1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Dave Airlie
30  */
31 #include <linux/seq_file.h>
32 #include <linux/atomic.h>
33 #include <linux/wait.h>
34 #include <linux/kref.h>
35 #include <linux/slab.h>
36 #include <linux/firmware.h>
37 #include <drm/drmP.h>
38 #include "radeon_reg.h"
39 #include "radeon.h"
40 #include "radeon_trace.h"
41 
42 /*
43  * Fences
44  * Fences mark an event in the GPUs pipeline and are used
45  * for GPU/CPU synchronization.  When the fence is written,
46  * it is expected that all buffers associated with that fence
47  * are no longer in use by the associated ring on the GPU and
48  * that the the relevant GPU caches have been flushed.  Whether
49  * we use a scratch register or memory location depends on the asic
50  * and whether writeback is enabled.
51  */
52 
53 /**
54  * radeon_fence_write - write a fence value
55  *
56  * @rdev: radeon_device pointer
57  * @seq: sequence number to write
58  * @ring: ring index the fence is associated with
59  *
60  * Writes a fence value to memory or a scratch register (all asics).
61  */
62 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring)
63 {
64 	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
65 	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
66 		if (drv->cpu_addr) {
67 			*drv->cpu_addr = cpu_to_le32(seq);
68 		}
69 	} else {
70 		WREG32(drv->scratch_reg, seq);
71 	}
72 }
73 
74 /**
75  * radeon_fence_read - read a fence value
76  *
77  * @rdev: radeon_device pointer
78  * @ring: ring index the fence is associated with
79  *
80  * Reads a fence value from memory or a scratch register (all asics).
81  * Returns the value of the fence read from memory or register.
82  */
83 static u32 radeon_fence_read(struct radeon_device *rdev, int ring)
84 {
85 	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
86 	u32 seq = 0;
87 
88 	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
89 		if (drv->cpu_addr) {
90 			seq = le32_to_cpu(*drv->cpu_addr);
91 		} else {
92 			seq = lower_32_bits(atomic64_read(&drv->last_seq));
93 		}
94 	} else {
95 		seq = RREG32(drv->scratch_reg);
96 	}
97 	return seq;
98 }
99 
100 /**
101  * radeon_fence_schedule_check - schedule lockup check
102  *
103  * @rdev: radeon_device pointer
104  * @ring: ring index we should work with
105  *
106  * Queues a delayed work item to check for lockups.
107  */
108 static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring)
109 {
110 	/*
111 	 * Do not reset the timer here with mod_delayed_work,
112 	 * this can livelock in an interaction with TTM delayed destroy.
113 	 */
114 	queue_delayed_work(system_power_efficient_wq,
115 			   &rdev->fence_drv[ring].lockup_work,
116 			   RADEON_FENCE_JIFFIES_TIMEOUT);
117 }
118 
119 /**
120  * radeon_fence_emit - emit a fence on the requested ring
121  *
122  * @rdev: radeon_device pointer
123  * @fence: radeon fence object
124  * @ring: ring index the fence is associated with
125  *
126  * Emits a fence command on the requested ring (all asics).
127  * Returns 0 on success, -ENOMEM on failure.
128  */
129 int radeon_fence_emit(struct radeon_device *rdev,
130 		      struct radeon_fence **fence,
131 		      int ring)
132 {
133 	u64 seq = ++rdev->fence_drv[ring].sync_seq[ring];
134 
135 	/* we are protected by the ring emission mutex */
136 	*fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL);
137 	if ((*fence) == NULL) {
138 		return -ENOMEM;
139 	}
140 	(*fence)->rdev = rdev;
141 	(*fence)->seq = seq;
142 	(*fence)->ring = ring;
143 	(*fence)->is_vm_update = false;
144 	fence_init(&(*fence)->base, &radeon_fence_ops,
145 		   &rdev->fence_queue.lock, rdev->fence_context + ring, seq);
146 	radeon_fence_ring_emit(rdev, ring, *fence);
147 	trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq);
148 	radeon_fence_schedule_check(rdev, ring);
149 	return 0;
150 }
151 
152 /**
153  * radeon_fence_check_signaled - callback from fence_queue
154  *
155  * this function is called with fence_queue lock held, which is also used
156  * for the fence locking itself, so unlocked variants are used for
157  * fence_signal, and remove_wait_queue.
