1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Dave Airlie 30 */ 31 #include <linux/seq_file.h> 32 #include <linux/atomic.h> 33 #include <linux/wait.h> 34 #include <linux/kref.h> 35 #include <linux/slab.h> 36 #include <linux/firmware.h> 37 #include <drm/drmP.h> 38 #include "radeon_reg.h" 39 #include "radeon.h" 40 #include "radeon_trace.h" 41 42 /* 43 * Fences 44 * Fences mark an event in the GPUs pipeline and are used 45 * for GPU/CPU synchronization. When the fence is written, 46 * it is expected that all buffers associated with that fence 47 * are no longer in use by the associated ring on the GPU and 48 * that the the relevant GPU caches have been flushed. Whether 49 * we use a scratch register or memory location depends on the asic 50 * and whether writeback is enabled. 51 */ 52 53 /** 54 * radeon_fence_write - write a fence value 55 * 56 * @rdev: radeon_device pointer 57 * @seq: sequence number to write 58 * @ring: ring index the fence is associated with 59 * 60 * Writes a fence value to memory or a scratch register (all asics). 61 */ 62 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring) 63 { 64 struct radeon_fence_driver *drv = &rdev->fence_drv[ring]; 65 if (likely(rdev->wb.enabled || !drv->scratch_reg)) { 66 if (drv->cpu_addr) { 67 *drv->cpu_addr = cpu_to_le32(seq); 68 } 69 } else { 70 WREG32(drv->scratch_reg, seq); 71 } 72 } 73 74 /** 75 * radeon_fence_read - read a fence value 76 * 77 * @rdev: radeon_device pointer 78 * @ring: ring index the fence is associated with 79 * 80 * Reads a fence value from memory or a scratch register (all asics). 81 * Returns the value of the fence read from memory or register. 82 */ 83 static u32 radeon_fence_read(struct radeon_device *rdev, int ring) 84 { 85 struct radeon_fence_driver *drv = &rdev->fence_drv[ring]; 86 u32 seq = 0; 87 88 if (likely(rdev->wb.enabled || !drv->scratch_reg)) { 89 if (drv->cpu_addr) { 90 seq = le32_to_cpu(*drv->cpu_addr); 91 } else { 92 seq = lower_32_bits(atomic64_read(&drv->last_seq)); 93 } 94 } else { 95 seq = RREG32(drv->scratch_reg); 96 } 97 return seq; 98 } 99 100 /** 101 * radeon_fence_schedule_check - schedule lockup check 102 * 103 * @rdev: radeon_device pointer 104 * @ring: ring index we should work with 105 * 106 * Queues a delayed work item to check for lockups. 107 */ 108 static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring) 109 { 110 /* 111 * Do not reset the timer here with mod_delayed_work, 112 * this can livelock in an interaction with TTM delayed destroy. 113 */ 114 queue_delayed_work(system_power_efficient_wq, 115 &rdev->fence_drv[ring].lockup_work, 116 RADEON_FENCE_JIFFIES_TIMEOUT); 117 } 118 119 /** 120 * radeon_fence_emit - emit a fence on the requested ring 121 * 122 * @rdev: radeon_device pointer 123 * @fence: radeon fence object 124 * @ring: ring index the fence is associated with 125 * 126 * Emits a fence command on the requested ring (all asics). 127 * Returns 0 on success, -ENOMEM on failure. 128 */ 129 int radeon_fence_emit(struct radeon_device *rdev, 130 struct radeon_fence **fence, 131 int ring) 132 { 133 u64 seq = ++rdev->fence_drv[ring].sync_seq[ring]; 134 135 /* we are protected by the ring emission mutex */ 136 *fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL); 137 if ((*fence) == NULL) { 138 return -ENOMEM; 139 } 140 (*fence)->rdev = rdev; 141 (*fence)->seq = seq; 142 (*fence)->ring = ring; 143 fence_init(&(*fence)->base, &radeon_fence_ops, 144 &rdev->fence_queue.lock, rdev->fence_context + ring, seq); 145 radeon_fence_ring_emit(rdev, ring, *fence); 146 trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq); 147 radeon_fence_schedule_check(rdev, ring); 148 return 0; 149 } 150 151 /** 152 * radeon_fence_check_signaled - callback from fence_queue 153 * 154 * this function is called with fence_queue lock held, which is also used 155 * for the fence locking itself, so unlocked variants are used for 156 * fence_signal, and remove_wait_queue. 