1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Dave Airlie 30 */ 31 32 #include <linux/atomic.h> 33 #include <linux/firmware.h> 34 #include <linux/kref.h> 35 #include <linux/sched/signal.h> 36 #include <linux/seq_file.h> 37 #include <linux/slab.h> 38 #include <linux/wait.h> 39 40 #include <drm/drm_device.h> 41 #include <drm/drm_file.h> 42 43 #include "radeon.h" 44 #include "radeon_reg.h" 45 #include "radeon_trace.h" 46 47 /* 48 * Fences 49 * Fences mark an event in the GPUs pipeline and are used 50 * for GPU/CPU synchronization. When the fence is written, 51 * it is expected that all buffers associated with that fence 52 * are no longer in use by the associated ring on the GPU and 53 * that the relevant GPU caches have been flushed. Whether 54 * we use a scratch register or memory location depends on the asic 55 * and whether writeback is enabled. 56 */ 57 58 /** 59 * radeon_fence_write - write a fence value 60 * 61 * @rdev: radeon_device pointer 62 * @seq: sequence number to write 63 * @ring: ring index the fence is associated with 64 * 65 * Writes a fence value to memory or a scratch register (all asics). 66 */ 67 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring) 68 { 69 struct radeon_fence_driver *drv = &rdev->fence_drv[ring]; 70 if (likely(rdev->wb.enabled || !drv->scratch_reg)) { 71 if (drv->cpu_addr) { 72 *drv->cpu_addr = cpu_to_le32(seq); 73 } 74 } else { 75 WREG32(drv->scratch_reg, seq); 76 } 77 } 78 79 /** 80 * radeon_fence_read - read a fence value 81 * 82 * @rdev: radeon_device pointer 83 * @ring: ring index the fence is associated with 84 * 85 * Reads a fence value from memory or a scratch register (all asics). 86 * Returns the value of the fence read from memory or register. 87 */ 88 static u32 radeon_fence_read(struct radeon_device *rdev, int ring) 89 { 90 struct radeon_fence_driver *drv = &rdev->fence_drv[ring]; 91 u32 seq = 0; 92 93 if (likely(rdev->wb.enabled || !drv->scratch_reg)) { 94 if (drv->cpu_addr) { 95 seq = le32_to_cpu(*drv->cpu_addr); 96 } else { 97 seq = lower_32_bits(atomic64_read(&drv->last_seq)); 98 } 99 } else { 100 seq = RREG32(drv->scratch_reg); 101 } 102 return seq; 103 } 104 105 /** 106 * radeon_fence_schedule_check - schedule lockup check 107 * 108 * @rdev: radeon_device pointer 109 * @ring: ring index we should work with 110 * 111 * Queues a delayed work item to check for lockups. 112 */ 113 static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring) 114 { 115 /* 116 * Do not reset the timer here with mod_delayed_work, 117 * this can livelock in an interaction with TTM delayed destroy. 118 */ 119 queue_delayed_work(system_power_efficient_wq, 120 &rdev->fence_drv[ring].lockup_work, 121 RADEON_FENCE_JIFFIES_TIMEOUT); 122 } 123 124 /** 125 * radeon_fence_emit - emit a fence on the requested ring 126 * 127 * @rdev: radeon_device pointer 128 * @fence: radeon fence object 129 * @ring: ring index the fence is associated with 130 * 131 * Emits a fence command on the requested ring (all asics). 132 * Returns 0 on success, -ENOMEM on failure. 133 */ 134 int radeon_fence_emit(struct radeon_device *rdev, 135 struct radeon_fence **fence, 136 int ring) 137 { 138 u64 seq; 139 140 /* we are protected by the ring emission mutex */ 141 *fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL); 142 if ((*fence) == NULL) { 143 return -ENOMEM; 144 } 145 (*fence)->rdev = rdev; 146 (*fence)->seq = seq = ++rdev->fence_drv[ring].sync_seq[ring]; 147 (*fence)->ring = ring; 148 (*fence)->is_vm_update = false; 149 dma_fence_init(&(*fence)->base, &radeon_fence_ops, 150 &rdev->fence_queue.lock, 151 rdev->fence_context + ring, 152 seq); 153 radeon_fence_ring_emit(rdev, ring, *fence); 154 trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq); 155 radeon_fence_schedule_check(rdev, ring); 156 return 0; 157 } 158 159 /* 160 * radeon_fence_check_signaled - callback from fence_queue 161 * 162 * this function is called with fence_queue lock held, which is also used 163 * for the fence locking itself, so unlocked variants are used for 164 * fence_signal, and remove_wait_queue. 