1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Dave Airlie 30 */ 31 #include <linux/seq_file.h> 32 #include <linux/atomic.h> 33 #include <linux/wait.h> 34 #include <linux/kref.h> 35 #include <linux/slab.h> 36 #include <linux/firmware.h> 37 #include <drm/drmP.h> 38 #include "radeon_reg.h" 39 #include "radeon.h" 40 #include "radeon_trace.h" 41 42 /* 43 * Fences 44 * Fences mark an event in the GPUs pipeline and are used 45 * for GPU/CPU synchronization. When the fence is written, 46 * it is expected that all buffers associated with that fence 47 * are no longer in use by the associated ring on the GPU and 48 * that the the relevant GPU caches have been flushed. Whether 49 * we use a scratch register or memory location depends on the asic 50 * and whether writeback is enabled. 51 */ 52 53 /** 54 * radeon_fence_write - write a fence value 55 * 56 * @rdev: radeon_device pointer 57 * @seq: sequence number to write 58 * @ring: ring index the fence is associated with 59 * 60 * Writes a fence value to memory or a scratch register (all asics). 61 */ 62 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring) 63 { 64 struct radeon_fence_driver *drv = &rdev->fence_drv[ring]; 65 if (likely(rdev->wb.enabled || !drv->scratch_reg)) { 66 if (drv->cpu_addr) { 67 *drv->cpu_addr = cpu_to_le32(seq); 68 } 69 } else { 70 WREG32(drv->scratch_reg, seq); 71 } 72 } 73 74 /** 75 * radeon_fence_read - read a fence value 76 * 77 * @rdev: radeon_device pointer 78 * @ring: ring index the fence is associated with 79 * 80 * Reads a fence value from memory or a scratch register (all asics). 81 * Returns the value of the fence read from memory or register. 82 */ 83 static u32 radeon_fence_read(struct radeon_device *rdev, int ring) 84 { 85 struct radeon_fence_driver *drv = &rdev->fence_drv[ring]; 86 u32 seq = 0; 87 88 if (likely(rdev->wb.enabled || !drv->scratch_reg)) { 89 if (drv->cpu_addr) { 90 seq = le32_to_cpu(*drv->cpu_addr); 91 } else { 92 seq = lower_32_bits(atomic64_read(&drv->last_seq)); 93 } 94 } else { 95 seq = RREG32(drv->scratch_reg); 96 } 97 return seq; 98 } 99 100 /** 101 * radeon_fence_schedule_check - schedule lockup check 102 * 103 * @rdev: radeon_device pointer 104 * @ring: ring index we should work with 105 * 106 * Queues a delayed work item to check for lockups. 107 */ 108 static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring) 109 { 110 /* 111 * Do not reset the timer here with mod_delayed_work, 112 * this can livelock in an interaction with TTM delayed destroy. 113 */ 114 queue_delayed_work(system_power_efficient_wq, 115 &rdev->fence_drv[ring].lockup_work, 116 RADEON_FENCE_JIFFIES_TIMEOUT); 117 } 118 119 /** 120 * radeon_fence_emit - emit a fence on the requested ring 121 * 122 * @rdev: radeon_device pointer 123 * @fence: radeon fence object 124 * @ring: ring index the fence is associated with 125 * 126 * Emits a fence command on the requested ring (all asics). 127 * Returns 0 on success, -ENOMEM on failure. 128 */ 129 int radeon_fence_emit(struct radeon_device *rdev, 130 struct radeon_fence **fence, 131 int ring) 132 { 133 u64 seq = ++rdev->fence_drv[ring].sync_seq[ring]; 134 135 /* we are protected by the ring emission mutex */ 136 *fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL); 137 if ((*fence) == NULL) { 138 return -ENOMEM; 139 } 140 (*fence)->rdev = rdev; 141 (*fence)->seq = seq; 142 (*fence)->ring = ring; 143 (*fence)->is_vm_update = false; 144 fence_init(&(*fence)->base, &radeon_fence_ops, 145 &rdev->fence_queue.lock, rdev->fence_context + ring, seq); 146 radeon_fence_ring_emit(rdev, ring, *fence); 147 trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq); 148 radeon_fence_schedule_check(rdev, ring); 149 return 0; 150 } 151 152 /** 153 * radeon_fence_check_signaled - callback from fence_queue 154 * 155 * this function is called with fence_queue lock held, which is also used 156 * for the fence locking itself, so unlocked variants are used for 157 * fence_signal, and remove_wait_queue. 