1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/console.h> 29 #include <linux/slab.h> 30 #include <drm/drmP.h> 31 #include <drm/drm_crtc_helper.h> 32 #include <drm/radeon_drm.h> 33 #include <linux/pm_runtime.h> 34 #include <linux/vgaarb.h> 35 #include <linux/vga_switcheroo.h> 36 #include <linux/efi.h> 37 #include "radeon_reg.h" 38 #include "radeon.h" 39 #include "atom.h" 40 41 static const char radeon_family_name[][16] = { 42 "R100", 43 "RV100", 44 "RS100", 45 "RV200", 46 "RS200", 47 "R200", 48 "RV250", 49 "RS300", 50 "RV280", 51 "R300", 52 "R350", 53 "RV350", 54 "RV380", 55 "R420", 56 "R423", 57 "RV410", 58 "RS400", 59 "RS480", 60 "RS600", 61 "RS690", 62 "RS740", 63 "RV515", 64 "R520", 65 "RV530", 66 "RV560", 67 "RV570", 68 "R580", 69 "R600", 70 "RV610", 71 "RV630", 72 "RV670", 73 "RV620", 74 "RV635", 75 "RS780", 76 "RS880", 77 "RV770", 78 "RV730", 79 "RV710", 80 "RV740", 81 "CEDAR", 82 "REDWOOD", 83 "JUNIPER", 84 "CYPRESS", 85 "HEMLOCK", 86 "PALM", 87 "SUMO", 88 "SUMO2", 89 "BARTS", 90 "TURKS", 91 "CAICOS", 92 "CAYMAN", 93 "ARUBA", 94 "TAHITI", 95 "PITCAIRN", 96 "VERDE", 97 "OLAND", 98 "HAINAN", 99 "BONAIRE", 100 "KAVERI", 101 "KABINI", 102 "HAWAII", 103 "MULLINS", 104 "LAST", 105 }; 106 107 #define RADEON_PX_QUIRK_DISABLE_PX (1 << 0) 108 #define RADEON_PX_QUIRK_LONG_WAKEUP (1 << 1) 109 110 struct radeon_px_quirk { 111 u32 chip_vendor; 112 u32 chip_device; 113 u32 subsys_vendor; 114 u32 subsys_device; 115 u32 px_quirk_flags; 116 }; 117 118 static struct radeon_px_quirk radeon_px_quirk_list[] = { 119 /* Acer aspire 5560g (CPU: AMD A4-3305M; GPU: AMD Radeon HD 6480g + 7470m) 120 * https://bugzilla.kernel.org/show_bug.cgi?id=74551 121 */ 122 { PCI_VENDOR_ID_ATI, 0x6760, 0x1025, 0x0672, RADEON_PX_QUIRK_DISABLE_PX }, 123 /* Asus K73TA laptop with AMD A6-3400M APU and Radeon 6550 GPU 124 * https://bugzilla.kernel.org/show_bug.cgi?id=51381 125 */ 126 { PCI_VENDOR_ID_ATI, 0x6741, 0x1043, 0x108c, RADEON_PX_QUIRK_DISABLE_PX }, 127 /* Asus K53TK laptop with AMD A6-3420M APU and Radeon 7670m GPU 128 * https://bugzilla.kernel.org/show_bug.cgi?id=51381 129 */ 130 { PCI_VENDOR_ID_ATI, 0x6840, 0x1043, 0x2122, RADEON_PX_QUIRK_DISABLE_PX }, 131 /* macbook pro 8.2 */ 132 { PCI_VENDOR_ID_ATI, 0x6741, PCI_VENDOR_ID_APPLE, 0x00e2, RADEON_PX_QUIRK_LONG_WAKEUP }, 133 { 0, 0, 0, 0, 0 }, 134 }; 135 136 bool radeon_is_px(struct drm_device *dev) 137 { 138 struct radeon_device *rdev = dev->dev_private; 139 140 if (rdev->flags & RADEON_IS_PX) 141 return true; 142 return false; 143 } 144 145 static void radeon_device_handle_px_quirks(struct radeon_device *rdev) 146 { 147 struct radeon_px_quirk *p = radeon_px_quirk_list; 148 149 /* Apply PX quirks */ 150 while (p && p->chip_device != 0) { 151 if (rdev->pdev->vendor == p->chip_vendor && 152 rdev->pdev->device == p->chip_device && 153 rdev->pdev->subsystem_vendor == p->subsys_vendor && 154 rdev->pdev->subsystem_device == p->subsys_device) { 155 rdev->px_quirk_flags = p->px_quirk_flags; 156 break; 157 } 158 ++p; 159 } 160 161 if (rdev->px_quirk_flags & RADEON_PX_QUIRK_DISABLE_PX) 162 rdev->flags &= ~RADEON_IS_PX; 163 } 164 165 /** 166 * radeon_program_register_sequence - program an array of registers. 167 * 168 * @rdev: radeon_device pointer 169 * @registers: pointer to the register array 170 * @array_size: size of the register array 171 * 172 * Programs an array or registers with and and or masks. 173 * This is a helper for setting golden registers. 