158  */
159 static int radeon_fence_check_signaled(wait_queue_t *wait, unsigned mode, int flags, void *key)
160 {
161 	struct radeon_fence *fence;
162 	u64 seq;
163 
164 	fence = container_of(wait, struct radeon_fence, fence_wake);
165 
166 	/*
167 	 * We cannot use radeon_fence_process here because we're already
168 	 * in the waitqueue, in a call from wake_up_all.
169 	 */
170 	seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq);
171 	if (seq >= fence->seq) {
172 		int ret = fence_signal_locked(&fence->base);
173 
174 		if (!ret)
175 			FENCE_TRACE(&fence->base, "signaled from irq context\n");
176 		else
177 			FENCE_TRACE(&fence->base, "was already signaled\n");
178 
179 		radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring);
180 		__remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake);
181 		fence_put(&fence->base);
182 	} else
183 		FENCE_TRACE(&fence->base, "pending\n");
184 	return 0;
185 }
186 
187 /**
188  * radeon_fence_activity - check for fence activity
189  *
190  * @rdev: radeon_device pointer
191  * @ring: ring index the fence is associated with
192  *
193  * Checks the current fence value and calculates the last
194  * signalled fence value. Returns true if activity occured
195  * on the ring, and the fence_queue should be waken up.
196  */
197 static bool radeon_fence_activity(struct radeon_device *rdev, int ring)
198 {
199 	uint64_t seq, last_seq, last_emitted;
200 	unsigned count_loop = 0;
201 	bool wake = false;
202 
203 	/* Note there is a scenario here for an infinite loop but it's
204 	 * very unlikely to happen. For it to happen, the current polling
205 	 * process need to be interrupted by another process and another
206 	 * process needs to update the last_seq btw the atomic read and
207 	 * xchg of the current process.
208 	 *
209 	 * More over for this to go in infinite loop there need to be
210 	 * continuously new fence signaled ie radeon_fence_read needs
211 	 * to return a different value each time for both the currently
212 	 * polling process and the other process that xchg the last_seq
213 	 * btw atomic read and xchg of the current process. And the
214 	 * value the other process set as last seq must be higher than
215 	 * the seq value we just read. Which means that current process
216 	 * need to be interrupted after radeon_fence_read and before
217 	 * atomic xchg.
218 	 *
219 	 * To be even more safe we count the number of time we loop and
220 	 * we bail after 10 loop just accepting the fact that we might
221 	 * have temporarly set the last_seq not to the true real last
222 	 * seq but to an older one.
223 	 */
224 	last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq);
225 	do {
226 		last_emitted = rdev->fence_drv[ring].sync_seq[ring];
227 		seq = radeon_fence_read(rdev, ring);
228 		seq |= last_seq & 0xffffffff00000000LL;
229 		if (seq < last_seq) {
230 			seq &= 0xffffffff;
231 			seq |= last_emitted & 0xffffffff00000000LL;
232 		}
233 
234 		if (seq <= last_seq || seq > last_emitted) {
235 			break;
236 		}
237 		/* If we loop over we don't want to return without
238 		 * checking if a fence is signaled as it means that the
239 		 * seq we just read is different from the previous on.
240 		 */
241 		wake = true;
242 		last_seq = seq;
243 		if ((count_loop++) > 10) {
244 			/* We looped over too many time leave with the
245 			 * fact that we might have set an older fence
246 			 * seq then the current real last seq as signaled
247 			 * by the hw.
248 			 */
249 			break;
250 		}
251 	} while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq);
252 
253 	if (seq < last_emitted)
254 		radeon_fence_schedule_check(rdev, ring);
255 
256 	return wake;
257 }
258 
259 /**
260  * radeon_fence_check_lockup - check for hardware lockup
261  *
262  * @work: delayed work item
263  *
264  * Checks for fence activity and if there is none probe
265  * the hardware if a lockup occured.