165 */ 166 static int radeon_fence_check_signaled(wait_queue_entry_t *wait, unsigned mode, int flags, void *key) 167 { 168 struct radeon_fence *fence; 169 u64 seq; 170 171 fence = container_of(wait, struct radeon_fence, fence_wake); 172 173 /* 174 * We cannot use radeon_fence_process here because we're already 175 * in the waitqueue, in a call from wake_up_all. 176 */ 177 seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq); 178 if (seq >= fence->seq) { 179 dma_fence_signal_locked(&fence->base); 180 radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring); 181 __remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake); 182 dma_fence_put(&fence->base); 183 } 184 return 0; 185 } 186 187 /** 188 * radeon_fence_activity - check for fence activity 189 * 190 * @rdev: radeon_device pointer 191 * @ring: ring index the fence is associated with 192 * 193 * Checks the current fence value and calculates the last 194 * signalled fence value. Returns true if activity occured 195 * on the ring, and the fence_queue should be waken up. 196 */ 197 static bool radeon_fence_activity(struct radeon_device *rdev, int ring) 198 { 199 uint64_t seq, last_seq, last_emitted; 200 unsigned count_loop = 0; 201 bool wake = false; 202 203 /* Note there is a scenario here for an infinite loop but it's 204 * very unlikely to happen. For it to happen, the current polling 205 * process need to be interrupted by another process and another 206 * process needs to update the last_seq btw the atomic read and 207 * xchg of the current process. 208 * 209 * More over for this to go in infinite loop there need to be 210 * continuously new fence signaled ie radeon_fence_read needs 211 * to return a different value each time for both the currently 212 * polling process and the other process that xchg the last_seq 213 * btw atomic read and xchg of the current process. And the 214 * value the other process set as last seq must be higher than 215 * the seq value we just read. Which means that current process 216 * need to be interrupted after radeon_fence_read and before 217 * atomic xchg. 218 * 219 * To be even more safe we count the number of time we loop and 220 * we bail after 10 loop just accepting the fact that we might 221 * have temporarly set the last_seq not to the true real last 222 * seq but to an older one. 223 */ 224 last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq); 225 do { 226 last_emitted = rdev->fence_drv[ring].sync_seq[ring]; 227 seq = radeon_fence_read(rdev, ring); 228 seq |= last_seq & 0xffffffff00000000LL; 229 if (seq < last_seq) { 230 seq &= 0xffffffff; 231 seq |= last_emitted & 0xffffffff00000000LL; 232 } 233 234 if (seq <= last_seq || seq > last_emitted) { 235 break; 236 } 237 /* If we loop over we don't want to return without 238 * checking if a fence is signaled as it means that the 239 * seq we just read is different from the previous on. 240 */ 241 wake = true; 242 last_seq = seq; 243 if ((count_loop++) > 10) { 244 /* We looped over too many time leave with the 245 * fact that we might have set an older fence 246 * seq then the current real last seq as signaled 247 * by the hw. 248 */ 249 break; 250 } 251 } while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq); 252 253 if (seq < last_emitted) 254 radeon_fence_schedule_check(rdev, ring); 255 256 return wake; 257 } 258 259 /** 260 * radeon_fence_check_lockup - check for hardware lockup 261 * 262 * @work: delayed work item 263 * 264 * Checks for fence activity and if there is none probe 265 * the hardware if a lockup occured. 