1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <drm/drmP.h> 29 #include <drm/radeon_drm.h> 30 #include "radeon.h" 31 #include "radeon_reg.h" 32 #include "radeon_trace.h" 33 34 /* 35 * GART 36 * The GART (Graphics Aperture Remapping Table) is an aperture 37 * in the GPU's address space. System pages can be mapped into 38 * the aperture and look like contiguous pages from the GPU's 39 * perspective. A page table maps the pages in the aperture 40 * to the actual backing pages in system memory. 41 * 42 * Radeon GPUs support both an internal GART, as described above, 43 * and AGP. AGP works similarly, but the GART table is configured 44 * and maintained by the northbridge rather than the driver. 45 * Radeon hw has a separate AGP aperture that is programmed to 46 * point to the AGP aperture provided by the northbridge and the 47 * requests are passed through to the northbridge aperture. 48 * Both AGP and internal GART can be used at the same time, however 49 * that is not currently supported by the driver. 50 * 51 * This file handles the common internal GART management. 52 */ 53 54 /* 55 * Common GART table functions. 56 */ 57 /** 58 * radeon_gart_table_ram_alloc - allocate system ram for gart page table 59 * 60 * @rdev: radeon_device pointer 61 * 62 * Allocate system memory for GART page table 63 * (r1xx-r3xx, non-pcie r4xx, rs400). These asics require the 64 * gart table to be in system memory. 65 * Returns 0 for success, -ENOMEM for failure. 66 */ 67 int radeon_gart_table_ram_alloc(struct radeon_device *rdev) 68 { 69 void *ptr; 70 71 ptr = pci_alloc_consistent(rdev->pdev, rdev->gart.table_size, 72 &rdev->gart.table_addr); 73 if (ptr == NULL) { 74 return -ENOMEM; 75 } 76 #ifdef CONFIG_X86 77 if (rdev->family == CHIP_RS400 || rdev->family == CHIP_RS480 || 78 rdev->family == CHIP_RS690 || rdev->family == CHIP_RS740) { 79 set_memory_uc((unsigned long)ptr, 80 rdev->gart.table_size >> PAGE_SHIFT); 81 } 82 #endif 83 rdev->gart.ptr = ptr; 84 memset((void *)rdev->gart.ptr, 0, rdev->gart.table_size); 85 return 0; 86 } 87 88 /** 89 * radeon_gart_table_ram_free - free system ram for gart page table 90 * 91 * @rdev: radeon_device pointer 92 * 93 * Free system memory for GART page table 94 * (r1xx-r3xx, non-pcie r4xx, rs400). These asics require the 95 * gart table to be in system memory. 96 */ 97 void radeon_gart_table_ram_free(struct radeon_device *rdev) 98 { 99 if (rdev->gart.ptr == NULL) { 100 return; 101 } 102 #ifdef CONFIG_X86 103 if (rdev->family == CHIP_RS400 || rdev->family == CHIP_RS480 || 104 rdev->family == CHIP_RS690 || rdev->family == CHIP_RS740) { 105 set_memory_wb((unsigned long)rdev->gart.ptr, 106 rdev->gart.table_size >> PAGE_SHIFT); 107 } 108 #endif 109 pci_free_consistent(rdev->pdev, rdev->gart.table_size, 110 (void *)rdev->gart.ptr, 111 rdev->gart.table_addr); 112 rdev->gart.ptr = NULL; 113 rdev->gart.table_addr = 0; 114 } 115 116 /** 117 * radeon_gart_table_vram_alloc - allocate vram for gart page table 118 * 119 * @rdev: radeon_device pointer 120 * 121 * Allocate video memory for GART page table 122 * (pcie r4xx, r5xx+). These asics require the 123 * gart table to be in video memory. 124 * Returns 0 for success, error for failure. 125 */ 126 int radeon_gart_table_vram_alloc(struct radeon_device *rdev) 127 { 128 int r; 129 130 if (rdev->gart.robj == NULL) { 131 r = radeon_bo_create(rdev, rdev->gart.table_size, 132 PAGE_SIZE, true, RADEON_GEM_DOMAIN_VRAM, 133 NULL, &rdev->gart.robj); 134 if (r) { 135 return r; 136 } 137 } 138 return 0; 139 } 140 141 /** 142 * radeon_gart_table_vram_pin - pin gart page table in vram 143 * 144 * @rdev: radeon_device pointer 145 * 146 * Pin the GART page table in vram so it will not be moved 147 * by the memory manager (pcie r4xx, r5xx+). These asics require the 148 * gart table to be in video memory. 149 * Returns 0 for success, error for failure. 150 */ 151 int radeon_gart_table_vram_pin(struct radeon_device *rdev) 152 { 153 uint64_t gpu_addr; 154 int r; 155 156 r = radeon_bo_reserve(rdev->gart.robj, false); 157 if (unlikely(r != 0)) 158 return r; 159 r = radeon_bo_pin(rdev->gart.robj, 160 RADEON_GEM_DOMAIN_VRAM, &gpu_addr); 161 if (r) { 162 radeon_bo_unreserve(rdev->gart.robj); 163 return r; 164 } 165 r = radeon_bo_kmap(rdev->gart.robj, &rdev->gart.ptr); 166 if (r) 167 radeon_bo_unpin(rdev->gart.robj); 168 radeon_bo_unreserve(rdev->gart.robj); 169 rdev->gart.table_addr = gpu_addr; 170 return r; 171 } 172 173 /** 174 * radeon_gart_table_vram_unpin - unpin gart page table in vram 175 * 176 * @rdev: radeon_device pointer 177 * 178 * Unpin the GART page table in vram (pcie r4xx, r5xx+). 