1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <drm/drmP.h>
29 #include <drm/radeon_drm.h>
30 #include "radeon.h"
31 #include "radeon_reg.h"
32 #include "radeon_trace.h"
33 
34 /*
35  * GART
36  * The GART (Graphics Aperture Remapping Table) is an aperture
37  * in the GPU's address space.  System pages can be mapped into
38  * the aperture and look like contiguous pages from the GPU's
39  * perspective.  A page table maps the pages in the aperture
40  * to the actual backing pages in system memory.
41  *
42  * Radeon GPUs support both an internal GART, as described above,
43  * and AGP.  AGP works similarly, but the GART table is configured
44  * and maintained by the northbridge rather than the driver.
45  * Radeon hw has a separate AGP aperture that is programmed to
46  * point to the AGP aperture provided by the northbridge and the
47  * requests are passed through to the northbridge aperture.
48  * Both AGP and internal GART can be used at the same time, however
49  * that is not currently supported by the driver.
50  *
51  * This file handles the common internal GART management.
52  */
53 
54 /*
55  * Common GART table functions.
56  */
57 /**
58  * radeon_gart_table_ram_alloc - allocate system ram for gart page table
59  *
60  * @rdev: radeon_device pointer
61  *
62  * Allocate system memory for GART page table
63  * (r1xx-r3xx, non-pcie r4xx, rs400).  These asics require the
64  * gart table to be in system memory.
65  * Returns 0 for success, -ENOMEM for failure.
66  */
67 int radeon_gart_table_ram_alloc(struct radeon_device *rdev)
68 {
69 	void *ptr;
70 
71 	ptr = pci_alloc_consistent(rdev->pdev, rdev->gart.table_size,
72 				   &rdev->gart.table_addr);
73 	if (ptr == NULL) {
74 		return -ENOMEM;
75 	}
76 #ifdef CONFIG_X86
77 	if (rdev->family == CHIP_RS400 || rdev->family == CHIP_RS480 ||
78 	    rdev->family == CHIP_RS690 || rdev->family == CHIP_RS740) {
79 		set_memory_uc((unsigned long)ptr,
80 			      rdev->gart.table_size >> PAGE_SHIFT);
81 	}
82 #endif
83 	rdev->gart.ptr = ptr;
84 	memset((void *)rdev->gart.ptr, 0, rdev->gart.table_size);
85 	return 0;
86 }
87 
88 /**
89  * radeon_gart_table_ram_free - free system ram for gart page table
90  *
91  * @rdev: radeon_device pointer
92  *
93  * Free system memory for GART page table
94  * (r1xx-r3xx, non-pcie r4xx, rs400).  These asics require the
95  * gart table to be in system memory.
96  */
97 void radeon_gart_table_ram_free(struct radeon_device *rdev)
98 {
99 	if (rdev->gart.ptr == NULL) {
100 		return;
101 	}
102 #ifdef CONFIG_X86
103 	if (rdev->family == CHIP_RS400 || rdev->family == CHIP_RS480 ||
104 	    rdev->family == CHIP_RS690 || rdev->family == CHIP_RS740) {
105 		set_memory_wb((unsigned long)rdev->gart.ptr,
106 			      rdev->gart.table_size >> PAGE_SHIFT);
107 	}
108 #endif
109 	pci_free_consistent(rdev->pdev, rdev->gart.table_size,
110 			    (void *)rdev->gart.ptr,
111 			    rdev->gart.table_addr);
112 	rdev->gart.ptr = NULL;
113 	rdev->gart.table_addr = 0;
114 }
115 
116 /**
117  * radeon_gart_table_vram_alloc - allocate vram for gart page table
118  *
119  * @rdev: radeon_device pointer
120  *
121  * Allocate video memory for GART page table
122  * (pcie r4xx, r5xx+).  These asics require the
123  * gart table to be in video memory.
124  * Returns 0 for success, error for failure.
125  */
126 int radeon_gart_table_vram_alloc(struct radeon_device *rdev)
127 {
128 	int r;
129 
130 	if (rdev->gart.robj == NULL) {
131 		r = radeon_bo_create(rdev, rdev->gart.table_size,
132 				     PAGE_SIZE, true, RADEON_GEM_DOMAIN_VRAM,
133 				     NULL, &rdev->gart.robj);
134 		if (r) {
135 			return r;
136 		}
137 	}
138 	return 0;
139 }
140 
141 /**
142  * radeon_gart_table_vram_pin - pin gart page table in vram
143  *
144  * @rdev: radeon_device pointer
145  *
146  * Pin the GART page table in vram so it will not be moved
147  * by the memory manager (pcie r4xx, r5xx+).  These asics require the
148  * gart table to be in video memory.
149  * Returns 0 for success, error for failure.
150  */
151 int radeon_gart_table_vram_pin(struct radeon_device *rdev)
152 {
153 	uint64_t gpu_addr;
154 	int r;
155 
156 	r = radeon_bo_reserve(rdev->gart.robj, false);
157 	if (unlikely(r != 0))
158 		return r;
159 	r = radeon_bo_pin(rdev->gart.robj,
160 				RADEON_GEM_DOMAIN_VRAM, &gpu_addr);
161 	if (r) {
162 		radeon_bo_unreserve(rdev->gart.robj);
163 		return r;
164 	}
165 	r = radeon_bo_kmap(rdev->gart.robj, &rdev->gart.ptr);
166 	if (r)
167 		radeon_bo_unpin(rdev->gart.robj);
168 	radeon_bo_unreserve(rdev->gart.robj);
169 	rdev->gart.table_addr = gpu_addr;
170 	return r;
171 }
172 
173 /**
174  * radeon_gart_table_vram_unpin - unpin gart page table in vram
175  *
176  * @rdev: radeon_device pointer
177  *
178  * Unpin the GART page table in vram (pcie r4xx, r5xx+).
179  * These asics require the gart table to be in video memory.