158 */ 159 static int radeon_fence_check_signaled(wait_queue_t *wait, unsigned mode, int flags, void *key) 160 { 161 struct radeon_fence *fence; 162 u64 seq; 163 164 fence = container_of(wait, struct radeon_fence, fence_wake); 165 166 /* 167 * We cannot use radeon_fence_process here because we're already 168 * in the waitqueue, in a call from wake_up_all. 169 */ 170 seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq); 171 if (seq >= fence->seq) { 172 int ret = fence_signal_locked(&fence->base); 173 174 if (!ret) 175 FENCE_TRACE(&fence->base, "signaled from irq context\n"); 176 else 177 FENCE_TRACE(&fence->base, "was already signaled\n"); 178 179 radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring); 180 __remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake); 181 fence_put(&fence->base); 182 } else 183 FENCE_TRACE(&fence->base, "pending\n"); 184 return 0; 185 } 186 187 /** 188 * radeon_fence_activity - check for fence activity 189 * 190 * @rdev: radeon_device pointer 191 * @ring: ring index the fence is associated with 192 * 193 * Checks the current fence value and calculates the last 194 * signalled fence value. Returns true if activity occured 195 * on the ring, and the fence_queue should be waken up. 196 */ 197 static bool radeon_fence_activity(struct radeon_device *rdev, int ring) 198 { 199 uint64_t seq, last_seq, last_emitted; 200 unsigned count_loop = 0; 201 bool wake = false; 202 203 /* Note there is a scenario here for an infinite loop but it's 204 * very unlikely to happen. For it to happen, the current polling 205 * process need to be interrupted by another process and another 206 * process needs to update the last_seq btw the atomic read and 207 * xchg of the current process. 208 * 209 * More over for this to go in infinite loop there need to be 210 * continuously new fence signaled ie radeon_fence_read needs 211 * to return a different value each time for both the currently 212 * polling process and the other process that xchg the last_seq 213 * btw atomic read and xchg of the current process. And the 214 * value the other process set as last seq must be higher than 215 * the seq value we just read. Which means that current process 216 * need to be interrupted after radeon_fence_read and before 217 * atomic xchg. 218 * 219 * To be even more safe we count the number of time we loop and 220 * we bail after 10 loop just accepting the fact that we might 221 * have temporarly set the last_seq not to the true real last 222 * seq but to an older one. 223 */ 224 last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq); 225 do { 226 last_emitted = rdev->fence_drv[ring].sync_seq[ring]; 227 seq = radeon_fence_read(rdev, ring); 228 seq |= last_seq & 0xffffffff00000000LL; 229 if (seq < last_seq) { 230 seq &= 0xffffffff; 231 seq |= last_emitted & 0xffffffff00000000LL; 232 } 233 234 if (seq <= last_seq || seq > last_emitted) { 235 break; 236 } 237 /* If we loop over we don't want to return without 238 * checking if a fence is signaled as it means that the 239 * seq we just read is different from the previous on. 240 */ 241 wake = true; 242 last_seq = seq; 243 if ((count_loop++) > 10) { 244 /* We looped over too many time leave with the 245 * fact that we might have set an older fence 246 * seq then the current real last seq as signaled 247 * by the hw. 248 */ 249 break; 250 } 251 } while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq); 252 253 if (seq < last_emitted) 254 radeon_fence_schedule_check(rdev, ring); 255 256 return wake; 257 } 258 259 /** 260 * radeon_fence_check_lockup - check for hardware lockup 261 * 262 * @work: delayed work item 263 * 264 * Checks for fence activity and if there is none probe 265 * the hardware if a lockup occured. 