157 */ 158 static int radeon_fence_check_signaled(wait_queue_t *wait, unsigned mode, int flags, void *key) 159 { 160 struct radeon_fence *fence; 161 u64 seq; 162 163 fence = container_of(wait, struct radeon_fence, fence_wake); 164 165 /* 166 * We cannot use radeon_fence_process here because we're already 167 * in the waitqueue, in a call from wake_up_all. 168 */ 169 seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq); 170 if (seq >= fence->seq) { 171 int ret = fence_signal_locked(&fence->base); 172 173 if (!ret) 174 FENCE_TRACE(&fence->base, "signaled from irq context\n"); 175 else 176 FENCE_TRACE(&fence->base, "was already signaled\n"); 177 178 radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring); 179 __remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake); 180 fence_put(&fence->base); 181 } else 182 FENCE_TRACE(&fence->base, "pending\n"); 183 return 0; 184 } 185 186 /** 187 * radeon_fence_activity - check for fence activity 188 * 189 * @rdev: radeon_device pointer 190 * @ring: ring index the fence is associated with 191 * 192 * Checks the current fence value and calculates the last 193 * signalled fence value. Returns true if activity occured 194 * on the ring, and the fence_queue should be waken up. 195 */ 196 static bool radeon_fence_activity(struct radeon_device *rdev, int ring) 197 { 198 uint64_t seq, last_seq, last_emitted; 199 unsigned count_loop = 0; 200 bool wake = false; 201 202 /* Note there is a scenario here for an infinite loop but it's 203 * very unlikely to happen. For it to happen, the current polling 204 * process need to be interrupted by another process and another 205 * process needs to update the last_seq btw the atomic read and 206 * xchg of the current process. 207 * 208 * More over for this to go in infinite loop there need to be 209 * continuously new fence signaled ie radeon_fence_read needs 210 * to return a different value each time for both the currently 211 * polling process and the other process that xchg the last_seq 212 * btw atomic read and xchg of the current process. And the 213 * value the other process set as last seq must be higher than 214 * the seq value we just read. Which means that current process 215 * need to be interrupted after radeon_fence_read and before 216 * atomic xchg. 217 * 218 * To be even more safe we count the number of time we loop and 219 * we bail after 10 loop just accepting the fact that we might 220 * have temporarly set the last_seq not to the true real last 221 * seq but to an older one. 222 */ 223 last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq); 224 do { 225 last_emitted = rdev->fence_drv[ring].sync_seq[ring]; 226 seq = radeon_fence_read(rdev, ring); 227 seq |= last_seq & 0xffffffff00000000LL; 228 if (seq < last_seq) { 229 seq &= 0xffffffff; 230 seq |= last_emitted & 0xffffffff00000000LL; 231 } 232 233 if (seq <= last_seq || seq > last_emitted) { 234 break; 235 } 236 /* If we loop over we don't want to return without 237 * checking if a fence is signaled as it means that the 238 * seq we just read is different from the previous on. 239 */ 240 wake = true; 241 last_seq = seq; 242 if ((count_loop++) > 10) { 243 /* We looped over too many time leave with the 244 * fact that we might have set an older fence 245 * seq then the current real last seq as signaled 246 * by the hw. 247 */ 248 break; 249 } 250 } while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq); 251 252 if (seq < last_emitted) 253 radeon_fence_schedule_check(rdev, ring); 254 255 return wake; 256 } 257 258 /** 259 * radeon_fence_check_lockup - check for hardware lockup 260 * 261 * @work: delayed work item 262 * 263 * Checks for fence activity and if there is none probe 264 * the hardware if a lockup occured. 