180  */
181 void radeon_gart_table_vram_unpin(struct radeon_device *rdev)
182 {
183 	int r;
184 
185 	if (rdev->gart.robj == NULL) {
186 		return;
187 	}
188 	r = radeon_bo_reserve(rdev->gart.robj, false);
189 	if (likely(r == 0)) {
190 		radeon_bo_kunmap(rdev->gart.robj);
191 		radeon_bo_unpin(rdev->gart.robj);
192 		radeon_bo_unreserve(rdev->gart.robj);
193 		rdev->gart.ptr = NULL;
194 	}
195 }
196 
197 /**
198  * radeon_gart_table_vram_free - free gart page table vram
199  *
200  * @rdev: radeon_device pointer
201  *
202  * Free the video memory used for the GART page table
203  * (pcie r4xx, r5xx+).  These asics require the gart table to
204  * be in video memory.
205  */
206 void radeon_gart_table_vram_free(struct radeon_device *rdev)
207 {
208 	if (rdev->gart.robj == NULL) {
209 		return;
210 	}
211 	radeon_bo_unref(&rdev->gart.robj);
212 }
213 
214 /*
215  * Common gart functions.
216  */
217 /**
218  * radeon_gart_unbind - unbind pages from the gart page table
219  *
220  * @rdev: radeon_device pointer
221  * @offset: offset into the GPU's gart aperture
222  * @pages: number of pages to unbind
223  *
224  * Unbinds the requested pages from the gart page table and
225  * replaces them with the dummy page (all asics).
226  */
227 void radeon_gart_unbind(struct radeon_device *rdev, unsigned offset,
228 			int pages)
229 {
230 	unsigned t;
231 	unsigned p;
232 	int i, j;
233 	u64 page_base;
234 
235 	if (!rdev->gart.ready) {
236 		WARN(1, "trying to unbind memory from uninitialized GART !\n");
237 		return;
238 	}
239 	t = offset / RADEON_GPU_PAGE_SIZE;
240 	p = t / (PAGE_SIZE / RADEON_GPU_PAGE_SIZE);
241 	for (i = 0; i < pages; i++, p++) {
242 		if (rdev->gart.pages[p]) {
243 			rdev->gart.pages[p] = NULL;
244 			rdev->gart.pages_addr[p] = rdev->dummy_page.addr;
245 			page_base = rdev->gart.pages_addr[p];
246 			for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) {
247 				if (rdev->gart.ptr) {
248 					radeon_gart_set_page(rdev, t, page_base);
249 				}
250 				page_base += RADEON_GPU_PAGE_SIZE;
251 			}
252 		}
253 	}
254 	mb();
255 	radeon_gart_tlb_flush(rdev);
256 }
257 
258 /**
259  * radeon_gart_bind - bind pages into the gart page table
260  *
261  * @rdev: radeon_device pointer
262  * @offset: offset into the GPU's gart aperture
263  * @pages: number of pages to bind
264  * @pagelist: pages to bind
265  * @dma_addr: DMA addresses of pages
266  *
267  * Binds the requested pages to the gart page table
268  * (all asics).
269  * Returns 0 for success, -EINVAL for failure.
270  */
271 int radeon_gart_bind(struct radeon_device *rdev, unsigned offset,
272 		     int pages, struct page **pagelist, dma_addr_t *dma_addr)
273 {
274 	unsigned t;
275 	unsigned p;
276 	uint64_t page_base;
277 	int i, j;
278 
279 	if (!rdev->gart.ready) {
280 		WARN(1, "trying to bind memory to uninitialized GART !\n");
281 		return -EINVAL;
282 	}
283 	t = offset / RADEON_GPU_PAGE_SIZE;
284 	p = t / (PAGE_SIZE / RADEON_GPU_PAGE_SIZE);
285 
286 	for (i = 0; i < pages; i++, p++) {
287 		rdev->gart.pages_addr[p] = dma_addr[i];
288 		rdev->gart.pages[p] = pagelist[i];
289 		if (rdev->gart.ptr) {
290 			page_base = rdev->gart.pages_addr[p];
291 			for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) {
292 				radeon_gart_set_page(rdev, t, page_base);
293 				page_base += RADEON_GPU_PAGE_SIZE;
294 			}
295 		}
296 	}
297 	mb();
298 	radeon_gart_tlb_flush(rdev);
299 	return 0;
300 }
301 
302 /**
303  * radeon_gart_restore - bind all pages in the gart page table
304  *
305  * @rdev: radeon_device pointer
306  *
307  * Binds all pages in the gart page table (all asics).
308  * Used to rebuild the gart table on device startup or resume.
309  */
310 void radeon_gart_restore(struct radeon_device *rdev)
311 {
312 	int i, j, t;
313 	u64 page_base;
314 
315 	if (!rdev->gart.ptr) {
316 		return;
317 	}
318 	for (i = 0, t = 0; i < rdev->gart.num_cpu_pages; i++) {
319 		page_base = rdev->gart.pages_addr[i];
320 		for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) {
321 			radeon_gart_set_page(rdev, t, page_base);
322 			page_base += RADEON_GPU_PAGE_SIZE;
323 		}
324 	}
325 	mb();
326 	radeon_gart_tlb_flush(rdev);
327 }
328 
329 /**
330  * radeon_gart_init - init the driver info for managing the gart
331  *
332  * @rdev: radeon_device pointer
333  *
334  * Allocate the dummy page and init the gart driver info (all asics).
335  * Returns 0 for success, error for failure.
336  */
337 int radeon_gart_init(struct radeon_device *rdev)
338 {
339 	int r, i;
340 
341 	if (rdev->gart.pages) {
342 		return 0;
343 	}
344 	/* We need PAGE_SIZE >= RADEON_GPU_PAGE_SIZE */
345 	if (PAGE_SIZE < RADEON_GPU_PAGE_SIZE) {
346 		DRM_ERROR("Page size is smaller than GPU page size!\n");
347 		return -EINVAL;
348 	}
349 	r = radeon_dummy_page_init(rdev);
350 	if (r)
351 		return r;
352 	/* Compute table size */
353 	rdev->gart.num_cpu_pages = rdev->mc.gtt_size / PAGE_SIZE;
354 	rdev->gart.num_gpu_pages = rdev->mc.gtt_size / RADEON_GPU_PAGE_SIZE;
355 	DRM_INFO("GART: num cpu pages %u, num gpu pages %u\n",
356 		 rdev->gart.num_cpu_pages, rdev->gart.num_gpu_pages);
357 	/* Allocate pages table */
358 	rdev->gart.pages = vzalloc(sizeof(void *) * rdev->gart.num_cpu_pages);
359 	if (rdev->gart.pages == NULL) {
360 		radeon_gart_fini(rdev);
361 		return -ENOMEM;
362 	}
363 	rdev->gart.pages_addr = vzalloc(sizeof(dma_addr_t) *
364 					rdev->gart.num_cpu_pages);
365 	if (rdev->gart.pages_addr == NULL) {
366 		radeon_gart_fini(rdev);
367 		return -ENOMEM;
368 	}
369 	/* set GART entry to point to the dummy page by default */
370 	for (i = 0; i < rdev->gart.num_cpu_pages; i++) {
371 		rdev->gart.pages_addr[i] = rdev->dummy_page.addr;
372 	}
373 	return 0;
374 }
375 
376 /**
377  * radeon_gart_fini - tear down the driver info for managing the gart
378  *
379  * @rdev: radeon_device pointer
380  *
381  * Tear down the gart driver info and free the dummy page (all asics).
