1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Dave Airlie 30 */ 31 #include <linux/seq_file.h> 32 #include <linux/atomic.h> 33 #include <linux/wait.h> 34 #include <linux/kref.h> 35 #include <linux/slab.h> 36 #include <linux/firmware.h> 37 #include <drm/drmP.h> 38 #include "radeon_reg.h" 39 #include "radeon.h" 40 #include "radeon_trace.h" 41 42 /* 43 * Fences 44 * Fences mark an event in the GPUs pipeline and are used 45 * for GPU/CPU synchronization. When the fence is written, 46 * it is expected that all buffers associated with that fence 47 * are no longer in use by the associated ring on the GPU and 48 * that the the relevant GPU caches have been flushed. Whether 49 * we use a scratch register or memory location depends on the asic 50 * and whether writeback is enabled. 51 */ 52 53 /** 54 * radeon_fence_write - write a fence value 55 * 56 * @rdev: radeon_device pointer 57 * @seq: sequence number to write 58 * @ring: ring index the fence is associated with 59 * 60 * Writes a fence value to memory or a scratch register (all asics). 61 */ 62 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring) 63 { 64 struct radeon_fence_driver *drv = &rdev->fence_drv[ring]; 65 if (likely(rdev->wb.enabled || !drv->scratch_reg)) { 66 if (drv->cpu_addr) { 67 *drv->cpu_addr = cpu_to_le32(seq); 68 } 69 } else { 70 WREG32(drv->scratch_reg, seq); 71 } 72 } 73 74 /** 75 * radeon_fence_read - read a fence value 76 * 77 * @rdev: radeon_device pointer 78 * @ring: ring index the fence is associated with 79 * 80 * Reads a fence value from memory or a scratch register (all asics). 81 * Returns the value of the fence read from memory or register. 82 */ 83 static u32 radeon_fence_read(struct radeon_device *rdev, int ring) 84 { 85 struct radeon_fence_driver *drv = &rdev->fence_drv[ring]; 86 u32 seq = 0; 87 88 if (likely(rdev->wb.enabled || !drv->scratch_reg)) { 89 if (drv->cpu_addr) { 90 seq = le32_to_cpu(*drv->cpu_addr); 91 } else { 92 seq = lower_32_bits(atomic64_read(&drv->last_seq)); 93 } 94 } else { 95 seq = RREG32(drv->scratch_reg); 96 } 97 return seq; 98 } 99 100 /** 101 * radeon_fence_schedule_check - schedule lockup check 102 * 103 * @rdev: radeon_device pointer 104 * @ring: ring index we should work with 105 * 106 * Queues a delayed work item to check for lockups. 107 */ 108 static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring) 109 { 110 /* 111 * Do not reset the timer here with mod_delayed_work, 112 * this can livelock in an interaction with TTM delayed destroy. 113 */ 114 queue_delayed_work(system_power_efficient_wq, 115 &rdev->fence_drv[ring].lockup_work, 116 RADEON_FENCE_JIFFIES_TIMEOUT); 117 } 118 119 /** 120 * radeon_fence_emit - emit a fence on the requested ring 121 * 122 * @rdev: radeon_device pointer 123 * @fence: radeon fence object 124 * @ring: ring index the fence is associated with 125 * 126 * Emits a fence command on the requested ring (all asics). 127 * Returns 0 on success, -ENOMEM on failure. 128 */ 129 int radeon_fence_emit(struct radeon_device *rdev, 130 struct radeon_fence **fence, 131 int ring) 132 { 133 u64 seq; 134 135 /* we are protected by the ring emission mutex */ 136 *fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL); 137 if ((*fence) == NULL) { 138 return -ENOMEM; 139 } 140 (*fence)->rdev = rdev; 141 (*fence)->seq = seq = ++rdev->fence_drv[ring].sync_seq[ring]; 142 (*fence)->ring = ring; 143 (*fence)->is_vm_update = false; 144 dma_fence_init(&(*fence)->base, &radeon_fence_ops, 145 &rdev->fence_queue.lock, 146 rdev->fence_context + ring, 147 seq); 148 radeon_fence_ring_emit(rdev, ring, *fence); 149 trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq); 150 radeon_fence_schedule_check(rdev, ring); 151 return 0; 152 } 153 154 /** 155 * radeon_fence_check_signaled - callback from fence_queue 156 * 157 * this function is called with fence_queue lock held, which is also used 158 * for the fence locking itself, so unlocked variants are used for 159 * fence_signal, and remove_wait_queue. 