> RADEON_VM_BLOCK_SIZE;
1080 		unsigned nptes;
1081 		uint64_t pte;
1082 
1083 		if ((addr & ~mask) == (end & ~mask))
1084 			nptes = end - addr;
1085 		else
1086 			nptes = RADEON_VM_PTE_COUNT - (addr & mask);
1087 
1088 		pte = radeon_sa_bo_gpu_addr(vm->page_tables[pt_idx]);
1089 		pte += (addr & mask) * 8;
1090 
1091 		if ((last_pte + 8 * count) != pte) {
1092 
1093 			if (count) {
1094 				radeon_asic_vm_set_page(rdev, ib, last_pte,
1095 							last_dst, count,
1096 							RADEON_GPU_PAGE_SIZE,
1097 							flags);
1098 			}
1099 
1100 			count = nptes;
1101 			last_pte = pte;
1102 			last_dst = dst;
1103 		} else {
1104 			count += nptes;
1105 		}
1106 
1107 		addr += nptes;
1108 		dst += nptes * RADEON_GPU_PAGE_SIZE;
1109 	}
1110 
1111 	if (count) {
1112 		radeon_asic_vm_set_page(rdev, ib, last_pte,
1113 					last_dst, count,
1114 					RADEON_GPU_PAGE_SIZE, flags);
1115 	}
1116 }
1117 
1118 /**
1119  * radeon_vm_bo_update_pte - map a bo into the vm page table
1120  *
1121  * @rdev: radeon_device pointer
1122  * @vm: requested vm
1123  * @bo: radeon buffer object
1124  * @mem: ttm mem
1125  *
1126  * Fill in the page table entries for @bo (cayman+).
1127  * Returns 0 for success, -EINVAL for failure.
1128  *
1129  * Object have to be reserved & global and local mutex must be locked!
1130  */
1131 int radeon_vm_bo_update_pte(struct radeon_device *rdev,
1132 			    struct radeon_vm *vm,
1133 			    struct radeon_bo *bo,
1134 			    struct ttm_mem_reg *mem)
1135 {
1136 	struct radeon_ib ib;
1137 	struct radeon_bo_va *bo_va;
1138 	unsigned nptes, npdes, ndw;
1139 	uint64_t addr;
1140 	int r;
1141 
1142 	/* nothing to do if vm isn't bound */
1143 	if (vm->page_directory == NULL)
1144 		return 0;
1145 
1146 	bo_va = radeon_vm_bo_find(vm, bo);
1147 	if (bo_va == NULL) {
1148 		dev_err(rdev->dev, "bo %p not in vm %p\n", bo, vm);
1149 		return -EINVAL;
1150 	}
1151 
1152 	if (!bo_va->soffset) {
1153 		dev_err(rdev->dev, "bo %p don't has a mapping in vm %p\n",
1154 			bo, vm);
1155 		return -EINVAL;
1156 	}
1157 
1158 	if ((bo_va->valid && mem) || (!bo_va->valid && mem == NULL))
1159 		return 0;
1160 
1161 	bo_va->flags &= ~RADEON_VM_PAGE_VALID;
1162 	bo_va->flags &= ~RADEON_VM_PAGE_SYSTEM;
1163 	if (mem) {
1164 		addr = mem->start << PAGE_SHIFT;
1165 		if (mem->mem_type != TTM_PL_SYSTEM) {
1166 			bo_va->flags |= RADEON_VM_PAGE_VALID;
1167 			bo_va->valid = true;
1168 		}
1169 		if (mem->mem_type == TTM_PL_TT) {
1170 			bo_va->flags |= RADEON_VM_PAGE_SYSTEM;
1171 		} else {
1172 			addr += rdev->vm_manager.vram_base_offset;
1173 		}
1174 	} else {
1175 		addr = 0;
1176 		bo_va->valid = false;
1177 	}
1178 
1179 	nptes = radeon_bo_ngpu_pages(bo);
1180 
1181 	/* assume two extra pdes in case the mapping overlaps the borders */
1182 	npdes = (nptes >> RADEON_VM_BLOCK_SIZE) + 2;
1183 
1184 	/* padding, etc. */
1185 	ndw = 64;
1186 
1187 	if (RADEON_VM_BLOCK_SIZE > 11)
1188 		/* reserve space for one header for every 2k dwords */
1189 		ndw += (nptes >> 11) * 4;
1190 	else
1191 		/* reserve space for one header for
1192 		    every (1 << BLOCK_SIZE) entries */
1193 		ndw += (nptes >> RADEON_VM_BLOCK_SIZE) * 4;
1194 
1195 	/* reserve space for pte addresses */
1196 	ndw += nptes * 2;
1197 
1198 	/* reserve space for one header for every 2k dwords */
1199 	ndw += (npdes >> 11) * 4;
1200 
1201 	/* reserve space for pde addresses */
1202 	ndw += npdes * 2;
1203 
1204 	/* reserve space for clearing new page tables */
1205 	ndw += npdes * 2 * RADEON_VM_PTE_COUNT;
1206 
1207 	/* update too big for an IB */
1208 	if (ndw > 0xfffff)
1209 		return -ENOMEM;
1210 
1211 	r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, ndw * 4);
1212 	if (r)
1213 		return r;
1214 	ib.length_dw = 0;
1215 
1216 	r = radeon_vm_update_pdes(rdev, vm, &ib, bo_va->soffset, bo_va->eoffset);
1217 	if (r) {
1218 		radeon_ib_free(rdev, &ib);
1219 		return r;
1220 	}
1221 
1222 	radeon_vm_update_ptes(rdev, vm, &ib, bo_va->soffset, bo_va->eoffset,
1223 			      addr, radeon_vm_page_flags(bo_va->flags));
1224 
1225 	radeon_semaphore_sync_to(ib.semaphore, vm->fence);
1226 	r = radeon_ib_schedule(rdev, &ib, NULL);
1227 	if (r) {
1228 		radeon_ib_free(rdev, &ib);
1229 		return r;
1230 	}
1231 	radeon_fence_unref(&vm->fence);
1232 	vm->fence = radeon_fence_ref(ib.fence);
1233 	radeon_ib_free(rdev, &ib);
1234 	radeon_fence_unref(&vm->last_flush);
1235 
1236 	return 0;
1237 }
1238 
1239 /**
1240  * radeon_vm_bo_rmv - remove a bo to a specific vm
1241  *
1242  * @rdev: radeon_device pointer
1243  * @bo_va: requested bo_va
1244  *
1245  * Remove @bo_va->bo from the requested vm (cayman+).