382  */
383 void radeon_gart_fini(struct radeon_device *rdev)
384 {
385 	if (rdev->gart.pages && rdev->gart.pages_addr && rdev->gart.ready) {
386 		/* unbind pages */
387 		radeon_gart_unbind(rdev, 0, rdev->gart.num_cpu_pages);
388 	}
389 	rdev->gart.ready = false;
390 	vfree(rdev->gart.pages);
391 	vfree(rdev->gart.pages_addr);
392 	rdev->gart.pages = NULL;
393 	rdev->gart.pages_addr = NULL;
394 
395 	radeon_dummy_page_fini(rdev);
396 }
397 
398 /*
399  * GPUVM
400  * GPUVM is similar to the legacy gart on older asics, however
401  * rather than there being a single global gart table
402  * for the entire GPU, there are multiple VM page tables active
403  * at any given time.  The VM page tables can contain a mix
404  * vram pages and system memory pages and system memory pages
405  * can be mapped as snooped (cached system pages) or unsnooped
406  * (uncached system pages).
407  * Each VM has an ID associated with it and there is a page table
408  * associated with each VMID.  When execting a command buffer,
409  * the kernel tells the the ring what VMID to use for that command
410  * buffer.  VMIDs are allocated dynamically as commands are submitted.
411  * The userspace drivers maintain their own address space and the kernel
412  * sets up their pages tables accordingly when they submit their
413  * command buffers and a VMID is assigned.
414  * Cayman/Trinity support up to 8 active VMs at any given time;
415  * SI supports 16.
416  */
417 
418 /*
419  * vm helpers
420  *
421  * TODO bind a default page at vm initialization for default address
422  */
423 
424 /**
425  * radeon_vm_num_pde - return the number of page directory entries
426  *
427  * @rdev: radeon_device pointer
428  *
429  * Calculate the number of page directory entries (cayman+).
430  */
431 static unsigned radeon_vm_num_pdes(struct radeon_device *rdev)
432 {
433 	return rdev->vm_manager.max_pfn >> RADEON_VM_BLOCK_SIZE;
434 }
435 
436 /**
437  * radeon_vm_directory_size - returns the size of the page directory in bytes
438  *
439  * @rdev: radeon_device pointer
440  *
441  * Calculate the size of the page directory in bytes (cayman+).
442  */
443 static unsigned radeon_vm_directory_size(struct radeon_device *rdev)
444 {
445 	return RADEON_GPU_PAGE_ALIGN(radeon_vm_num_pdes(rdev) * 8);
446 }
447 
448 /**
449  * radeon_vm_manager_init - init the vm manager
450  *
451  * @rdev: radeon_device pointer
452  *
453  * Init the vm manager (cayman+).
454  * Returns 0 for success, error for failure.
455  */
456 int radeon_vm_manager_init(struct radeon_device *rdev)
457 {
458 	struct radeon_vm *vm;
459 	struct radeon_bo_va *bo_va;
460 	int r;
461 	unsigned size;
462 
463 	if (!rdev->vm_manager.enabled) {
464 		/* allocate enough for 2 full VM pts */
465 		size = radeon_vm_directory_size(rdev);
466 		size += rdev->vm_manager.max_pfn * 8;
467 		size *= 2;
468 		r = radeon_sa_bo_manager_init(rdev, &rdev->vm_manager.sa_manager,
469 					      RADEON_GPU_PAGE_ALIGN(size),
470 					      RADEON_VM_PTB_ALIGN_SIZE,
471 					      RADEON_GEM_DOMAIN_VRAM);
472 		if (r) {
473 			dev_err(rdev->dev, "failed to allocate vm bo (%dKB)\n",
474 				(rdev->vm_manager.max_pfn * 8) >> 10);
475 			return r;
476 		}
477 
478 		r = radeon_asic_vm_init(rdev);
479 		if (r)
480 			return r;
481 
482 		rdev->vm_manager.enabled = true;
483 
484 		r = radeon_sa_bo_manager_start(rdev, &rdev->vm_manager.sa_manager);
485 		if (r)
486 			return r;
487 	}
488 
489 	/* restore page table */
490 	list_for_each_entry(vm, &rdev->vm_manager.lru_vm, list) {
491 		if (vm->page_directory == NULL)
492 			continue;
493 
494 		list_for_each_entry(bo_va, &vm->va, vm_list) {
495 			bo_va->valid = false;
496 		}
497 	}
498 	return 0;
499 }
500 
501 /**
502  * radeon_vm_free_pt - free the page table for a specific vm
503  *
504  * @rdev: radeon_device pointer
505  * @vm: vm to unbind
506  *
507  * Free the page table of a specific vm (cayman+).
508  *
509  * Global and local mutex must be lock!
510  */
511 static void radeon_vm_free_pt(struct radeon_device *rdev,
512 				    struct radeon_vm *vm)
513 {
514 	struct radeon_bo_va *bo_va;
515 	int i;
516 
517 	if (!vm->page_directory)
518 		return;
519 
520 	list_del_init(&vm->list);
521 	radeon_sa_bo_free(rdev, &vm->page_directory, vm->fence);
522 
523 	list_for_each_entry(bo_va, &vm->va, vm_list) {
524 		bo_va->valid = false;
525 	}
526 
527 	if (vm->page_tables == NULL)
528 		return;
529 
530 	for (i = 0; i < radeon_vm_num_pdes(rdev); i++)
531 		radeon_sa_bo_free(rdev, &vm->page_tables[i], vm->fence);
532 
533 	kfree(vm->page_tables);
534 }
535 
536 /**
537  * radeon_vm_manager_fini - tear down the vm manager
538  *
539  * @rdev: radeon_device pointer
540  *
541  * Tear down the VM manager (cayman+).