160 */ 161 static int radeon_fence_check_signaled(wait_queue_t *wait, unsigned mode, int flags, void *key) 162 { 163 struct radeon_fence *fence; 164 u64 seq; 165 166 fence = container_of(wait, struct radeon_fence, fence_wake); 167 168 /* 169 * We cannot use radeon_fence_process here because we're already 170 * in the waitqueue, in a call from wake_up_all. 171 */ 172 seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq); 173 if (seq >= fence->seq) { 174 int ret = dma_fence_signal_locked(&fence->base); 175 176 if (!ret) 177 DMA_FENCE_TRACE(&fence->base, "signaled from irq context\n"); 178 else 179 DMA_FENCE_TRACE(&fence->base, "was already signaled\n"); 180 181 radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring); 182 __remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake); 183 dma_fence_put(&fence->base); 184 } else 185 DMA_FENCE_TRACE(&fence->base, "pending\n"); 186 return 0; 187 } 188 189 /** 190 * radeon_fence_activity - check for fence activity 191 * 192 * @rdev: radeon_device pointer 193 * @ring: ring index the fence is associated with 194 * 195 * Checks the current fence value and calculates the last 196 * signalled fence value. Returns true if activity occured 197 * on the ring, and the fence_queue should be waken up. 198 */ 199 static bool radeon_fence_activity(struct radeon_device *rdev, int ring) 200 { 201 uint64_t seq, last_seq, last_emitted; 202 unsigned count_loop = 0; 203 bool wake = false; 204 205 /* Note there is a scenario here for an infinite loop but it's 206 * very unlikely to happen. For it to happen, the current polling 207 * process need to be interrupted by another process and another 208 * process needs to update the last_seq btw the atomic read and 209 * xchg of the current process. 210 * 211 * More over for this to go in infinite loop there need to be 212 * continuously new fence signaled ie radeon_fence_read needs 213 * to return a different value each time for both the currently 214 * polling process and the other process that xchg the last_seq 215 * btw atomic read and xchg of the current process. And the 216 * value the other process set as last seq must be higher than 217 * the seq value we just read. Which means that current process 218 * need to be interrupted after radeon_fence_read and before 219 * atomic xchg. 220 * 221 * To be even more safe we count the number of time we loop and 222 * we bail after 10 loop just accepting the fact that we might 223 * have temporarly set the last_seq not to the true real last 224 * seq but to an older one. 225 */ 226 last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq); 227 do { 228 last_emitted = rdev->fence_drv[ring].sync_seq[ring]; 229 seq = radeon_fence_read(rdev, ring); 230 seq |= last_seq & 0xffffffff00000000LL; 231 if (seq < last_seq) { 232 seq &= 0xffffffff; 233 seq |= last_emitted & 0xffffffff00000000LL; 234 } 235 236 if (seq <= last_seq || seq > last_emitted) { 237 break; 238 } 239 /* If we loop over we don't want to return without 240 * checking if a fence is signaled as it means that the 241 * seq we just read is different from the previous on. 242 */ 243 wake = true; 244 last_seq = seq; 245 if ((count_loop++) > 10) { 246 /* We looped over too many time leave with the 247 * fact that we might have set an older fence 248 * seq then the current real last seq as signaled 249 * by the hw. 250 */ 251 break; 252 } 253 } while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq); 254 255 if (seq < last_emitted) 256 radeon_fence_schedule_check(rdev, ring); 257 258 return wake; 259 } 260 261 /** 262 * radeon_fence_check_lockup - check for hardware lockup 263 * 264 * @work: delayed work item 265 * 266 * Checks for fence activity and if there is none probe 267 * the hardware if a lockup occured. 