266 */ 267 static void radeon_fence_check_lockup(struct work_struct *work) 268 { 269 struct radeon_fence_driver *fence_drv; 270 struct radeon_device *rdev; 271 int ring; 272 273 fence_drv = container_of(work, struct radeon_fence_driver, 274 lockup_work.work); 275 rdev = fence_drv->rdev; 276 ring = fence_drv - &rdev->fence_drv[0]; 277 278 if (!down_read_trylock(&rdev->exclusive_lock)) { 279 /* just reschedule the check if a reset is going on */ 280 radeon_fence_schedule_check(rdev, ring); 281 return; 282 } 283 284 if (fence_drv->delayed_irq && rdev->ddev->irq_enabled) { 285 unsigned long irqflags; 286 287 fence_drv->delayed_irq = false; 288 spin_lock_irqsave(&rdev->irq.lock, irqflags); 289 radeon_irq_set(rdev); 290 spin_unlock_irqrestore(&rdev->irq.lock, irqflags); 291 } 292 293 if (radeon_fence_activity(rdev, ring)) 294 wake_up_all(&rdev->fence_queue); 295 296 else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) { 297 298 /* good news we believe it's a lockup */ 299 dev_warn(rdev->dev, "GPU lockup (current fence id " 300 "0x%016llx last fence id 0x%016llx on ring %d)\n", 301 (uint64_t)atomic64_read(&fence_drv->last_seq), 302 fence_drv->sync_seq[ring], ring); 303 304 /* remember that we need an reset */ 305 rdev->needs_reset = true; 306 wake_up_all(&rdev->fence_queue); 307 } 308 up_read(&rdev->exclusive_lock); 309 } 310 311 /** 312 * radeon_fence_process - process a fence 313 * 314 * @rdev: radeon_device pointer 315 * @ring: ring index the fence is associated with 316 * 317 * Checks the current fence value and wakes the fence queue 318 * if the sequence number has increased (all asics). 319 */ 320 void radeon_fence_process(struct radeon_device *rdev, int ring) 321 { 322 if (radeon_fence_activity(rdev, ring)) 323 wake_up_all(&rdev->fence_queue); 324 } 325 326 /** 327 * radeon_fence_seq_signaled - check if a fence sequence number has signaled 328 * 329 * @rdev: radeon device pointer 330 * @seq: sequence number 331 * @ring: ring index the fence is associated with 332 * 333 * Check if the last signaled fence sequnce number is >= the requested 334 * sequence number (all asics). 335 * Returns true if the fence has signaled (current fence value 336 * is >= requested value) or false if it has not (current fence 337 * value is < the requested value. Helper function for 338 * radeon_fence_signaled(). 339 */ 340 static bool radeon_fence_seq_signaled(struct radeon_device *rdev, 341 u64 seq, unsigned ring) 342 { 343 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) { 344 return true; 345 } 346 /* poll new last sequence at least once */ 347 radeon_fence_process(rdev, ring); 348 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) { 349 return true; 350 } 351 return false; 352 } 353 354 static bool radeon_fence_is_signaled(struct fence *f) 355 { 356 struct radeon_fence *fence = to_radeon_fence(f); 357 struct radeon_device *rdev = fence->rdev; 358 unsigned ring = fence->ring; 359 u64 seq = fence->seq; 360 361 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) { 362 return true; 363 } 364 365 if (down_read_trylock(&rdev->exclusive_lock)) { 366 radeon_fence_process(rdev, ring); 367 up_read(&rdev->exclusive_lock); 368 369 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) { 370 return true; 371 } 372 } 373 return false; 374 } 375 376 /** 377 * radeon_fence_enable_signaling - enable signalling on fence 378 * @fence: fence 379 * 380 * This function is called with fence_queue lock held, and adds a callback 381 * to fence_queue that checks if this fence is signaled, and if so it 382 * signals the fence and removes itself. 383 */ 384 static bool radeon_fence_enable_signaling(struct fence *f) 385 { 386 struct radeon_fence *fence = to_radeon_fence(f); 387 struct radeon_device *rdev = fence->rdev; 388 389 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) 390 return false; 391 392 if (down_read_trylock(&rdev->exclusive_lock)) { 393 radeon_irq_kms_sw_irq_get(rdev, fence->ring); 394 395 if (radeon_fence_activity(rdev, fence->ring)) 396 wake_up_all_locked(&rdev->fence_queue); 397 398 /* did fence get signaled after we enabled the sw irq? */ 399 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) { 400 radeon_irq_kms_sw_irq_put(rdev, fence->ring); 401 up_read(&rdev->exclusive_lock); 402 return false; 403 } 404 405 up_read(&rdev->exclusive_lock); 406 } else { 407 /* we're probably in a lockup, lets not fiddle too much */ 408 if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring)) 409 rdev->fence_drv[fence->ring].delayed_irq = true; 410 radeon_fence_schedule_check(rdev, fence->ring); 411 } 412 413 fence->fence_wake.flags = 0; 414 fence->fence_wake.private = NULL; 415 fence->fence_wake.func = radeon_fence_check_signaled; 416 __add_wait_queue(&rdev->fence_queue, &fence->fence_wake); 417 fence_get(f); 418 419 FENCE_TRACE(&fence->base, "armed on ring %i!