1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Dave Airlie 30 */ 31 #include <linux/seq_file.h> 32 #include <linux/atomic.h> 33 #include <linux/wait.h> 34 #include <linux/kref.h> 35 #include <linux/slab.h> 36 #include <linux/firmware.h> 37 #include <drm/drmP.h> 38 #include "radeon_reg.h" 39 #include "radeon.h" 40 #include "radeon_trace.h" 41 42 /* 43 * Fences 44 * Fences mark an event in the GPUs pipeline and are used 45 * for GPU/CPU synchronization. When the fence is written, 46 * it is expected that all buffers associated with that fence 47 * are no longer in use by the associated ring on the GPU and 48 * that the the relevant GPU caches have been flushed. Whether 49 * we use a scratch register or memory location depends on the asic 50 * and whether writeback is enabled. 51 */ 52 53 /** 54 * radeon_fence_write - write a fence value 55 * 56 * @rdev: radeon_device pointer 57 * @seq: sequence number to write 58 * @ring: ring index the fence is associated with 59 * 60 * Writes a fence value to memory or a scratch register (all asics). 61 */ 62 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring) 63 { 64 struct radeon_fence_driver *drv = &rdev->fence_drv[ring]; 65 if (likely(rdev->wb.enabled || !drv->scratch_reg)) { 66 if (drv->cpu_addr) { 67 *drv->cpu_addr = cpu_to_le32(seq); 68 } 69 } else { 70 WREG32(drv->scratch_reg, seq); 71 } 72 } 73 74 /** 75 * radeon_fence_read - read a fence value 76 * 77 * @rdev: radeon_device pointer 78 * @ring: ring index the fence is associated with 79 * 80 * Reads a fence value from memory or a scratch register (all asics). 81 * Returns the value of the fence read from memory or register. 82 */ 83 static u32 radeon_fence_read(struct radeon_device *rdev, int ring) 84 { 85 struct radeon_fence_driver *drv = &rdev->fence_drv[ring]; 86 u32 seq = 0; 87 88 if (likely(rdev->wb.enabled || !drv->scratch_reg)) { 89 if (drv->cpu_addr) { 90 seq = le32_to_cpu(*drv->cpu_addr); 91 } else { 92 seq = lower_32_bits(atomic64_read(&drv->last_seq)); 93 } 94 } else { 95 seq = RREG32(drv->scratch_reg); 96 } 97 return seq; 98 } 99 100 /** 101 * radeon_fence_emit - emit a fence on the requested ring 102 * 103 * @rdev: radeon_device pointer 104 * @fence: radeon fence object 105 * @ring: ring index the fence is associated with 106 * 107 * Emits a fence command on the requested ring (all asics). 108 * Returns 0 on success, -ENOMEM on failure. 109 */ 110 int radeon_fence_emit(struct radeon_device *rdev, 111 struct radeon_fence **fence, 112 int ring) 113 { 114 /* we are protected by the ring emission mutex */ 115 *fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL); 116 if ((*fence) == NULL) { 117 return -ENOMEM; 118 } 119 kref_init(&((*fence)->kref)); 120 (*fence)->rdev = rdev; 121 (*fence)->seq = ++rdev->fence_drv[ring].sync_seq[ring]; 122 (*fence)->ring = ring; 123 radeon_fence_ring_emit(rdev, ring, *fence); 124 trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq); 125 return 0; 126 } 127 128 /** 129 * radeon_fence_process - process a fence 130 * 131 * @rdev: radeon_device pointer 132 * @ring: ring index the fence is associated with 133 * 134 * Checks the current fence value and wakes the fence queue 135 * if the sequence number has increased (all asics). 136 */ 137 void radeon_fence_process(struct radeon_device *rdev, int ring) 138 { 139 uint64_t seq, last_seq, last_emitted; 140 unsigned count_loop = 0; 141 bool wake = false; 142 143 /* Note there is a scenario here for an infinite loop but it's 144 * very unlikely to happen. For it to happen, the current polling 145 * process need to be interrupted by another process and another 146 * process needs to update the last_seq btw the atomic read and 147 * xchg of the current process. 