266  */
267 static void radeon_fence_check_lockup(struct work_struct *work)
268 {
269 	struct radeon_fence_driver *fence_drv;
270 	struct radeon_device *rdev;
271 	int ring;
272 
273 	fence_drv = container_of(work, struct radeon_fence_driver,
274 				 lockup_work.work);
275 	rdev = fence_drv->rdev;
276 	ring = fence_drv - &rdev->fence_drv[0];
277 
278 	if (!down_read_trylock(&rdev->exclusive_lock)) {
279 		/* just reschedule the check if a reset is going on */
280 		radeon_fence_schedule_check(rdev, ring);
281 		return;
282 	}
283 
284 	if (fence_drv->delayed_irq && rdev->ddev->irq_enabled) {
285 		unsigned long irqflags;
286 
287 		fence_drv->delayed_irq = false;
288 		spin_lock_irqsave(&rdev->irq.lock, irqflags);
289 		radeon_irq_set(rdev);
290 		spin_unlock_irqrestore(&rdev->irq.lock, irqflags);
291 	}
292 
293 	if (radeon_fence_activity(rdev, ring))
294 		wake_up_all(&rdev->fence_queue);
295 
296 	else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) {
297 
298 		/* good news we believe it's a lockup */
299 		dev_warn(rdev->dev, "GPU lockup (current fence id "
300 			 "0x%016llx last fence id 0x%016llx on ring %d)\n",
301 			 (uint64_t)atomic64_read(&fence_drv->last_seq),
302 			 fence_drv->sync_seq[ring], ring);
303 
304 		/* remember that we need an reset */
305 		rdev->needs_reset = true;
306 		wake_up_all(&rdev->fence_queue);
307 	}
308 	up_read(&rdev->exclusive_lock);
309 }
310 
311 /**
312  * radeon_fence_process - process a fence
313  *
314  * @rdev: radeon_device pointer
315  * @ring: ring index the fence is associated with
316  *
317  * Checks the current fence value and wakes the fence queue
318  * if the sequence number has increased (all asics).
319  */
320 void radeon_fence_process(struct radeon_device *rdev, int ring)
321 {
322 	if (radeon_fence_activity(rdev, ring))
323 		wake_up_all(&rdev->fence_queue);
324 }
325 
326 /**
327  * radeon_fence_seq_signaled - check if a fence sequence number has signaled
328  *
329  * @rdev: radeon device pointer
330  * @seq: sequence number
331  * @ring: ring index the fence is associated with
332  *
333  * Check if the last signaled fence sequnce number is >= the requested
334  * sequence number (all asics).
335  * Returns true if the fence has signaled (current fence value
336  * is >= requested value) or false if it has not (current fence
337  * value is < the requested value.  Helper function for
338  * radeon_fence_signaled().
339  */
340 static bool radeon_fence_seq_signaled(struct radeon_device *rdev,
341 				      u64 seq, unsigned ring)
342 {
343 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
344 		return true;
345 	}
346 	/* poll new last sequence at least once */
347 	radeon_fence_process(rdev, ring);
348 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
349 		return true;
350 	}
351 	return false;
352 }
353 
354 static bool radeon_fence_is_signaled(struct fence *f)
355 {
356 	struct radeon_fence *fence = to_radeon_fence(f);
357 	struct radeon_device *rdev = fence->rdev;
358 	unsigned ring = fence->ring;
359 	u64 seq = fence->seq;
360 
361 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
362 		return true;
363 	}
364 
365 	if (down_read_trylock(&rdev->exclusive_lock)) {
366 		radeon_fence_process(rdev, ring);
367 		up_read(&rdev->exclusive_lock);
368 
369 		if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
370 			return true;
371 		}
372 	}
373 	return false;
374 }
375 
376 /**
377  * radeon_fence_enable_signaling - enable signalling on fence
378  * @fence: fence
379  *
380  * This function is called with fence_queue lock held, and adds a callback
381  * to fence_queue that checks if this fence is signaled, and if so it
382  * signals the fence and removes itself.
383  */
384 static bool radeon_fence_enable_signaling(struct fence *f)
385 {
386 	struct radeon_fence *fence = to_radeon_fence(f);
387 	struct radeon_device *rdev = fence->rdev;
388 
389 	if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq)
390 		return false;
391 
392 	if (down_read_trylock(&rdev->exclusive_lock)) {
393 		radeon_irq_kms_sw_irq_get(rdev, fence->ring);
394 
395 		if (radeon_fence_activity(rdev, fence->ring))
396 			wake_up_all_locked(&rdev->fence_queue);
397 
398 		/* did fence get signaled after we enabled the sw irq? */
399 		if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) {
400 			radeon_irq_kms_sw_irq_put(rdev, fence->ring);
401 			up_read(&rdev->exclusive_lock);
402 			return false;
403 		}
404 
405 		up_read(&rdev->exclusive_lock);
406 	} else {
407 		/* we're probably in a lockup, lets not fiddle too much */
408 		if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring))
409 			rdev->fence_drv[fence->ring].delayed_irq = true;
410 		radeon_fence_schedule_check(rdev, fence->ring);
411 	}
412 
413 	fence->fence_wake.flags = 0;
414 	fence->fence_wake.private = NULL;
415 	fence->fence_wake.func = radeon_fence_check_signaled;
416 	__add_wait_queue(&rdev->fence_queue, &fence->fence_wake);
417 	fence_get(f);
418 
419 	FENCE_TRACE(&fence->base, "armed on ring %i!\n", fence->ring);
420 	return true;
421 }
422 
423 /**
424  * radeon_fence_signaled - check if a fence has signaled
425  *
426  * @fence: radeon fence object
427  *
428  * Check if the requested fence has signaled (all asics).