174 */ 175 void radeon_program_register_sequence(struct radeon_device *rdev, 176 const u32 *registers, 177 const u32 array_size) 178 { 179 u32 tmp, reg, and_mask, or_mask; 180 int i; 181 182 if (array_size % 3) 183 return; 184 185 for (i = 0; i < array_size; i +=3) { 186 reg = registers[i + 0]; 187 and_mask = registers[i + 1]; 188 or_mask = registers[i + 2]; 189 190 if (and_mask == 0xffffffff) { 191 tmp = or_mask; 192 } else { 193 tmp = RREG32(reg); 194 tmp &= ~and_mask; 195 tmp |= or_mask; 196 } 197 WREG32(reg, tmp); 198 } 199 } 200 201 void radeon_pci_config_reset(struct radeon_device *rdev) 202 { 203 pci_write_config_dword(rdev->pdev, 0x7c, RADEON_ASIC_RESET_DATA); 204 } 205 206 /** 207 * radeon_surface_init - Clear GPU surface registers. 208 * 209 * @rdev: radeon_device pointer 210 * 211 * Clear GPU surface registers (r1xx-r5xx). 212 */ 213 void radeon_surface_init(struct radeon_device *rdev) 214 { 215 /* FIXME: check this out */ 216 if (rdev->family < CHIP_R600) { 217 int i; 218 219 for (i = 0; i < RADEON_GEM_MAX_SURFACES; i++) { 220 if (rdev->surface_regs[i].bo) 221 radeon_bo_get_surface_reg(rdev->surface_regs[i].bo); 222 else 223 radeon_clear_surface_reg(rdev, i); 224 } 225 /* enable surfaces */ 226 WREG32(RADEON_SURFACE_CNTL, 0); 227 } 228 } 229 230 /* 231 * GPU scratch registers helpers function. 232 */ 233 /** 234 * radeon_scratch_init - Init scratch register driver information. 235 * 236 * @rdev: radeon_device pointer 237 * 238 * Init CP scratch register driver information (r1xx-r5xx) 239 */ 240 void radeon_scratch_init(struct radeon_device *rdev) 241 { 242 int i; 243 244 /* FIXME: check this out */ 245 if (rdev->family < CHIP_R300) { 246 rdev->scratch.num_reg = 5; 247 } else { 248 rdev->scratch.num_reg = 7; 249 } 250 rdev->scratch.reg_base = RADEON_SCRATCH_REG0; 251 for (i = 0; i < rdev->scratch.num_reg; i++) { 252 rdev->scratch.free[i] = true; 253 rdev->scratch.reg[i] = rdev->scratch.reg_base + (i * 4); 254 } 255 } 256 257 /** 258 * radeon_scratch_get - Allocate a scratch register 259 * 260 * @rdev: radeon_device pointer 261 * @reg: scratch register mmio offset 262 * 263 * Allocate a CP scratch register for use by the driver (all asics). 264 * Returns 0 on success or -EINVAL on failure. 265 */ 266 int radeon_scratch_get(struct radeon_device *rdev, uint32_t *reg) 267 { 268 int i; 269 270 for (i = 0; i < rdev->scratch.num_reg; i++) { 271 if (rdev->scratch.free[i]) { 272 rdev->scratch.free[i] = false; 273 *reg = rdev->scratch.reg[i]; 274 return 0; 275 } 276 } 277 return -EINVAL; 278 } 279 280 /** 281 * radeon_scratch_free - Free a scratch register 282 * 283 * @rdev: radeon_device pointer 284 * @reg: scratch register mmio offset 285 * 286 * Free a CP scratch register allocated for use by the driver (all asics) 287 */ 288 void radeon_scratch_free(struct radeon_device *rdev, uint32_t reg) 289 { 290 int i; 291 292 for (i = 0; i < rdev->scratch.num_reg; i++) { 293 if (rdev->scratch.reg[i] == reg) { 294 rdev->scratch.free[i] = true; 295 return; 296 } 297 } 298 } 299 300 /* 301 * GPU doorbell aperture helpers function. 302 */ 303 /** 304 * radeon_doorbell_init - Init doorbell driver information. 305 * 306 * @rdev: radeon_device pointer 307 * 308 * Init doorbell driver information (CIK) 309 * Returns 0 on success, error on failure. 