1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Dave Airlie 30 */ 31 32 #include <linux/atomic.h> 33 #include <linux/firmware.h> 34 #include <linux/kref.h> 35 #include <linux/sched/signal.h> 36 #include <linux/seq_file.h> 37 #include <linux/slab.h> 38 #include <linux/wait.h> 39 40 #include <drm/drm_device.h> 41 #include <drm/drm_file.h> 42 43 #include "radeon.h" 44 #include "radeon_reg.h" 45 #include "radeon_trace.h" 46 47 /* 48 * Fences 49 * Fences mark an event in the GPUs pipeline and are used 50 * for GPU/CPU synchronization. When the fence is written, 51 * it is expected that all buffers associated with that fence 52 * are no longer in use by the associated ring on the GPU and 53 * that the relevant GPU caches have been flushed. Whether 54 * we use a scratch register or memory location depends on the asic 55 * and whether writeback is enabled. 56 */ 57 58 /** 59 * radeon_fence_write - write a fence value 60 * 61 * @rdev: radeon_device pointer 62 * @seq: sequence number to write 63 * @ring: ring index the fence is associated with 64 * 65 * Writes a fence value to memory or a scratch register (all asics). 66 */ 67 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring) 68 { 69 struct radeon_fence_driver *drv = &rdev->fence_drv[ring]; 70 if (likely(rdev->wb.enabled || !drv->scratch_reg)) { 71 if (drv->cpu_addr) { 72 *drv->cpu_addr = cpu_to_le32(seq); 73 } 74 } else { 75 WREG32(drv->scratch_reg, seq); 76 } 77 } 78 79 /** 80 * radeon_fence_read - read a fence value 81 * 82 * @rdev: radeon_device pointer 83 * @ring: ring index the fence is associated with 84 * 85 * Reads a fence value from memory or a scratch register (all asics). 86 * Returns the value of the fence read from memory or register. 87 */ 88 static u32 radeon_fence_read(struct radeon_device *rdev, int ring) 89 { 90 struct radeon_fence_driver *drv = &rdev->fence_drv[ring]; 91 u32 seq = 0; 92 93 if (likely(rdev->wb.enabled || !drv->scratch_reg)) { 94 if (drv->cpu_addr) { 95 seq = le32_to_cpu(*drv->cpu_addr); 96 } else { 97 seq = lower_32_bits(atomic64_read(&drv->last_seq)); 98 } 99 } else { 100 seq = RREG32(drv->scratch_reg); 101 } 102 return seq; 103 } 104 105 /** 106 * radeon_fence_schedule_check - schedule lockup check 107 * 108 * @rdev: radeon_device pointer 109 * @ring: ring index we should work with 110 * 111 * Queues a delayed work item to check for lockups. 112 */ 113 static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring) 114 { 115 /* 116 * Do not reset the timer here with mod_delayed_work, 117 * this can livelock in an interaction with TTM delayed destroy. 118 */ 119 queue_delayed_work(system_power_efficient_wq, 120 &rdev->fence_drv[ring].lockup_work, 121 RADEON_FENCE_JIFFIES_TIMEOUT); 122 } 123 124 /** 125 * radeon_fence_emit - emit a fence on the requested ring 126 * 127 * @rdev: radeon_device pointer 128 * @fence: radeon fence object 129 * @ring: ring index the fence is associated with 130 * 131 * Emits a fence command on the requested ring (all asics). 132 * Returns 0 on success, -ENOMEM on failure. 133 */ 134 int radeon_fence_emit(struct radeon_device *rdev, 135 struct radeon_fence **fence, 136 int ring) 137 { 138 u64 seq; 139 140 /* we are protected by the ring emission mutex */ 141 *fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL); 142 if ((*fence) == NULL) { 143 return -ENOMEM; 144 } 145 (*fence)->rdev = rdev; 146 (*fence)->seq = seq = ++rdev->fence_drv[ring].sync_seq[ring]; 147 (*fence)->ring = ring; 148 (*fence)->is_vm_update = false; 149 dma_fence_init(&(*fence)->base, &radeon_fence_ops, 150 &rdev->fence_queue.lock, 151 rdev->fence_context + ring, 152 seq); 153 radeon_fence_ring_emit(rdev, ring, *fence); 154 trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq); 155 radeon_fence_schedule_check(rdev, ring); 156 return 0; 157 } 158 159 /* 160 * radeon_fence_check_signaled - callback from fence_queue 161 * 162 * this function is called with fence_queue lock held, which is also used 163 * for the fence locking itself, so unlocked variants are used for 164 * fence_signal, and remove_wait_queue. 