148 * 149 * More over for this to go in infinite loop there need to be 150 * continuously new fence signaled ie radeon_fence_read needs 151 * to return a different value each time for both the currently 152 * polling process and the other process that xchg the last_seq 153 * btw atomic read and xchg of the current process. And the 154 * value the other process set as last seq must be higher than 155 * the seq value we just read. Which means that current process 156 * need to be interrupted after radeon_fence_read and before 157 * atomic xchg. 158 * 159 * To be even more safe we count the number of time we loop and 160 * we bail after 10 loop just accepting the fact that we might 161 * have temporarly set the last_seq not to the true real last 162 * seq but to an older one. 163 */ 164 last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq); 165 do { 166 last_emitted = rdev->fence_drv[ring].sync_seq[ring]; 167 seq = radeon_fence_read(rdev, ring); 168 seq |= last_seq & 0xffffffff00000000LL; 169 if (seq < last_seq) { 170 seq &= 0xffffffff; 171 seq |= last_emitted & 0xffffffff00000000LL; 172 } 173 174 if (seq <= last_seq || seq > last_emitted) { 175 break; 176 } 177 /* If we loop over we don't want to return without 178 * checking if a fence is signaled as it means that the 179 * seq we just read is different from the previous on. 180 */ 181 wake = true; 182 last_seq = seq; 183 if ((count_loop++) > 10) { 184 /* We looped over too many time leave with the 185 * fact that we might have set an older fence 186 * seq then the current real last seq as signaled 187 * by the hw. 188 */ 189 break; 190 } 191 } while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq); 192 193 if (wake) 194 wake_up_all(&rdev->fence_queue); 195 } 196 197 /** 198 * radeon_fence_destroy - destroy a fence 199 * 200 * @kref: fence kref 201 * 202 * Frees the fence object (all asics). 203 */ 204 static void radeon_fence_destroy(struct kref *kref) 205 { 206 struct radeon_fence *fence; 207 208 fence = container_of(kref, struct radeon_fence, kref); 209 kfree(fence); 210 } 211 212 /** 213 * radeon_fence_seq_signaled - check if a fence sequence number has signaled 214 * 215 * @rdev: radeon device pointer 216 * @seq: sequence number 217 * @ring: ring index the fence is associated with 218 * 219 * Check if the last signaled fence sequnce number is >= the requested 220 * sequence number (all asics). 221 * Returns true if the fence has signaled (current fence value 222 * is >= requested value) or false if it has not (current fence 223 * value is < the requested value. Helper function for 224 * radeon_fence_signaled(). 225 */ 226 static bool radeon_fence_seq_signaled(struct radeon_device *rdev, 227 u64 seq, unsigned ring) 228 { 229 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) { 230 return true; 231 } 232 /* poll new last sequence at least once */ 233 radeon_fence_process(rdev, ring); 234 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) { 235 return true; 236 } 237 return false; 238 } 239 240 /** 241 * radeon_fence_signaled - check if a fence has signaled 242 * 243 * @fence: radeon fence object 244 * 245 * Check if the requested fence has signaled (all asics). 246 * Returns true if the fence has signaled or false if it has not. 247 */ 248 bool radeon_fence_signaled(struct radeon_fence *fence) 249 { 250 if (!fence) { 251 return true; 252 } 253 if (fence->seq == RADEON_FENCE_SIGNALED_SEQ) { 254 return true; 255 } 256 if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) { 257 fence->seq = RADEON_FENCE_SIGNALED_SEQ; 258 return true; 259 } 260 return false; 261 } 262 263 /** 264 * radeon_fence_any_seq_signaled - check if any sequence number is signaled 265 * 266 * @rdev: radeon device pointer 267 * @seq: sequence numbers 268 * 269 * Check if the last signaled fence sequnce number is >= the requested 270 * sequence number (all asics). 271 * Returns true if any has signaled (current value is >= requested value) 272 * or false if it has not. Helper function for radeon_fence_wait_seq. 273 */ 274 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq) 275 { 276 unsigned i; 277 278 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 279 if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i)) 280 return true; 281 } 282 return false; 283 } 284 285 /** 286 * radeon_fence_wait_seq - wait for a specific sequence numbers 287 * 288 * @rdev: radeon device pointer 289 * @target_seq: sequence number(s) we want to wait for 290 * @intr: use interruptable sleep 291 * 292 * Wait for the requested sequence number(s) to be written by any ring 293 * (all asics). Sequnce number array is indexed by ring id. 294 * @intr selects whether to use interruptable (true) or non-interruptable 295 * (false) sleep when waiting for the sequence number. Helper function 296 * for radeon_fence_wait_*(). 