310 */ 311 static int radeon_doorbell_init(struct radeon_device *rdev) 312 { 313 /* doorbell bar mapping */ 314 rdev->doorbell.base = pci_resource_start(rdev->pdev, 2); 315 rdev->doorbell.size = pci_resource_len(rdev->pdev, 2); 316 317 rdev->doorbell.num_doorbells = min_t(u32, rdev->doorbell.size / sizeof(u32), RADEON_MAX_DOORBELLS); 318 if (rdev->doorbell.num_doorbells == 0) 319 return -EINVAL; 320 321 rdev->doorbell.ptr = ioremap(rdev->doorbell.base, rdev->doorbell.num_doorbells * sizeof(u32)); 322 if (rdev->doorbell.ptr == NULL) { 323 return -ENOMEM; 324 } 325 DRM_INFO("doorbell mmio base: 0x%08X\n", (uint32_t)rdev->doorbell.base); 326 DRM_INFO("doorbell mmio size: %u\n", (unsigned)rdev->doorbell.size); 327 328 memset(&rdev->doorbell.used, 0, sizeof(rdev->doorbell.used)); 329 330 return 0; 331 } 332 333 /** 334 * radeon_doorbell_fini - Tear down doorbell driver information. 335 * 336 * @rdev: radeon_device pointer 337 * 338 * Tear down doorbell driver information (CIK) 339 */ 340 static void radeon_doorbell_fini(struct radeon_device *rdev) 341 { 342 iounmap(rdev->doorbell.ptr); 343 rdev->doorbell.ptr = NULL; 344 } 345 346 /** 347 * radeon_doorbell_get - Allocate a doorbell entry 348 * 349 * @rdev: radeon_device pointer 350 * @doorbell: doorbell index 351 * 352 * Allocate a doorbell for use by the driver (all asics). 353 * Returns 0 on success or -EINVAL on failure. 354 */ 355 int radeon_doorbell_get(struct radeon_device *rdev, u32 *doorbell) 356 { 357 unsigned long offset = find_first_zero_bit(rdev->doorbell.used, rdev->doorbell.num_doorbells); 358 if (offset < rdev->doorbell.num_doorbells) { 359 __set_bit(offset, rdev->doorbell.used); 360 *doorbell = offset; 361 return 0; 362 } else { 363 return -EINVAL; 364 } 365 } 366 367 /** 368 * radeon_doorbell_free - Free a doorbell entry 369 * 370 * @rdev: radeon_device pointer 371 * @doorbell: doorbell index 372 * 373 * Free a doorbell allocated for use by the driver (all asics) 374 */ 375 void radeon_doorbell_free(struct radeon_device *rdev, u32 doorbell) 376 { 377 if (doorbell < rdev->doorbell.num_doorbells) 378 __clear_bit(doorbell, rdev->doorbell.used); 379 } 380 381 /** 382 * radeon_doorbell_get_kfd_info - Report doorbell configuration required to 383 * setup KFD 384 * 385 * @rdev: radeon_device pointer 386 * @aperture_base: output returning doorbell aperture base physical address 387 * @aperture_size: output returning doorbell aperture size in bytes 388 * @start_offset: output returning # of doorbell bytes reserved for radeon. 389 * 390 * Radeon and the KFD share the doorbell aperture. Radeon sets it up, 391 * takes doorbells required for its own rings and reports the setup to KFD. 392 * Radeon reserved doorbells are at the start of the doorbell aperture. 393 */ 394 void radeon_doorbell_get_kfd_info(struct radeon_device *rdev, 395 phys_addr_t *aperture_base, 396 size_t *aperture_size, 397 size_t *start_offset) 398 { 399 /* The first num_doorbells are used by radeon. 400 * KFD takes whatever's left in the aperture. */ 401 if (rdev->doorbell.size > rdev->doorbell.num_doorbells * sizeof(u32)) { 402 *aperture_base = rdev->doorbell.base; 403 *aperture_size = rdev->doorbell.size; 404 *start_offset = rdev->doorbell.num_doorbells * sizeof(u32); 405 } else { 406 *aperture_base = 0; 407 *aperture_size = 0; 408 *start_offset = 0; 409 } 410 } 411 412 /* 413 * radeon_wb_*() 414 * Writeback is the the method by which the the GPU updates special pages 415 * in memory with the status of certain GPU events (fences, ring pointers, 416 * etc.). 