165 */ 166 static int radeon_fence_check_signaled(wait_queue_entry_t *wait, unsigned mode, int flags, void *key) 167 { 168 struct radeon_fence *fence; 169 u64 seq; 170 171 fence = container_of(wait, struct radeon_fence, fence_wake); 172 173 /* 174 * We cannot use radeon_fence_process here because we're already 175 * in the waitqueue, in a call from wake_up_all. 176 */ 177 seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq); 178 if (seq >= fence->seq) { 179 int ret = dma_fence_signal_locked(&fence->base); 180 181 if (!ret) 182 DMA_FENCE_TRACE(&fence->base, "signaled from irq context\n"); 183 else 184 DMA_FENCE_TRACE(&fence->base, "was already signaled\n"); 185 186 radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring); 187 __remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake); 188 dma_fence_put(&fence->base); 189 } else 190 DMA_FENCE_TRACE(&fence->base, "pending\n"); 191 return 0; 192 } 193 194 /** 195 * radeon_fence_activity - check for fence activity 196 * 197 * @rdev: radeon_device pointer 198 * @ring: ring index the fence is associated with 199 * 200 * Checks the current fence value and calculates the last 201 * signalled fence value. Returns true if activity occured 202 * on the ring, and the fence_queue should be waken up. 203 */ 204 static bool radeon_fence_activity(struct radeon_device *rdev, int ring) 205 { 206 uint64_t seq, last_seq, last_emitted; 207 unsigned count_loop = 0; 208 bool wake = false; 209 210 /* Note there is a scenario here for an infinite loop but it's 211 * very unlikely to happen. For it to happen, the current polling 212 * process need to be interrupted by another process and another 213 * process needs to update the last_seq btw the atomic read and 214 * xchg of the current process. 215 * 216 * More over for this to go in infinite loop there need to be 217 * continuously new fence signaled ie radeon_fence_read needs 218 * to return a different value each time for both the currently 219 * polling process and the other process that xchg the last_seq 220 * btw atomic read and xchg of the current process. And the 221 * value the other process set as last seq must be higher than 222 * the seq value we just read. Which means that current process 223 * need to be interrupted after radeon_fence_read and before 224 * atomic xchg. 225 * 226 * To be even more safe we count the number of time we loop and 227 * we bail after 10 loop just accepting the fact that we might 228 * have temporarly set the last_seq not to the true real last 229 * seq but to an older one. 230 */ 231 last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq); 232 do { 233 last_emitted = rdev->fence_drv[ring].sync_seq[ring]; 234 seq = radeon_fence_read(rdev, ring); 235 seq |= last_seq & 0xffffffff00000000LL; 236 if (seq < last_seq) { 237 seq &= 0xffffffff; 238 seq |= last_emitted & 0xffffffff00000000LL; 239 } 240 241 if (seq <= last_seq || seq > last_emitted) { 242 break; 243 } 244 /* If we loop over we don't want to return without 245 * checking if a fence is signaled as it means that the 246 * seq we just read is different from the previous on. 247 */ 248 wake = true; 249 last_seq = seq; 250 if ((count_loop++) > 10) { 251 /* We looped over too many time leave with the 252 * fact that we might have set an older fence 253 * seq then the current real last seq as signaled 254 * by the hw. 255 */ 256 break; 257 } 258 } while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq); 259 260 if (seq < last_emitted) 261 radeon_fence_schedule_check(rdev, ring); 262 263 return wake; 264 } 265 266 /** 267 * radeon_fence_check_lockup - check for hardware lockup 268 * 269 * @work: delayed work item 270 * 271 * Checks for fence activity and if there is none probe 272 * the hardware if a lockup occured. 