268 */ 269 static void radeon_fence_check_lockup(struct work_struct *work) 270 { 271 struct radeon_fence_driver *fence_drv; 272 struct radeon_device *rdev; 273 int ring; 274 275 fence_drv = container_of(work, struct radeon_fence_driver, 276 lockup_work.work); 277 rdev = fence_drv->rdev; 278 ring = fence_drv - &rdev->fence_drv[0]; 279 280 if (!down_read_trylock(&rdev->exclusive_lock)) { 281 /* just reschedule the check if a reset is going on */ 282 radeon_fence_schedule_check(rdev, ring); 283 return; 284 } 285 286 if (fence_drv->delayed_irq && rdev->ddev->irq_enabled) { 287 unsigned long irqflags; 288 289 fence_drv->delayed_irq = false; 290 spin_lock_irqsave(&rdev->irq.lock, irqflags); 291 radeon_irq_set(rdev); 292 spin_unlock_irqrestore(&rdev->irq.lock, irqflags); 293 } 294 295 if (radeon_fence_activity(rdev, ring)) 296 wake_up_all(&rdev->fence_queue); 297 298 else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) { 299 300 /* good news we believe it's a lockup */ 301 dev_warn(rdev->dev, "GPU lockup (current fence id " 302 "0x%016llx last fence id 0x%016llx on ring %d)\n", 303 (uint64_t)atomic64_read(&fence_drv->last_seq), 304 fence_drv->sync_seq[ring], ring); 305 306 /* remember that we need an reset */ 307 rdev->needs_reset = true; 308 wake_up_all(&rdev->fence_queue); 309 } 310 up_read(&rdev->exclusive_lock); 311 } 312 313 /** 314 * radeon_fence_process - process a fence 315 * 316 * @rdev: radeon_device pointer 317 * @ring: ring index the fence is associated with 318 * 319 * Checks the current fence value and wakes the fence queue 320 * if the sequence number has increased (all asics). 321 */ 322 void radeon_fence_process(struct radeon_device *rdev, int ring) 323 { 324 if (radeon_fence_activity(rdev, ring)) 325 wake_up_all(&rdev->fence_queue); 326 } 327 328 /** 329 * radeon_fence_seq_signaled - check if a fence sequence number has signaled 330 * 331 * @rdev: radeon device pointer 332 * @seq: sequence number 333 * @ring: ring index the fence is associated with 334 * 335 * Check if the last signaled fence sequnce number is >= the requested 336 * sequence number (all asics). 337 * Returns true if the fence has signaled (current fence value 338 * is >= requested value) or false if it has not (current fence 339 * value is < the requested value. Helper function for 340 * radeon_fence_signaled(). 341 */ 342 static bool radeon_fence_seq_signaled(struct radeon_device *rdev, 343 u64 seq, unsigned ring) 344 { 345 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) { 346 return true; 347 } 348 /* poll new last sequence at least once */ 349 radeon_fence_process(rdev, ring); 350 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) { 351 return true; 352 } 353 return false; 354 } 355 356 static bool radeon_fence_is_signaled(struct dma_fence *f) 357 { 358 struct radeon_fence *fence = to_radeon_fence(f); 359 struct radeon_device *rdev = fence->rdev; 360 unsigned ring = fence->ring; 361 u64 seq = fence->seq; 362 363 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) { 364 return true; 365 } 366 367 if (down_read_trylock(&rdev->exclusive_lock)) { 368 radeon_fence_process(rdev, ring); 369 up_read(&rdev->exclusive_lock); 370 371 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) { 372 return true; 373 } 374 } 375 return false; 376 } 377 378 /** 379 * radeon_fence_enable_signaling - enable signalling on fence 380 * @fence: fence 381 * 382 * This function is called with fence_queue lock held, and adds a callback 383 * to fence_queue that checks if this fence is signaled, and if so it 384 * signals the fence and removes itself. 385 */ 386 static bool radeon_fence_enable_signaling(struct dma_fence *f) 387 { 388 struct radeon_fence *fence = to_radeon_fence(f); 389 struct radeon_device *rdev = fence->rdev; 390 391 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) 392 return false; 393 394 if (down_read_trylock(&rdev->exclusive_lock)) { 395 radeon_irq_kms_sw_irq_get(rdev, fence->ring); 396 397 if (radeon_fence_activity(rdev, fence->ring)) 398 wake_up_all_locked(&rdev->fence_queue); 399 400 /* did fence get signaled after we enabled the sw irq? */ 401 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) { 402 radeon_irq_kms_sw_irq_put(rdev, fence->ring); 403 up_read(&rdev->exclusive_lock); 404 return false; 405 } 406 407 up_read(&rdev->exclusive_lock); 408 } else { 409 /* we're probably in a lockup, lets not fiddle too much */ 410 if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring)) 411 rdev->fence_drv[fence->ring].delayed_irq = true; 412 radeon_fence_schedule_check(rdev, fence->ring); 413 } 414 415 fence->fence_wake.flags = 0; 416 fence->fence_wake.private = NULL; 417 fence->fence_wake.func = radeon_fence_check_signaled; 418 __add_wait_queue(&rdev->fence_queue, &fence->fence_wake); 419 dma_fence_get(f); 420 421 DMA_FENCE_TRACE(&fence->base, "armed on ring %i!