179 * These asics require the gart table to be in video memory. 180 */ 181 void radeon_gart_table_vram_unpin(struct radeon_device *rdev) 182 { 183 int r; 184 185 if (rdev->gart.robj == NULL) { 186 return; 187 } 188 r = radeon_bo_reserve(rdev->gart.robj, false); 189 if (likely(r == 0)) { 190 radeon_bo_kunmap(rdev->gart.robj); 191 radeon_bo_unpin(rdev->gart.robj); 192 radeon_bo_unreserve(rdev->gart.robj); 193 rdev->gart.ptr = NULL; 194 } 195 } 196 197 /** 198 * radeon_gart_table_vram_free - free gart page table vram 199 * 200 * @rdev: radeon_device pointer 201 * 202 * Free the video memory used for the GART page table 203 * (pcie r4xx, r5xx+). These asics require the gart table to 204 * be in video memory. 205 */ 206 void radeon_gart_table_vram_free(struct radeon_device *rdev) 207 { 208 if (rdev->gart.robj == NULL) { 209 return; 210 } 211 radeon_bo_unref(&rdev->gart.robj); 212 } 213 214 /* 215 * Common gart functions. 216 */ 217 /** 218 * radeon_gart_unbind - unbind pages from the gart page table 219 * 220 * @rdev: radeon_device pointer 221 * @offset: offset into the GPU's gart aperture 222 * @pages: number of pages to unbind 223 * 224 * Unbinds the requested pages from the gart page table and 225 * replaces them with the dummy page (all asics). 226 */ 227 void radeon_gart_unbind(struct radeon_device *rdev, unsigned offset, 228 int pages) 229 { 230 unsigned t; 231 unsigned p; 232 int i, j; 233 u64 page_base; 234 235 if (!rdev->gart.ready) { 236 WARN(1, "trying to unbind memory from uninitialized GART !\n"); 237 return; 238 } 239 t = offset / RADEON_GPU_PAGE_SIZE; 240 p = t / (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); 241 for (i = 0; i < pages; i++, p++) { 242 if (rdev->gart.pages[p]) { 243 rdev->gart.pages[p] = NULL; 244 rdev->gart.pages_addr[p] = rdev->dummy_page.addr; 245 page_base = rdev->gart.pages_addr[p]; 246 for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) { 247 if (rdev->gart.ptr) { 248 radeon_gart_set_page(rdev, t, page_base); 249 } 250 page_base += RADEON_GPU_PAGE_SIZE; 251 } 252 } 253 } 254 mb(); 255 radeon_gart_tlb_flush(rdev); 256 } 257 258 /** 259 * radeon_gart_bind - bind pages into the gart page table 260 * 261 * @rdev: radeon_device pointer 262 * @offset: offset into the GPU's gart aperture 263 * @pages: number of pages to bind 264 * @pagelist: pages to bind 265 * @dma_addr: DMA addresses of pages 266 * 267 * Binds the requested pages to the gart page table 268 * (all asics). 269 * Returns 0 for success, -EINVAL for failure. 270 */ 271 int radeon_gart_bind(struct radeon_device *rdev, unsigned offset, 272 int pages, struct page **pagelist, dma_addr_t *dma_addr) 273 { 274 unsigned t; 275 unsigned p; 276 uint64_t page_base; 277 int i, j; 278 279 if (!rdev->gart.ready) { 280 WARN(1, "trying to bind memory to uninitialized GART !\n"); 281 return -EINVAL; 282 } 283 t = offset / RADEON_GPU_PAGE_SIZE; 284 p = t / (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); 285 286 for (i = 0; i < pages; i++, p++) { 287 rdev->gart.pages_addr[p] = dma_addr[i]; 288 rdev->gart.pages[p] = pagelist[i]; 289 if (rdev->gart.ptr) { 290 page_base = rdev->gart.pages_addr[p]; 291 for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) { 292 radeon_gart_set_page(rdev, t, page_base); 293 page_base += RADEON_GPU_PAGE_SIZE; 294 } 295 } 296 } 297 mb(); 298 radeon_gart_tlb_flush(rdev); 299 return 0; 300 } 301 302 /** 303 * radeon_gart_restore - bind all pages in the gart page table 304 * 305 * @rdev: radeon_device pointer 306 * 307 * Binds all pages in the gart page table (all asics). 308 * Used to rebuild the gart table on device startup or resume. 309 */ 310 void radeon_gart_restore(struct radeon_device *rdev) 311 { 312 int i, j, t; 313 u64 page_base; 314 315 if (!rdev->gart.ptr) { 316 return; 317 } 318 for (i = 0, t = 0; i < rdev->gart.num_cpu_pages; i++) { 319 page_base = rdev->gart.pages_addr[i]; 320 for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) { 321 radeon_gart_set_page(rdev, t, page_base); 322 page_base += RADEON_GPU_PAGE_SIZE; 323 } 324 } 325 mb(); 326 radeon_gart_tlb_flush(rdev); 327 } 328 329 /** 330 * radeon_gart_init - init the driver info for managing the gart 331 * 332 * @rdev: radeon_device pointer 333 * 334 * Allocate the dummy page and init the gart driver info (all asics). 335 * Returns 0 for success, error for failure. 336 */ 337 int radeon_gart_init(struct radeon_device *rdev) 338 { 339 int r, i; 340 341 if (rdev->gart.pages) { 342 return 0; 343 } 344 /* We need PAGE_SIZE >= RADEON_GPU_PAGE_SIZE */ 345 if (PAGE_SIZE < RADEON_GPU_PAGE_SIZE) { 346 DRM_ERROR("Page size is smaller than GPU page size!