273 */ 274 static void radeon_fence_check_lockup(struct work_struct *work) 275 { 276 struct radeon_fence_driver *fence_drv; 277 struct radeon_device *rdev; 278 int ring; 279 280 fence_drv = container_of(work, struct radeon_fence_driver, 281 lockup_work.work); 282 rdev = fence_drv->rdev; 283 ring = fence_drv - &rdev->fence_drv[0]; 284 285 if (!down_read_trylock(&rdev->exclusive_lock)) { 286 /* just reschedule the check if a reset is going on */ 287 radeon_fence_schedule_check(rdev, ring); 288 return; 289 } 290 291 if (fence_drv->delayed_irq && rdev->irq.installed) { 292 unsigned long irqflags; 293 294 fence_drv->delayed_irq = false; 295 spin_lock_irqsave(&rdev->irq.lock, irqflags); 296 radeon_irq_set(rdev); 297 spin_unlock_irqrestore(&rdev->irq.lock, irqflags); 298 } 299 300 if (radeon_fence_activity(rdev, ring)) 301 wake_up_all(&rdev->fence_queue); 302 303 else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) { 304 305 /* good news we believe it's a lockup */ 306 dev_warn(rdev->dev, "GPU lockup (current fence id " 307 "0x%016llx last fence id 0x%016llx on ring %d)\n", 308 (uint64_t)atomic64_read(&fence_drv->last_seq), 309 fence_drv->sync_seq[ring], ring); 310 311 /* remember that we need an reset */ 312 rdev->needs_reset = true; 313 wake_up_all(&rdev->fence_queue); 314 } 315 up_read(&rdev->exclusive_lock); 316 } 317 318 /** 319 * radeon_fence_process - process a fence 320 * 321 * @rdev: radeon_device pointer 322 * @ring: ring index the fence is associated with 323 * 324 * Checks the current fence value and wakes the fence queue 325 * if the sequence number has increased (all asics). 326 */ 327 void radeon_fence_process(struct radeon_device *rdev, int ring) 328 { 329 if (radeon_fence_activity(rdev, ring)) 330 wake_up_all(&rdev->fence_queue); 331 } 332 333 /** 334 * radeon_fence_seq_signaled - check if a fence sequence number has signaled 335 * 336 * @rdev: radeon device pointer 337 * @seq: sequence number 338 * @ring: ring index the fence is associated with 339 * 340 * Check if the last signaled fence sequnce number is >= the requested 341 * sequence number (all asics). 342 * Returns true if the fence has signaled (current fence value 343 * is >= requested value) or false if it has not (current fence 344 * value is < the requested value. Helper function for 345 * radeon_fence_signaled(). 346 */ 347 static bool radeon_fence_seq_signaled(struct radeon_device *rdev, 348 u64 seq, unsigned ring) 349 { 350 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) { 351 return true; 352 } 353 /* poll new last sequence at least once */ 354 radeon_fence_process(rdev, ring); 355 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) { 356 return true; 357 } 358 return false; 359 } 360 361 static bool radeon_fence_is_signaled(struct dma_fence *f) 362 { 363 struct radeon_fence *fence = to_radeon_fence(f); 364 struct radeon_device *rdev = fence->rdev; 365 unsigned ring = fence->ring; 366 u64 seq = fence->seq; 367 368 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) { 369 return true; 370 } 371 372 if (down_read_trylock(&rdev->exclusive_lock)) { 373 radeon_fence_process(rdev, ring); 374 up_read(&rdev->exclusive_lock); 375 376 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) { 377 return true; 378 } 379 } 380 return false; 381 } 382 383 /** 384 * radeon_fence_enable_signaling - enable signalling on fence 385 * @f: fence 386 * 387 * This function is called with fence_queue lock held, and adds a callback 388 * to fence_queue that checks if this fence is signaled, and if so it 389 * signals the fence and removes itself. 390 */ 391 static bool radeon_fence_enable_signaling(struct dma_fence *f) 392 { 393 struct radeon_fence *fence = to_radeon_fence(f); 394 struct radeon_device *rdev = fence->rdev; 395 396 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) 397 return false; 398 399 if (down_read_trylock(&rdev->exclusive_lock)) { 400 radeon_irq_kms_sw_irq_get(rdev, fence->ring); 401 402 if (radeon_fence_activity(rdev, fence->ring)) 403 wake_up_all_locked(&rdev->fence_queue); 404 405 /* did fence get signaled after we enabled the sw irq? */ 406 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) { 407 radeon_irq_kms_sw_irq_put(rdev, fence->ring); 408 up_read(&rdev->exclusive_lock); 409 return false; 410 } 411 412 up_read(&rdev->exclusive_lock); 413 } else { 414 /* we're probably in a lockup, lets not fiddle too much */ 415 if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring)) 416 rdev->fence_drv[fence->ring].delayed_irq = true; 417 radeon_fence_schedule_check(rdev, fence->ring); 418 } 419 420 fence->fence_wake.flags = 0; 421 fence->fence_wake.private = NULL; 422 fence->fence_wake.func = radeon_fence_check_signaled; 423 __add_wait_queue(&rdev->fence_queue, &fence->fence_wake); 424 dma_fence_get(f); 425 426 DMA_FENCE_TRACE(&fence->base, "armed on ring %i!