542  */
543 void radeon_vm_manager_fini(struct radeon_device *rdev)
544 {
545 	struct radeon_vm *vm, *tmp;
546 	int i;
547 
548 	if (!rdev->vm_manager.enabled)
549 		return;
550 
551 	mutex_lock(&rdev->vm_manager.lock);
552 	/* free all allocated page tables */
553 	list_for_each_entry_safe(vm, tmp, &rdev->vm_manager.lru_vm, list) {
554 		mutex_lock(&vm->mutex);
555 		radeon_vm_free_pt(rdev, vm);
556 		mutex_unlock(&vm->mutex);
557 	}
558 	for (i = 0; i < RADEON_NUM_VM; ++i) {
559 		radeon_fence_unref(&rdev->vm_manager.active[i]);
560 	}
561 	radeon_asic_vm_fini(rdev);
562 	mutex_unlock(&rdev->vm_manager.lock);
563 
564 	radeon_sa_bo_manager_suspend(rdev, &rdev->vm_manager.sa_manager);
565 	radeon_sa_bo_manager_fini(rdev, &rdev->vm_manager.sa_manager);
566 	rdev->vm_manager.enabled = false;
567 }
568 
569 /**
570  * radeon_vm_evict - evict page table to make room for new one
571  *
572  * @rdev: radeon_device pointer
573  * @vm: VM we want to allocate something for
574  *
575  * Evict a VM from the lru, making sure that it isn't @vm. (cayman+).
576  * Returns 0 for success, -ENOMEM for failure.
577  *
578  * Global and local mutex must be locked!
579  */
580 static int radeon_vm_evict(struct radeon_device *rdev, struct radeon_vm *vm)
581 {
582 	struct radeon_vm *vm_evict;
583 
584 	if (list_empty(&rdev->vm_manager.lru_vm))
585 		return -ENOMEM;
586 
587 	vm_evict = list_first_entry(&rdev->vm_manager.lru_vm,
588 				    struct radeon_vm, list);
589 	if (vm_evict == vm)
590 		return -ENOMEM;
591 
592 	mutex_lock(&vm_evict->mutex);
593 	radeon_vm_free_pt(rdev, vm_evict);
594 	mutex_unlock(&vm_evict->mutex);
595 	return 0;
596 }
597 
598 /**
599  * radeon_vm_alloc_pt - allocates a page table for a VM
600  *
601  * @rdev: radeon_device pointer
602  * @vm: vm to bind
603  *
604  * Allocate a page table for the requested vm (cayman+).
605  * Returns 0 for success, error for failure.
606  *
607  * Global and local mutex must be locked!
608  */
609 int radeon_vm_alloc_pt(struct radeon_device *rdev, struct radeon_vm *vm)
610 {
611 	unsigned pd_size, pd_entries, pts_size;
612 	struct radeon_ib ib;
613 	int r;
614 
615 	if (vm == NULL) {
616 		return -EINVAL;
617 	}
618 
619 	if (vm->page_directory != NULL) {
620 		return 0;
621 	}
622 
623 	pd_size = radeon_vm_directory_size(rdev);
624 	pd_entries = radeon_vm_num_pdes(rdev);
625 
626 retry:
627 	r = radeon_sa_bo_new(rdev, &rdev->vm_manager.sa_manager,
628 			     &vm->page_directory, pd_size,
629 			     RADEON_VM_PTB_ALIGN_SIZE, false);
630 	if (r == -ENOMEM) {
631 		r = radeon_vm_evict(rdev, vm);
632 		if (r)
633 			return r;
634 		goto retry;
635 
636 	} else if (r) {
637 		return r;
638 	}
639 
640 	vm->pd_gpu_addr = radeon_sa_bo_gpu_addr(vm->page_directory);
641 
642 	/* Initially clear the page directory */
643 	r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib,
644 			  NULL, pd_entries * 2 + 64);
645 	if (r) {
646 		radeon_sa_bo_free(rdev, &vm->page_directory, vm->fence);
647 		return r;
648 	}
649 
650 	ib.length_dw = 0;
651 
652 	radeon_asic_vm_set_page(rdev, &ib, vm->pd_gpu_addr,
653 				0, pd_entries, 0, 0);
654 
655 	radeon_semaphore_sync_to(ib.semaphore, vm->fence);
656 	r = radeon_ib_schedule(rdev, &ib, NULL);
657 	if (r) {
658 		radeon_ib_free(rdev, &ib);
659 		radeon_sa_bo_free(rdev, &vm->page_directory, vm->fence);
660 		return r;
661 	}
662 	radeon_fence_unref(&vm->fence);
663 	vm->fence = radeon_fence_ref(ib.fence);
664 	radeon_ib_free(rdev, &ib);
665 	radeon_fence_unref(&vm->last_flush);
666 
667 	/* allocate page table array */
668 	pts_size = radeon_vm_num_pdes(rdev) * sizeof(struct radeon_sa_bo *);
669 	vm->page_tables = kzalloc(pts_size, GFP_KERNEL);
670 
671 	if (vm->page_tables == NULL) {
672 		DRM_ERROR("Cannot allocate memory for page table array\n");
673 		radeon_sa_bo_free(rdev, &vm->page_directory, vm->fence);
674 		return -ENOMEM;
675 	}
676 
677 	return 0;
678 }
679 
680 /**
681  * radeon_vm_add_to_lru - add VMs page table to LRU list
682  *
683  * @rdev: radeon_device pointer
684  * @vm: vm to add to LRU
685  *
686  * Add the allocated page table to the LRU list (cayman+).
687  *
688  * Global mutex must be locked!