\n", fence->ring); 420 return true; 421 } 422 423 /** 424 * radeon_fence_signaled - check if a fence has signaled 425 * 426 * @fence: radeon fence object 427 * 428 * Check if the requested fence has signaled (all asics). 429 * Returns true if the fence has signaled or false if it has not. 430 */ 431 bool radeon_fence_signaled(struct radeon_fence *fence) 432 { 433 if (!fence) 434 return true; 435 436 if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) { 437 int ret; 438 439 ret = fence_signal(&fence->base); 440 if (!ret) 441 FENCE_TRACE(&fence->base, "signaled from radeon_fence_signaled\n"); 442 return true; 443 } 444 return false; 445 } 446 447 /** 448 * radeon_fence_any_seq_signaled - check if any sequence number is signaled 449 * 450 * @rdev: radeon device pointer 451 * @seq: sequence numbers 452 * 453 * Check if the last signaled fence sequnce number is >= the requested 454 * sequence number (all asics). 455 * Returns true if any has signaled (current value is >= requested value) 456 * or false if it has not. Helper function for radeon_fence_wait_seq. 457 */ 458 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq) 459 { 460 unsigned i; 461 462 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 463 if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i)) 464 return true; 465 } 466 return false; 467 } 468 469 /** 470 * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers 471 * 472 * @rdev: radeon device pointer 473 * @target_seq: sequence number(s) we want to wait for 474 * @intr: use interruptable sleep 475 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait 476 * 477 * Wait for the requested sequence number(s) to be written by any ring 478 * (all asics). Sequnce number array is indexed by ring id. 479 * @intr selects whether to use interruptable (true) or non-interruptable 480 * (false) sleep when waiting for the sequence number. Helper function 481 * for radeon_fence_wait_*(). 482 * Returns remaining time if the sequence number has passed, 0 when 483 * the wait timeout, or an error for all other cases. 484 * -EDEADLK is returned when a GPU lockup has been detected. 485 */ 486 static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev, 487 u64 *target_seq, bool intr, 488 long timeout) 489 { 490 long r; 491 int i; 492 493 if (radeon_fence_any_seq_signaled(rdev, target_seq)) 494 return timeout; 495 496 /* enable IRQs and tracing */ 497 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 498 if (!target_seq[i]) 499 continue; 500 501 trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]); 502 radeon_irq_kms_sw_irq_get(rdev, i); 503 } 504 505 if (intr) { 506 r = wait_event_interruptible_timeout(rdev->fence_queue, ( 507 radeon_fence_any_seq_signaled(rdev, target_seq) 508 || rdev->needs_reset), timeout); 509 } else { 510 r = wait_event_timeout(rdev->fence_queue, ( 511 radeon_fence_any_seq_signaled(rdev, target_seq) 512 || rdev->needs_reset), timeout); 513 } 514 515 if (rdev->needs_reset) 516 r = -EDEADLK; 517 518 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 519 if (!target_seq[i]) 520 continue; 521 522 radeon_irq_kms_sw_irq_put(rdev, i); 523 trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]); 524 } 525 526 return r; 527 } 528 529 /** 530 * radeon_fence_wait - wait for a fence to signal 531 * 532 * @fence: radeon fence object 533 * @intr: use interruptible sleep 534 * 535 * Wait for the requested fence to signal (all asics). 536 * @intr selects whether to use interruptable (true) or non-interruptable 537 * (false) sleep when waiting for the fence. 538 * Returns 0 if the fence has passed, error for all other cases. 