297 * Returns 0 if the sequence number has passed, error for all other cases. 298 * -EDEADLK is returned when a GPU lockup has been detected. 299 */ 300 static int radeon_fence_wait_seq(struct radeon_device *rdev, u64 *target_seq, 301 bool intr) 302 { 303 uint64_t last_seq[RADEON_NUM_RINGS]; 304 bool signaled; 305 int i, r; 306 307 while (!radeon_fence_any_seq_signaled(rdev, target_seq)) { 308 309 /* Save current sequence values, used to check for GPU lockups */ 310 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 311 if (!target_seq[i]) 312 continue; 313 314 last_seq[i] = atomic64_read(&rdev->fence_drv[i].last_seq); 315 trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]); 316 radeon_irq_kms_sw_irq_get(rdev, i); 317 } 318 319 if (intr) { 320 r = wait_event_interruptible_timeout(rdev->fence_queue, ( 321 (signaled = radeon_fence_any_seq_signaled(rdev, target_seq)) 322 || rdev->needs_reset), RADEON_FENCE_JIFFIES_TIMEOUT); 323 } else { 324 r = wait_event_timeout(rdev->fence_queue, ( 325 (signaled = radeon_fence_any_seq_signaled(rdev, target_seq)) 326 || rdev->needs_reset), RADEON_FENCE_JIFFIES_TIMEOUT); 327 } 328 329 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 330 if (!target_seq[i]) 331 continue; 332 333 radeon_irq_kms_sw_irq_put(rdev, i); 334 trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]); 335 } 336 337 if (unlikely(r < 0)) 338 return r; 339 340 if (unlikely(!signaled)) { 341 if (rdev->needs_reset) 342 return -EDEADLK; 343 344 /* we were interrupted for some reason and fence 345 * isn't signaled yet, resume waiting */ 346 if (r) 347 continue; 348 349 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 350 if (!target_seq[i]) 351 continue; 352 353 if (last_seq[i] != atomic64_read(&rdev->fence_drv[i].last_seq)) 354 break; 355 } 356 357 if (i != RADEON_NUM_RINGS) 358 continue; 359 360 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 361 if (!target_seq[i]) 362 continue; 363 364 if (radeon_ring_is_lockup(rdev, i, &rdev->ring[i])) 365 break; 366 } 367 368 if (i < RADEON_NUM_RINGS) { 369 /* good news we believe it's a lockup */ 370 dev_warn(rdev->dev, "GPU lockup (waiting for " 371 "0x%016llx last fence id 0x%016llx on" 372 " ring %d)\n", 373 target_seq[i], last_seq[i], i); 374 375 /* remember that we need an reset */ 376 rdev->needs_reset = true; 377 wake_up_all(&rdev->fence_queue); 378 return -EDEADLK; 379 } 380 } 381 } 382 return 0; 383 } 384 385 /** 386 * radeon_fence_wait - wait for a fence to signal 387 * 388 * @fence: radeon fence object 389 * @intr: use interruptable sleep 390 * 391 * Wait for the requested fence to signal (all asics). 392 * @intr selects whether to use interruptable (true) or non-interruptable 393 * (false) sleep when waiting for the fence. 394 * Returns 0 if the fence has passed, error for all other cases. 395 */ 396 int radeon_fence_wait(struct radeon_fence *fence, bool intr) 397 { 398 uint64_t seq[RADEON_NUM_RINGS] = {}; 399 int r; 400 401 if (fence == NULL) { 402 WARN(1, "Querying an invalid fence : %p !\n", fence); 403 return -EINVAL; 404 } 405 406 seq[fence->ring] = fence->seq; 407 if (seq[fence->ring] == RADEON_FENCE_SIGNALED_SEQ) 408 return 0; 409 410 r = radeon_fence_wait_seq(fence->rdev, seq, intr); 411 if (r) 412 return r; 413 414 fence->seq = RADEON_FENCE_SIGNALED_SEQ; 415 return 0; 416 } 417 418 /** 419 * radeon_fence_wait_any - wait for a fence to signal on any ring 420 * 421 * @rdev: radeon device pointer 422 * @fences: radeon fence object(s) 423 * @intr: use interruptable sleep 424 * 425 * Wait for any requested fence to signal (all asics). Fence 426 * array is indexed by ring id. @intr selects whether to use 427 * interruptable (true) or non-interruptable (false) sleep when 428 * waiting for the fences. Used by the suballocator. 