266 */ 267 static void radeon_fence_check_lockup(struct work_struct *work) 268 { 269 struct radeon_fence_driver *fence_drv; 270 struct radeon_device *rdev; 271 int ring; 272 273 fence_drv = container_of(work, struct radeon_fence_driver, 274 lockup_work.work); 275 rdev = fence_drv->rdev; 276 ring = fence_drv - &rdev->fence_drv[0]; 277 278 if (!down_read_trylock(&rdev->exclusive_lock)) { 279 /* just reschedule the check if a reset is going on */ 280 radeon_fence_schedule_check(rdev, ring); 281 return; 282 } 283 284 if (fence_drv->delayed_irq && rdev->irq.installed) { 285 unsigned long irqflags; 286 287 fence_drv->delayed_irq = false; 288 spin_lock_irqsave(&rdev->irq.lock, irqflags); 289 radeon_irq_set(rdev); 290 spin_unlock_irqrestore(&rdev->irq.lock, irqflags); 291 } 292 293 if (radeon_fence_activity(rdev, ring)) 294 wake_up_all(&rdev->fence_queue); 295 296 else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) { 297 298 /* good news we believe it's a lockup */ 299 dev_warn(rdev->dev, "GPU lockup (current fence id " 300 "0x%016llx last fence id 0x%016llx on ring %d)\n", 301 (uint64_t)atomic64_read(&fence_drv->last_seq), 302 fence_drv->sync_seq[ring], ring); 303 304 /* remember that we need an reset */ 305 rdev->needs_reset = true; 306 wake_up_all(&rdev->fence_queue); 307 } 308 up_read(&rdev->exclusive_lock); 309 } 310 311 /** 312 * radeon_fence_process - process a fence 313 * 314 * @rdev: radeon_device pointer 315 * @ring: ring index the fence is associated with 316 * 317 * Checks the current fence value and wakes the fence queue 318 * if the sequence number has increased (all asics). 319 */ 320 void radeon_fence_process(struct radeon_device *rdev, int ring) 321 { 322 if (radeon_fence_activity(rdev, ring)) 323 wake_up_all(&rdev->fence_queue); 324 } 325 326 /** 327 * radeon_fence_seq_signaled - check if a fence sequence number has signaled 328 * 329 * @rdev: radeon device pointer 330 * @seq: sequence number 331 * @ring: ring index the fence is associated with 332 * 333 * Check if the last signaled fence sequnce number is >= the requested 334 * sequence number (all asics). 335 * Returns true if the fence has signaled (current fence value 336 * is >= requested value) or false if it has not (current fence 337 * value is < the requested value. Helper function for 338 * radeon_fence_signaled(). 339 */ 340 static bool radeon_fence_seq_signaled(struct radeon_device *rdev, 341 u64 seq, unsigned ring) 342 { 343 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) { 344 return true; 345 } 346 /* poll new last sequence at least once */ 347 radeon_fence_process(rdev, ring); 348 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) { 349 return true; 350 } 351 return false; 352 } 353 354 static bool radeon_fence_is_signaled(struct dma_fence *f) 355 { 356 struct radeon_fence *fence = to_radeon_fence(f); 357 struct radeon_device *rdev = fence->rdev; 358 unsigned ring = fence->ring; 359 u64 seq = fence->seq; 360 361 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) { 362 return true; 363 } 364 365 if (down_read_trylock(&rdev->exclusive_lock)) { 366 radeon_fence_process(rdev, ring); 367 up_read(&rdev->exclusive_lock); 368 369 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) { 370 return true; 371 } 372 } 373 return false; 374 } 375 376 /** 377 * radeon_fence_enable_signaling - enable signalling on fence 378 * @f: fence 379 * 380 * This function is called with fence_queue lock held, and adds a callback 381 * to fence_queue that checks if this fence is signaled, and if so it 382 * signals the fence and removes itself. 383 */ 384 static bool radeon_fence_enable_signaling(struct dma_fence *f) 385 { 386 struct radeon_fence *fence = to_radeon_fence(f); 387 struct radeon_device *rdev = fence->rdev; 388 389 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) 390 return false; 391 392 if (down_read_trylock(&rdev->exclusive_lock)) { 393 radeon_irq_kms_sw_irq_get(rdev, fence->ring); 394 395 if (radeon_fence_activity(rdev, fence->ring)) 396 wake_up_all_locked(&rdev->fence_queue); 397 398 /* did fence get signaled after we enabled the sw irq? */ 399 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) { 400 radeon_irq_kms_sw_irq_put(rdev, fence->ring); 401 up_read(&rdev->exclusive_lock); 402 return false; 403 } 404 405 up_read(&rdev->exclusive_lock); 406 } else { 407 /* we're probably in a lockup, lets not fiddle too much */ 408 if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring)) 409 rdev->fence_drv[fence->ring].delayed_irq = true; 410 radeon_fence_schedule_check(rdev, fence->ring); 411 } 412 413 fence->fence_wake.flags = 0; 414 fence->fence_wake.private = NULL; 415 fence->fence_wake.func = radeon_fence_check_signaled; 416 __add_wait_queue(&rdev->fence_queue, &fence->fence_wake); 417 dma_fence_get(f); 418 return true; 419 } 420 421 /** 422 * radeon_fence_signaled - check if a fence has signaled 423 * 424 * @fence: radeon fence object 425 * 426 * Check if the requested fence has signaled (all asics). 