689  */
690 void radeon_vm_add_to_lru(struct radeon_device *rdev, struct radeon_vm *vm)
691 {
692 	list_del_init(&vm->list);
693 	list_add_tail(&vm->list, &rdev->vm_manager.lru_vm);
694 }
695 
696 /**
697  * radeon_vm_grab_id - allocate the next free VMID
698  *
699  * @rdev: radeon_device pointer
700  * @vm: vm to allocate id for
701  * @ring: ring we want to submit job to
702  *
703  * Allocate an id for the vm (cayman+).
704  * Returns the fence we need to sync to (if any).
705  *
706  * Global and local mutex must be locked!
707  */
708 struct radeon_fence *radeon_vm_grab_id(struct radeon_device *rdev,
709 				       struct radeon_vm *vm, int ring)
710 {
711 	struct radeon_fence *best[RADEON_NUM_RINGS] = {};
712 	unsigned choices[2] = {};
713 	unsigned i;
714 
715 	/* check if the id is still valid */
716 	if (vm->fence && vm->fence == rdev->vm_manager.active[vm->id])
717 		return NULL;
718 
719 	/* we definately need to flush */
720 	radeon_fence_unref(&vm->last_flush);
721 
722 	/* skip over VMID 0, since it is the system VM */
723 	for (i = 1; i < rdev->vm_manager.nvm; ++i) {
724 		struct radeon_fence *fence = rdev->vm_manager.active[i];
725 
726 		if (fence == NULL) {
727 			/* found a free one */
728 			vm->id = i;
729 			return NULL;
730 		}
731 
732 		if (radeon_fence_is_earlier(fence, best[fence->ring])) {
733 			best[fence->ring] = fence;
734 			choices[fence->ring == ring ? 0 : 1] = i;
735 		}
736 	}
737 
738 	for (i = 0; i < 2; ++i) {
739 		if (choices[i]) {
740 			vm->id = choices[i];
741 			trace_radeon_vm_grab_id(vm->id, ring);
742 			return rdev->vm_manager.active[choices[i]];
743 		}
744 	}
745 
746 	/* should never happen */
747 	BUG();
748 	return NULL;
749 }
750 
751 /**
752  * radeon_vm_fence - remember fence for vm
753  *
754  * @rdev: radeon_device pointer
755  * @vm: vm we want to fence
756  * @fence: fence to remember
757  *
758  * Fence the vm (cayman+).
759  * Set the fence used to protect page table and id.
760  *
761  * Global and local mutex must be locked!
762  */
763 void radeon_vm_fence(struct radeon_device *rdev,
764 		     struct radeon_vm *vm,
765 		     struct radeon_fence *fence)
766 {
767 	radeon_fence_unref(&rdev->vm_manager.active[vm->id]);
768 	rdev->vm_manager.active[vm->id] = radeon_fence_ref(fence);
769 
770 	radeon_fence_unref(&vm->fence);
771 	vm->fence = radeon_fence_ref(fence);
772 }
773 
774 /**
775  * radeon_vm_bo_find - find the bo_va for a specific vm & bo
776  *
777  * @vm: requested vm
778  * @bo: requested buffer object
779  *
780  * Find @bo inside the requested vm (cayman+).
781  * Search inside the @bos vm list for the requested vm
782  * Returns the found bo_va or NULL if none is found
783  *
784  * Object has to be reserved!
785  */
786 struct radeon_bo_va *radeon_vm_bo_find(struct radeon_vm *vm,
787 				       struct radeon_bo *bo)
788 {
789 	struct radeon_bo_va *bo_va;
790 
791 	list_for_each_entry(bo_va, &bo->va, bo_list) {
792 		if (bo_va->vm == vm) {
793 			return bo_va;
794 		}
795 	}
796 	return NULL;
797 }
798 
799 /**
800  * radeon_vm_bo_add - add a bo to a specific vm
801  *
802  * @rdev: radeon_device pointer
803  * @vm: requested vm
804  * @bo: radeon buffer object
805  *
806  * Add @bo into the requested vm (cayman+).
807  * Add @bo to the list of bos associated with the vm
808  * Returns newly added bo_va or NULL for failure
809  *
810  * Object has to be reserved!
811  */
812 struct radeon_bo_va *radeon_vm_bo_add(struct radeon_device *rdev,
813 				      struct radeon_vm *vm,
814 				      struct radeon_bo *bo)
815 {
816 	struct radeon_bo_va *bo_va;
817 
818 	bo_va = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL);
819 	if (bo_va == NULL) {
820 		return NULL;
821 	}
822 	bo_va->vm = vm;
823 	bo_va->bo = bo;
824 	bo_va->soffset = 0;
825 	bo_va->eoffset = 0;
826 	bo_va->flags = 0;
827 	bo_va->valid = false;
828 	bo_va->ref_count = 1;
829 	INIT_LIST_HEAD(&bo_va->bo_list);
830 	INIT_LIST_HEAD(&bo_va->vm_list);
831 
832 	mutex_lock(&vm->mutex);
833 	list_add(&bo_va->vm_list, &vm->va);
834 	list_add_tail(&bo_va->bo_list, &bo->va);
835 	mutex_unlock(&vm->mutex);
836 
837 	return bo_va;
838 }
839 
840 /**
841  * radeon_vm_bo_set_addr - set bos virtual address inside a vm
842  *
843  * @rdev: radeon_device pointer
844  * @bo_va: bo_va to store the address
845  * @soffset: requested offset of the buffer in the VM address space
846  * @flags: attributes of pages (read/write/valid/etc.)
847  *
848  * Set offset of @bo_va (cayman+).
849  * Validate and set the offset requested within the vm address space.
850  * Returns 0 for success, error for failure.
851  *
852  * Object has to be reserved!