\n"); 347 return -EINVAL; 348 } 349 r = radeon_dummy_page_init(rdev); 350 if (r) 351 return r; 352 /* Compute table size */ 353 rdev->gart.num_cpu_pages = rdev->mc.gtt_size / PAGE_SIZE; 354 rdev->gart.num_gpu_pages = rdev->mc.gtt_size / RADEON_GPU_PAGE_SIZE; 355 DRM_INFO("GART: num cpu pages %u, num gpu pages %u\n", 356 rdev->gart.num_cpu_pages, rdev->gart.num_gpu_pages); 357 /* Allocate pages table */ 358 rdev->gart.pages = vzalloc(sizeof(void *) * rdev->gart.num_cpu_pages); 359 if (rdev->gart.pages == NULL) { 360 radeon_gart_fini(rdev); 361 return -ENOMEM; 362 } 363 rdev->gart.pages_addr = vzalloc(sizeof(dma_addr_t) * 364 rdev->gart.num_cpu_pages); 365 if (rdev->gart.pages_addr == NULL) { 366 radeon_gart_fini(rdev); 367 return -ENOMEM; 368 } 369 /* set GART entry to point to the dummy page by default */ 370 for (i = 0; i < rdev->gart.num_cpu_pages; i++) { 371 rdev->gart.pages_addr[i] = rdev->dummy_page.addr; 372 } 373 return 0; 374 } 375 376 /** 377 * radeon_gart_fini - tear down the driver info for managing the gart 378 * 379 * @rdev: radeon_device pointer 380 * 381 * Tear down the gart driver info and free the dummy page (all asics). 382 */ 383 void radeon_gart_fini(struct radeon_device *rdev) 384 { 385 if (rdev->gart.pages && rdev->gart.pages_addr && rdev->gart.ready) { 386 /* unbind pages */ 387 radeon_gart_unbind(rdev, 0, rdev->gart.num_cpu_pages); 388 } 389 rdev->gart.ready = false; 390 vfree(rdev->gart.pages); 391 vfree(rdev->gart.pages_addr); 392 rdev->gart.pages = NULL; 393 rdev->gart.pages_addr = NULL; 394 395 radeon_dummy_page_fini(rdev); 396 } 397 398 /* 399 * GPUVM 400 * GPUVM is similar to the legacy gart on older asics, however 401 * rather than there being a single global gart table 402 * for the entire GPU, there are multiple VM page tables active 403 * at any given time. The VM page tables can contain a mix 404 * vram pages and system memory pages and system memory pages 405 * can be mapped as snooped (cached system pages) or unsnooped 406 * (uncached system pages). 407 * Each VM has an ID associated with it and there is a page table 408 * associated with each VMID. When execting a command buffer, 409 * the kernel tells the the ring what VMID to use for that command 410 * buffer. VMIDs are allocated dynamically as commands are submitted. 411 * The userspace drivers maintain their own address space and the kernel 412 * sets up their pages tables accordingly when they submit their 413 * command buffers and a VMID is assigned. 414 * Cayman/Trinity support up to 8 active VMs at any given time; 415 * SI supports 16. 416 */ 417 418 /* 419 * vm helpers 420 * 421 * TODO bind a default page at vm initialization for default address 422 */ 423 424 /** 425 * radeon_vm_num_pde - return the number of page directory entries 426 * 427 * @rdev: radeon_device pointer 428 * 429 * Calculate the number of page directory entries (cayman+). 430 */ 431 static unsigned radeon_vm_num_pdes(struct radeon_device *rdev) 432 { 433 return rdev->vm_manager.max_pfn >> RADEON_VM_BLOCK_SIZE; 434 } 435 436 /** 437 * radeon_vm_directory_size - returns the size of the page directory in bytes 438 * 439 * @rdev: radeon_device pointer 440 * 441 * Calculate the size of the page directory in bytes (cayman+). 442 */ 443 static unsigned radeon_vm_directory_size(struct radeon_device *rdev) 444 { 445 return RADEON_GPU_PAGE_ALIGN(radeon_vm_num_pdes(rdev) * 8); 446 } 447 448 /** 449 * radeon_vm_manager_init - init the vm manager 450 * 451 * @rdev: radeon_device pointer 452 * 453 * Init the vm manager (cayman+). 454 * Returns 0 for success, error for failure. 455 */ 456 int radeon_vm_manager_init(struct radeon_device *rdev) 457 { 458 struct radeon_vm *vm; 459 struct radeon_bo_va *bo_va; 460 int r; 461 unsigned size; 462 463 if (!rdev->vm_manager.enabled) { 464 /* allocate enough for 2 full VM pts */ 465 size = radeon_vm_directory_size(rdev); 466 size += rdev->vm_manager.max_pfn * 8; 467 size *= 2; 468 r = radeon_sa_bo_manager_init(rdev, &rdev->vm_manager.sa_manager, 469 RADEON_GPU_PAGE_ALIGN(size), 470 RADEON_VM_PTB_ALIGN_SIZE, 471 RADEON_GEM_DOMAIN_VRAM); 472 if (r) { 473 dev_err(rdev->dev, "failed to allocate vm bo (%dKB)\n", 474 (rdev->vm_manager.max_pfn * 8) >> 10); 475 return r; 476 } 477 478 r = radeon_asic_vm_init(rdev); 479 if (r) 480 return r; 481 482 rdev->vm_manager.enabled = true; 483 484 r = radeon_sa_bo_manager_start(rdev, &rdev->vm_manager.sa_manager); 485 if (r) 486 return r; 487 } 488 489 /* restore page table */ 490 list_for_each_entry(vm, &rdev->vm_manager.lru_vm, list) { 491 if (vm->page_directory == NULL) 492 continue; 493 494 list_for_each_entry(bo_va, &vm->va, vm_list) { 495 bo_va->valid = false; 496 } 497 } 498 return 0; 499 } 500 501 /** 502 * radeon_vm_free_pt - free the page table for a specific vm 503 * 504 * @rdev: radeon_device pointer 505 * @vm: vm to unbind 506 * 507 * Free the page table of a specific vm (cayman+). 