427 * Returns true if the fence has signaled or false if it has not. 428 */ 429 bool radeon_fence_signaled(struct radeon_fence *fence) 430 { 431 if (!fence) 432 return true; 433 434 if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) { 435 dma_fence_signal(&fence->base); 436 return true; 437 } 438 return false; 439 } 440 441 /** 442 * radeon_fence_any_seq_signaled - check if any sequence number is signaled 443 * 444 * @rdev: radeon device pointer 445 * @seq: sequence numbers 446 * 447 * Check if the last signaled fence sequnce number is >= the requested 448 * sequence number (all asics). 449 * Returns true if any has signaled (current value is >= requested value) 450 * or false if it has not. Helper function for radeon_fence_wait_seq. 451 */ 452 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq) 453 { 454 unsigned i; 455 456 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 457 if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i)) 458 return true; 459 } 460 return false; 461 } 462 463 /** 464 * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers 465 * 466 * @rdev: radeon device pointer 467 * @target_seq: sequence number(s) we want to wait for 468 * @intr: use interruptable sleep 469 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait 470 * 471 * Wait for the requested sequence number(s) to be written by any ring 472 * (all asics). Sequnce number array is indexed by ring id. 473 * @intr selects whether to use interruptable (true) or non-interruptable 474 * (false) sleep when waiting for the sequence number. Helper function 475 * for radeon_fence_wait_*(). 476 * Returns remaining time if the sequence number has passed, 0 when 477 * the wait timeout, or an error for all other cases. 478 * -EDEADLK is returned when a GPU lockup has been detected. 479 */ 480 static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev, 481 u64 *target_seq, bool intr, 482 long timeout) 483 { 484 long r; 485 int i; 486 487 if (radeon_fence_any_seq_signaled(rdev, target_seq)) 488 return timeout; 489 490 /* enable IRQs and tracing */ 491 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 492 if (!target_seq[i]) 493 continue; 494 495 trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]); 496 radeon_irq_kms_sw_irq_get(rdev, i); 497 } 498 499 if (intr) { 500 r = wait_event_interruptible_timeout(rdev->fence_queue, ( 501 radeon_fence_any_seq_signaled(rdev, target_seq) 502 || rdev->needs_reset), timeout); 503 } else { 504 r = wait_event_timeout(rdev->fence_queue, ( 505 radeon_fence_any_seq_signaled(rdev, target_seq) 506 || rdev->needs_reset), timeout); 507 } 508 509 if (rdev->needs_reset) 510 r = -EDEADLK; 511 512 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 513 if (!target_seq[i]) 514 continue; 515 516 radeon_irq_kms_sw_irq_put(rdev, i); 517 trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]); 518 } 519 520 return r; 521 } 522 523 /** 524 * radeon_fence_wait_timeout - wait for a fence to signal with timeout 525 * 526 * @fence: radeon fence object 527 * @intr: use interruptible sleep 528 * 529 * Wait for the requested fence to signal (all asics). 530 * @intr selects whether to use interruptable (true) or non-interruptable 531 * (false) sleep when waiting for the fence. 532 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait 533 * Returns remaining time if the sequence number has passed, 0 when 534 * the wait timeout, or an error for all other cases. 535 */ 536 long radeon_fence_wait_timeout(struct radeon_fence *fence, bool intr, long timeout) 537 { 538 uint64_t seq[RADEON_NUM_RINGS] = {}; 539 long r; 540 541 /* 542 * This function should not be called on !radeon fences. 