853  */
854 int radeon_vm_bo_set_addr(struct radeon_device *rdev,
855 			  struct radeon_bo_va *bo_va,
856 			  uint64_t soffset,
857 			  uint32_t flags)
858 {
859 	uint64_t size = radeon_bo_size(bo_va->bo);
860 	uint64_t eoffset, last_offset = 0;
861 	struct radeon_vm *vm = bo_va->vm;
862 	struct radeon_bo_va *tmp;
863 	struct list_head *head;
864 	unsigned last_pfn;
865 
866 	if (soffset) {
867 		/* make sure object fit at this offset */
868 		eoffset = soffset + size;
869 		if (soffset >= eoffset) {
870 			return -EINVAL;
871 		}
872 
873 		last_pfn = eoffset / RADEON_GPU_PAGE_SIZE;
874 		if (last_pfn > rdev->vm_manager.max_pfn) {
875 			dev_err(rdev->dev, "va above limit (0x%08X > 0x%08X)\n",
876 				last_pfn, rdev->vm_manager.max_pfn);
877 			return -EINVAL;
878 		}
879 
880 	} else {
881 		eoffset = last_pfn = 0;
882 	}
883 
884 	mutex_lock(&vm->mutex);
885 	head = &vm->va;
886 	last_offset = 0;
887 	list_for_each_entry(tmp, &vm->va, vm_list) {
888 		if (bo_va == tmp) {
889 			/* skip over currently modified bo */
890 			continue;
891 		}
892 
893 		if (soffset >= last_offset && eoffset <= tmp->soffset) {
894 			/* bo can be added before this one */
895 			break;
896 		}
897 		if (eoffset > tmp->soffset && soffset < tmp->eoffset) {
898 			/* bo and tmp overlap, invalid offset */
899 			dev_err(rdev->dev, "bo %p va 0x%08X conflict with (bo %p 0x%08X 0x%08X)\n",
900 				bo_va->bo, (unsigned)bo_va->soffset, tmp->bo,
901 				(unsigned)tmp->soffset, (unsigned)tmp->eoffset);
902 			mutex_unlock(&vm->mutex);
903 			return -EINVAL;
904 		}
905 		last_offset = tmp->eoffset;
906 		head = &tmp->vm_list;
907 	}
908 
909 	bo_va->soffset = soffset;
910 	bo_va->eoffset = eoffset;
911 	bo_va->flags = flags;
912 	bo_va->valid = false;
913 	list_move(&bo_va->vm_list, head);
914 
915 	mutex_unlock(&vm->mutex);
916 	return 0;
917 }
918 
919 /**
920  * radeon_vm_map_gart - get the physical address of a gart page
921  *
922  * @rdev: radeon_device pointer
923  * @addr: the unmapped addr
924  *
925  * Look up the physical address of the page that the pte resolves
926  * to (cayman+).
927  * Returns the physical address of the page.
928  */
929 uint64_t radeon_vm_map_gart(struct radeon_device *rdev, uint64_t addr)
930 {
931 	uint64_t result;
932 
933 	/* page table offset */
934 	result = rdev->gart.pages_addr[addr >> PAGE_SHIFT];
935 
936 	/* in case cpu page size != gpu page size*/
937 	result |= addr & (~PAGE_MASK);
938 
939 	return result;
940 }
941 
942 /**
943  * radeon_vm_page_flags - translate page flags to what the hw uses
944  *
945  * @flags: flags comming from userspace
946  *
947  * Translate the flags the userspace ABI uses to hw flags.
948  */
949 static uint32_t radeon_vm_page_flags(uint32_t flags)
950 {
951         uint32_t hw_flags = 0;
952         hw_flags |= (flags & RADEON_VM_PAGE_VALID) ? R600_PTE_VALID : 0;
953         hw_flags |= (flags & RADEON_VM_PAGE_READABLE) ? R600_PTE_READABLE : 0;
954         hw_flags |= (flags & RADEON_VM_PAGE_WRITEABLE) ? R600_PTE_WRITEABLE : 0;
955         if (flags & RADEON_VM_PAGE_SYSTEM) {
956                 hw_flags |= R600_PTE_SYSTEM;
957                 hw_flags |= (flags & RADEON_VM_PAGE_SNOOPED) ? R600_PTE_SNOOPED : 0;
958         }
959         return hw_flags;
960 }
961 
962 /**
963  * radeon_vm_update_pdes - make sure that page directory is valid
964  *
965  * @rdev: radeon_device pointer
966  * @vm: requested vm
967  * @start: start of GPU address range
968  * @end: end of GPU address range
969  *
970  * Allocates new page tables if necessary
971  * and updates the page directory (cayman+).
972  * Returns 0 for success, error for failure.
973  *
974  * Global and local mutex must be locked!
975  */
976 static int radeon_vm_update_pdes(struct radeon_device *rdev,
977 				 struct radeon_vm *vm,
978 				 struct radeon_ib *ib,
979 				 uint64_t start, uint64_t end)
980 {
981 	static const uint32_t incr = RADEON_VM_PTE_COUNT * 8;
982 
983 	uint64_t last_pde = ~0, last_pt = ~0;
984 	unsigned count = 0;
985 	uint64_t pt_idx;
986 	int r;
987 
988 	start = (start / RADEON_GPU_PAGE_SIZE) >> RADEON_VM_BLOCK_SIZE;
989 	end = (end / RADEON_GPU_PAGE_SIZE) >> RADEON_VM_BLOCK_SIZE;
990 
991 	/* walk over the address space and update the page directory */
992 	for (pt_idx = start; pt_idx <= end; ++pt_idx) {
993 		uint64_t pde, pt;
994 
995 		if (vm->page_tables[pt_idx])
996 			continue;
997 
998 retry:
999 		r = radeon_sa_bo_new(rdev, &rdev->vm_manager.sa_manager,
1000 				     &vm->page_tables[pt_idx],
1001 				     RADEON_VM_PTE_COUNT * 8,
1002 				     RADEON_GPU_PAGE_SIZE, false);
1003 
1004 		if (r == -ENOMEM) {
1005 			r = radeon_vm_evict(rdev, vm);
1006 			if (r)
1007 				return r;
1008 			goto retry;
1009 		} else if (r) {
1010 			return r;
1011 		}
1012 
1013 		pde = vm->pd_gpu_addr + pt_idx * 8;
1014 
1015 		pt = radeon_sa_bo_gpu_addr(vm->page_tables[pt_idx]);
1016 
1017 		if (((last_pde + 8 * count) != pde) ||
1018 		    ((last_pt + incr * count) != pt)) {
1019 
1020 			if (count) {
1021 				radeon_asic_vm_set_page(rdev, ib, last_pde,
1022 							last_pt, count, incr,
1023 							R600_PTE_VALID);
1024 
1025 				count *= RADEON_VM_PTE_COUNT;
1026 				radeon_asic_vm_set_page(rdev, ib, last_pt, 0,
1027 							count, 0, 0);
1028 			}
1029 
1030 			count = 1;
1031 			last_pde = pde;
1032 			last_pt = pt;
1033 		} else {
1034 			++count;
1035 		}
1036 	}
1037 
1038 	if (count) {
1039 		radeon_asic_vm_set_page(rdev, ib, last_pde, last_pt, count,
1040 					incr, R600_PTE_VALID);
1041 
1042 		count *= RADEON_VM_PTE_COUNT;
1043 		radeon_asic_vm_set_page(rdev, ib, last_pt, 0,
1044 					count, 0, 0);
1045 	}
1046 
1047 	return 0;
1048 }
1049 
1050 /**
1051  * radeon_vm_update_ptes - make sure that page tables are valid
1052  *
1053  * @rdev: radeon_device pointer
1054  * @vm: requested vm
1055  * @start: start of GPU address range
1056  * @end: end of GPU address range
1057  * @dst: destination address to map to
1058  * @flags: mapping flags
1059  *
1060  * Update the page tables in the range @start - @end (cayman+).