508 * 509 * Global and local mutex must be lock! 510 */ 511 static void radeon_vm_free_pt(struct radeon_device *rdev, 512 struct radeon_vm *vm) 513 { 514 struct radeon_bo_va *bo_va; 515 int i; 516 517 if (!vm->page_directory) 518 return; 519 520 list_del_init(&vm->list); 521 radeon_sa_bo_free(rdev, &vm->page_directory, vm->fence); 522 523 list_for_each_entry(bo_va, &vm->va, vm_list) { 524 bo_va->valid = false; 525 } 526 527 if (vm->page_tables == NULL) 528 return; 529 530 for (i = 0; i < radeon_vm_num_pdes(rdev); i++) 531 radeon_sa_bo_free(rdev, &vm->page_tables[i], vm->fence); 532 533 kfree(vm->page_tables); 534 } 535 536 /** 537 * radeon_vm_manager_fini - tear down the vm manager 538 * 539 * @rdev: radeon_device pointer 540 * 541 * Tear down the VM manager (cayman+). 542 */ 543 void radeon_vm_manager_fini(struct radeon_device *rdev) 544 { 545 struct radeon_vm *vm, *tmp; 546 int i; 547 548 if (!rdev->vm_manager.enabled) 549 return; 550 551 mutex_lock(&rdev->vm_manager.lock); 552 /* free all allocated page tables */ 553 list_for_each_entry_safe(vm, tmp, &rdev->vm_manager.lru_vm, list) { 554 mutex_lock(&vm->mutex); 555 radeon_vm_free_pt(rdev, vm); 556 mutex_unlock(&vm->mutex); 557 } 558 for (i = 0; i < RADEON_NUM_VM; ++i) { 559 radeon_fence_unref(&rdev->vm_manager.active[i]); 560 } 561 radeon_asic_vm_fini(rdev); 562 mutex_unlock(&rdev->vm_manager.lock); 563 564 radeon_sa_bo_manager_suspend(rdev, &rdev->vm_manager.sa_manager); 565 radeon_sa_bo_manager_fini(rdev, &rdev->vm_manager.sa_manager); 566 rdev->vm_manager.enabled = false; 567 } 568 569 /** 570 * radeon_vm_evict - evict page table to make room for new one 571 * 572 * @rdev: radeon_device pointer 573 * @vm: VM we want to allocate something for 574 * 575 * Evict a VM from the lru, making sure that it isn't @vm. (cayman+). 576 * Returns 0 for success, -ENOMEM for failure. 577 * 578 * Global and local mutex must be locked! 579 */ 580 static int radeon_vm_evict(struct radeon_device *rdev, struct radeon_vm *vm) 581 { 582 struct radeon_vm *vm_evict; 583 584 if (list_empty(&rdev->vm_manager.lru_vm)) 585 return -ENOMEM; 586 587 vm_evict = list_first_entry(&rdev->vm_manager.lru_vm, 588 struct radeon_vm, list); 589 if (vm_evict == vm) 590 return -ENOMEM; 591 592 mutex_lock(&vm_evict->mutex); 593 radeon_vm_free_pt(rdev, vm_evict); 594 mutex_unlock(&vm_evict->mutex); 595 return 0; 596 } 597 598 /** 599 * radeon_vm_alloc_pt - allocates a page table for a VM 600 * 601 * @rdev: radeon_device pointer 602 * @vm: vm to bind 603 * 604 * Allocate a page table for the requested vm (cayman+). 605 * Returns 0 for success, error for failure. 606 * 607 * Global and local mutex must be locked! 608 */ 609 int radeon_vm_alloc_pt(struct radeon_device *rdev, struct radeon_vm *vm) 610 { 611 unsigned pd_size, pd_entries, pts_size; 612 struct radeon_ib ib; 613 int r; 614 615 if (vm == NULL) { 616 return -EINVAL; 617 } 618 619 if (vm->page_directory != NULL) { 620 return 0; 621 } 622 623 pd_size = radeon_vm_directory_size(rdev); 624 pd_entries = radeon_vm_num_pdes(rdev); 625 626 retry: 627 r = radeon_sa_bo_new(rdev, &rdev->vm_manager.sa_manager, 628 &vm->page_directory, pd_size, 629 RADEON_VM_PTB_ALIGN_SIZE, false); 630 if (r == -ENOMEM) { 631 r = radeon_vm_evict(rdev, vm); 632 if (r) 633 return r; 634 goto retry; 635 636 } else if (r) { 637 return r; 638 } 639 640 vm->pd_gpu_addr = radeon_sa_bo_gpu_addr(vm->page_directory); 641 642 /* Initially clear the page directory */ 643 r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, 644 NULL, pd_entries * 2 + 64); 645 if (r) { 646 radeon_sa_bo_free(rdev, &vm->page_directory, vm->fence); 647 return r; 648 } 649 650 ib.length_dw = 0; 651 652 radeon_asic_vm_set_page(rdev, &ib, vm->pd_gpu_addr, 653 0, pd_entries, 0, 0); 654 655 radeon_semaphore_sync_to(ib.semaphore, vm->fence); 656 r = radeon_ib_schedule(rdev, &ib, NULL); 657 if (r) { 658 radeon_ib_free(rdev, &ib); 659 radeon_sa_bo_free(rdev, &vm->page_directory, vm->fence); 660 return r; 661 } 662 radeon_fence_unref(&vm->fence); 663 vm->fence = radeon_fence_ref(ib.fence); 664 radeon_ib_free(rdev, &ib); 665 radeon_fence_unref(&vm->last_flush); 666 667 /* allocate page table array */ 668 pts_size = radeon_vm_num_pdes(rdev) * sizeof(struct radeon_sa_bo *); 669 vm->page_tables = kzalloc(pts_size, GFP_KERNEL); 670 671 if (vm->page_tables == NULL) { 672 DRM_ERROR("Cannot allocate memory for page table array\n"); 673 radeon_sa_bo_free(rdev, &vm->page_directory, vm->fence); 674 return -ENOMEM; 675 } 676 677 return 0; 678 } 679 680 /** 681 * radeon_vm_add_to_lru - add VMs page table to LRU list 682 * 683 * @rdev: radeon_device pointer 684 * @vm: vm to add to LRU 685 * 686 * Add the allocated page table to the LRU list (cayman+). 