429  * Returns true if the fence has signaled or false if it has not.
430  */
431 bool radeon_fence_signaled(struct radeon_fence *fence)
432 {
433 	if (!fence)
434 		return true;
435 
436 	if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) {
437 		int ret;
438 
439 		ret = fence_signal(&fence->base);
440 		if (!ret)
441 			FENCE_TRACE(&fence->base, "signaled from radeon_fence_signaled\n");
442 		return true;
443 	}
444 	return false;
445 }
446 
447 /**
448  * radeon_fence_any_seq_signaled - check if any sequence number is signaled
449  *
450  * @rdev: radeon device pointer
451  * @seq: sequence numbers
452  *
453  * Check if the last signaled fence sequnce number is >= the requested
454  * sequence number (all asics).
455  * Returns true if any has signaled (current value is >= requested value)
456  * or false if it has not. Helper function for radeon_fence_wait_seq.
457  */
458 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq)
459 {
460 	unsigned i;
461 
462 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
463 		if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i))
464 			return true;
465 	}
466 	return false;
467 }
468 
469 /**
470  * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers
471  *
472  * @rdev: radeon device pointer
473  * @target_seq: sequence number(s) we want to wait for
474  * @intr: use interruptable sleep
475  * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
476  *
477  * Wait for the requested sequence number(s) to be written by any ring
478  * (all asics).  Sequnce number array is indexed by ring id.
479  * @intr selects whether to use interruptable (true) or non-interruptable
480  * (false) sleep when waiting for the sequence number.  Helper function
481  * for radeon_fence_wait_*().
482  * Returns remaining time if the sequence number has passed, 0 when
483  * the wait timeout, or an error for all other cases.
484  * -EDEADLK is returned when a GPU lockup has been detected.
485  */
486 static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev,
487 					  u64 *target_seq, bool intr,
488 					  long timeout)
489 {
490 	long r;
491 	int i;
492 
493 	if (radeon_fence_any_seq_signaled(rdev, target_seq))
494 		return timeout;
495 
496 	/* enable IRQs and tracing */
497 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
498 		if (!target_seq[i])
499 			continue;
500 
501 		trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]);
502 		radeon_irq_kms_sw_irq_get(rdev, i);
503 	}
504 
505 	if (intr) {
506 		r = wait_event_interruptible_timeout(rdev->fence_queue, (
507 			radeon_fence_any_seq_signaled(rdev, target_seq)
508 			 || rdev->needs_reset), timeout);
509 	} else {
510 		r = wait_event_timeout(rdev->fence_queue, (
511 			radeon_fence_any_seq_signaled(rdev, target_seq)
512 			 || rdev->needs_reset), timeout);
513 	}
514 
515 	if (rdev->needs_reset)
516 		r = -EDEADLK;
517 
518 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
519 		if (!target_seq[i])
520 			continue;
521 
522 		radeon_irq_kms_sw_irq_put(rdev, i);
523 		trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]);
524 	}
525 
526 	return r;
527 }
528 
529 /**
530  * radeon_fence_wait - wait for a fence to signal
531  *
532  * @fence: radeon fence object
533  * @intr: use interruptible sleep
534  *
535  * Wait for the requested fence to signal (all asics).
536  * @intr selects whether to use interruptable (true) or non-interruptable
537  * (false) sleep when waiting for the fence.
538  * Returns 0 if the fence has passed, error for all other cases.
539  */
540 int radeon_fence_wait(struct radeon_fence *fence, bool intr)
541 {
542 	uint64_t seq[RADEON_NUM_RINGS] = {};
543 	long r;
544 
545 	/*
546 	 * This function should not be called on !radeon fences.
547 	 * If this is the case, it would mean this function can
548 	 * also be called on radeon fences belonging to another card.
549 	 * exclusive_lock is not held in that case.