539 */ 540 int radeon_fence_wait(struct radeon_fence *fence, bool intr) 541 { 542 uint64_t seq[RADEON_NUM_RINGS] = {}; 543 long r; 544 545 /* 546 * This function should not be called on !radeon fences. 547 * If this is the case, it would mean this function can 548 * also be called on radeon fences belonging to another card. 549 * exclusive_lock is not held in that case. 550 */ 551 if (WARN_ON_ONCE(!to_radeon_fence(&fence->base))) 552 return fence_wait(&fence->base, intr); 553 554 seq[fence->ring] = fence->seq; 555 r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, MAX_SCHEDULE_TIMEOUT); 556 if (r < 0) { 557 return r; 558 } 559 560 r = fence_signal(&fence->base); 561 if (!r) 562 FENCE_TRACE(&fence->base, "signaled from fence_wait\n"); 563 return 0; 564 } 565 566 /** 567 * radeon_fence_wait_any - wait for a fence to signal on any ring 568 * 569 * @rdev: radeon device pointer 570 * @fences: radeon fence object(s) 571 * @intr: use interruptable sleep 572 * 573 * Wait for any requested fence to signal (all asics). Fence 574 * array is indexed by ring id. @intr selects whether to use 575 * interruptable (true) or non-interruptable (false) sleep when 576 * waiting for the fences. Used by the suballocator. 577 * Returns 0 if any fence has passed, error for all other cases. 578 */ 579 int radeon_fence_wait_any(struct radeon_device *rdev, 580 struct radeon_fence **fences, 581 bool intr) 582 { 583 uint64_t seq[RADEON_NUM_RINGS]; 584 unsigned i, num_rings = 0; 585 long r; 586 587 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 588 seq[i] = 0; 589 590 if (!fences[i]) { 591 continue; 592 } 593 594 seq[i] = fences[i]->seq; 595 ++num_rings; 596 } 597 598 /* nothing to wait for ? */ 599 if (num_rings == 0) 600 return -ENOENT; 601 602 r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT); 603 if (r < 0) { 604 return r; 605 } 606 return 0; 607 } 608 609 /** 610 * radeon_fence_wait_next - wait for the next fence to signal 611 * 612 * @rdev: radeon device pointer 613 * @ring: ring index the fence is associated with 614 * 615 * Wait for the next fence on the requested ring to signal (all asics). 616 * Returns 0 if the next fence has passed, error for all other cases. 617 * Caller must hold ring lock. 618 */ 619 int radeon_fence_wait_next(struct radeon_device *rdev, int ring) 620 { 621 uint64_t seq[RADEON_NUM_RINGS] = {}; 622 long r; 623 624 seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL; 625 if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) { 626 /* nothing to wait for, last_seq is 627 already the last emited fence */ 628 return -ENOENT; 629 } 630 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT); 631 if (r < 0) 632 return r; 633 return 0; 634 } 635 636 /** 637 * radeon_fence_wait_empty - wait for all fences to signal 638 * 639 * @rdev: radeon device pointer 640 * @ring: ring index the fence is associated with 641 * 642 * Wait for all fences on the requested ring to signal (all asics). 643 * Returns 0 if the fences have passed, error for all other cases. 644 * Caller must hold ring lock. 645 */ 646 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring) 647 { 648 uint64_t seq[RADEON_NUM_RINGS] = {}; 649 long r; 650 651 seq[ring] = rdev->fence_drv[ring].sync_seq[ring]; 652 if (!seq[ring]) 653 return 0; 654 655 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT); 656 if (r < 0) { 657 if (r == -EDEADLK) 658 return -EDEADLK; 659 660 dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n", 661 ring, r); 662 } 663 return 0; 664 } 665 666 /** 667 * radeon_fence_ref - take a ref on a fence 668 * 669 * @fence: radeon fence object 670 * 671 * Take a reference on a fence (all asics). 672 * Returns the fence. 673 */ 674 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence) 675 { 676 fence_get(&fence->base); 677 return fence; 678 } 679 680 /** 681 * radeon_fence_unref - remove a ref on a fence 682 * 683 * @fence: radeon fence object 684 * 685 * Remove a reference on a fence (all asics). 