687 * 688 * Global mutex must be locked! 689 */ 690 void radeon_vm_add_to_lru(struct radeon_device *rdev, struct radeon_vm *vm) 691 { 692 list_del_init(&vm->list); 693 list_add_tail(&vm->list, &rdev->vm_manager.lru_vm); 694 } 695 696 /** 697 * radeon_vm_grab_id - allocate the next free VMID 698 * 699 * @rdev: radeon_device pointer 700 * @vm: vm to allocate id for 701 * @ring: ring we want to submit job to 702 * 703 * Allocate an id for the vm (cayman+). 704 * Returns the fence we need to sync to (if any). 705 * 706 * Global and local mutex must be locked! 707 */ 708 struct radeon_fence *radeon_vm_grab_id(struct radeon_device *rdev, 709 struct radeon_vm *vm, int ring) 710 { 711 struct radeon_fence *best[RADEON_NUM_RINGS] = {}; 712 unsigned choices[2] = {}; 713 unsigned i; 714 715 /* check if the id is still valid */ 716 if (vm->fence && vm->fence == rdev->vm_manager.active[vm->id]) 717 return NULL; 718 719 /* we definately need to flush */ 720 radeon_fence_unref(&vm->last_flush); 721 722 /* skip over VMID 0, since it is the system VM */ 723 for (i = 1; i < rdev->vm_manager.nvm; ++i) { 724 struct radeon_fence *fence = rdev->vm_manager.active[i]; 725 726 if (fence == NULL) { 727 /* found a free one */ 728 vm->id = i; 729 return NULL; 730 } 731 732 if (radeon_fence_is_earlier(fence, best[fence->ring])) { 733 best[fence->ring] = fence; 734 choices[fence->ring == ring ? 0 : 1] = i; 735 } 736 } 737 738 for (i = 0; i < 2; ++i) { 739 if (choices[i]) { 740 vm->id = choices[i]; 741 trace_radeon_vm_grab_id(vm->id, ring); 742 return rdev->vm_manager.active[choices[i]]; 743 } 744 } 745 746 /* should never happen */ 747 BUG(); 748 return NULL; 749 } 750 751 /** 752 * radeon_vm_fence - remember fence for vm 753 * 754 * @rdev: radeon_device pointer 755 * @vm: vm we want to fence 756 * @fence: fence to remember 757 * 758 * Fence the vm (cayman+). 759 * Set the fence used to protect page table and id. 760 * 761 * Global and local mutex must be locked! 762 */ 763 void radeon_vm_fence(struct radeon_device *rdev, 764 struct radeon_vm *vm, 765 struct radeon_fence *fence) 766 { 767 radeon_fence_unref(&rdev->vm_manager.active[vm->id]); 768 rdev->vm_manager.active[vm->id] = radeon_fence_ref(fence); 769 770 radeon_fence_unref(&vm->fence); 771 vm->fence = radeon_fence_ref(fence); 772 } 773 774 /** 775 * radeon_vm_bo_find - find the bo_va for a specific vm & bo 776 * 777 * @vm: requested vm 778 * @bo: requested buffer object 779 * 780 * Find @bo inside the requested vm (cayman+). 781 * Search inside the @bos vm list for the requested vm 782 * Returns the found bo_va or NULL if none is found 783 * 784 * Object has to be reserved! 785 */ 786 struct radeon_bo_va *radeon_vm_bo_find(struct radeon_vm *vm, 787 struct radeon_bo *bo) 788 { 789 struct radeon_bo_va *bo_va; 790 791 list_for_each_entry(bo_va, &bo->va, bo_list) { 792 if (bo_va->vm == vm) { 793 return bo_va; 794 } 795 } 796 return NULL; 797 } 798 799 /** 800 * radeon_vm_bo_add - add a bo to a specific vm 801 * 802 * @rdev: radeon_device pointer 803 * @vm: requested vm 804 * @bo: radeon buffer object 805 * 806 * Add @bo into the requested vm (cayman+). 807 * Add @bo to the list of bos associated with the vm 808 * Returns newly added bo_va or NULL for failure 809 * 810 * Object has to be reserved! 811 */ 812 struct radeon_bo_va *radeon_vm_bo_add(struct radeon_device *rdev, 813 struct radeon_vm *vm, 814 struct radeon_bo *bo) 815 { 816 struct radeon_bo_va *bo_va; 817 818 bo_va = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL); 819 if (bo_va == NULL) { 820 return NULL; 821 } 822 bo_va->vm = vm; 823 bo_va->bo = bo; 824 bo_va->soffset = 0; 825 bo_va->eoffset = 0; 826 bo_va->flags = 0; 827 bo_va->valid = false; 828 bo_va->ref_count = 1; 829 INIT_LIST_HEAD(&bo_va->bo_list); 830 INIT_LIST_HEAD(&bo_va->vm_list); 831 832 mutex_lock(&vm->mutex); 833 list_add(&bo_va->vm_list, &vm->va); 834 list_add_tail(&bo_va->bo_list, &bo->va); 835 mutex_unlock(&vm->mutex); 836 837 return bo_va; 838 } 839 840 /** 841 * radeon_vm_bo_set_addr - set bos virtual address inside a vm 842 * 843 * @rdev: radeon_device pointer 844 * @bo_va: bo_va to store the address 845 * @soffset: requested offset of the buffer in the VM address space 846 * @flags: attributes of pages (read/write/valid/etc.) 847 * 848 * Set offset of @bo_va (cayman+). 