265 */ 266 static void radeon_fence_check_lockup(struct work_struct *work) 267 { 268 struct radeon_fence_driver *fence_drv; 269 struct radeon_device *rdev; 270 int ring; 271 272 fence_drv = container_of(work, struct radeon_fence_driver, 273 lockup_work.work); 274 rdev = fence_drv->rdev; 275 ring = fence_drv - &rdev->fence_drv[0]; 276 277 if (!down_read_trylock(&rdev->exclusive_lock)) { 278 /* just reschedule the check if a reset is going on */ 279 radeon_fence_schedule_check(rdev, ring); 280 return; 281 } 282 283 if (fence_drv->delayed_irq && rdev->ddev->irq_enabled) { 284 unsigned long irqflags; 285 286 fence_drv->delayed_irq = false; 287 spin_lock_irqsave(&rdev->irq.lock, irqflags); 288 radeon_irq_set(rdev); 289 spin_unlock_irqrestore(&rdev->irq.lock, irqflags); 290 } 291 292 if (radeon_fence_activity(rdev, ring)) 293 wake_up_all(&rdev->fence_queue); 294 295 else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) { 296 297 /* good news we believe it's a lockup */ 298 dev_warn(rdev->dev, "GPU lockup (current fence id " 299 "0x%016llx last fence id 0x%016llx on ring %d)\n", 300 (uint64_t)atomic64_read(&fence_drv->last_seq), 301 fence_drv->sync_seq[ring], ring); 302 303 /* remember that we need an reset */ 304 rdev->needs_reset = true; 305 wake_up_all(&rdev->fence_queue); 306 } 307 up_read(&rdev->exclusive_lock); 308 } 309 310 /** 311 * radeon_fence_process - process a fence 312 * 313 * @rdev: radeon_device pointer 314 * @ring: ring index the fence is associated with 315 * 316 * Checks the current fence value and wakes the fence queue 317 * if the sequence number has increased (all asics). 318 */ 319 void radeon_fence_process(struct radeon_device *rdev, int ring) 320 { 321 if (radeon_fence_activity(rdev, ring)) 322 wake_up_all(&rdev->fence_queue); 323 } 324 325 /** 326 * radeon_fence_seq_signaled - check if a fence sequence number has signaled 327 * 328 * @rdev: radeon device pointer 329 * @seq: sequence number 330 * @ring: ring index the fence is associated with 331 * 332 * Check if the last signaled fence sequnce number is >= the requested 333 * sequence number (all asics). 334 * Returns true if the fence has signaled (current fence value 335 * is >= requested value) or false if it has not (current fence 336 * value is < the requested value. Helper function for 337 * radeon_fence_signaled(). 338 */ 339 static bool radeon_fence_seq_signaled(struct radeon_device *rdev, 340 u64 seq, unsigned ring) 341 { 342 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) { 343 return true; 344 } 345 /* poll new last sequence at least once */ 346 radeon_fence_process(rdev, ring); 347 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) { 348 return true; 349 } 350 return false; 351 } 352 353 static bool radeon_fence_is_signaled(struct fence *f) 354 { 355 struct radeon_fence *fence = to_radeon_fence(f); 356 struct radeon_device *rdev = fence->rdev; 357 unsigned ring = fence->ring; 358 u64 seq = fence->seq; 359 360 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) { 361 return true; 362 } 363 364 if (down_read_trylock(&rdev->exclusive_lock)) { 365 radeon_fence_process(rdev, ring); 366 up_read(&rdev->exclusive_lock); 367 368 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) { 369 return true; 370 } 371 } 372 return false; 373 } 374 375 /** 376 * radeon_fence_enable_signaling - enable signalling on fence 377 * @fence: fence 378 * 379 * This function is called with fence_queue lock held, and adds a callback 380 * to fence_queue that checks if this fence is signaled, and if so it 381 * signals the fence and removes itself. 382 */ 383 static bool radeon_fence_enable_signaling(struct fence *f) 384 { 385 struct radeon_fence *fence = to_radeon_fence(f); 386 struct radeon_device *rdev = fence->rdev; 387 388 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) 389 return false; 390 391 if (down_read_trylock(&rdev->exclusive_lock)) { 392 radeon_irq_kms_sw_irq_get(rdev, fence->ring); 393 394 if (radeon_fence_activity(rdev, fence->ring)) 395 wake_up_all_locked(&rdev->fence_queue); 396 397 /* did fence get signaled after we enabled the sw irq? */ 398 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) { 399 radeon_irq_kms_sw_irq_put(rdev, fence->ring); 400 up_read(&rdev->exclusive_lock); 401 return false; 402 } 403 404 up_read(&rdev->exclusive_lock); 405 } else { 406 /* we're probably in a lockup, lets not fiddle too much */ 407 if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring)) 408 rdev->fence_drv[fence->ring].delayed_irq = true; 409 radeon_fence_schedule_check(rdev, fence->ring); 410 } 411 412 fence->fence_wake.flags = 0; 413 fence->fence_wake.private = NULL; 414 fence->fence_wake.func = radeon_fence_check_signaled; 415 __add_wait_queue(&rdev->fence_queue, &fence->fence_wake); 416 fence_get(f); 417 418 FENCE_TRACE(&fence->base, "armed on ring %i!