686 */ 687 void radeon_fence_unref(struct radeon_fence **fence) 688 { 689 struct radeon_fence *tmp = *fence; 690 691 *fence = NULL; 692 if (tmp) { 693 fence_put(&tmp->base); 694 } 695 } 696 697 /** 698 * radeon_fence_count_emitted - get the count of emitted fences 699 * 700 * @rdev: radeon device pointer 701 * @ring: ring index the fence is associated with 702 * 703 * Get the number of fences emitted on the requested ring (all asics). 704 * Returns the number of emitted fences on the ring. Used by the 705 * dynpm code to ring track activity. 706 */ 707 unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring) 708 { 709 uint64_t emitted; 710 711 /* We are not protected by ring lock when reading the last sequence 712 * but it's ok to report slightly wrong fence count here. 713 */ 714 radeon_fence_process(rdev, ring); 715 emitted = rdev->fence_drv[ring].sync_seq[ring] 716 - atomic64_read(&rdev->fence_drv[ring].last_seq); 717 /* to avoid 32bits warp around */ 718 if (emitted > 0x10000000) { 719 emitted = 0x10000000; 720 } 721 return (unsigned)emitted; 722 } 723 724 /** 725 * radeon_fence_need_sync - do we need a semaphore 726 * 727 * @fence: radeon fence object 728 * @dst_ring: which ring to check against 729 * 730 * Check if the fence needs to be synced against another ring 731 * (all asics). If so, we need to emit a semaphore. 732 * Returns true if we need to sync with another ring, false if 733 * not. 734 */ 735 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring) 736 { 737 struct radeon_fence_driver *fdrv; 738 739 if (!fence) { 740 return false; 741 } 742 743 if (fence->ring == dst_ring) { 744 return false; 745 } 746 747 /* we are protected by the ring mutex */ 748 fdrv = &fence->rdev->fence_drv[dst_ring]; 749 if (fence->seq <= fdrv->sync_seq[fence->ring]) { 750 return false; 751 } 752 753 return true; 754 } 755 756 /** 757 * radeon_fence_note_sync - record the sync point 758 * 759 * @fence: radeon fence object 760 * @dst_ring: which ring to check against 761 * 762 * Note the sequence number at which point the fence will 763 * be synced with the requested ring (all asics). 764 */ 765 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring) 766 { 767 struct radeon_fence_driver *dst, *src; 768 unsigned i; 769 770 if (!fence) { 771 return; 772 } 773 774 if (fence->ring == dst_ring) { 775 return; 776 } 777 778 /* we are protected by the ring mutex */ 779 src = &fence->rdev->fence_drv[fence->ring]; 780 dst = &fence->rdev->fence_drv[dst_ring]; 781 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 782 if (i == dst_ring) { 783 continue; 784 } 785 dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]); 786 } 787 } 788 789 /** 790 * radeon_fence_driver_start_ring - make the fence driver 791 * ready for use on the requested ring. 792 * 793 * @rdev: radeon device pointer 794 * @ring: ring index to start the fence driver on 795 * 796 * Make the fence driver ready for processing (all asics). 797 * Not all asics have all rings, so each asic will only 798 * start the fence driver on the rings it has. 799 * Returns 0 for success, errors for failure. 800 */ 801 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring) 802 { 803 uint64_t index; 804 int r; 805 806 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg); 807 if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) { 808 rdev->fence_drv[ring].scratch_reg = 0; 809 if (ring != R600_RING_TYPE_UVD_INDEX) { 810 index = R600_WB_EVENT_OFFSET + ring * 4; 811 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4]; 812 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + 813 index; 814 815 } else { 816 /* put fence directly behind firmware */ 817 index = ALIGN(rdev->uvd_fw->size, 8); 818 rdev->fence_drv[ring].cpu_addr = rdev->uvd.cpu_addr + index; 819 rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index; 820 } 821 822 } else { 823 r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg); 824 if (r) { 825 dev_err(rdev->dev, "fence failed to get scratch register\n"); 826 return r; 827 } 828 index = RADEON_WB_SCRATCH_OFFSET + 829 rdev->fence_drv[ring].scratch_reg - 830 rdev->scratch.reg_base; 831 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4]; 832 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index; 833 } 834 radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring); 835 rdev->fence_drv[ring].initialized = true; 836 dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016llx and cpu addr 0x%p\n", 837 ring, rdev->fence_drv[ring].gpu_addr, rdev->fence_drv[ring].cpu_addr); 838 return 0; 839 } 840 841 /** 842 * radeon_fence_driver_init_ring - init the fence driver 843 * for the requested ring. 844 * 845 * @rdev: radeon device pointer 846 * @ring: ring index to start the fence driver on 847 * 848 * Init the fence driver for the requested ring (all asics). 