1061  *
1062  * Global and local mutex must be locked!
1063  */
1064 static void radeon_vm_update_ptes(struct radeon_device *rdev,
1065 				  struct radeon_vm *vm,
1066 				  struct radeon_ib *ib,
1067 				  uint64_t start, uint64_t end,
1068 				  uint64_t dst, uint32_t flags)
1069 {
1070 	static const uint64_t mask = RADEON_VM_PTE_COUNT - 1;
1071 
1072 	uint64_t last_pte = ~0, last_dst = ~0;
1073 	unsigned count = 0;
1074 	uint64_t addr;
1075 
1076 	start = start / RADEON_GPU_PAGE_SIZE;
1077 	end = end / RADEON_GPU_PAGE_SIZE;
1078 
1079 	/* walk over the address space and update the page tables */
1080 	for (addr = start; addr < end; ) {
1081 		uint64_t pt_idx = addr >> RADEON_VM_BLOCK_SIZE;
1082 		unsigned nptes;
1083 		uint64_t pte;
1084 
1085 		if ((addr & ~mask) == (end & ~mask))
1086 			nptes = end - addr;
1087 		else
1088 			nptes = RADEON_VM_PTE_COUNT - (addr & mask);
1089 
1090 		pte = radeon_sa_bo_gpu_addr(vm->page_tables[pt_idx]);
1091 		pte += (addr & mask) * 8;
1092 
1093 		if ((last_pte + 8 * count) != pte) {
1094 
1095 			if (count) {
1096 				radeon_asic_vm_set_page(rdev, ib, last_pte,
1097 							last_dst, count,
1098 							RADEON_GPU_PAGE_SIZE,
1099 							flags);
1100 			}
1101 
1102 			count = nptes;
1103 			last_pte = pte;
1104 			last_dst = dst;
1105 		} else {
1106 			count += nptes;
1107 		}
1108 
1109 		addr += nptes;
1110 		dst += nptes * RADEON_GPU_PAGE_SIZE;
1111 	}
1112 
1113 	if (count) {
1114 		radeon_asic_vm_set_page(rdev, ib, last_pte,
1115 					last_dst, count,
1116 					RADEON_GPU_PAGE_SIZE, flags);
1117 	}
1118 }
1119 
1120 /**
1121  * radeon_vm_bo_update - map a bo into the vm page table
1122  *
1123  * @rdev: radeon_device pointer
1124  * @vm: requested vm
1125  * @bo: radeon buffer object
1126  * @mem: ttm mem
1127  *
1128  * Fill in the page table entries for @bo (cayman+).
1129  * Returns 0 for success, -EINVAL for failure.
1130  *
1131  * Object have to be reserved & global and local mutex must be locked!
1132  */
1133 int radeon_vm_bo_update(struct radeon_device *rdev,
1134 			struct radeon_vm *vm,
1135 			struct radeon_bo *bo,
1136 			struct ttm_mem_reg *mem)
1137 {
1138 	struct radeon_ib ib;
1139 	struct radeon_bo_va *bo_va;
1140 	unsigned nptes, npdes, ndw;
1141 	uint64_t addr;
1142 	int r;
1143 
1144 	/* nothing to do if vm isn't bound */
1145 	if (vm->page_directory == NULL)
1146 		return 0;
1147 
1148 	bo_va = radeon_vm_bo_find(vm, bo);
1149 	if (bo_va == NULL) {
1150 		dev_err(rdev->dev, "bo %p not in vm %p\n", bo, vm);
1151 		return -EINVAL;
1152 	}
1153 
1154 	if (!bo_va->soffset) {
1155 		dev_err(rdev->dev, "bo %p don't has a mapping in vm %p\n",
1156 			bo, vm);
1157 		return -EINVAL;
1158 	}
1159 
1160 	if ((bo_va->valid && mem) || (!bo_va->valid && mem == NULL))
1161 		return 0;
1162 
1163 	bo_va->flags &= ~RADEON_VM_PAGE_VALID;
1164 	bo_va->flags &= ~RADEON_VM_PAGE_SYSTEM;
1165 	if (mem) {
1166 		addr = mem->start << PAGE_SHIFT;
1167 		if (mem->mem_type != TTM_PL_SYSTEM) {
1168 			bo_va->flags |= RADEON_VM_PAGE_VALID;
1169 			bo_va->valid = true;
1170 		}
1171 		if (mem->mem_type == TTM_PL_TT) {
1172 			bo_va->flags |= RADEON_VM_PAGE_SYSTEM;
1173 		} else {
1174 			addr += rdev->vm_manager.vram_base_offset;
1175 		}
1176 	} else {
1177 		addr = 0;
1178 		bo_va->valid = false;
1179 	}
1180 
1181 	trace_radeon_vm_bo_update(bo_va);
1182 
1183 	nptes = radeon_bo_ngpu_pages(bo);
1184 
1185 	/* assume two extra pdes in case the mapping overlaps the borders */
1186 	npdes = (nptes >> RADEON_VM_BLOCK_SIZE) + 2;
1187 
1188 	/* padding, etc. */
1189 	ndw = 64;
1190 
1191 	if (RADEON_VM_BLOCK_SIZE > 11)
1192 		/* reserve space for one header for every 2k dwords */
1193 		ndw += (nptes >> 11) * 4;
1194 	else
1195 		/* reserve space for one header for
1196 		    every (1 << BLOCK_SIZE) entries */
1197 		ndw += (nptes >> RADEON_VM_BLOCK_SIZE) * 4;
1198 
1199 	/* reserve space for pte addresses */
1200 	ndw += nptes * 2;
1201 
1202 	/* reserve space for one header for every 2k dwords */