429 * Returns 0 if any fence has passed, error for all other cases. 430 */ 431 int radeon_fence_wait_any(struct radeon_device *rdev, 432 struct radeon_fence **fences, 433 bool intr) 434 { 435 uint64_t seq[RADEON_NUM_RINGS]; 436 unsigned i, num_rings = 0; 437 int r; 438 439 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 440 seq[i] = 0; 441 442 if (!fences[i]) { 443 continue; 444 } 445 446 seq[i] = fences[i]->seq; 447 ++num_rings; 448 449 /* test if something was allready signaled */ 450 if (seq[i] == RADEON_FENCE_SIGNALED_SEQ) 451 return 0; 452 } 453 454 /* nothing to wait for ? */ 455 if (num_rings == 0) 456 return -ENOENT; 457 458 r = radeon_fence_wait_seq(rdev, seq, intr); 459 if (r) { 460 return r; 461 } 462 return 0; 463 } 464 465 /** 466 * radeon_fence_wait_next - wait for the next fence to signal 467 * 468 * @rdev: radeon device pointer 469 * @ring: ring index the fence is associated with 470 * 471 * Wait for the next fence on the requested ring to signal (all asics). 472 * Returns 0 if the next fence has passed, error for all other cases. 473 * Caller must hold ring lock. 474 */ 475 int radeon_fence_wait_next(struct radeon_device *rdev, int ring) 476 { 477 uint64_t seq[RADEON_NUM_RINGS] = {}; 478 479 seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL; 480 if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) { 481 /* nothing to wait for, last_seq is 482 already the last emited fence */ 483 return -ENOENT; 484 } 485 return radeon_fence_wait_seq(rdev, seq, false); 486 } 487 488 /** 489 * radeon_fence_wait_empty - wait for all fences to signal 490 * 491 * @rdev: radeon device pointer 492 * @ring: ring index the fence is associated with 493 * 494 * Wait for all fences on the requested ring to signal (all asics). 495 * Returns 0 if the fences have passed, error for all other cases. 496 * Caller must hold ring lock. 497 */ 498 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring) 499 { 500 uint64_t seq[RADEON_NUM_RINGS] = {}; 501 int r; 502 503 seq[ring] = rdev->fence_drv[ring].sync_seq[ring]; 504 if (!seq[ring]) 505 return 0; 506 507 r = radeon_fence_wait_seq(rdev, seq, false); 508 if (r) { 509 if (r == -EDEADLK) 510 return -EDEADLK; 511 512 dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%d)\n", 513 ring, r); 514 } 515 return 0; 516 } 517 518 /** 519 * radeon_fence_ref - take a ref on a fence 520 * 521 * @fence: radeon fence object 522 * 523 * Take a reference on a fence (all asics). 524 * Returns the fence. 525 */ 526 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence) 527 { 528 kref_get(&fence->kref); 529 return fence; 530 } 531 532 /** 533 * radeon_fence_unref - remove a ref on a fence 534 * 535 * @fence: radeon fence object 536 * 537 * Remove a reference on a fence (all asics). 538 */ 539 void radeon_fence_unref(struct radeon_fence **fence) 540 { 541 struct radeon_fence *tmp = *fence; 542 543 *fence = NULL; 544 if (tmp) { 545 kref_put(&tmp->kref, radeon_fence_destroy); 546 } 547 } 548 549 /** 550 * radeon_fence_count_emitted - get the count of emitted fences 551 * 552 * @rdev: radeon device pointer 553 * @ring: ring index the fence is associated with 554 * 555 * Get the number of fences emitted on the requested ring (all asics). 556 * Returns the number of emitted fences on the ring. Used by the 557 * dynpm code to ring track activity. 558 */ 559 unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring) 560 { 561 uint64_t emitted; 562 563 /* We are not protected by ring lock when reading the last sequence 564 * but it's ok to report slightly wrong fence count here. 565 */ 566 radeon_fence_process(rdev, ring); 567 emitted = rdev->fence_drv[ring].sync_seq[ring] 568 - atomic64_read(&rdev->fence_drv[ring].last_seq); 569 /* to avoid 32bits warp around */ 570 if (emitted > 0x10000000) { 571 emitted = 0x10000000; 572 } 573 return (unsigned)emitted; 574 } 575 576 /** 577 * radeon_fence_need_sync - do we need a semaphore 578 * 579 * @fence: radeon fence object 580 * @dst_ring: which ring to check against 581 * 582 * Check if the fence needs to be synced against another ring 583 * (all asics). If so, we need to emit a semaphore. 