849 * Validate and set the offset requested within the vm address space. 850 * Returns 0 for success, error for failure. 851 * 852 * Object has to be reserved! 853 */ 854 int radeon_vm_bo_set_addr(struct radeon_device *rdev, 855 struct radeon_bo_va *bo_va, 856 uint64_t soffset, 857 uint32_t flags) 858 { 859 uint64_t size = radeon_bo_size(bo_va->bo); 860 uint64_t eoffset, last_offset = 0; 861 struct radeon_vm *vm = bo_va->vm; 862 struct radeon_bo_va *tmp; 863 struct list_head *head; 864 unsigned last_pfn; 865 866 if (soffset) { 867 /* make sure object fit at this offset */ 868 eoffset = soffset + size; 869 if (soffset >= eoffset) { 870 return -EINVAL; 871 } 872 873 last_pfn = eoffset / RADEON_GPU_PAGE_SIZE; 874 if (last_pfn > rdev->vm_manager.max_pfn) { 875 dev_err(rdev->dev, "va above limit (0x%08X > 0x%08X)\n", 876 last_pfn, rdev->vm_manager.max_pfn); 877 return -EINVAL; 878 } 879 880 } else { 881 eoffset = last_pfn = 0; 882 } 883 884 mutex_lock(&vm->mutex); 885 head = &vm->va; 886 last_offset = 0; 887 list_for_each_entry(tmp, &vm->va, vm_list) { 888 if (bo_va == tmp) { 889 /* skip over currently modified bo */ 890 continue; 891 } 892 893 if (soffset >= last_offset && eoffset <= tmp->soffset) { 894 /* bo can be added before this one */ 895 break; 896 } 897 if (eoffset > tmp->soffset && soffset < tmp->eoffset) { 898 /* bo and tmp overlap, invalid offset */ 899 dev_err(rdev->dev, "bo %p va 0x%08X conflict with (bo %p 0x%08X 0x%08X)\n", 900 bo_va->bo, (unsigned)bo_va->soffset, tmp->bo, 901 (unsigned)tmp->soffset, (unsigned)tmp->eoffset); 902 mutex_unlock(&vm->mutex); 903 return -EINVAL; 904 } 905 last_offset = tmp->eoffset; 906 head = &tmp->vm_list; 907 } 908 909 bo_va->soffset = soffset; 910 bo_va->eoffset = eoffset; 911 bo_va->flags = flags; 912 bo_va->valid = false; 913 list_move(&bo_va->vm_list, head); 914 915 mutex_unlock(&vm->mutex); 916 return 0; 917 } 918 919 /** 920 * radeon_vm_map_gart - get the physical address of a gart page 921 * 922 * @rdev: radeon_device pointer 923 * @addr: the unmapped addr 924 * 925 * Look up the physical address of the page that the pte resolves 926 * to (cayman+). 927 * Returns the physical address of the page. 928 */ 929 uint64_t radeon_vm_map_gart(struct radeon_device *rdev, uint64_t addr) 930 { 931 uint64_t result; 932 933 /* page table offset */ 934 result = rdev->gart.pages_addr[addr >> PAGE_SHIFT]; 935 936 /* in case cpu page size != gpu page size*/ 937 result |= addr & (~PAGE_MASK); 938 939 return result; 940 } 941 942 /** 943 * radeon_vm_page_flags - translate page flags to what the hw uses 944 * 945 * @flags: flags comming from userspace 946 * 947 * Translate the flags the userspace ABI uses to hw flags. 948 */ 949 static uint32_t radeon_vm_page_flags(uint32_t flags) 950 { 951 uint32_t hw_flags = 0; 952 hw_flags |= (flags & RADEON_VM_PAGE_VALID) ? R600_PTE_VALID : 0; 953 hw_flags |= (flags & RADEON_VM_PAGE_READABLE) ? R600_PTE_READABLE : 0; 954 hw_flags |= (flags & RADEON_VM_PAGE_WRITEABLE) ? R600_PTE_WRITEABLE : 0; 955 if (flags & RADEON_VM_PAGE_SYSTEM) { 956 hw_flags |= R600_PTE_SYSTEM; 957 hw_flags |= (flags & RADEON_VM_PAGE_SNOOPED) ? R600_PTE_SNOOPED : 0; 958 } 959 return hw_flags; 960 } 961 962 /** 963 * radeon_vm_update_pdes - make sure that page directory is valid 964 * 965 * @rdev: radeon_device pointer 966 * @vm: requested vm 967 * @start: start of GPU address range 968 * @end: end of GPU address range 969 * 970 * Allocates new page tables if necessary 971 * and updates the page directory (cayman+). 972 * Returns 0 for success, error for failure. 973 * 974 * Global and local mutex must be locked! 