\n", fence->ring); 422 return true; 423 } 424 425 /** 426 * radeon_fence_signaled - check if a fence has signaled 427 * 428 * @fence: radeon fence object 429 * 430 * Check if the requested fence has signaled (all asics). 431 * Returns true if the fence has signaled or false if it has not. 432 */ 433 bool radeon_fence_signaled(struct radeon_fence *fence) 434 { 435 if (!fence) 436 return true; 437 438 if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) { 439 int ret; 440 441 ret = dma_fence_signal(&fence->base); 442 if (!ret) 443 DMA_FENCE_TRACE(&fence->base, "signaled from radeon_fence_signaled\n"); 444 return true; 445 } 446 return false; 447 } 448 449 /** 450 * radeon_fence_any_seq_signaled - check if any sequence number is signaled 451 * 452 * @rdev: radeon device pointer 453 * @seq: sequence numbers 454 * 455 * Check if the last signaled fence sequnce number is >= the requested 456 * sequence number (all asics). 457 * Returns true if any has signaled (current value is >= requested value) 458 * or false if it has not. Helper function for radeon_fence_wait_seq. 459 */ 460 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq) 461 { 462 unsigned i; 463 464 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 465 if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i)) 466 return true; 467 } 468 return false; 469 } 470 471 /** 472 * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers 473 * 474 * @rdev: radeon device pointer 475 * @target_seq: sequence number(s) we want to wait for 476 * @intr: use interruptable sleep 477 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait 478 * 479 * Wait for the requested sequence number(s) to be written by any ring 480 * (all asics). Sequnce number array is indexed by ring id. 481 * @intr selects whether to use interruptable (true) or non-interruptable 482 * (false) sleep when waiting for the sequence number. Helper function 483 * for radeon_fence_wait_*(). 484 * Returns remaining time if the sequence number has passed, 0 when 485 * the wait timeout, or an error for all other cases. 486 * -EDEADLK is returned when a GPU lockup has been detected. 487 */ 488 static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev, 489 u64 *target_seq, bool intr, 490 long timeout) 491 { 492 long r; 493 int i; 494 495 if (radeon_fence_any_seq_signaled(rdev, target_seq)) 496 return timeout; 497 498 /* enable IRQs and tracing */ 499 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 500 if (!target_seq[i]) 501 continue; 502 503 trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]); 504 radeon_irq_kms_sw_irq_get(rdev, i); 505 } 506 507 if (intr) { 508 r = wait_event_interruptible_timeout(rdev->fence_queue, ( 509 radeon_fence_any_seq_signaled(rdev, target_seq) 510 || rdev->needs_reset), timeout); 511 } else { 512 r = wait_event_timeout(rdev->fence_queue, ( 513 radeon_fence_any_seq_signaled(rdev, target_seq) 514 || rdev->needs_reset), timeout); 515 } 516 517 if (rdev->needs_reset) 518 r = -EDEADLK; 519 520 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 521 if (!target_seq[i]) 522 continue; 523 524 radeon_irq_kms_sw_irq_put(rdev, i); 525 trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]); 526 } 527 528 return r; 529 } 530 531 /** 532 * radeon_fence_wait_timeout - wait for a fence to signal with timeout 533 * 534 * @fence: radeon fence object 535 * @intr: use interruptible sleep 536 * 537 * Wait for the requested fence to signal (all asics). 538 * @intr selects whether to use interruptable (true) or non-interruptable 539 * (false) sleep when waiting for the fence. 540 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait 541 * Returns remaining time if the sequence number has passed, 0 when 542 * the wait timeout, or an error for all other cases. 543 */ 544 long radeon_fence_wait_timeout(struct radeon_fence *fence, bool intr, long timeout) 545 { 546 uint64_t seq[RADEON_NUM_RINGS] = {}; 547 long r; 548 int r_sig; 549 550 /* 551 * This function should not be called on !radeon fences. 