584 * Returns true if we need to sync with another ring, false if 585 * not. 586 */ 587 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring) 588 { 589 struct radeon_fence_driver *fdrv; 590 591 if (!fence) { 592 return false; 593 } 594 595 if (fence->ring == dst_ring) { 596 return false; 597 } 598 599 /* we are protected by the ring mutex */ 600 fdrv = &fence->rdev->fence_drv[dst_ring]; 601 if (fence->seq <= fdrv->sync_seq[fence->ring]) { 602 return false; 603 } 604 605 return true; 606 } 607 608 /** 609 * radeon_fence_note_sync - record the sync point 610 * 611 * @fence: radeon fence object 612 * @dst_ring: which ring to check against 613 * 614 * Note the sequence number at which point the fence will 615 * be synced with the requested ring (all asics). 616 */ 617 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring) 618 { 619 struct radeon_fence_driver *dst, *src; 620 unsigned i; 621 622 if (!fence) { 623 return; 624 } 625 626 if (fence->ring == dst_ring) { 627 return; 628 } 629 630 /* we are protected by the ring mutex */ 631 src = &fence->rdev->fence_drv[fence->ring]; 632 dst = &fence->rdev->fence_drv[dst_ring]; 633 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 634 if (i == dst_ring) { 635 continue; 636 } 637 dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]); 638 } 639 } 640 641 /** 642 * radeon_fence_driver_start_ring - make the fence driver 643 * ready for use on the requested ring. 644 * 645 * @rdev: radeon device pointer 646 * @ring: ring index to start the fence driver on 647 * 648 * Make the fence driver ready for processing (all asics). 649 * Not all asics have all rings, so each asic will only 650 * start the fence driver on the rings it has. 651 * Returns 0 for success, errors for failure. 652 */ 653 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring) 654 { 655 uint64_t index; 656 int r; 657 658 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg); 659 if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) { 660 rdev->fence_drv[ring].scratch_reg = 0; 661 if (ring != R600_RING_TYPE_UVD_INDEX) { 662 index = R600_WB_EVENT_OFFSET + ring * 4; 663 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4]; 664 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + 665 index; 666 667 } else { 668 /* put fence directly behind firmware */ 669 index = ALIGN(rdev->uvd_fw->size, 8); 670 rdev->fence_drv[ring].cpu_addr = rdev->uvd.cpu_addr + index; 671 rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index; 672 } 673 674 } else { 675 r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg); 676 if (r) { 677 dev_err(rdev->dev, "fence failed to get scratch register\n"); 678 return r; 679 } 680 index = RADEON_WB_SCRATCH_OFFSET + 681 rdev->fence_drv[ring].scratch_reg - 682 rdev->scratch.reg_base; 683 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4]; 684 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index; 685 } 686 radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring); 687 rdev->fence_drv[ring].initialized = true; 688 dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016llx and cpu addr 0x%p\n", 689 ring, rdev->fence_drv[ring].gpu_addr, rdev->fence_drv[ring].cpu_addr); 690 return 0; 691 } 692 693 /** 694 * radeon_fence_driver_init_ring - init the fence driver 695 * for the requested ring. 696 * 697 * @rdev: radeon device pointer 698 * @ring: ring index to start the fence driver on 699 * 700 * Init the fence driver for the requested ring (all asics). 701 * Helper function for radeon_fence_driver_init(). 702 */ 703 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring) 704 { 705 int i; 706 707 rdev->fence_drv[ring].scratch_reg = -1; 708 rdev->fence_drv[ring].cpu_addr = NULL; 709 rdev->fence_drv[ring].gpu_addr = 0; 710 for (i = 0; i < RADEON_NUM_RINGS; ++i) 711 rdev->fence_drv[ring].sync_seq[i] = 0; 712 atomic64_set(&rdev->fence_drv[ring].last_seq, 0); 713 rdev->fence_drv[ring].initialized = false; 714 } 715 716 /** 717 * radeon_fence_driver_init - init the fence driver 718 * for all possible rings. 