\n", fence->ring); 419 return true; 420 } 421 422 /** 423 * radeon_fence_signaled - check if a fence has signaled 424 * 425 * @fence: radeon fence object 426 * 427 * Check if the requested fence has signaled (all asics). 428 * Returns true if the fence has signaled or false if it has not. 429 */ 430 bool radeon_fence_signaled(struct radeon_fence *fence) 431 { 432 if (!fence) 433 return true; 434 435 if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) { 436 int ret; 437 438 ret = fence_signal(&fence->base); 439 if (!ret) 440 FENCE_TRACE(&fence->base, "signaled from radeon_fence_signaled\n"); 441 return true; 442 } 443 return false; 444 } 445 446 /** 447 * radeon_fence_any_seq_signaled - check if any sequence number is signaled 448 * 449 * @rdev: radeon device pointer 450 * @seq: sequence numbers 451 * 452 * Check if the last signaled fence sequnce number is >= the requested 453 * sequence number (all asics). 454 * Returns true if any has signaled (current value is >= requested value) 455 * or false if it has not. Helper function for radeon_fence_wait_seq. 456 */ 457 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq) 458 { 459 unsigned i; 460 461 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 462 if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i)) 463 return true; 464 } 465 return false; 466 } 467 468 /** 469 * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers 470 * 471 * @rdev: radeon device pointer 472 * @target_seq: sequence number(s) we want to wait for 473 * @intr: use interruptable sleep 474 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait 475 * 476 * Wait for the requested sequence number(s) to be written by any ring 477 * (all asics). Sequnce number array is indexed by ring id. 478 * @intr selects whether to use interruptable (true) or non-interruptable 479 * (false) sleep when waiting for the sequence number. Helper function 480 * for radeon_fence_wait_*(). 481 * Returns remaining time if the sequence number has passed, 0 when 482 * the wait timeout, or an error for all other cases. 483 * -EDEADLK is returned when a GPU lockup has been detected. 484 */ 485 static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev, 486 u64 *target_seq, bool intr, 487 long timeout) 488 { 489 long r; 490 int i; 491 492 if (radeon_fence_any_seq_signaled(rdev, target_seq)) 493 return timeout; 494 495 /* enable IRQs and tracing */ 496 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 497 if (!target_seq[i]) 498 continue; 499 500 trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]); 501 radeon_irq_kms_sw_irq_get(rdev, i); 502 } 503 504 if (intr) { 505 r = wait_event_interruptible_timeout(rdev->fence_queue, ( 506 radeon_fence_any_seq_signaled(rdev, target_seq) 507 || rdev->needs_reset), timeout); 508 } else { 509 r = wait_event_timeout(rdev->fence_queue, ( 510 radeon_fence_any_seq_signaled(rdev, target_seq) 511 || rdev->needs_reset), timeout); 512 } 513 514 if (rdev->needs_reset) 515 r = -EDEADLK; 516 517 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 518 if (!target_seq[i]) 519 continue; 520 521 radeon_irq_kms_sw_irq_put(rdev, i); 522 trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]); 523 } 524 525 return r; 526 } 527 528 /** 529 * radeon_fence_wait - wait for a fence to signal 530 * 531 * @fence: radeon fence object 532 * @intr: use interruptible sleep 533 * 534 * Wait for the requested fence to signal (all asics). 535 * @intr selects whether to use interruptable (true) or non-interruptable 536 * (false) sleep when waiting for the fence. 537 * Returns 0 if the fence has passed, error for all other cases. 