552 * If this is the case, it would mean this function can 553 * also be called on radeon fences belonging to another card. 554 * exclusive_lock is not held in that case. 555 */ 556 if (WARN_ON_ONCE(!to_radeon_fence(&fence->base))) 557 return dma_fence_wait(&fence->base, intr); 558 559 seq[fence->ring] = fence->seq; 560 r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, timeout); 561 if (r <= 0) { 562 return r; 563 } 564 565 r_sig = dma_fence_signal(&fence->base); 566 if (!r_sig) 567 DMA_FENCE_TRACE(&fence->base, "signaled from fence_wait\n"); 568 return r; 569 } 570 571 /** 572 * radeon_fence_wait - wait for a fence to signal 573 * 574 * @fence: radeon fence object 575 * @intr: use interruptible sleep 576 * 577 * Wait for the requested fence to signal (all asics). 578 * @intr selects whether to use interruptable (true) or non-interruptable 579 * (false) sleep when waiting for the fence. 580 * Returns 0 if the fence has passed, error for all other cases. 581 */ 582 int radeon_fence_wait(struct radeon_fence *fence, bool intr) 583 { 584 long r = radeon_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT); 585 if (r > 0) { 586 return 0; 587 } else { 588 return r; 589 } 590 } 591 592 /** 593 * radeon_fence_wait_any - wait for a fence to signal on any ring 594 * 595 * @rdev: radeon device pointer 596 * @fences: radeon fence object(s) 597 * @intr: use interruptable sleep 598 * 599 * Wait for any requested fence to signal (all asics). Fence 600 * array is indexed by ring id. @intr selects whether to use 601 * interruptable (true) or non-interruptable (false) sleep when 602 * waiting for the fences. Used by the suballocator. 603 * Returns 0 if any fence has passed, error for all other cases. 604 */ 605 int radeon_fence_wait_any(struct radeon_device *rdev, 606 struct radeon_fence **fences, 607 bool intr) 608 { 609 uint64_t seq[RADEON_NUM_RINGS]; 610 unsigned i, num_rings = 0; 611 long r; 612 613 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 614 seq[i] = 0; 615 616 if (!fences[i]) { 617 continue; 618 } 619 620 seq[i] = fences[i]->seq; 621 ++num_rings; 622 } 623 624 /* nothing to wait for ? */ 625 if (num_rings == 0) 626 return -ENOENT; 627 628 r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT); 629 if (r < 0) { 630 return r; 631 } 632 return 0; 633 } 634 635 /** 636 * radeon_fence_wait_next - wait for the next fence to signal 637 * 638 * @rdev: radeon device pointer 639 * @ring: ring index the fence is associated with 640 * 641 * Wait for the next fence on the requested ring to signal (all asics). 642 * Returns 0 if the next fence has passed, error for all other cases. 643 * Caller must hold ring lock. 644 */ 645 int radeon_fence_wait_next(struct radeon_device *rdev, int ring) 646 { 647 uint64_t seq[RADEON_NUM_RINGS] = {}; 648 long r; 649 650 seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL; 651 if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) { 652 /* nothing to wait for, last_seq is 653 already the last emited fence */ 654 return -ENOENT; 655 } 656 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT); 657 if (r < 0) 658 return r; 659 return 0; 660 } 661 662 /** 663 * radeon_fence_wait_empty - wait for all fences to signal 664 * 665 * @rdev: radeon device pointer 666 * @ring: ring index the fence is associated with 667 * 668 * Wait for all fences on the requested ring to signal (all asics). 669 * Returns 0 if the fences have passed, error for all other cases. 670 * Caller must hold ring lock. 671 */ 672 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring) 673 { 674 uint64_t seq[RADEON_NUM_RINGS] = {}; 675 long r; 676 677 seq[ring] = rdev->fence_drv[ring].sync_seq[ring]; 678 if (!seq[ring]) 679 return 0; 680 681 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT); 682 if (r < 0) { 683 if (r == -EDEADLK) 684 return -EDEADLK; 685 686 dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n", 687 ring, r); 688 } 689 return 0; 690 } 691 692 /** 693 * radeon_fence_ref - take a ref on a fence 694 * 695 * @fence: radeon fence object 696 * 697 * Take a reference on a fence (all asics). 698 * Returns the fence. 699 */ 700 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence) 701 { 702 dma_fence_get(&fence->base); 703 return fence; 704 } 705 706 /** 707 * radeon_fence_unref - remove a ref on a fence 708 * 709 * @fence: radeon fence object 710 * 711 * Remove a reference on a fence (all asics). 