719 * 720 * @rdev: radeon device pointer 721 * 722 * Init the fence driver for all possible rings (all asics). 723 * Not all asics have all rings, so each asic will only 724 * start the fence driver on the rings it has using 725 * radeon_fence_driver_start_ring(). 726 * Returns 0 for success. 727 */ 728 int radeon_fence_driver_init(struct radeon_device *rdev) 729 { 730 int ring; 731 732 init_waitqueue_head(&rdev->fence_queue); 733 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) { 734 radeon_fence_driver_init_ring(rdev, ring); 735 } 736 if (radeon_debugfs_fence_init(rdev)) { 737 dev_err(rdev->dev, "fence debugfs file creation failed\n"); 738 } 739 return 0; 740 } 741 742 /** 743 * radeon_fence_driver_fini - tear down the fence driver 744 * for all possible rings. 745 * 746 * @rdev: radeon device pointer 747 * 748 * Tear down the fence driver for all possible rings (all asics). 749 */ 750 void radeon_fence_driver_fini(struct radeon_device *rdev) 751 { 752 int ring, r; 753 754 mutex_lock(&rdev->ring_lock); 755 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) { 756 if (!rdev->fence_drv[ring].initialized) 757 continue; 758 r = radeon_fence_wait_empty(rdev, ring); 759 if (r) { 760 /* no need to trigger GPU reset as we are unloading */ 761 radeon_fence_driver_force_completion(rdev); 762 } 763 wake_up_all(&rdev->fence_queue); 764 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg); 765 rdev->fence_drv[ring].initialized = false; 766 } 767 mutex_unlock(&rdev->ring_lock); 768 } 769 770 /** 771 * radeon_fence_driver_force_completion - force all fence waiter to complete 772 * 773 * @rdev: radeon device pointer 774 * 775 * In case of GPU reset failure make sure no process keep waiting on fence 776 * that will never complete. 777 */ 778 void radeon_fence_driver_force_completion(struct radeon_device *rdev) 779 { 780 int ring; 781 782 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) { 783 if (!rdev->fence_drv[ring].initialized) 784 continue; 785 radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring); 786 } 787 } 788 789 790 /* 791 * Fence debugfs 792 */ 793 #if defined(CONFIG_DEBUG_FS) 794 static int radeon_debugfs_fence_info(struct seq_file *m, void *data) 795 { 796 struct drm_info_node *node = (struct drm_info_node *)m->private; 797 struct drm_device *dev = node->minor->dev; 798 struct radeon_device *rdev = dev->dev_private; 799 int i, j; 800 801 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 802 if (!rdev->fence_drv[i].initialized) 803 continue; 804 805 radeon_fence_process(rdev, i); 806 807 seq_printf(m, "--- ring %d ---\n", i); 808 seq_printf(m, "Last signaled fence 0x%016llx\n", 809 (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq)); 810 seq_printf(m, "Last emitted 0x%016llx\n", 811 rdev->fence_drv[i].sync_seq[i]); 812 813 for (j = 0; j < RADEON_NUM_RINGS; ++j) { 814 if (i != j && rdev->fence_drv[j].initialized) 815 seq_printf(m, "Last sync to ring %d 0x%016llx\n", 816 j, rdev->fence_drv[i].sync_seq[j]); 817 } 818 } 819 return 0; 820 } 821 822 /** 823 * radeon_debugfs_gpu_reset - manually trigger a gpu reset 824 * 825 * Manually trigger a gpu reset at the next fence wait. 826 */ 827 static int radeon_debugfs_gpu_reset(struct seq_file *m, void *data) 828 { 829 struct drm_info_node *node = (struct drm_info_node *) m->private; 830 struct drm_device *dev = node->minor->dev; 831 struct radeon_device *rdev = dev->dev_private; 832 833 down_read(&rdev->exclusive_lock); 834 seq_printf(m, "%d\n", rdev->needs_reset); 835 rdev->needs_reset = true; 836 up_read(&rdev->exclusive_lock); 837 838 return 0; 839 } 840 841 static struct drm_info_list radeon_debugfs_fence_list[] = { 842 {"radeon_fence_info", &radeon_debugfs_fence_info, 0, NULL}, 843 {"radeon_gpu_reset", &radeon_debugfs_gpu_reset, 0, NULL} 844 }; 845 #endif 846 847 int radeon_debugfs_fence_init(struct radeon_device *rdev) 848 { 849 #if defined(CONFIG_DEBUG_FS) 850 return radeon_debugfs_add_files(rdev, radeon_debugfs_fence_list, 2); 851 #else 852 return 0; 853 #endif 854 } 855