\n", fence->ring); 427 return true; 428 } 429 430 /** 431 * radeon_fence_signaled - check if a fence has signaled 432 * 433 * @fence: radeon fence object 434 * 435 * Check if the requested fence has signaled (all asics). 436 * Returns true if the fence has signaled or false if it has not. 437 */ 438 bool radeon_fence_signaled(struct radeon_fence *fence) 439 { 440 if (!fence) 441 return true; 442 443 if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) { 444 int ret; 445 446 ret = dma_fence_signal(&fence->base); 447 if (!ret) 448 DMA_FENCE_TRACE(&fence->base, "signaled from radeon_fence_signaled\n"); 449 return true; 450 } 451 return false; 452 } 453 454 /** 455 * radeon_fence_any_seq_signaled - check if any sequence number is signaled 456 * 457 * @rdev: radeon device pointer 458 * @seq: sequence numbers 459 * 460 * Check if the last signaled fence sequnce number is >= the requested 461 * sequence number (all asics). 462 * Returns true if any has signaled (current value is >= requested value) 463 * or false if it has not. Helper function for radeon_fence_wait_seq. 464 */ 465 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq) 466 { 467 unsigned i; 468 469 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 470 if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i)) 471 return true; 472 } 473 return false; 474 } 475 476 /** 477 * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers 478 * 479 * @rdev: radeon device pointer 480 * @target_seq: sequence number(s) we want to wait for 481 * @intr: use interruptable sleep 482 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait 483 * 484 * Wait for the requested sequence number(s) to be written by any ring 485 * (all asics). Sequnce number array is indexed by ring id. 486 * @intr selects whether to use interruptable (true) or non-interruptable 487 * (false) sleep when waiting for the sequence number. Helper function 488 * for radeon_fence_wait_*(). 489 * Returns remaining time if the sequence number has passed, 0 when 490 * the wait timeout, or an error for all other cases. 491 * -EDEADLK is returned when a GPU lockup has been detected. 492 */ 493 static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev, 494 u64 *target_seq, bool intr, 495 long timeout) 496 { 497 long r; 498 int i; 499 500 if (radeon_fence_any_seq_signaled(rdev, target_seq)) 501 return timeout; 502 503 /* enable IRQs and tracing */ 504 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 505 if (!target_seq[i]) 506 continue; 507 508 trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]); 509 radeon_irq_kms_sw_irq_get(rdev, i); 510 } 511 512 if (intr) { 513 r = wait_event_interruptible_timeout(rdev->fence_queue, ( 514 radeon_fence_any_seq_signaled(rdev, target_seq) 515 || rdev->needs_reset), timeout); 516 } else { 517 r = wait_event_timeout(rdev->fence_queue, ( 518 radeon_fence_any_seq_signaled(rdev, target_seq) 519 || rdev->needs_reset), timeout); 520 } 521 522 if (rdev->needs_reset) 523 r = -EDEADLK; 524 525 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 526 if (!target_seq[i]) 527 continue; 528 529 radeon_irq_kms_sw_irq_put(rdev, i); 530 trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]); 531 } 532 533 return r; 534 } 535 536 /** 537 * radeon_fence_wait_timeout - wait for a fence to signal with timeout 538 * 539 * @fence: radeon fence object 540 * @intr: use interruptible sleep 541 * 542 * Wait for the requested fence to signal (all asics). 543 * @intr selects whether to use interruptable (true) or non-interruptable 544 * (false) sleep when waiting for the fence. 545 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait 546 * Returns remaining time if the sequence number has passed, 0 when 547 * the wait timeout, or an error for all other cases. 548 */ 549 long radeon_fence_wait_timeout(struct radeon_fence *fence, bool intr, long timeout) 550 { 551 uint64_t seq[RADEON_NUM_RINGS] = {}; 552 long r; 553 int r_sig; 554 555 /* 556 * This function should not be called on !radeon fences. 