543 * If this is the case, it would mean this function can 544 * also be called on radeon fences belonging to another card. 545 * exclusive_lock is not held in that case. 546 */ 547 if (WARN_ON_ONCE(!to_radeon_fence(&fence->base))) 548 return dma_fence_wait(&fence->base, intr); 549 550 seq[fence->ring] = fence->seq; 551 r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, timeout); 552 if (r <= 0) { 553 return r; 554 } 555 556 dma_fence_signal(&fence->base); 557 return r; 558 } 559 560 /** 561 * radeon_fence_wait - wait for a fence to signal 562 * 563 * @fence: radeon fence object 564 * @intr: use interruptible sleep 565 * 566 * Wait for the requested fence to signal (all asics). 567 * @intr selects whether to use interruptable (true) or non-interruptable 568 * (false) sleep when waiting for the fence. 569 * Returns 0 if the fence has passed, error for all other cases. 570 */ 571 int radeon_fence_wait(struct radeon_fence *fence, bool intr) 572 { 573 long r = radeon_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT); 574 if (r > 0) { 575 return 0; 576 } else { 577 return r; 578 } 579 } 580 581 /** 582 * radeon_fence_wait_any - wait for a fence to signal on any ring 583 * 584 * @rdev: radeon device pointer 585 * @fences: radeon fence object(s) 586 * @intr: use interruptable sleep 587 * 588 * Wait for any requested fence to signal (all asics). Fence 589 * array is indexed by ring id. @intr selects whether to use 590 * interruptable (true) or non-interruptable (false) sleep when 591 * waiting for the fences. Used by the suballocator. 592 * Returns 0 if any fence has passed, error for all other cases. 593 */ 594 int radeon_fence_wait_any(struct radeon_device *rdev, 595 struct radeon_fence **fences, 596 bool intr) 597 { 598 uint64_t seq[RADEON_NUM_RINGS]; 599 unsigned i, num_rings = 0; 600 long r; 601 602 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 603 seq[i] = 0; 604 605 if (!fences[i]) { 606 continue; 607 } 608 609 seq[i] = fences[i]->seq; 610 ++num_rings; 611 } 612 613 /* nothing to wait for ? */ 614 if (num_rings == 0) 615 return -ENOENT; 616 617 r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT); 618 if (r < 0) { 619 return r; 620 } 621 return 0; 622 } 623 624 /** 625 * radeon_fence_wait_next - wait for the next fence to signal 626 * 627 * @rdev: radeon device pointer 628 * @ring: ring index the fence is associated with 629 * 630 * Wait for the next fence on the requested ring to signal (all asics). 631 * Returns 0 if the next fence has passed, error for all other cases. 632 * Caller must hold ring lock. 633 */ 634 int radeon_fence_wait_next(struct radeon_device *rdev, int ring) 635 { 636 uint64_t seq[RADEON_NUM_RINGS] = {}; 637 long r; 638 639 seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL; 640 if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) { 641 /* nothing to wait for, last_seq is 642 already the last emited fence */ 643 return -ENOENT; 644 } 645 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT); 646 if (r < 0) 647 return r; 648 return 0; 649 } 650 651 /** 652 * radeon_fence_wait_empty - wait for all fences to signal 653 * 654 * @rdev: radeon device pointer 655 * @ring: ring index the fence is associated with 656 * 657 * Wait for all fences on the requested ring to signal (all asics). 658 * Returns 0 if the fences have passed, error for all other cases. 659 * Caller must hold ring lock. 660 */ 661 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring) 662 { 663 uint64_t seq[RADEON_NUM_RINGS] = {}; 664 long r; 665 666 seq[ring] = rdev->fence_drv[ring].sync_seq[ring]; 667 if (!seq[ring]) 668 return 0; 669 670 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT); 671 if (r < 0) { 672 if (r == -EDEADLK) 673 return -EDEADLK; 674 675 dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n", 676 ring, r); 677 } 678 return 0; 679 } 680 681 /** 682 * radeon_fence_ref - take a ref on a fence 683 * 684 * @fence: radeon fence object 685 * 686 * Take a reference on a fence (all asics). 687 * Returns the fence. 