538 */ 539 int radeon_fence_wait(struct radeon_fence *fence, bool intr) 540 { 541 uint64_t seq[RADEON_NUM_RINGS] = {}; 542 long r; 543 544 /* 545 * This function should not be called on !radeon fences. 546 * If this is the case, it would mean this function can 547 * also be called on radeon fences belonging to another card. 548 * exclusive_lock is not held in that case. 549 */ 550 if (WARN_ON_ONCE(!to_radeon_fence(&fence->base))) 551 return fence_wait(&fence->base, intr); 552 553 seq[fence->ring] = fence->seq; 554 r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, MAX_SCHEDULE_TIMEOUT); 555 if (r < 0) { 556 return r; 557 } 558 559 r = fence_signal(&fence->base); 560 if (!r) 561 FENCE_TRACE(&fence->base, "signaled from fence_wait\n"); 562 return 0; 563 } 564 565 /** 566 * radeon_fence_wait_any - wait for a fence to signal on any ring 567 * 568 * @rdev: radeon device pointer 569 * @fences: radeon fence object(s) 570 * @intr: use interruptable sleep 571 * 572 * Wait for any requested fence to signal (all asics). Fence 573 * array is indexed by ring id. @intr selects whether to use 574 * interruptable (true) or non-interruptable (false) sleep when 575 * waiting for the fences. Used by the suballocator. 576 * Returns 0 if any fence has passed, error for all other cases. 577 */ 578 int radeon_fence_wait_any(struct radeon_device *rdev, 579 struct radeon_fence **fences, 580 bool intr) 581 { 582 uint64_t seq[RADEON_NUM_RINGS]; 583 unsigned i, num_rings = 0; 584 long r; 585 586 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 587 seq[i] = 0; 588 589 if (!fences[i]) { 590 continue; 591 } 592 593 seq[i] = fences[i]->seq; 594 ++num_rings; 595 } 596 597 /* nothing to wait for ? */ 598 if (num_rings == 0) 599 return -ENOENT; 600 601 r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT); 602 if (r < 0) { 603 return r; 604 } 605 return 0; 606 } 607 608 /** 609 * radeon_fence_wait_next - wait for the next fence to signal 610 * 611 * @rdev: radeon device pointer 612 * @ring: ring index the fence is associated with 613 * 614 * Wait for the next fence on the requested ring to signal (all asics). 615 * Returns 0 if the next fence has passed, error for all other cases. 616 * Caller must hold ring lock. 617 */ 618 int radeon_fence_wait_next(struct radeon_device *rdev, int ring) 619 { 620 uint64_t seq[RADEON_NUM_RINGS] = {}; 621 long r; 622 623 seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL; 624 if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) { 625 /* nothing to wait for, last_seq is 626 already the last emited fence */ 627 return -ENOENT; 628 } 629 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT); 630 if (r < 0) 631 return r; 632 return 0; 633 } 634 635 /** 636 * radeon_fence_wait_empty - wait for all fences to signal 637 * 638 * @rdev: radeon device pointer 639 * @ring: ring index the fence is associated with 640 * 641 * Wait for all fences on the requested ring to signal (all asics). 642 * Returns 0 if the fences have passed, error for all other cases. 643 * Caller must hold ring lock. 644 */ 645 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring) 646 { 647 uint64_t seq[RADEON_NUM_RINGS] = {}; 648 long r; 649 650 seq[ring] = rdev->fence_drv[ring].sync_seq[ring]; 651 if (!seq[ring]) 652 return 0; 653 654 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT); 655 if (r < 0) { 656 if (r == -EDEADLK) 657 return -EDEADLK; 658 659 dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n", 660 ring, r); 661 } 662 return 0; 663 } 664 665 /** 666 * radeon_fence_ref - take a ref on a fence 667 * 668 * @fence: radeon fence object 669 * 670 * Take a reference on a fence (all asics). 671 * Returns the fence. 672 */ 673 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence) 674 { 675 fence_get(&fence->base); 676 return fence; 677 } 678 679 /** 680 * radeon_fence_unref - remove a ref on a fence 681 * 682 * @fence: radeon fence object 683 * 684 * Remove a reference on a fence (all asics). 