557 * If this is the case, it would mean this function can 558 * also be called on radeon fences belonging to another card. 559 * exclusive_lock is not held in that case. 560 */ 561 if (WARN_ON_ONCE(!to_radeon_fence(&fence->base))) 562 return dma_fence_wait(&fence->base, intr); 563 564 seq[fence->ring] = fence->seq; 565 r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, timeout); 566 if (r <= 0) { 567 return r; 568 } 569 570 r_sig = dma_fence_signal(&fence->base); 571 if (!r_sig) 572 DMA_FENCE_TRACE(&fence->base, "signaled from fence_wait\n"); 573 return r; 574 } 575 576 /** 577 * radeon_fence_wait - wait for a fence to signal 578 * 579 * @fence: radeon fence object 580 * @intr: use interruptible sleep 581 * 582 * Wait for the requested fence to signal (all asics). 583 * @intr selects whether to use interruptable (true) or non-interruptable 584 * (false) sleep when waiting for the fence. 585 * Returns 0 if the fence has passed, error for all other cases. 586 */ 587 int radeon_fence_wait(struct radeon_fence *fence, bool intr) 588 { 589 long r = radeon_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT); 590 if (r > 0) { 591 return 0; 592 } else { 593 return r; 594 } 595 } 596 597 /** 598 * radeon_fence_wait_any - wait for a fence to signal on any ring 599 * 600 * @rdev: radeon device pointer 601 * @fences: radeon fence object(s) 602 * @intr: use interruptable sleep 603 * 604 * Wait for any requested fence to signal (all asics). Fence 605 * array is indexed by ring id. @intr selects whether to use 606 * interruptable (true) or non-interruptable (false) sleep when 607 * waiting for the fences. Used by the suballocator. 608 * Returns 0 if any fence has passed, error for all other cases. 609 */ 610 int radeon_fence_wait_any(struct radeon_device *rdev, 611 struct radeon_fence **fences, 612 bool intr) 613 { 614 uint64_t seq[RADEON_NUM_RINGS]; 615 unsigned i, num_rings = 0; 616 long r; 617 618 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 619 seq[i] = 0; 620 621 if (!fences[i]) { 622 continue; 623 } 624 625 seq[i] = fences[i]->seq; 626 ++num_rings; 627 } 628 629 /* nothing to wait for ? */ 630 if (num_rings == 0) 631 return -ENOENT; 632 633 r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT); 634 if (r < 0) { 635 return r; 636 } 637 return 0; 638 } 639 640 /** 641 * radeon_fence_wait_next - wait for the next fence to signal 642 * 643 * @rdev: radeon device pointer 644 * @ring: ring index the fence is associated with 645 * 646 * Wait for the next fence on the requested ring to signal (all asics). 647 * Returns 0 if the next fence has passed, error for all other cases. 648 * Caller must hold ring lock. 649 */ 650 int radeon_fence_wait_next(struct radeon_device *rdev, int ring) 651 { 652 uint64_t seq[RADEON_NUM_RINGS] = {}; 653 long r; 654 655 seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL; 656 if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) { 657 /* nothing to wait for, last_seq is 658 already the last emited fence */ 659 return -ENOENT; 660 } 661 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT); 662 if (r < 0) 663 return r; 664 return 0; 665 } 666 667 /** 668 * radeon_fence_wait_empty - wait for all fences to signal 669 * 670 * @rdev: radeon device pointer 671 * @ring: ring index the fence is associated with 672 * 673 * Wait for all fences on the requested ring to signal (all asics). 674 * Returns 0 if the fences have passed, error for all other cases. 675 * Caller must hold ring lock. 676 */ 677 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring) 678 { 679 uint64_t seq[RADEON_NUM_RINGS] = {}; 680 long r; 681 682 seq[ring] = rdev->fence_drv[ring].sync_seq[ring]; 683 if (!seq[ring]) 684 return 0; 685 686 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT); 687 if (r < 0) { 688 if (r == -EDEADLK) 689 return -EDEADLK; 690 691 dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n", 692 ring, r); 693 } 694 return 0; 695 } 696 697 /** 698 * radeon_fence_ref - take a ref on a fence 699 * 700 * @fence: radeon fence object 701 * 702 * Take a reference on a fence (all asics). 