688 */ 689 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence) 690 { 691 dma_fence_get(&fence->base); 692 return fence; 693 } 694 695 /** 696 * radeon_fence_unref - remove a ref on a fence 697 * 698 * @fence: radeon fence object 699 * 700 * Remove a reference on a fence (all asics). 701 */ 702 void radeon_fence_unref(struct radeon_fence **fence) 703 { 704 struct radeon_fence *tmp = *fence; 705 706 *fence = NULL; 707 if (tmp) { 708 dma_fence_put(&tmp->base); 709 } 710 } 711 712 /** 713 * radeon_fence_count_emitted - get the count of emitted fences 714 * 715 * @rdev: radeon device pointer 716 * @ring: ring index the fence is associated with 717 * 718 * Get the number of fences emitted on the requested ring (all asics). 719 * Returns the number of emitted fences on the ring. Used by the 720 * dynpm code to ring track activity. 721 */ 722 unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring) 723 { 724 uint64_t emitted; 725 726 /* We are not protected by ring lock when reading the last sequence 727 * but it's ok to report slightly wrong fence count here. 728 */ 729 radeon_fence_process(rdev, ring); 730 emitted = rdev->fence_drv[ring].sync_seq[ring] 731 - atomic64_read(&rdev->fence_drv[ring].last_seq); 732 /* to avoid 32bits warp around */ 733 if (emitted > 0x10000000) { 734 emitted = 0x10000000; 735 } 736 return (unsigned)emitted; 737 } 738 739 /** 740 * radeon_fence_need_sync - do we need a semaphore 741 * 742 * @fence: radeon fence object 743 * @dst_ring: which ring to check against 744 * 745 * Check if the fence needs to be synced against another ring 746 * (all asics). If so, we need to emit a semaphore. 747 * Returns true if we need to sync with another ring, false if 748 * not. 749 */ 750 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring) 751 { 752 struct radeon_fence_driver *fdrv; 753 754 if (!fence) { 755 return false; 756 } 757 758 if (fence->ring == dst_ring) { 759 return false; 760 } 761 762 /* we are protected by the ring mutex */ 763 fdrv = &fence->rdev->fence_drv[dst_ring]; 764 if (fence->seq <= fdrv->sync_seq[fence->ring]) { 765 return false; 766 } 767 768 return true; 769 } 770 771 /** 772 * radeon_fence_note_sync - record the sync point 773 * 774 * @fence: radeon fence object 775 * @dst_ring: which ring to check against 776 * 777 * Note the sequence number at which point the fence will 778 * be synced with the requested ring (all asics). 779 */ 780 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring) 781 { 782 struct radeon_fence_driver *dst, *src; 783 unsigned i; 784 785 if (!fence) { 786 return; 787 } 788 789 if (fence->ring == dst_ring) { 790 return; 791 } 792 793 /* we are protected by the ring mutex */ 794 src = &fence->rdev->fence_drv[fence->ring]; 795 dst = &fence->rdev->fence_drv[dst_ring]; 796 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 797 if (i == dst_ring) { 798 continue; 799 } 800 dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]); 801 } 802 } 803 804 /** 805 * radeon_fence_driver_start_ring - make the fence driver 806 * ready for use on the requested ring. 807 * 808 * @rdev: radeon device pointer 809 * @ring: ring index to start the fence driver on 810 * 811 * Make the fence driver ready for processing (all asics). 812 * Not all asics have all rings, so each asic will only 813 * start the fence driver on the rings it has. 814 * Returns 0 for success, errors for failure. 815 */ 816 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring) 817 { 818 uint64_t index; 819 int r; 820 821 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg); 822 if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) { 823 rdev->fence_drv[ring].scratch_reg = 0; 824 if (ring != R600_RING_TYPE_UVD_INDEX) { 825 index = R600_WB_EVENT_OFFSET + ring * 4; 826 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4]; 827 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + 828 index; 829 830 } else { 831 /* put fence directly behind firmware */ 832 index = ALIGN(rdev->uvd_fw->size, 8); 833 rdev->fence_drv[ring].cpu_addr = rdev->uvd.cpu_addr + index; 834 rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index; 835 } 836 837 } else { 838 r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg); 839 if (r) { 