550 	 */
551 	if (WARN_ON_ONCE(!to_radeon_fence(&fence->base)))
552 		return fence_wait(&fence->base, intr);
553 
554 	seq[fence->ring] = fence->seq;
555 	r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, MAX_SCHEDULE_TIMEOUT);
556 	if (r < 0) {
557 		return r;
558 	}
559 
560 	r = fence_signal(&fence->base);
561 	if (!r)
562 		FENCE_TRACE(&fence->base, "signaled from fence_wait\n");
563 	return 0;
564 }
565 
566 /**
567  * radeon_fence_wait_any - wait for a fence to signal on any ring
568  *
569  * @rdev: radeon device pointer
570  * @fences: radeon fence object(s)
571  * @intr: use interruptable sleep
572  *
573  * Wait for any requested fence to signal (all asics).  Fence
574  * array is indexed by ring id.  @intr selects whether to use
575  * interruptable (true) or non-interruptable (false) sleep when
576  * waiting for the fences. Used by the suballocator.
577  * Returns 0 if any fence has passed, error for all other cases.
578  */
579 int radeon_fence_wait_any(struct radeon_device *rdev,
580 			  struct radeon_fence **fences,
581 			  bool intr)
582 {
583 	uint64_t seq[RADEON_NUM_RINGS];
584 	unsigned i, num_rings = 0;
585 	long r;
586 
587 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
588 		seq[i] = 0;
589 
590 		if (!fences[i]) {
591 			continue;
592 		}
593 
594 		seq[i] = fences[i]->seq;
595 		++num_rings;
596 	}
597 
598 	/* nothing to wait for ? */
599 	if (num_rings == 0)
600 		return -ENOENT;
601 
602 	r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT);
603 	if (r < 0) {
604 		return r;
605 	}
606 	return 0;
607 }
608 
609 /**
610  * radeon_fence_wait_next - wait for the next fence to signal
611  *
612  * @rdev: radeon device pointer
613  * @ring: ring index the fence is associated with
614  *
615  * Wait for the next fence on the requested ring to signal (all asics).
616  * Returns 0 if the next fence has passed, error for all other cases.
617  * Caller must hold ring lock.
618  */
619 int radeon_fence_wait_next(struct radeon_device *rdev, int ring)
620 {
621 	uint64_t seq[RADEON_NUM_RINGS] = {};
622 	long r;
623 
624 	seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL;
625 	if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) {
626 		/* nothing to wait for, last_seq is
627 		   already the last emited fence */
628 		return -ENOENT;
629 	}
630 	r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
631 	if (r < 0)
632 		return r;
633 	return 0;
634 }
635 
636 /**
637  * radeon_fence_wait_empty - wait for all fences to signal
638  *
639  * @rdev: radeon device pointer
640  * @ring: ring index the fence is associated with
641  *
642  * Wait for all fences on the requested ring to signal (all asics).
643  * Returns 0 if the fences have passed, error for all other cases.
644  * Caller must hold ring lock.
645  */
646 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring)
647 {
648 	uint64_t seq[RADEON_NUM_RINGS] = {};
649 	long r;
650 
651 	seq[ring] = rdev->fence_drv[ring].sync_seq[ring];
652 	if (!seq[ring])
653 		return 0;
654 
655 	r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
656 	if (r < 0) {
657 		if (r == -EDEADLK)
658 			return -EDEADLK;
659 
660 		dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n",
661 			ring, r);
662 	}
663 	return 0;
664 }
665 
666 /**
667  * radeon_fence_ref - take a ref on a fence
668  *
669  * @fence: radeon fence object
670  *
671  * Take a reference on a fence (all asics).
672  * Returns the fence.
673  */
674 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence)
675 {
676 	fence_get(&fence->base);
677 	return fence;
678 }
679 
680 /**
681  * radeon_fence_unref - remove a ref on a fence
682  *
683  * @fence: radeon fence object
684  *
685  * Remove a reference on a fence (all asics).
686  */
687 void radeon_fence_unref(struct radeon_fence **fence)
688 {
689 	struct radeon_fence *tmp = *fence;
690 
691 	*fence = NULL;
692 	if (tmp) {
693 		fence_put(&tmp->base);
694 	}
695 }
696 
697 /**
698  * radeon_fence_count_emitted - get the count of emitted fences
699  *
700  * @rdev: radeon device pointer
701  * @ring: ring index the fence is associated with
702  *
703  * Get the number of fences emitted on the requested ring (all asics).