975 */ 976 static int radeon_vm_update_pdes(struct radeon_device *rdev, 977 struct radeon_vm *vm, 978 struct radeon_ib *ib, 979 uint64_t start, uint64_t end) 980 { 981 static const uint32_t incr = RADEON_VM_PTE_COUNT * 8; 982 983 uint64_t last_pde = ~0, last_pt = ~0; 984 unsigned count = 0; 985 uint64_t pt_idx; 986 int r; 987 988 start = (start / RADEON_GPU_PAGE_SIZE) >> RADEON_VM_BLOCK_SIZE; 989 end = (end / RADEON_GPU_PAGE_SIZE) >> RADEON_VM_BLOCK_SIZE; 990 991 /* walk over the address space and update the page directory */ 992 for (pt_idx = start; pt_idx <= end; ++pt_idx) { 993 uint64_t pde, pt; 994 995 if (vm->page_tables[pt_idx]) 996 continue; 997 998 retry: 999 r = radeon_sa_bo_new(rdev, &rdev->vm_manager.sa_manager, 1000 &vm->page_tables[pt_idx], 1001 RADEON_VM_PTE_COUNT * 8, 1002 RADEON_GPU_PAGE_SIZE, false); 1003 1004 if (r == -ENOMEM) { 1005 r = radeon_vm_evict(rdev, vm); 1006 if (r) 1007 return r; 1008 goto retry; 1009 } else if (r) { 1010 return r; 1011 } 1012 1013 pde = vm->pd_gpu_addr + pt_idx * 8; 1014 1015 pt = radeon_sa_bo_gpu_addr(vm->page_tables[pt_idx]); 1016 1017 if (((last_pde + 8 * count) != pde) || 1018 ((last_pt + incr * count) != pt)) { 1019 1020 if (count) { 1021 radeon_asic_vm_set_page(rdev, ib, last_pde, 1022 last_pt, count, incr, 1023 R600_PTE_VALID); 1024 1025 count *= RADEON_VM_PTE_COUNT; 1026 radeon_asic_vm_set_page(rdev, ib, last_pt, 0, 1027 count, 0, 0); 1028 } 1029 1030 count = 1; 1031 last_pde = pde; 1032 last_pt = pt; 1033 } else { 1034 ++count; 1035 } 1036 } 1037 1038 if (count) { 1039 radeon_asic_vm_set_page(rdev, ib, last_pde, last_pt, count, 1040 incr, R600_PTE_VALID); 1041 1042 count *= RADEON_VM_PTE_COUNT; 1043 radeon_asic_vm_set_page(rdev, ib, last_pt, 0, 1044 count, 0, 0); 1045 } 1046 1047 return 0; 1048 } 1049 1050 /** 1051 * radeon_vm_update_ptes - make sure that page tables are valid 1052 * 1053 * @rdev: radeon_device pointer 1054 * @vm: requested vm 1055 * @start: start of GPU address range 1056 * @end: end of GPU address range 1057 * @dst: destination address to map to 1058 * @flags: mapping flags 1059 * 1060 * Update the page tables in the range @start - @end (cayman+). 1061 * 1062 * Global and local mutex must be locked! 1063 */ 1064 static void radeon_vm_update_ptes(struct radeon_device *rdev, 1065 struct radeon_vm *vm, 1066 struct radeon_ib *ib, 1067 uint64_t start, uint64_t end, 1068 uint64_t dst, uint32_t flags) 1069 { 1070 static const uint64_t mask = RADEON_VM_PTE_COUNT - 1; 1071 1072 uint64_t last_pte = ~0, last_dst = ~0; 1073 unsigned count = 0; 1074 uint64_t addr; 1075 1076 start = start / RADEON_GPU_PAGE_SIZE; 1077 end = end / RADEON_GPU_PAGE_SIZE; 1078 1079 /* walk over the address space and update the page tables */ 1080 for (addr = start; addr < end; ) { 1081 uint64_t pt_idx = addr >> RADEON_VM_BLOCK_SIZE; 1082 unsigned nptes; 1083 uint64_t pte; 1084 1085 if ((addr & ~mask) == (end & ~mask)) 1086 nptes = end - addr; 1087 else 1088 nptes = RADEON_VM_PTE_COUNT - (addr & mask); 1089 1090 pte = radeon_sa_bo_gpu_addr(vm->page_tables[pt_idx]); 1091 pte += (addr & mask) * 8; 1092 1093 if ((last_pte + 8 * count) != pte) { 1094 1095 if (count) { 1096 radeon_asic_vm_set_page(rdev, ib, last_pte, 1097 last_dst, count, 1098 RADEON_GPU_PAGE_SIZE, 1099 flags); 1100 } 1101 1102 count = nptes; 1103 last_pte = pte; 1104 last_dst = dst; 1105 } else { 1106 count += nptes; 1107 } 1108 1109 addr += nptes; 1110 dst += nptes * RADEON_GPU_PAGE_SIZE; 1111 } 1112 1113 if (count) { 1114 radeon_asic_vm_set_page(rdev, ib, last_pte, 1115 last_dst, count, 1116 RADEON_GPU_PAGE_SIZE, flags); 1117 } 1118 } 1119 1120 /** 1121 * radeon_vm_bo_update - map a bo into the vm page table 1122 * 1123 * @rdev: radeon_device pointer 1124 * @vm: requested vm 1125 * @bo: radeon buffer object 1126 * @mem: ttm mem 1127 * 1128 * Fill in the page table entries for @bo (cayman+). 1129 * Returns 0 for success, -EINVAL for failure. 1130 * 1131 * Object have to be reserved & global and local mutex must be locked! 1132 */ 1133 int radeon_vm_bo_update(struct radeon_device *rdev, 1134 struct radeon_vm *vm, 1135 struct radeon_bo *bo, 1136 struct ttm_mem_reg *mem) 1137 { 1138 struct radeon_ib ib; 1139 struct radeon_bo_va *bo_va; 1140 unsigned nptes, npdes, ndw; 1141 uint64_t addr; 1142 int r; 1143 1144 /* nothing to do if vm isn't bound */ 1145 if (vm->page_directory == NULL) 1146 return 0; 1147 1148 bo_va = radeon_vm_bo_find(vm, bo); 1149 if (bo_va == NULL) { 1150 dev_err(rdev->dev, "bo %p not in vm %p\n", bo, vm); 1151 return -EINVAL; 1152 } 1153 1154 if (!bo_va->soffset) { 1155 dev_err(rdev->dev, "bo %p don't has a mapping in vm %p\n", 1156 bo, vm); 1157 return -EINVAL; 1158 } 1159 1160 if ((bo_va->valid && mem) || (!bo_va->valid && mem == NULL)) 1161 return 0; 1162 1163 bo_va->flags &= ~RADEON_VM_PAGE_VALID; 1164 bo_va->flags &= ~RADEON_VM_PAGE_SYSTEM; 1165 if (mem) { 1166 addr = mem->start << PAGE_SHIFT; 1167 if (mem->mem_type != TTM_PL_SYSTEM) { 1168 bo_va->flags |= RADEON_VM_PAGE_VALID; 1169 bo_va->valid = true; 1170 } 1171 if (mem->mem_type == TTM_PL_TT) { 1172 bo_va->flags |= RADEON_VM_PAGE_SYSTEM; 1173 } else { 1174 addr += rdev->vm_manager.vram_base_offset; 