1203 	ndw += (npdes >> 11) * 4;
1204 
1205 	/* reserve space for pde addresses */
1206 	ndw += npdes * 2;
1207 
1208 	/* reserve space for clearing new page tables */
1209 	ndw += npdes * 2 * RADEON_VM_PTE_COUNT;
1210 
1211 	/* update too big for an IB */
1212 	if (ndw > 0xfffff)
1213 		return -ENOMEM;
1214 
1215 	r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, ndw * 4);
1216 	if (r)
1217 		return r;
1218 	ib.length_dw = 0;
1219 
1220 	r = radeon_vm_update_pdes(rdev, vm, &ib, bo_va->soffset, bo_va->eoffset);
1221 	if (r) {
1222 		radeon_ib_free(rdev, &ib);
1223 		return r;
1224 	}
1225 
1226 	radeon_vm_update_ptes(rdev, vm, &ib, bo_va->soffset, bo_va->eoffset,
1227 			      addr, radeon_vm_page_flags(bo_va->flags));
1228 
1229 	radeon_semaphore_sync_to(ib.semaphore, vm->fence);
1230 	r = radeon_ib_schedule(rdev, &ib, NULL);
1231 	if (r) {
1232 		radeon_ib_free(rdev, &ib);
1233 		return r;
1234 	}
1235 	radeon_fence_unref(&vm->fence);
1236 	vm->fence = radeon_fence_ref(ib.fence);
1237 	radeon_ib_free(rdev, &ib);
1238 	radeon_fence_unref(&vm->last_flush);
1239 
1240 	return 0;
1241 }
1242 
1243 /**
1244  * radeon_vm_bo_rmv - remove a bo to a specific vm
1245  *
1246  * @rdev: radeon_device pointer
1247  * @bo_va: requested bo_va
1248  *
1249  * Remove @bo_va->bo from the requested vm (cayman+).
1250  * Remove @bo_va->bo from the list of bos associated with the bo_va->vm and
1251  * remove the ptes for @bo_va in the page table.
1252  * Returns 0 for success.
1253  *
1254  * Object have to be reserved!
1255  */
1256 int radeon_vm_bo_rmv(struct radeon_device *rdev,
1257 		     struct radeon_bo_va *bo_va)
1258 {
1259 	int r = 0;
1260 
1261 	mutex_lock(&rdev->vm_manager.lock);
1262 	mutex_lock(&bo_va->vm->mutex);
1263 	if (bo_va->soffset) {
1264 		r = radeon_vm_bo_update(rdev, bo_va->vm, bo_va->bo, NULL);
1265 	}
1266 	mutex_unlock(&rdev->vm_manager.lock);
1267 	list_del(&bo_va->vm_list);
1268 	mutex_unlock(&bo_va->vm->mutex);
1269 	list_del(&bo_va->bo_list);
1270 
1271 	kfree(bo_va);
1272 	return r;
1273 }
1274 
1275 /**
1276  * radeon_vm_bo_invalidate - mark the bo as invalid
1277  *
1278  * @rdev: radeon_device pointer
1279  * @vm: requested vm
1280  * @bo: radeon buffer object
1281  *
1282  * Mark @bo as invalid (cayman+).
1283  */
1284 void radeon_vm_bo_invalidate(struct radeon_device *rdev,
1285 			     struct radeon_bo *bo)
1286 {
1287 	struct radeon_bo_va *bo_va;
1288 
1289 	list_for_each_entry(bo_va, &bo->va, bo_list) {
1290 		bo_va->valid = false;
1291 	}
1292 }
1293 
1294 /**
1295  * radeon_vm_init - initialize a vm instance
1296  *
1297  * @rdev: radeon_device pointer
1298  * @vm: requested vm
1299  *
1300  * Init @vm fields (cayman+).
1301  */
1302 void radeon_vm_init(struct radeon_device *rdev, struct radeon_vm *vm)
1303 {
1304 	vm->id = 0;
1305 	vm->fence = NULL;
1306 	mutex_init(&vm->mutex);
1307 	INIT_LIST_HEAD(&vm->list);
1308 	INIT_LIST_HEAD(&vm->va);
1309 }
1310 
1311 /**
1312  * radeon_vm_fini - tear down a vm instance
1313  *
1314  * @rdev: radeon_device pointer
1315  * @vm: requested vm
1316  *
1317  * Tear down @vm (cayman+).
1318  * Unbind the VM and remove all bos from the vm bo list
1319  */
1320 void radeon_vm_fini(struct radeon_device *rdev, struct radeon_vm *vm)
1321 {
1322 	struct radeon_bo_va *bo_va, *tmp;
1323 	int r;
1324 
1325 	mutex_lock(&rdev->vm_manager.lock);
1326 	mutex_lock(&vm->mutex);
1327 	radeon_vm_free_pt(rdev, vm);
1328 	mutex_unlock(&rdev->vm_manager.lock);
1329 
1330 	if (!list_empty(&vm->va)) {
1331 		dev_err(rdev->dev, "still active bo inside vm\n");
1332 	}
1333 	list_for_each_entry_safe(bo_va, tmp, &vm->va, vm_list) {
1334 		list_del_init(&bo_va->vm_list);
1335 		r = radeon_bo_reserve(bo_va->bo, false);
1336 		if (!r) {
1337 			list_del_init(&bo_va->bo_list);
1338 			radeon_bo_unreserve(bo_va->bo);
1339 			kfree(bo_va);
1340 		}
1341 	}
1342 	radeon_fence_unref(&vm->fence);
1343 	radeon_fence_unref(&vm->last_flush);
1344 	mutex_unlock(&vm->mutex);
1345 }
1346