703 * Returns the fence. 704 */ 705 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence) 706 { 707 dma_fence_get(&fence->base); 708 return fence; 709 } 710 711 /** 712 * radeon_fence_unref - remove a ref on a fence 713 * 714 * @fence: radeon fence object 715 * 716 * Remove a reference on a fence (all asics). 717 */ 718 void radeon_fence_unref(struct radeon_fence **fence) 719 { 720 struct radeon_fence *tmp = *fence; 721 722 *fence = NULL; 723 if (tmp) { 724 dma_fence_put(&tmp->base); 725 } 726 } 727 728 /** 729 * radeon_fence_count_emitted - get the count of emitted fences 730 * 731 * @rdev: radeon device pointer 732 * @ring: ring index the fence is associated with 733 * 734 * Get the number of fences emitted on the requested ring (all asics). 735 * Returns the number of emitted fences on the ring. Used by the 736 * dynpm code to ring track activity. 737 */ 738 unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring) 739 { 740 uint64_t emitted; 741 742 /* We are not protected by ring lock when reading the last sequence 743 * but it's ok to report slightly wrong fence count here. 744 */ 745 radeon_fence_process(rdev, ring); 746 emitted = rdev->fence_drv[ring].sync_seq[ring] 747 - atomic64_read(&rdev->fence_drv[ring].last_seq); 748 /* to avoid 32bits warp around */ 749 if (emitted > 0x10000000) { 750 emitted = 0x10000000; 751 } 752 return (unsigned)emitted; 753 } 754 755 /** 756 * radeon_fence_need_sync - do we need a semaphore 757 * 758 * @fence: radeon fence object 759 * @dst_ring: which ring to check against 760 * 761 * Check if the fence needs to be synced against another ring 762 * (all asics). If so, we need to emit a semaphore. 763 * Returns true if we need to sync with another ring, false if 764 * not. 765 */ 766 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring) 767 { 768 struct radeon_fence_driver *fdrv; 769 770 if (!fence) { 771 return false; 772 } 773 774 if (fence->ring == dst_ring) { 775 return false; 776 } 777 778 /* we are protected by the ring mutex */ 779 fdrv = &fence->rdev->fence_drv[dst_ring]; 780 if (fence->seq <= fdrv->sync_seq[fence->ring]) { 781 return false; 782 } 783 784 return true; 785 } 786 787 /** 788 * radeon_fence_note_sync - record the sync point 789 * 790 * @fence: radeon fence object 791 * @dst_ring: which ring to check against 792 * 793 * Note the sequence number at which point the fence will 794 * be synced with the requested ring (all asics). 795 */ 796 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring) 797 { 798 struct radeon_fence_driver *dst, *src; 799 unsigned i; 800 801 if (!fence) { 802 return; 803 } 804 805 if (fence->ring == dst_ring) { 806 return; 807 } 808 809 /* we are protected by the ring mutex */ 810 src = &fence->rdev->fence_drv[fence->ring]; 811 dst = &fence->rdev->fence_drv[dst_ring]; 812 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 813 if (i == dst_ring) { 814 continue; 815 } 816 dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]); 817 } 818 } 819 820 /** 821 * radeon_fence_driver_start_ring - make the fence driver 822 * ready for use on the requested ring. 823 * 824 * @rdev: radeon device pointer 825 * @ring: ring index to start the fence driver on 826 * 827 * Make the fence driver ready for processing (all asics). 828 * Not all asics have all rings, so each asic will only 829 * start the fence driver on the rings it has. 830 * Returns 0 for success, errors for failure. 831 */ 832 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring) 833 { 834 uint64_t index; 835 int r; 836 837 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg); 838 if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) { 839 rdev->fence_drv[ring].scratch_reg = 0; 840 if (ring != R600_RING_TYPE_UVD_INDEX) { 841 index = R600_WB_EVENT_OFFSET + ring * 4; 842 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4]; 843 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + 844 index; 845 846 } else { 847 /* put fence directly behind firmware */ 848 index = ALIGN(rdev->uvd_fw->size, 8); 849 rdev->fence_drv[ring].cpu_addr = rdev->uvd.cpu_addr + index; 850 rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index; 