1175 } 1176 } else { 1177 addr = 0; 1178 bo_va->valid = false; 1179 } 1180 1181 trace_radeon_vm_bo_update(bo_va); 1182 1183 nptes = radeon_bo_ngpu_pages(bo); 1184 1185 /* assume two extra pdes in case the mapping overlaps the borders */ 1186 npdes = (nptes >> RADEON_VM_BLOCK_SIZE) + 2; 1187 1188 /* padding, etc. */ 1189 ndw = 64; 1190 1191 if (RADEON_VM_BLOCK_SIZE > 11) 1192 /* reserve space for one header for every 2k dwords */ 1193 ndw += (nptes >> 11) * 4; 1194 else 1195 /* reserve space for one header for 1196 every (1 << BLOCK_SIZE) entries */ 1197 ndw += (nptes >> RADEON_VM_BLOCK_SIZE) * 4; 1198 1199 /* reserve space for pte addresses */ 1200 ndw += nptes * 2; 1201 1202 /* reserve space for one header for every 2k dwords */ 1203 ndw += (npdes >> 11) * 4; 1204 1205 /* reserve space for pde addresses */ 1206 ndw += npdes * 2; 1207 1208 /* reserve space for clearing new page tables */ 1209 ndw += npdes * 2 * RADEON_VM_PTE_COUNT; 1210 1211 /* update too big for an IB */ 1212 if (ndw > 0xfffff) 1213 return -ENOMEM; 1214 1215 r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, ndw * 4); 1216 if (r) 1217 return r; 1218 ib.length_dw = 0; 1219 1220 r = radeon_vm_update_pdes(rdev, vm, &ib, bo_va->soffset, bo_va->eoffset); 1221 if (r) { 1222 radeon_ib_free(rdev, &ib); 1223 return r; 1224 } 1225 1226 radeon_vm_update_ptes(rdev, vm, &ib, bo_va->soffset, bo_va->eoffset, 1227 addr, radeon_vm_page_flags(bo_va->flags)); 1228 1229 radeon_semaphore_sync_to(ib.semaphore, vm->fence); 1230 r = radeon_ib_schedule(rdev, &ib, NULL); 1231 if (r) { 1232 radeon_ib_free(rdev, &ib); 1233 return r; 1234 } 1235 radeon_fence_unref(&vm->fence); 1236 vm->fence = radeon_fence_ref(ib.fence); 1237 radeon_ib_free(rdev, &ib); 1238 radeon_fence_unref(&vm->last_flush); 1239 1240 return 0; 1241 } 1242 1243 /** 1244 * radeon_vm_bo_rmv - remove a bo to a specific vm 1245 * 1246 * @rdev: radeon_device pointer 1247 * @bo_va: requested bo_va 1248 * 1249 * Remove @bo_va->bo from the requested vm (cayman+). 1250 * Remove @bo_va->bo from the list of bos associated with the bo_va->vm and 1251 * remove the ptes for @bo_va in the page table. 1252 * Returns 0 for success. 1253 * 1254 * Object have to be reserved! 1255 */ 1256 int radeon_vm_bo_rmv(struct radeon_device *rdev, 1257 struct radeon_bo_va *bo_va) 1258 { 1259 int r = 0; 1260 1261 mutex_lock(&rdev->vm_manager.lock); 1262 mutex_lock(&bo_va->vm->mutex); 1263 if (bo_va->soffset) { 1264 r = radeon_vm_bo_update(rdev, bo_va->vm, bo_va->bo, NULL); 1265 } 1266 mutex_unlock(&rdev->vm_manager.lock); 1267 list_del(&bo_va->vm_list); 1268 mutex_unlock(&bo_va->vm->mutex); 1269 list_del(&bo_va->bo_list); 1270 1271 kfree(bo_va); 1272 return r; 1273 } 1274 1275 /** 1276 * radeon_vm_bo_invalidate - mark the bo as invalid 1277 * 1278 * @rdev: radeon_device pointer 1279 * @vm: requested vm 1280 * @bo: radeon buffer object 1281 * 1282 * Mark @bo as invalid (cayman+). 1283 */ 1284 void radeon_vm_bo_invalidate(struct radeon_device *rdev, 1285 struct radeon_bo *bo) 1286 { 1287 struct radeon_bo_va *bo_va; 1288 1289 list_for_each_entry(bo_va, &bo->va, bo_list) { 1290 bo_va->valid = false; 1291 } 1292 } 1293 1294 /** 1295 * radeon_vm_init - initialize a vm instance 1296 * 1297 * @rdev: radeon_device pointer 1298 * @vm: requested vm 1299 * 1300 * Init @vm fields (cayman+). 1301 */ 1302 void radeon_vm_init(struct radeon_device *rdev, struct radeon_vm *vm) 1303 { 1304 vm->id = 0; 1305 vm->fence = NULL; 1306 mutex_init(&vm->mutex); 1307 INIT_LIST_HEAD(&vm->list); 1308 INIT_LIST_HEAD(&vm->va); 1309 } 1310 1311 /** 1312 * radeon_vm_fini - tear down a vm instance 1313 * 1314 * @rdev: radeon_device pointer 1315 * @vm: requested vm 1316 * 1317 * Tear down @vm (cayman+). 1318 * Unbind the VM and remove all bos from the vm bo list 1319 */ 1320 void radeon_vm_fini(struct radeon_device *rdev, struct radeon_vm *vm) 1321 { 1322 struct radeon_bo_va *bo_va, *tmp; 1323 int r; 1324 1325 mutex_lock(&rdev->vm_manager.lock); 1326 mutex_lock(&vm->mutex); 1327 radeon_vm_free_pt(rdev, vm); 1328 mutex_unlock(&rdev->vm_manager.lock); 1329 1330 if (!list_empty(&vm->va)) { 1331 dev_err(rdev->dev, "still active bo inside vm\n"); 1332 } 1333 list_for_each_entry_safe(bo_va, tmp, &vm->va, vm_list) { 1334 list_del_init(&bo_va->vm_list); 1335 r = radeon_bo_reserve(bo_va->bo, false); 1336 if (!r) { 1337 list_del_init(&bo_va->bo_list); 1338 radeon_bo_unreserve(bo_va->bo); 1339 kfree(bo_va); 1340 } 1341 } 1342 radeon_fence_unref(&vm->fence); 1343 radeon_fence_unref(&vm->last_flush); 1344 mutex_unlock(&vm->mutex); 1345 } 1346