712 */ 713 void radeon_fence_unref(struct radeon_fence **fence) 714 { 715 struct radeon_fence *tmp = *fence; 716 717 *fence = NULL; 718 if (tmp) { 719 dma_fence_put(&tmp->base); 720 } 721 } 722 723 /** 724 * radeon_fence_count_emitted - get the count of emitted fences 725 * 726 * @rdev: radeon device pointer 727 * @ring: ring index the fence is associated with 728 * 729 * Get the number of fences emitted on the requested ring (all asics). 730 * Returns the number of emitted fences on the ring. Used by the 731 * dynpm code to ring track activity. 732 */ 733 unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring) 734 { 735 uint64_t emitted; 736 737 /* We are not protected by ring lock when reading the last sequence 738 * but it's ok to report slightly wrong fence count here. 739 */ 740 radeon_fence_process(rdev, ring); 741 emitted = rdev->fence_drv[ring].sync_seq[ring] 742 - atomic64_read(&rdev->fence_drv[ring].last_seq); 743 /* to avoid 32bits warp around */ 744 if (emitted > 0x10000000) { 745 emitted = 0x10000000; 746 } 747 return (unsigned)emitted; 748 } 749 750 /** 751 * radeon_fence_need_sync - do we need a semaphore 752 * 753 * @fence: radeon fence object 754 * @dst_ring: which ring to check against 755 * 756 * Check if the fence needs to be synced against another ring 757 * (all asics). If so, we need to emit a semaphore. 758 * Returns true if we need to sync with another ring, false if 759 * not. 760 */ 761 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring) 762 { 763 struct radeon_fence_driver *fdrv; 764 765 if (!fence) { 766 return false; 767 } 768 769 if (fence->ring == dst_ring) { 770 return false; 771 } 772 773 /* we are protected by the ring mutex */ 774 fdrv = &fence->rdev->fence_drv[dst_ring]; 775 if (fence->seq <= fdrv->sync_seq[fence->ring]) { 776 return false; 777 } 778 779 return true; 780 } 781 782 /** 783 * radeon_fence_note_sync - record the sync point 784 * 785 * @fence: radeon fence object 786 * @dst_ring: which ring to check against 787 * 788 * Note the sequence number at which point the fence will 789 * be synced with the requested ring (all asics). 790 */ 791 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring) 792 { 793 struct radeon_fence_driver *dst, *src; 794 unsigned i; 795 796 if (!fence) { 797 return; 798 } 799 800 if (fence->ring == dst_ring) { 801 return; 802 } 803 804 /* we are protected by the ring mutex */ 805 src = &fence->rdev->fence_drv[fence->ring]; 806 dst = &fence->rdev->fence_drv[dst_ring]; 807 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 808 if (i == dst_ring) { 809 continue; 810 } 811 dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]); 812 } 813 } 814 815 /** 816 * radeon_fence_driver_start_ring - make the fence driver 817 * ready for use on the requested ring. 818 * 819 * @rdev: radeon device pointer 820 * @ring: ring index to start the fence driver on 821 * 822 * Make the fence driver ready for processing (all asics). 823 * Not all asics have all rings, so each asic will only 824 * start the fence driver on the rings it has. 825 * Returns 0 for success, errors for failure. 826 */ 827 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring) 828 { 829 uint64_t index; 830 int r; 831 832 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg); 833 if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) { 834 rdev->fence_drv[ring].scratch_reg = 0; 835 if (ring != R600_RING_TYPE_UVD_INDEX) { 836 index = R600_WB_EVENT_OFFSET + ring * 4; 837 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4]; 838 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + 839 index; 840 841 } else { 842 /* put fence directly behind firmware */ 843 index = ALIGN(rdev->uvd_fw->size, 8); 844 rdev->fence_drv[ring].cpu_addr = rdev->uvd.cpu_addr + index; 845 rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index; 846 } 847 848 } else { 849 r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg); 850 if (r) { 851 dev_err(rdev->dev, "fence failed to get scratch register\n"); 852 return r; 853 } 854 index = RADEON_WB_SCRATCH_OFFSET + 855 rdev->fence_drv[ring].scratch_reg - 856 rdev->scratch.reg_base; 857 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4]; 858 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index; 859 } 860 radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring); 861 rdev->fence_drv[ring].initialized = true; 862 dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016llx and cpu addr 0x%p\n", 863 ring, rdev->fence_drv[ring].gpu_addr, rdev->fence_drv[ring].cpu_addr); 864 return 0; 865 } 866 867 /** 868 * radeon_fence_driver_init_ring - init the fence driver 869 * for the requested ring. 870 * 871 * @rdev: radeon device pointer 872 * @ring: ring index to start the fence driver on 873 * 874 * Init the fence driver for the requested ring (all asics). 875 * Helper function for radeon_fence_driver_init(). 876 */ 877 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring) 878 { 879 int i; 880 881 rdev->fence_drv[ring].scratch_reg = -1; 882 rdev->fence_drv[ring].cpu_addr = NULL; 883 rdev->fence_drv[ring].gpu_addr = 0; 884 for (i = 0; i < RADEON_NUM_RINGS; ++i) 885 rdev->fence_drv[ring].sync_seq[i] = 0; 886 atomic64_set(&rdev->fence_drv[ring].last_seq, 0); 887 rdev->fence_drv[ring].initialized = false; 888 INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work, 889 radeon_fence_check_lockup); 890 rdev->fence_drv[ring].rdev = rdev; 891 } 892 893 /** 894 * radeon_fence_driver_init - init the fence driver 895 * for all possible rings. 896 * 897 * @rdev: radeon device pointer 898 * 899 * Init the fence driver for all possible rings (all asics). 900 * Not all asics have all rings, so each asic will only 901 * start the fence driver on the rings it has using 902 * radeon_fence_driver_start_ring(). 903 * Returns 0 for success. 904 */ 905 int radeon_fence_driver_init(struct radeon_device *rdev) 906 { 907 int ring; 908 909 init_waitqueue_head(&rdev->fence_queue); 910 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) { 911 radeon_fence_driver_init_ring(rdev, ring); 912 } 913 if (radeon_debugfs_fence_init(rdev)) { 914 dev_err(rdev->dev, "fence debugfs file creation failed\n"); 915 } 916 return 0; 917 } 918 919 /** 920 * radeon_fence_driver_fini - tear down the fence driver 921 * for all possible rings. 922 * 923 * @rdev: radeon device pointer 924 * 925 * Tear down the fence driver for all possible rings (all asics). 926 */ 927 void radeon_fence_driver_fini(struct radeon_device *rdev) 928 { 929 int ring, r; 930 931 mutex_lock(&rdev->ring_lock); 932 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) { 933 if (!rdev->fence_drv[ring].initialized) 934 continue; 935 r = radeon_fence_wait_empty(rdev, ring); 936 if (r) { 937 /* no need to trigger GPU reset as we are unloading */ 938 radeon_fence_driver_force_completion(rdev, ring); 939 } 940 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work); 941 wake_up_all(&rdev->fence_queue); 942 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg); 943 rdev->fence_drv[ring].initialized = false; 944 } 945 mutex_unlock(&rdev->ring_lock); 946 } 947 948 /** 949 * radeon_fence_driver_force_completion - force all fence waiter to complete 950 * 951 * @rdev: radeon device pointer 952 * @ring: the ring to complete 953 * 954 * In case of GPU reset failure make sure no process keep waiting on fence 955 * that will never complete. 956 */ 957 void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring) 958 { 959 if (rdev->fence_drv[ring].initialized) { 960 radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring); 961 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work); 962 } 963 } 964 965 966 /* 967 * Fence debugfs 968 */ 969 #if defined(CONFIG_DEBUG_FS) 970 static int radeon_debugfs_fence_info(struct seq_file *m, void *data) 971 { 972 struct drm_info_node *node = (struct drm_info_node *)m->private; 973 struct drm_device *dev = node->minor->dev; 974 struct radeon_device *rdev = dev->dev_private; 975 int i, j; 976 977 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 978 if (!rdev->fence_drv[i].initialized) 979 continue; 980 981 radeon_fence_process(rdev, i); 982 983 seq_printf(m, "--- ring %d ---\n", i); 984 seq_printf(m, "Last signaled fence 