851 } 852 853 } else { 854 r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg); 855 if (r) { 856 dev_err(rdev->dev, "fence failed to get scratch register\n"); 857 return r; 858 } 859 index = RADEON_WB_SCRATCH_OFFSET + 860 rdev->fence_drv[ring].scratch_reg - 861 rdev->scratch.reg_base; 862 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4]; 863 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index; 864 } 865 radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring); 866 rdev->fence_drv[ring].initialized = true; 867 dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016llx\n", 868 ring, rdev->fence_drv[ring].gpu_addr); 869 return 0; 870 } 871 872 /** 873 * radeon_fence_driver_init_ring - init the fence driver 874 * for the requested ring. 875 * 876 * @rdev: radeon device pointer 877 * @ring: ring index to start the fence driver on 878 * 879 * Init the fence driver for the requested ring (all asics). 880 * Helper function for radeon_fence_driver_init(). 881 */ 882 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring) 883 { 884 int i; 885 886 rdev->fence_drv[ring].scratch_reg = -1; 887 rdev->fence_drv[ring].cpu_addr = NULL; 888 rdev->fence_drv[ring].gpu_addr = 0; 889 for (i = 0; i < RADEON_NUM_RINGS; ++i) 890 rdev->fence_drv[ring].sync_seq[i] = 0; 891 atomic64_set(&rdev->fence_drv[ring].last_seq, 0); 892 rdev->fence_drv[ring].initialized = false; 893 INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work, 894 radeon_fence_check_lockup); 895 rdev->fence_drv[ring].rdev = rdev; 896 } 897 898 /** 899 * radeon_fence_driver_init - init the fence driver 900 * for all possible rings. 901 * 902 * @rdev: radeon device pointer 903 * 904 * Init the fence driver for all possible rings (all asics). 905 * Not all asics have all rings, so each asic will only 906 * start the fence driver on the rings it has using 907 * radeon_fence_driver_start_ring(). 908 */ 909 void radeon_fence_driver_init(struct radeon_device *rdev) 910 { 911 int ring; 912 913 init_waitqueue_head(&rdev->fence_queue); 914 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) { 915 radeon_fence_driver_init_ring(rdev, ring); 916 } 917 918 radeon_debugfs_fence_init(rdev); 919 } 920 921 /** 922 * radeon_fence_driver_fini - tear down the fence driver 923 * for all possible rings. 924 * 925 * @rdev: radeon device pointer 926 * 927 * Tear down the fence driver for all possible rings (all asics). 928 */ 929 void radeon_fence_driver_fini(struct radeon_device *rdev) 930 { 931 int ring, r; 932 933 mutex_lock(&rdev->ring_lock); 934 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) { 935 if (!rdev->fence_drv[ring].initialized) 936 continue; 937 r = radeon_fence_wait_empty(rdev, ring); 938 if (r) { 939 /* no need to trigger GPU reset as we are unloading */ 940 radeon_fence_driver_force_completion(rdev, ring); 941 } 942 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work); 943 wake_up_all(&rdev->fence_queue); 944 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg); 945 rdev->fence_drv[ring].initialized = false; 946 } 947 mutex_unlock(&rdev->ring_lock); 948 } 949 950 /** 951 * radeon_fence_driver_force_completion - force all fence waiter to complete 952 * 953 * @rdev: radeon device pointer 954 * @ring: the ring to complete 955 * 956 * In case of GPU reset failure make sure no process keep waiting on fence 957 * that will never complete. 958 */ 959 void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring) 960 { 961 if (rdev->fence_drv[ring].initialized) { 962 radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring); 963 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work); 964 } 965 } 966 967 968 /* 969 * Fence debugfs 970 */ 971 #if defined(CONFIG_DEBUG_FS) 972 static int radeon_debugfs_fence_info_show(struct seq_file *m, void *data) 973 { 974 struct radeon_device *rdev = (struct radeon_device *)m->private; 975 int i, j; 976 977 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 978 if (!rdev->fence_drv[i].initialized) 979 continue; 980 981 radeon_fence_process(rdev, i); 982 983 seq_printf(m, "--- ring %d ---\n", i); 984 seq_printf(m, "Last signaled fence 0x%016llx\n", 985 (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq)); 986 seq_printf(m, "Last emitted 0x%016llx\n", 987 rdev->fence_drv[i].sync_seq[i]); 988 989 for (j = 0; j < RADEON_NUM_RINGS; ++j) { 990 if (i != j && rdev->fence_drv[j].initialized) 991 seq_printf(m, "Last sync to ring %d 0x%016llx\n", 992 j, rdev->fence_drv[i].sync_seq[j]); 993 } 994 } 995 return 0; 996 } 997 998 /* 999 * radeon_debugfs_gpu_reset - manually trigger a gpu reset 1000 * 1001 * Manually trigger a gpu reset at the next fence wait. 1002 */ 1003 static int radeon_debugfs_gpu_reset(void *data, u64 *val) 1004 { 1005 struct radeon_device *rdev = (struct radeon_device *)data; 1006 1007 down_read(&rdev->exclusive_lock); 1008 *val = rdev->needs_reset; 1009 rdev->needs_reset = true; 1010 wake_up_all(&rdev->fence_queue); 1011 up_read(&rdev->exclusive_lock); 1012 1013 return 0; 1014 } 1015 DEFINE_SHOW_ATTRIBUTE(radeon_debugfs_fence_info); 1016 DEFINE_DEBUGFS_ATTRIBUTE(radeon_debugfs_gpu_reset_fops, 1017 radeon_debugfs_gpu_reset, NULL, "%lld\n"); 1018 #endif 1019 1020 void radeon_debugfs_fence_init(struct radeon_device *rdev) 1021 { 1022 #if defined(CONFIG_DEBUG_FS) 1023 struct dentry *root = rdev->ddev->primary->debugfs_root; 1024 1025 debugfs_create_file("radeon_gpu_reset", 0444, root, rdev, 1026 &radeon_debugfs_gpu_reset_fops); 1027 debugfs_create_file("radeon_fence_info", 0444, root, rdev, 1028 &radeon_debugfs_fence_info_fops); 1029 1030 1031 #endif 1032 } 1033 1034 static const char *radeon_fence_get_driver_name(struct dma_fence *fence) 1035 { 1036 return "radeon"; 1037 } 1038 1039 static const char *radeon_fence_get_timeline_name(struct dma_fence *f) 1040 { 1041 struct radeon_fence *fence = to_radeon_fence(f); 1042 switch (fence->ring) { 1043 case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx"; 1044 case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1"; 1045 case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2"; 1046 case R600_RING_TYPE_DMA_INDEX: return "radeon.dma"; 1047 case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1"; 1048 case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd"; 1049 case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1"; 1050 case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2"; 1051 default: WARN_ON_ONCE(1); return "radeon.unk"; 1052 } 1053 } 1054 1055 static inline bool radeon_test_signaled(struct radeon_fence *fence) 1056 { 1057 return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->base.flags); 1058 } 1059 1060 struct radeon_wait_cb { 1061 struct dma_fence_cb base; 1062 struct task_struct *task; 1063 }; 1064 1065 static void 1066 radeon_fence_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 1067 { 1068 struct radeon_wait_cb *wait = 1069 container_of(cb, struct radeon_wait_cb, base); 1070 1071 wake_up_process(wait->task); 1072 } 1073 1074 static signed long radeon_fence_default_wait(struct dma_fence *f, bool intr, 1075 signed long t) 1076 { 1077 struct radeon_fence *fence = to_radeon_fence(f); 1078 struct radeon_device *rdev = fence->rdev; 1079 struct radeon_wait_cb cb; 1080 1081 cb.task = current; 1082 1083 if (dma_fence_add_callback(f, &cb.base, radeon_fence_wait_cb)) 1084 return t; 1085 1086 while (t > 0) { 1087 if (intr) 1088 set_current_state(TASK_INTERRUPTIBLE); 1089 else 1090 set_current_state(TASK_UNINTERRUPTIBLE); 1091 1092 /* 1093 * radeon_test_signaled must be called after 1094 * set_current_state to prevent a race with wake_up_process 1095 */ 1096 if (radeon_test_signaled(fence)) 1097 break; 1098 1099 if (rdev->needs_reset) { 1100 t = -EDEADLK; 1101 break; 1102 } 1103 1104 t = schedule_timeout(t); 1105 1106 if (t > 0 && intr && signal_pending(current)) 1107 t = -ERESTARTSYS; 1108 } 1109 1110 __set_current_state(TASK_RUNNING); 1111 dma_fence_remove_callback(f, &cb.base); 1112 1113 return t; 1114 } 1115 1116 const struct dma_fence_ops radeon_fence_ops = { 1117 .get_driver_name = radeon_fence_get_driver_name, 1118 .get_timeline_name = radeon_fence_get_timeline_name, 1119 .enable_signaling = radeon_fence_enable_signaling, 1120 .signaled = radeon_fence_is_signaled, 1121 .wait = radeon_fence_default_wait, 1122 .release = NULL, 1123 }; 1124