417 */ 418 419 /** 420 * radeon_wb_disable - Disable Writeback 421 * 422 * @rdev: radeon_device pointer 423 * 424 * Disables Writeback (all asics). Used for suspend. 425 */ 426 void radeon_wb_disable(struct radeon_device *rdev) 427 { 428 rdev->wb.enabled = false; 429 } 430 431 /** 432 * radeon_wb_fini - Disable Writeback and free memory 433 * 434 * @rdev: radeon_device pointer 435 * 436 * Disables Writeback and frees the Writeback memory (all asics). 437 * Used at driver shutdown. 438 */ 439 void radeon_wb_fini(struct radeon_device *rdev) 440 { 441 radeon_wb_disable(rdev); 442 if (rdev->wb.wb_obj) { 443 if (!radeon_bo_reserve(rdev->wb.wb_obj, false)) { 444 radeon_bo_kunmap(rdev->wb.wb_obj); 445 radeon_bo_unpin(rdev->wb.wb_obj); 446 radeon_bo_unreserve(rdev->wb.wb_obj); 447 } 448 radeon_bo_unref(&rdev->wb.wb_obj); 449 rdev->wb.wb = NULL; 450 rdev->wb.wb_obj = NULL; 451 } 452 } 453 454 /** 455 * radeon_wb_init- Init Writeback driver info and allocate memory 456 * 457 * @rdev: radeon_device pointer 458 * 459 * Disables Writeback and frees the Writeback memory (all asics). 460 * Used at driver startup. 461 * Returns 0 on success or an -error on failure. 462 */ 463 int radeon_wb_init(struct radeon_device *rdev) 464 { 465 int r; 466 467 if (rdev->wb.wb_obj == NULL) { 468 r = radeon_bo_create(rdev, RADEON_GPU_PAGE_SIZE, PAGE_SIZE, true, 469 RADEON_GEM_DOMAIN_GTT, 0, NULL, NULL, 470 &rdev->wb.wb_obj); 471 if (r) { 472 dev_warn(rdev->dev, "(%d) create WB bo failed\n", r); 473 return r; 474 } 475 r = radeon_bo_reserve(rdev->wb.wb_obj, false); 476 if (unlikely(r != 0)) { 477 radeon_wb_fini(rdev); 478 return r; 479 } 480 r = radeon_bo_pin(rdev->wb.wb_obj, RADEON_GEM_DOMAIN_GTT, 481 &rdev->wb.gpu_addr); 482 if (r) { 483 radeon_bo_unreserve(rdev->wb.wb_obj); 484 dev_warn(rdev->dev, "(%d) pin WB bo failed\n", r); 485 radeon_wb_fini(rdev); 486 return r; 487 } 488 r = radeon_bo_kmap(rdev->wb.wb_obj, (void **)&rdev->wb.wb); 489 radeon_bo_unreserve(rdev->wb.wb_obj); 490 if (r) { 491 dev_warn(rdev->dev, "(%d) map WB bo failed\n", r); 492 radeon_wb_fini(rdev); 493 return r; 494 } 495 } 496 497 /* clear wb memory */ 498 memset((char *)rdev->wb.wb, 0, RADEON_GPU_PAGE_SIZE); 499 /* disable event_write fences */ 500 rdev->wb.use_event = false; 501 /* disabled via module param */ 502 if (radeon_no_wb == 1) { 503 rdev->wb.enabled = false; 504 } else { 505 if (rdev->flags & RADEON_IS_AGP) { 506 /* often unreliable on AGP */ 507 rdev->wb.enabled = false; 508 } else if (rdev->family < CHIP_R300) { 509 /* often unreliable on pre-r300 */ 510 rdev->wb.enabled = false; 511 } else { 512 rdev->wb.enabled = true; 513 /* event_write fences are only available on r600+ */ 514 if (rdev->family >= CHIP_R600) { 515 rdev->wb.use_event = true; 516 } 517 } 518 } 519 /* always use writeback/events on NI, APUs */ 520 if (rdev->family >= CHIP_PALM) { 521 rdev->wb.enabled = true; 522 rdev->wb.use_event = true; 523 } 524 525 dev_info(rdev->dev, "WB %sabled\n", rdev->wb.enabled ? "en" : "dis"); 526 527 return 0; 528 } 529 530 /** 531 * radeon_vram_location - try to find VRAM location 532 * @rdev: radeon device structure holding all necessary informations 533 * @mc: memory controller structure holding memory informations 534 * @base: base address at which to put VRAM 535 * 536 * Function will place try to place VRAM at base address provided 537 * as parameter (which is so far either PCI aperture address or 538 * for IGP TOM base address). 