685 */ 686 void radeon_fence_unref(struct radeon_fence **fence) 687 { 688 struct radeon_fence *tmp = *fence; 689 690 *fence = NULL; 691 if (tmp) { 692 fence_put(&tmp->base); 693 } 694 } 695 696 /** 697 * radeon_fence_count_emitted - get the count of emitted fences 698 * 699 * @rdev: radeon device pointer 700 * @ring: ring index the fence is associated with 701 * 702 * Get the number of fences emitted on the requested ring (all asics). 703 * Returns the number of emitted fences on the ring. Used by the 704 * dynpm code to ring track activity. 705 */ 706 unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring) 707 { 708 uint64_t emitted; 709 710 /* We are not protected by ring lock when reading the last sequence 711 * but it's ok to report slightly wrong fence count here. 712 */ 713 radeon_fence_process(rdev, ring); 714 emitted = rdev->fence_drv[ring].sync_seq[ring] 715 - atomic64_read(&rdev->fence_drv[ring].last_seq); 716 /* to avoid 32bits warp around */ 717 if (emitted > 0x10000000) { 718 emitted = 0x10000000; 719 } 720 return (unsigned)emitted; 721 } 722 723 /** 724 * radeon_fence_need_sync - do we need a semaphore 725 * 726 * @fence: radeon fence object 727 * @dst_ring: which ring to check against 728 * 729 * Check if the fence needs to be synced against another ring 730 * (all asics). If so, we need to emit a semaphore. 731 * Returns true if we need to sync with another ring, false if 732 * not. 733 */ 734 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring) 735 { 736 struct radeon_fence_driver *fdrv; 737 738 if (!fence) { 739 return false; 740 } 741 742 if (fence->ring == dst_ring) { 743 return false; 744 } 745 746 /* we are protected by the ring mutex */ 747 fdrv = &fence->rdev->fence_drv[dst_ring]; 748 if (fence->seq <= fdrv->sync_seq[fence->ring]) { 749 return false; 750 } 751 752 return true; 753 } 754 755 /** 756 * radeon_fence_note_sync - record the sync point 757 * 758 * @fence: radeon fence object 759 * @dst_ring: which ring to check against 760 * 761 * Note the sequence number at which point the fence will 762 * be synced with the requested ring (all asics). 763 */ 764 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring) 765 { 766 struct radeon_fence_driver *dst, *src; 767 unsigned i; 768 769 if (!fence) { 770 return; 771 } 772 773 if (fence->ring == dst_ring) { 774 return; 775 } 776 777 /* we are protected by the ring mutex */ 778 src = &fence->rdev->fence_drv[fence->ring]; 779 dst = &fence->rdev->fence_drv[dst_ring]; 780 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 781 if (i == dst_ring) { 782 continue; 783 } 784 dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]); 785 } 786 } 787 788 /** 789 * radeon_fence_driver_start_ring - make the fence driver 790 * ready for use on the requested ring. 791 * 792 * @rdev: radeon device pointer 793 * @ring: ring index to start the fence driver on 794 * 795 * Make the fence driver ready for processing (all asics). 796 * Not all asics have all rings, so each asic will only 797 * start the fence driver on the rings it has. 798 * Returns 0 for success, errors for failure. 799 */ 800 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring) 801 { 802 uint64_t index; 803 int r; 804 805 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg); 806 if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) { 807 rdev->fence_drv[ring].scratch_reg = 0; 808 if (ring != R600_RING_TYPE_UVD_INDEX) { 809 index = R600_WB_EVENT_OFFSET + ring * 4; 810 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4]; 811 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + 812 index; 813 814 } else { 815 /* put fence directly behind firmware */ 816 index = ALIGN(rdev->uvd_fw->size, 8); 817 rdev->fence_drv[ring].cpu_addr = rdev->uvd.cpu_addr + index; 818 rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index; 819 } 820 821 } else { 822 r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg); 823 if (r) { 824 dev_err(rdev->dev, "fence failed to get scratch register\n"); 825 return r; 826 } 827 index = RADEON_WB_SCRATCH_OFFSET + 828 rdev->fence_drv[ring].scratch_reg - 829 rdev->scratch.reg_base; 830 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4]; 831 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index; 832 } 833 radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring); 834 rdev->fence_drv[ring].initialized = true; 835 dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016llx and cpu addr 0x%p\n", 836 ring, rdev->fence_drv[ring].gpu_addr, rdev->fence_drv[ring].cpu_addr); 837 return 0; 838 } 839 840 /** 841 * radeon_fence_driver_init_ring - init the fence driver 842 * for the requested ring. 843 * 844 * @rdev: radeon device pointer 845 * @ring: ring index to start the fence driver on 846 * 847 * Init the fence driver for the requested ring (all asics). 848 * Helper function for radeon_fence_driver_init(). 849 */ 850 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring) 851 { 852 int i; 853 854 rdev->fence_drv[ring].scratch_reg = -1; 855 rdev->fence_drv[ring].cpu_addr = NULL; 856 rdev->fence_drv[ring].gpu_addr = 0; 857 for (i = 0; i < RADEON_NUM_RINGS; ++i) 858 rdev->fence_drv[ring].sync_seq[i] = 0; 859 atomic64_set(&rdev->fence_drv[ring].last_seq, 0); 860 rdev->fence_drv[ring].initialized = false; 861 INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work, 862 radeon_fence_check_lockup); 863 rdev->fence_drv[ring].rdev = rdev; 864 } 865 866 /** 867 * radeon_fence_driver_init - init the fence driver 868 * for all possible rings. 869 * 870 * @rdev: radeon device pointer 871 * 872 * Init the fence driver for all possible rings (all asics). 873 * Not all asics have all rings, so each asic will only 874 * start the fence driver on the rings it has using 875 * radeon_fence_driver_start_ring(). 876 * Returns 0 for success. 877 */ 878 int radeon_fence_driver_init(struct radeon_device *rdev) 879 { 880 int ring; 881 882 init_waitqueue_head(&rdev->fence_queue); 883 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) { 884 radeon_fence_driver_init_ring(rdev, ring); 885 } 886 if (radeon_debugfs_fence_init(rdev)) { 887 dev_err(rdev->dev, "fence debugfs file creation failed\n"); 888 } 889 return 0; 890 } 891 892 /** 893 * radeon_fence_driver_fini - tear down the fence driver 894 * for all possible rings. 895 * 896 * @rdev: radeon device pointer 897 * 898 * Tear down the fence driver for all possible rings (all asics). 899 */ 900 void radeon_fence_driver_fini(struct radeon_device *rdev) 901 { 902 int ring, r; 903 904 mutex_lock(&rdev->ring_lock); 905 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) { 906 if (!rdev->fence_drv[ring].initialized) 907 continue; 908 r = radeon_fence_wait_empty(rdev, ring); 909 if (r) { 910 /* no need to trigger GPU reset as we are unloading */ 911 radeon_fence_driver_force_completion(rdev, ring); 912 } 913 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work); 914 wake_up_all(&rdev->fence_queue); 915 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg); 916 rdev->fence_drv[ring].initialized = false; 917 } 918 mutex_unlock(&rdev->ring_lock); 919 } 920 921 /** 922 * radeon_fence_driver_force_completion - force all fence waiter to complete 923 * 924 * @rdev: radeon device pointer 925 * @ring: the ring to complete 926 * 927 * In case of GPU reset failure make sure no process keep waiting on fence 928 * that will never complete. 929 */ 930 void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring) 931 { 932 if (rdev->fence_drv[ring].initialized) { 933 radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring); 934 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work); 935 } 936 } 937 938 939 /* 940 * Fence debugfs 941 */ 942 #if defined(CONFIG_DEBUG_FS) 943 static int radeon_debugfs_fence_info(struct seq_file *m, void *data) 944 { 945 struct drm_info_node *node = (struct drm_info_node *)m->private; 946 struct drm_device *dev = node->minor->dev; 947 struct radeon_device *rdev = dev->dev_private; 948 int i, j; 949 950 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 951 if (!rdev->fence_drv[i].initialized) 952 continue; 953 954 