840 dev_err(rdev->dev, "fence failed to get scratch register\n"); 841 return r; 842 } 843 index = RADEON_WB_SCRATCH_OFFSET + 844 rdev->fence_drv[ring].scratch_reg - 845 rdev->scratch.reg_base; 846 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4]; 847 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index; 848 } 849 radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring); 850 rdev->fence_drv[ring].initialized = true; 851 dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016llx\n", 852 ring, rdev->fence_drv[ring].gpu_addr); 853 return 0; 854 } 855 856 /** 857 * radeon_fence_driver_init_ring - init the fence driver 858 * for the requested ring. 859 * 860 * @rdev: radeon device pointer 861 * @ring: ring index to start the fence driver on 862 * 863 * Init the fence driver for the requested ring (all asics). 864 * Helper function for radeon_fence_driver_init(). 865 */ 866 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring) 867 { 868 int i; 869 870 rdev->fence_drv[ring].scratch_reg = -1; 871 rdev->fence_drv[ring].cpu_addr = NULL; 872 rdev->fence_drv[ring].gpu_addr = 0; 873 for (i = 0; i < RADEON_NUM_RINGS; ++i) 874 rdev->fence_drv[ring].sync_seq[i] = 0; 875 atomic64_set(&rdev->fence_drv[ring].last_seq, 0); 876 rdev->fence_drv[ring].initialized = false; 877 INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work, 878 radeon_fence_check_lockup); 879 rdev->fence_drv[ring].rdev = rdev; 880 } 881 882 /** 883 * radeon_fence_driver_init - init the fence driver 884 * for all possible rings. 885 * 886 * @rdev: radeon device pointer 887 * 888 * Init the fence driver for all possible rings (all asics). 889 * Not all asics have all rings, so each asic will only 890 * start the fence driver on the rings it has using 891 * radeon_fence_driver_start_ring(). 892 */ 893 void radeon_fence_driver_init(struct radeon_device *rdev) 894 { 895 int ring; 896 897 init_waitqueue_head(&rdev->fence_queue); 898 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) { 899 radeon_fence_driver_init_ring(rdev, ring); 900 } 901 902 radeon_debugfs_fence_init(rdev); 903 } 904 905 /** 906 * radeon_fence_driver_fini - tear down the fence driver 907 * for all possible rings. 908 * 909 * @rdev: radeon device pointer 910 * 911 * Tear down the fence driver for all possible rings (all asics). 912 */ 913 void radeon_fence_driver_fini(struct radeon_device *rdev) 914 { 915 int ring, r; 916 917 mutex_lock(&rdev->ring_lock); 918 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) { 919 if (!rdev->fence_drv[ring].initialized) 920 continue; 921 r = radeon_fence_wait_empty(rdev, ring); 922 if (r) { 923 /* no need to trigger GPU reset as we are unloading */ 924 radeon_fence_driver_force_completion(rdev, ring); 925 } 926 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work); 927 wake_up_all(&rdev->fence_queue); 928 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg); 929 rdev->fence_drv[ring].initialized = false; 930 } 931 mutex_unlock(&rdev->ring_lock); 932 } 933 934 /** 935 * radeon_fence_driver_force_completion - force all fence waiter to complete 936 * 937 * @rdev: radeon device pointer 938 * @ring: the ring to complete 939 * 940 * In case of GPU reset failure make sure no process keep waiting on fence 941 * that will never complete. 942 */ 943 void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring) 944 { 945 if (rdev->fence_drv[ring].initialized) { 946 radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring); 947 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work); 948 } 949 } 950 951 952 /* 953 * Fence debugfs 954 */ 955 #if defined(CONFIG_DEBUG_FS) 956 static int radeon_debugfs_fence_info_show(struct seq_file *m, void *data) 957 { 958 struct radeon_device *rdev = m->private; 959 int i, j; 960 961 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 962 if (!rdev->fence_drv[i].initialized) 963 continue; 964 965 radeon_fence_process(rdev, i); 966 967 seq_printf(m, "--- ring %d ---\n", i); 968 seq_printf(m, "Last signaled fence 0x%016llx\n", 969 (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq)); 970 