704  * Returns the number of emitted fences on the ring.  Used by the
705  * dynpm code to ring track activity.
706  */
707 unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring)
708 {
709 	uint64_t emitted;
710 
711 	/* We are not protected by ring lock when reading the last sequence
712 	 * but it's ok to report slightly wrong fence count here.
713 	 */
714 	radeon_fence_process(rdev, ring);
715 	emitted = rdev->fence_drv[ring].sync_seq[ring]
716 		- atomic64_read(&rdev->fence_drv[ring].last_seq);
717 	/* to avoid 32bits warp around */
718 	if (emitted > 0x10000000) {
719 		emitted = 0x10000000;
720 	}
721 	return (unsigned)emitted;
722 }
723 
724 /**
725  * radeon_fence_need_sync - do we need a semaphore
726  *
727  * @fence: radeon fence object
728  * @dst_ring: which ring to check against
729  *
730  * Check if the fence needs to be synced against another ring
731  * (all asics).  If so, we need to emit a semaphore.
732  * Returns true if we need to sync with another ring, false if
733  * not.
734  */
735 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring)
736 {
737 	struct radeon_fence_driver *fdrv;
738 
739 	if (!fence) {
740 		return false;
741 	}
742 
743 	if (fence->ring == dst_ring) {
744 		return false;
745 	}
746 
747 	/* we are protected by the ring mutex */
748 	fdrv = &fence->rdev->fence_drv[dst_ring];
749 	if (fence->seq <= fdrv->sync_seq[fence->ring]) {
750 		return false;
751 	}
752 
753 	return true;
754 }
755 
756 /**
757  * radeon_fence_note_sync - record the sync point
758  *
759  * @fence: radeon fence object
760  * @dst_ring: which ring to check against
761  *
762  * Note the sequence number at which point the fence will
763  * be synced with the requested ring (all asics).
764  */
765 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring)
766 {
767 	struct radeon_fence_driver *dst, *src;
768 	unsigned i;
769 
770 	if (!fence) {
771 		return;
772 	}
773 
774 	if (fence->ring == dst_ring) {
775 		return;
776 	}
777 
778 	/* we are protected by the ring mutex */
779 	src = &fence->rdev->fence_drv[fence->ring];
780 	dst = &fence->rdev->fence_drv[dst_ring];
781 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
782 		if (i == dst_ring) {
783 			continue;
784 		}
785 		dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]);
786 	}
787 }
788 
789 /**
790  * radeon_fence_driver_start_ring - make the fence driver
791  * ready for use on the requested ring.
792  *
793  * @rdev: radeon device pointer
794  * @ring: ring index to start the fence driver on
795  *
796  * Make the fence driver ready for processing (all asics).
797  * Not all asics have all rings, so each asic will only
798  * start the fence driver on the rings it has.
799  * Returns 0 for success, errors for failure.
800  */
801 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring)
802 {
803 	uint64_t index;
804 	int r;
805 
806 	radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
807 	if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) {
808 		rdev->fence_drv[ring].scratch_reg = 0;
809 		if (ring != R600_RING_TYPE_UVD_INDEX) {
810 			index = R600_WB_EVENT_OFFSET + ring * 4;
811 			rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
812 			rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr +
813 							 index;
814 
815 		} else {
816 			/* put fence directly behind firmware */
817 			index = ALIGN(rdev->uvd_fw->size, 8);
818 			rdev->fence_drv[ring].cpu_addr = rdev->uvd.cpu_addr + index;
819 			rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index;
820 		}
821 
822 	} else {
823 		r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg);
824 		if (r) {
825 			dev_err(rdev->dev, "fence failed to get scratch register\n");
826 			return r;
827 		}
828 		index = RADEON_WB_SCRATCH_OFFSET +
829 			rdev->fence_drv[ring].scratch_reg -
830 			rdev->scratch.reg_base;
831 		rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
832 		rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index;
833 	}
834 	radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring);
835 	rdev->fence_drv[ring].initialized = true;
836 	dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016llx and cpu addr 0x%p\n",
837 		 ring, rdev->fence_drv[ring].gpu_addr, rdev->fence_drv[ring].cpu_addr);
838 	return 0;
839 }
840 
841 /**
842  * radeon_fence_driver_init_ring - init the fence driver
843  * for the requested ring.