1246  * Remove @bo_va->bo from the list of bos associated with the bo_va->vm and
1247  * remove the ptes for @bo_va in the page table.
1248  * Returns 0 for success.
1249  *
1250  * Object have to be reserved!
1251  */
1252 int radeon_vm_bo_rmv(struct radeon_device *rdev,
1253 		     struct radeon_bo_va *bo_va)
1254 {
1255 	int r = 0;
1256 
1257 	mutex_lock(&rdev->vm_manager.lock);
1258 	mutex_lock(&bo_va->vm->mutex);
1259 	if (bo_va->soffset) {
1260 		r = radeon_vm_bo_update_pte(rdev, bo_va->vm, bo_va->bo, NULL);
1261 	}
1262 	mutex_unlock(&rdev->vm_manager.lock);
1263 	list_del(&bo_va->vm_list);
1264 	mutex_unlock(&bo_va->vm->mutex);
1265 	list_del(&bo_va->bo_list);
1266 
1267 	kfree(bo_va);
1268 	return r;
1269 }
1270 
1271 /**
1272  * radeon_vm_bo_invalidate - mark the bo as invalid
1273  *
1274  * @rdev: radeon_device pointer
1275  * @vm: requested vm
1276  * @bo: radeon buffer object
1277  *
1278  * Mark @bo as invalid (cayman+).
1279  */
1280 void radeon_vm_bo_invalidate(struct radeon_device *rdev,
1281 			     struct radeon_bo *bo)
1282 {
1283 	struct radeon_bo_va *bo_va;
1284 
1285 	list_for_each_entry(bo_va, &bo->va, bo_list) {
1286 		bo_va->valid = false;
1287 	}
1288 }
1289 
1290 /**
1291  * radeon_vm_init - initialize a vm instance
1292  *
1293  * @rdev: radeon_device pointer
1294  * @vm: requested vm
1295  *
1296  * Init @vm fields (cayman+).
1297  */
1298 void radeon_vm_init(struct radeon_device *rdev, struct radeon_vm *vm)
1299 {
1300 	vm->id = 0;
1301 	vm->fence = NULL;
1302 	mutex_init(&vm->mutex);
1303 	INIT_LIST_HEAD(&vm->list);
1304 	INIT_LIST_HEAD(&vm->va);
1305 }
1306 
1307 /**
1308  * radeon_vm_fini - tear down a vm instance
1309  *
1310  * @rdev: radeon_device pointer
1311  * @vm: requested vm
1312  *
1313  * Tear down @vm (cayman+).
1314  * Unbind the VM and remove all bos from the vm bo list
1315  */
1316 void radeon_vm_fini(struct radeon_device *rdev, struct radeon_vm *vm)
1317 {
1318 	struct radeon_bo_va *bo_va, *tmp;
1319 	int r;
1320 
1321 	mutex_lock(&rdev->vm_manager.lock);
1322 	mutex_lock(&vm->mutex);
1323 	radeon_vm_free_pt(rdev, vm);
1324 	mutex_unlock(&rdev->vm_manager.lock);
1325 
1326 	if (!list_empty(&vm->va)) {
1327 		dev_err(rdev->dev, "still active bo inside vm\n");
1328 	}
1329 	list_for_each_entry_safe(bo_va, tmp, &vm->va, vm_list) {
1330 		list_del_init(&bo_va->vm_list);
1331 		r = radeon_bo_reserve(bo_va->bo, false);
1332 		if (!r) {
1333 			list_del_init(&bo_va->bo_list);
1334 			radeon_bo_unreserve(bo_va->bo);
1335 			kfree(bo_va);
1336 		}
1337 	}
1338 	radeon_fence_unref(&vm->fence);
1339 	radeon_fence_unref(&vm->last_flush);
1340 	mutex_unlock(&vm->mutex);
1341 }
1342