0x%016llx\n", 985 (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq)); 986 seq_printf(m, "Last emitted 0x%016llx\n", 987 rdev->fence_drv[i].sync_seq[i]); 988 989 for (j = 0; j < RADEON_NUM_RINGS; ++j) { 990 if (i != j && rdev->fence_drv[j].initialized) 991 seq_printf(m, "Last sync to ring %d 0x%016llx\n", 992 j, rdev->fence_drv[i].sync_seq[j]); 993 } 994 } 995 return 0; 996 } 997 998 /** 999 * radeon_debugfs_gpu_reset - manually trigger a gpu reset 1000 * 1001 * Manually trigger a gpu reset at the next fence wait. 1002 */ 1003 static int radeon_debugfs_gpu_reset(struct seq_file *m, void *data) 1004 { 1005 struct drm_info_node *node = (struct drm_info_node *) m->private; 1006 struct drm_device *dev = node->minor->dev; 1007 struct radeon_device *rdev = dev->dev_private; 1008 1009 down_read(&rdev->exclusive_lock); 1010 seq_printf(m, "%d\n", rdev->needs_reset); 1011 rdev->needs_reset = true; 1012 wake_up_all(&rdev->fence_queue); 1013 up_read(&rdev->exclusive_lock); 1014 1015 return 0; 1016 } 1017 1018 static struct drm_info_list radeon_debugfs_fence_list[] = { 1019 {"radeon_fence_info", &radeon_debugfs_fence_info, 0, NULL}, 1020 {"radeon_gpu_reset", &radeon_debugfs_gpu_reset, 0, NULL} 1021 }; 1022 #endif 1023 1024 int radeon_debugfs_fence_init(struct radeon_device *rdev) 1025 { 1026 #if defined(CONFIG_DEBUG_FS) 1027 return radeon_debugfs_add_files(rdev, radeon_debugfs_fence_list, 2); 1028 #else 1029 return 0; 1030 #endif 1031 } 1032 1033 static const char *radeon_fence_get_driver_name(struct dma_fence *fence) 1034 { 1035 return "radeon"; 1036 } 1037 1038 static const char *radeon_fence_get_timeline_name(struct dma_fence *f) 1039 { 1040 struct radeon_fence *fence = to_radeon_fence(f); 1041 switch (fence->ring) { 1042 case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx"; 1043 case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1"; 1044 case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2"; 1045 case R600_RING_TYPE_DMA_INDEX: return "radeon.dma"; 1046 case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1"; 1047 case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd"; 1048 case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1"; 1049 case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2"; 1050 default: WARN_ON_ONCE(1); return "radeon.unk"; 1051 } 1052 } 1053 1054 static inline bool radeon_test_signaled(struct radeon_fence *fence) 1055 { 1056 return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->base.flags); 1057 } 1058 1059 struct radeon_wait_cb { 1060 struct dma_fence_cb base; 1061 struct task_struct *task; 1062 }; 1063 1064 static void 1065 radeon_fence_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 1066 { 1067 struct radeon_wait_cb *wait = 1068 container_of(cb, struct radeon_wait_cb, base); 1069 1070 wake_up_process(wait->task); 1071 } 1072 1073 static signed long radeon_fence_default_wait(struct dma_fence *f, bool intr, 1074 signed long t) 1075 { 1076 struct radeon_fence *fence = to_radeon_fence(f); 1077 struct radeon_device *rdev = fence->rdev; 1078 struct radeon_wait_cb cb; 1079 1080 cb.task = current; 1081 1082 if (dma_fence_add_callback(f, &cb.base, radeon_fence_wait_cb)) 1083 return t; 1084 1085 while (t > 0) { 1086 if (intr) 1087 set_current_state(TASK_INTERRUPTIBLE); 1088 else 1089 set_current_state(TASK_UNINTERRUPTIBLE); 1090 1091 /* 1092 * radeon_test_signaled must be called after 1093 * set_current_state to prevent a race with wake_up_process 1094 */ 1095 if (radeon_test_signaled(fence)) 1096 break; 1097 1098 if (rdev->needs_reset) { 1099 t = -EDEADLK; 1100 break; 1101 } 1102 1103 t = schedule_timeout(t); 1104 1105 if (t > 0 && intr && signal_pending(current)) 1106 t = -ERESTARTSYS; 1107 } 1108 1109 __set_current_state(TASK_RUNNING); 1110 dma_fence_remove_callback(f, &cb.base); 1111 1112 return t; 1113 } 1114 1115 const struct dma_fence_ops radeon_fence_ops = { 1116 .get_driver_name = radeon_fence_get_driver_name, 1117 .get_timeline_name = radeon_fence_get_timeline_name, 1118 .enable_signaling = radeon_fence_enable_signaling, 1119 .signaled = radeon_fence_is_signaled, 1120 .wait = radeon_fence_default_wait, 1121 .release = NULL, 1122 }; 1123