seq_printf(m, "Last emitted 0x%016llx\n", 971 rdev->fence_drv[i].sync_seq[i]); 972 973 for (j = 0; j < RADEON_NUM_RINGS; ++j) { 974 if (i != j && rdev->fence_drv[j].initialized) 975 seq_printf(m, "Last sync to ring %d 0x%016llx\n", 976 j, rdev->fence_drv[i].sync_seq[j]); 977 } 978 } 979 return 0; 980 } 981 982 /* 983 * radeon_debugfs_gpu_reset - manually trigger a gpu reset 984 * 985 * Manually trigger a gpu reset at the next fence wait. 986 */ 987 static int radeon_debugfs_gpu_reset(void *data, u64 *val) 988 { 989 struct radeon_device *rdev = (struct radeon_device *)data; 990 991 down_read(&rdev->exclusive_lock); 992 *val = rdev->needs_reset; 993 rdev->needs_reset = true; 994 wake_up_all(&rdev->fence_queue); 995 up_read(&rdev->exclusive_lock); 996 997 return 0; 998 } 999 DEFINE_SHOW_ATTRIBUTE(radeon_debugfs_fence_info); 1000 DEFINE_DEBUGFS_ATTRIBUTE(radeon_debugfs_gpu_reset_fops, 1001 radeon_debugfs_gpu_reset, NULL, "%lld\n"); 1002 #endif 1003 1004 void radeon_debugfs_fence_init(struct radeon_device *rdev) 1005 { 1006 #if defined(CONFIG_DEBUG_FS) 1007 struct dentry *root = rdev->ddev->primary->debugfs_root; 1008 1009 debugfs_create_file("radeon_gpu_reset", 0444, root, rdev, 1010 &radeon_debugfs_gpu_reset_fops); 1011 debugfs_create_file("radeon_fence_info", 0444, root, rdev, 1012 &radeon_debugfs_fence_info_fops); 1013 1014 1015 #endif 1016 } 1017 1018 static const char *radeon_fence_get_driver_name(struct dma_fence *fence) 1019 { 1020 return "radeon"; 1021 } 1022 1023 static const char *radeon_fence_get_timeline_name(struct dma_fence *f) 1024 { 1025 struct radeon_fence *fence = to_radeon_fence(f); 1026 switch (fence->ring) { 1027 case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx"; 1028 case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1"; 1029 case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2"; 1030 case R600_RING_TYPE_DMA_INDEX: return "radeon.dma"; 1031 case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1"; 1032 case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd"; 1033 case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1"; 1034 case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2"; 1035 default: WARN_ON_ONCE(1); return "radeon.unk"; 1036 } 1037 } 1038 1039 static inline bool radeon_test_signaled(struct radeon_fence *fence) 1040 { 1041 return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->base.flags); 1042 } 1043 1044 struct radeon_wait_cb { 1045 struct dma_fence_cb base; 1046 struct task_struct *task; 1047 }; 1048 1049 static void 1050 radeon_fence_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 1051 { 1052 struct radeon_wait_cb *wait = 1053 container_of(cb, struct radeon_wait_cb, base); 1054 1055 wake_up_process(wait->task); 1056 } 1057 1058 static signed long radeon_fence_default_wait(struct dma_fence *f, bool intr, 1059 signed long t) 1060 { 1061 struct radeon_fence *fence = to_radeon_fence(f); 1062 struct radeon_device *rdev = fence->rdev; 1063 struct radeon_wait_cb cb; 1064 1065 cb.task = current; 1066 1067 if (dma_fence_add_callback(f, &cb.base, radeon_fence_wait_cb)) 1068 return t; 1069 1070 while (t > 0) { 1071 if (intr) 1072 set_current_state(TASK_INTERRUPTIBLE); 1073 else 1074 set_current_state(TASK_UNINTERRUPTIBLE); 1075 1076 /* 1077 * radeon_test_signaled must be called after 1078 * set_current_state to prevent a race with wake_up_process 1079 */ 1080 if (radeon_test_signaled(fence)) 1081 break; 1082 1083 if (rdev->needs_reset) { 1084 t = -EDEADLK; 1085 break; 1086 } 1087 1088 t = schedule_timeout(t); 1089 1090 if (t > 0 && intr && signal_pending(current)) 1091 t = -ERESTARTSYS; 1092 } 1093 1094 __set_current_state(TASK_RUNNING); 1095 dma_fence_remove_callback(f, &cb.base); 1096 1097 return t; 1098 } 1099 1100 const struct dma_fence_ops radeon_fence_ops = { 1101 .get_driver_name = radeon_fence_get_driver_name, 1102 .get_timeline_name = radeon_fence_get_timeline_name, 1103 .enable_signaling = radeon_fence_enable_signaling, 1104 .signaled = radeon_fence_is_signaled, 1105 .wait = radeon_fence_default_wait, 1106 .release = NULL, 1107 }; 1108