radeon_fence_process(rdev, i); 955 956 seq_printf(m, "--- ring %d ---\n", i); 957 seq_printf(m, "Last signaled fence 0x%016llx\n", 958 (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq)); 959 seq_printf(m, "Last emitted 0x%016llx\n", 960 rdev->fence_drv[i].sync_seq[i]); 961 962 for (j = 0; j < RADEON_NUM_RINGS; ++j) { 963 if (i != j && rdev->fence_drv[j].initialized) 964 seq_printf(m, "Last sync to ring %d 0x%016llx\n", 965 j, rdev->fence_drv[i].sync_seq[j]); 966 } 967 } 968 return 0; 969 } 970 971 /** 972 * radeon_debugfs_gpu_reset - manually trigger a gpu reset 973 * 974 * Manually trigger a gpu reset at the next fence wait. 975 */ 976 static int radeon_debugfs_gpu_reset(struct seq_file *m, void *data) 977 { 978 struct drm_info_node *node = (struct drm_info_node *) m->private; 979 struct drm_device *dev = node->minor->dev; 980 struct radeon_device *rdev = dev->dev_private; 981 982 down_read(&rdev->exclusive_lock); 983 seq_printf(m, "%d\n", rdev->needs_reset); 984 rdev->needs_reset = true; 985 wake_up_all(&rdev->fence_queue); 986 up_read(&rdev->exclusive_lock); 987 988 return 0; 989 } 990 991 static struct drm_info_list radeon_debugfs_fence_list[] = { 992 {"radeon_fence_info", &radeon_debugfs_fence_info, 0, NULL}, 993 {"radeon_gpu_reset", &radeon_debugfs_gpu_reset, 0, NULL} 994 }; 995 #endif 996 997 int radeon_debugfs_fence_init(struct radeon_device *rdev) 998 { 999 #if defined(CONFIG_DEBUG_FS) 1000 return radeon_debugfs_add_files(rdev, radeon_debugfs_fence_list, 2); 1001 #else 1002 return 0; 1003 #endif 1004 } 1005 1006 static const char *radeon_fence_get_driver_name(struct fence *fence) 1007 { 1008 return "radeon"; 1009 } 1010 1011 static const char *radeon_fence_get_timeline_name(struct fence *f) 1012 { 1013 struct radeon_fence *fence = to_radeon_fence(f); 1014 switch (fence->ring) { 1015 case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx"; 1016 case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1"; 1017 case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2"; 1018 case R600_RING_TYPE_DMA_INDEX: return "radeon.dma"; 1019 case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1"; 1020 case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd"; 1021 case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1"; 1022 case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2"; 1023 default: WARN_ON_ONCE(1); return "radeon.unk"; 1024 } 1025 } 1026 1027 static inline bool radeon_test_signaled(struct radeon_fence *fence) 1028 { 1029 return test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->base.flags); 1030 } 1031 1032 static signed long radeon_fence_default_wait(struct fence *f, bool intr, 1033 signed long t) 1034 { 1035 struct radeon_fence *fence = to_radeon_fence(f); 1036 struct radeon_device *rdev = fence->rdev; 1037 bool signaled; 1038 1039 fence_enable_sw_signaling(&fence->base); 1040 1041 /* 1042 * This function has to return -EDEADLK, but cannot hold 1043 * exclusive_lock during the wait because some callers 1044 * may already hold it. This means checking needs_reset without 1045 * lock, and not fiddling with any gpu internals. 1046 * 1047 * The callback installed with fence_enable_sw_signaling will 1048 * run before our wait_event_*timeout call, so we will see 1049 * both the signaled fence and the changes to needs_reset. 1050 */ 1051 1052 if (intr) 1053 t = wait_event_interruptible_timeout(rdev->fence_queue, 1054 ((signaled = radeon_test_signaled(fence)) || 1055 rdev->needs_reset), t); 1056 else 1057 t = wait_event_timeout(rdev->fence_queue, 1058 ((signaled = radeon_test_signaled(fence)) || 1059 rdev->needs_reset), t); 1060 1061 if (t > 0 && !signaled) 1062 return -EDEADLK; 1063 return t; 1064 } 1065 1066 const struct fence_ops radeon_fence_ops = { 1067 .get_driver_name = radeon_fence_get_driver_name, 1068 .get_timeline_name = radeon_fence_get_timeline_name, 1069 .enable_signaling = radeon_fence_enable_signaling, 1070 .signaled = radeon_fence_is_signaled, 1071 .wait = radeon_fence_default_wait, 1072 .release = NULL, 1073 }; 1074