849 * Helper function for radeon_fence_driver_init(). 850 */ 851 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring) 852 { 853 int i; 854 855 rdev->fence_drv[ring].scratch_reg = -1; 856 rdev->fence_drv[ring].cpu_addr = NULL; 857 rdev->fence_drv[ring].gpu_addr = 0; 858 for (i = 0; i < RADEON_NUM_RINGS; ++i) 859 rdev->fence_drv[ring].sync_seq[i] = 0; 860 atomic64_set(&rdev->fence_drv[ring].last_seq, 0); 861 rdev->fence_drv[ring].initialized = false; 862 INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work, 863 radeon_fence_check_lockup); 864 rdev->fence_drv[ring].rdev = rdev; 865 } 866 867 /** 868 * radeon_fence_driver_init - init the fence driver 869 * for all possible rings. 870 * 871 * @rdev: radeon device pointer 872 * 873 * Init the fence driver for all possible rings (all asics). 874 * Not all asics have all rings, so each asic will only 875 * start the fence driver on the rings it has using 876 * radeon_fence_driver_start_ring(). 877 * Returns 0 for success. 878 */ 879 int radeon_fence_driver_init(struct radeon_device *rdev) 880 { 881 int ring; 882 883 init_waitqueue_head(&rdev->fence_queue); 884 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) { 885 radeon_fence_driver_init_ring(rdev, ring); 886 } 887 if (radeon_debugfs_fence_init(rdev)) { 888 dev_err(rdev->dev, "fence debugfs file creation failed\n"); 889 } 890 return 0; 891 } 892 893 /** 894 * radeon_fence_driver_fini - tear down the fence driver 895 * for all possible rings. 896 * 897 * @rdev: radeon device pointer 898 * 899 * Tear down the fence driver for all possible rings (all asics). 900 */ 901 void radeon_fence_driver_fini(struct radeon_device *rdev) 902 { 903 int ring, r; 904 905 mutex_lock(&rdev->ring_lock); 906 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) { 907 if (!rdev->fence_drv[ring].initialized) 908 continue; 909 r = radeon_fence_wait_empty(rdev, ring); 910 if (r) { 911 /* no need to trigger GPU reset as we are unloading */ 912 radeon_fence_driver_force_completion(rdev, ring); 913 } 914 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work); 915 wake_up_all(&rdev->fence_queue); 916 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg); 917 rdev->fence_drv[ring].initialized = false; 918 } 919 mutex_unlock(&rdev->ring_lock); 920 } 921 922 /** 923 * radeon_fence_driver_force_completion - force all fence waiter to complete 924 * 925 * @rdev: radeon device pointer 926 * @ring: the ring to complete 927 * 928 * In case of GPU reset failure make sure no process keep waiting on fence 929 * that will never complete. 930 */ 931 void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring) 932 { 933 if (rdev->fence_drv[ring].initialized) { 934 radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring); 935 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work); 936 } 937 } 938 939 940 /* 941 * Fence debugfs 942 */ 943 #if defined(CONFIG_DEBUG_FS) 944 static int radeon_debugfs_fence_info(struct seq_file *m, void *data) 945 { 946 struct drm_info_node *node = (struct drm_info_node *)m->private; 947 struct drm_device *dev = node->minor->dev; 948 struct radeon_device *rdev = dev->dev_private; 949 int i, j; 950 951 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 952 if (!rdev->fence_drv[i].initialized) 953 continue; 954 955 radeon_fence_process(rdev, i); 956 957 seq_printf(m, "--- ring %d ---\n", i); 958 seq_printf(m, "Last signaled fence 0x%016llx\n", 959 (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq)); 