844  *
845  * @rdev: radeon device pointer
846  * @ring: ring index to start the fence driver on
847  *
848  * Init the fence driver for the requested ring (all asics).
849  * Helper function for radeon_fence_driver_init().
850  */
851 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring)
852 {
853 	int i;
854 
855 	rdev->fence_drv[ring].scratch_reg = -1;
856 	rdev->fence_drv[ring].cpu_addr = NULL;
857 	rdev->fence_drv[ring].gpu_addr = 0;
858 	for (i = 0; i < RADEON_NUM_RINGS; ++i)
859 		rdev->fence_drv[ring].sync_seq[i] = 0;
860 	atomic64_set(&rdev->fence_drv[ring].last_seq, 0);
861 	rdev->fence_drv[ring].initialized = false;
862 	INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work,
863 			  radeon_fence_check_lockup);
864 	rdev->fence_drv[ring].rdev = rdev;
865 }
866 
867 /**
868  * radeon_fence_driver_init - init the fence driver
869  * for all possible rings.
870  *
871  * @rdev: radeon device pointer
872  *
873  * Init the fence driver for all possible rings (all asics).
874  * Not all asics have all rings, so each asic will only
875  * start the fence driver on the rings it has using
876  * radeon_fence_driver_start_ring().
877  * Returns 0 for success.
878  */
879 int radeon_fence_driver_init(struct radeon_device *rdev)
880 {
881 	int ring;
882 
883 	init_waitqueue_head(&rdev->fence_queue);
884 	for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
885 		radeon_fence_driver_init_ring(rdev, ring);
886 	}
887 	if (radeon_debugfs_fence_init(rdev)) {
888 		dev_err(rdev->dev, "fence debugfs file creation failed\n");
889 	}
890 	return 0;
891 }
892 
893 /**
894  * radeon_fence_driver_fini - tear down the fence driver
895  * for all possible rings.
896  *
897  * @rdev: radeon device pointer
898  *
899  * Tear down the fence driver for all possible rings (all asics).
900  */
901 void radeon_fence_driver_fini(struct radeon_device *rdev)
902 {
903 	int ring, r;
904 
905 	mutex_lock(&rdev->ring_lock);
906 	for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
907 		if (!rdev->fence_drv[ring].initialized)
908 			continue;
909 		r = radeon_fence_wait_empty(rdev, ring);
910 		if (r) {
911 			/* no need to trigger GPU reset as we are unloading */
912 			radeon_fence_driver_force_completion(rdev, ring);
913 		}
914 		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
915 		wake_up_all(&rdev->fence_queue);
916 		radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
917 		rdev->fence_drv[ring].initialized = false;
918 	}
919 	mutex_unlock(&rdev->ring_lock);
920 }
921 
922 /**
923  * radeon_fence_driver_force_completion - force all fence waiter to complete
924  *
925  * @rdev: radeon device pointer
926  * @ring: the ring to complete
927  *
928  * In case of GPU reset failure make sure no process keep waiting on fence
929  * that will never complete.
930  */
931 void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring)
932 {
933 	if (rdev->fence_drv[ring].initialized) {
934 		radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring);
935 		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
936 	}
937 }
938 
939 
940 /*
941  * Fence debugfs
942  */
943 #if defined(CONFIG_DEBUG_FS)
944 static int radeon_debugfs_fence_info(struct seq_file *m, void *data)
945 {
946 	struct drm_info_node *node = (struct drm_info_node *)m->private;
947 	struct drm_device *dev = node->minor->dev;
948 	struct radeon_device *rdev = dev->dev_private;
949 	int i, j;
950 
951 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
952 		if (!rdev->fence_drv[i].initialized)
953 			continue;
954 
955 		radeon_fence_process(rdev, i);
956 
957 		seq_printf(m, "--- ring %d ---\n", i);
958 		seq_printf(m, "Last signaled fence 0x%016llx\n",
959 			   (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq));
960 		seq_printf(m, "Last emitted        0x%016llx\n",
961 			   rdev->fence_drv[i].sync_seq[i]);
962 
963 		for (j = 0; j < RADEON_NUM_RINGS; ++j) {
964 			if (i != j && rdev->fence_drv[j].initialized)
965 				seq_printf(m, "Last sync to ring %d 0x%016llx\n",
966 					   j, rdev->fence_drv[i].sync_seq[j]);
967 		}
968 	}
969 	return 0;
970 }
971 
972 /**
973  * radeon_debugfs_gpu_reset - manually trigger a gpu reset
974  *
975  * Manually trigger a gpu reset at the next fence wait.