960 seq_printf(m, "Last emitted 0x%016llx\n", 961 rdev->fence_drv[i].sync_seq[i]); 962 963 for (j = 0; j < RADEON_NUM_RINGS; ++j) { 964 if (i != j && rdev->fence_drv[j].initialized) 965 seq_printf(m, "Last sync to ring %d 0x%016llx\n", 966 j, rdev->fence_drv[i].sync_seq[j]); 967 } 968 } 969 return 0; 970 } 971 972 /** 973 * radeon_debugfs_gpu_reset - manually trigger a gpu reset 974 * 975 * Manually trigger a gpu reset at the next fence wait. 976 */ 977 static int radeon_debugfs_gpu_reset(struct seq_file *m, void *data) 978 { 979 struct drm_info_node *node = (struct drm_info_node *) m->private; 980 struct drm_device *dev = node->minor->dev; 981 struct radeon_device *rdev = dev->dev_private; 982 983 down_read(&rdev->exclusive_lock); 984 seq_printf(m, "%d\n", rdev->needs_reset); 985 rdev->needs_reset = true; 986 wake_up_all(&rdev->fence_queue); 987 up_read(&rdev->exclusive_lock); 988 989 return 0; 990 } 991 992 static struct drm_info_list radeon_debugfs_fence_list[] = { 993 {"radeon_fence_info", &radeon_debugfs_fence_info, 0, NULL}, 994 {"radeon_gpu_reset", &radeon_debugfs_gpu_reset, 0, NULL} 995 }; 996 #endif 997 998 int radeon_debugfs_fence_init(struct radeon_device *rdev) 999 { 1000 #if defined(CONFIG_DEBUG_FS) 1001 return radeon_debugfs_add_files(rdev, radeon_debugfs_fence_list, 2); 1002 #else 1003 return 0; 1004 #endif 1005 } 1006 1007 static const char *radeon_fence_get_driver_name(struct fence *fence) 1008 { 1009 return "radeon"; 1010 } 1011 1012 static const char *radeon_fence_get_timeline_name(struct fence *f) 1013 { 1014 struct radeon_fence *fence = to_radeon_fence(f); 1015 switch (fence->ring) { 1016 case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx"; 1017 case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1"; 1018 case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2"; 1019 case R600_RING_TYPE_DMA_INDEX: return "radeon.dma"; 1020 case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1"; 1021 case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd"; 1022 case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1"; 1023 case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2"; 1024 default: WARN_ON_ONCE(1); return "radeon.unk"; 1025 } 1026 } 1027 1028 static inline bool radeon_test_signaled(struct radeon_fence *fence) 1029 { 1030 return test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->base.flags); 1031 } 1032 1033 struct radeon_wait_cb { 1034 struct fence_cb base; 1035 struct task_struct *task; 1036 }; 1037 1038 static void 1039 radeon_fence_wait_cb(struct fence *fence, struct fence_cb *cb) 1040 { 1041 struct radeon_wait_cb *wait = 1042 container_of(cb, struct radeon_wait_cb, base); 1043 1044 wake_up_process(wait->task); 1045 } 1046 1047 static signed long radeon_fence_default_wait(struct fence *f, bool intr, 1048 signed long t) 1049 { 1050 struct radeon_fence *fence = to_radeon_fence(f); 1051 struct radeon_device *rdev = fence->rdev; 1052 struct radeon_wait_cb cb; 1053 1054 cb.task = current; 1055 1056 if (fence_add_callback(f, &cb.base, radeon_fence_wait_cb)) 1057 return t; 1058 1059 while (t > 0) { 1060 if (intr) 1061 set_current_state(TASK_INTERRUPTIBLE); 1062 else 1063 set_current_state(TASK_UNINTERRUPTIBLE); 1064 1065 /* 1066 * radeon_test_signaled must be called after 1067 * set_current_state to prevent a race with wake_up_process 1068 */ 1069 if (radeon_test_signaled(fence)) 1070 break; 1071 1072 if (rdev->needs_reset) { 1073 t = -EDEADLK; 1074 break; 1075 } 1076 1077 t = schedule_timeout(t); 1078 1079 if (t > 0 && intr && signal_pending(current)) 1080 t = -ERESTARTSYS; 1081 } 1082 1083 __set_current_state(TASK_RUNNING); 1084 fence_remove_callback(f, &cb.base); 1085 1086 return t; 1087 } 1088 1089 const struct fence_ops radeon_fence_ops = { 1090 .get_driver_name = radeon_fence_get_driver_name, 1091 .get_timeline_name = radeon_fence_get_timeline_name, 1092 .enable_signaling = radeon_fence_enable_signaling, 1093 .signaled = radeon_fence_is_signaled, 1094 .wait = radeon_fence_default_wait, 1095 .release = NULL, 1096 }; 1097