976  */
977 static int radeon_debugfs_gpu_reset(struct seq_file *m, void *data)
978 {
979 	struct drm_info_node *node = (struct drm_info_node *) m->private;
980 	struct drm_device *dev = node->minor->dev;
981 	struct radeon_device *rdev = dev->dev_private;
982 
983 	down_read(&rdev->exclusive_lock);
984 	seq_printf(m, "%d\n", rdev->needs_reset);
985 	rdev->needs_reset = true;
986 	wake_up_all(&rdev->fence_queue);
987 	up_read(&rdev->exclusive_lock);
988 
989 	return 0;
990 }
991 
992 static struct drm_info_list radeon_debugfs_fence_list[] = {
993 	{"radeon_fence_info", &radeon_debugfs_fence_info, 0, NULL},
994 	{"radeon_gpu_reset", &radeon_debugfs_gpu_reset, 0, NULL}
995 };
996 #endif
997 
998 int radeon_debugfs_fence_init(struct radeon_device *rdev)
999 {
1000 #if defined(CONFIG_DEBUG_FS)
1001 	return radeon_debugfs_add_files(rdev, radeon_debugfs_fence_list, 2);
1002 #else
1003 	return 0;
1004 #endif
1005 }
1006 
1007 static const char *radeon_fence_get_driver_name(struct fence *fence)
1008 {
1009 	return "radeon";
1010 }
1011 
1012 static const char *radeon_fence_get_timeline_name(struct fence *f)
1013 {
1014 	struct radeon_fence *fence = to_radeon_fence(f);
1015 	switch (fence->ring) {
1016 	case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx";
1017 	case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1";
1018 	case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2";
1019 	case R600_RING_TYPE_DMA_INDEX: return "radeon.dma";
1020 	case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1";
1021 	case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd";
1022 	case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1";
1023 	case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2";
1024 	default: WARN_ON_ONCE(1); return "radeon.unk";
1025 	}
1026 }
1027 
1028 static inline bool radeon_test_signaled(struct radeon_fence *fence)
1029 {
1030 	return test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->base.flags);
1031 }
1032 
1033 struct radeon_wait_cb {
1034 	struct fence_cb base;
1035 	struct task_struct *task;
1036 };
1037 
1038 static void
1039 radeon_fence_wait_cb(struct fence *fence, struct fence_cb *cb)
1040 {
1041 	struct radeon_wait_cb *wait =
1042 		container_of(cb, struct radeon_wait_cb, base);
1043 
1044 	wake_up_process(wait->task);
1045 }
1046 
1047 static signed long radeon_fence_default_wait(struct fence *f, bool intr,
1048 					     signed long t)
1049 {
1050 	struct radeon_fence *fence = to_radeon_fence(f);
1051 	struct radeon_device *rdev = fence->rdev;
1052 	struct radeon_wait_cb cb;
1053 
1054 	cb.task = current;
1055 
1056 	if (fence_add_callback(f, &cb.base, radeon_fence_wait_cb))
1057 		return t;
1058 
1059 	while (t > 0) {
1060 		if (intr)
1061 			set_current_state(TASK_INTERRUPTIBLE);
1062 		else
1063 			set_current_state(TASK_UNINTERRUPTIBLE);
1064 
1065 		/*
1066 		 * radeon_test_signaled must be called after
1067 		 * set_current_state to prevent a race with wake_up_process
1068 		 */
1069 		if (radeon_test_signaled(fence))
1070 			break;
1071 
1072 		if (rdev->needs_reset) {
1073 			t = -EDEADLK;
1074 			break;
1075 		}
1076 
1077 		t = schedule_timeout(t);
1078 
1079 		if (t > 0 && intr && signal_pending(current))
1080 			t = -ERESTARTSYS;
1081 	}
1082 
1083 	__set_current_state(TASK_RUNNING);
1084 	fence_remove_callback(f, &cb.base);
1085 
1086 	return t;
1087 }
1088 
1089 const struct fence_ops radeon_fence_ops = {
1090 	.get_driver_name = radeon_fence_get_driver_name,
1091 	.get_timeline_name = radeon_fence_get_timeline_name,
1092 	.enable_signaling = radeon_fence_enable_signaling,
1093 	.signaled = radeon_fence_is_signaled,
1094 	.wait = radeon_fence_default_wait,
1095 	.release = NULL,
1096 };
1097