539 * 540 * If there is not enough space to fit the unvisible VRAM in the 32bits 541 * address space then we limit the VRAM size to the aperture. 542 * 543 * If we are using AGP and if the AGP aperture doesn't allow us to have 544 * room for all the VRAM than we restrict the VRAM to the PCI aperture 545 * size and print a warning. 546 * 547 * This function will never fails, worst case are limiting VRAM. 548 * 549 * Note: GTT start, end, size should be initialized before calling this 550 * function on AGP platform. 551 * 552 * Note: We don't explicitly enforce VRAM start to be aligned on VRAM size, 553 * this shouldn't be a problem as we are using the PCI aperture as a reference. 554 * Otherwise this would be needed for rv280, all r3xx, and all r4xx, but 555 * not IGP. 556 * 557 * Note: we use mc_vram_size as on some board we need to program the mc to 558 * cover the whole aperture even if VRAM size is inferior to aperture size 559 * Novell bug 204882 + along with lots of ubuntu ones 560 * 561 * Note: when limiting vram it's safe to overwritte real_vram_size because 562 * we are not in case where real_vram_size is inferior to mc_vram_size (ie 563 * note afected by bogus hw of Novell bug 204882 + along with lots of ubuntu 564 * ones) 565 * 566 * Note: IGP TOM addr should be the same as the aperture addr, we don't 567 * explicitly check for that thought. 568 * 569 * FIXME: when reducing VRAM size align new size on power of 2. 570 */ 571 void radeon_vram_location(struct radeon_device *rdev, struct radeon_mc *mc, u64 base) 572 { 573 uint64_t limit = (uint64_t)radeon_vram_limit << 20; 574 575 mc->vram_start = base; 576 if (mc->mc_vram_size > (rdev->mc.mc_mask - base + 1)) { 577 dev_warn(rdev->dev, "limiting VRAM to PCI aperture size\n"); 578 mc->real_vram_size = mc->aper_size; 579 mc->mc_vram_size = mc->aper_size; 580 } 581 mc->vram_end = mc->vram_start + mc->mc_vram_size - 1; 582 if (rdev->flags & RADEON_IS_AGP && mc->vram_end > mc->gtt_start && mc->vram_start <= mc->gtt_end) { 583 dev_warn(rdev->dev, "limiting VRAM to PCI aperture size\n"); 584 mc->real_vram_size = mc->aper_size; 585 mc->mc_vram_size = mc->aper_size; 586 } 587 mc->vram_end = mc->vram_start + mc->mc_vram_size - 1; 588 if (limit && limit < mc->real_vram_size) 589 mc->real_vram_size = limit; 590 dev_info(rdev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n", 591 mc->mc_vram_size >> 20, mc->vram_start, 592 mc->vram_end, mc->real_vram_size >> 20); 593 } 594 595 /** 596 * radeon_gtt_location - try to find GTT location 597 * @rdev: radeon device structure holding all necessary informations 598 * @mc: memory controller structure holding memory informations 599 * 600 * Function will place try to place GTT before or after VRAM. 601 * 602 * If GTT size is bigger than space left then we ajust GTT size. 603 * Thus function will never fails. 604 * 605 * FIXME: when reducing GTT size align new size on power of 2. 606 */ 607 void radeon_gtt_location(struct radeon_device *rdev, struct radeon_mc *mc) 608 { 609 u64 size_af, size_bf; 610 611 size_af = ((rdev->mc.mc_mask - mc->vram_end) + mc->gtt_base_align) & ~mc->gtt_base_align; 612 size_bf = mc->vram_start & ~mc->gtt_base_align; 613 if (size_bf > size_af) { 614 if (mc->gtt_size > size_bf) { 615 dev_warn(rdev->dev, "limiting GTT\n"); 616 mc->gtt_size = size_bf; 617 } 618 mc->gtt_start = (mc->vram_start & ~mc->gtt_base_align) - mc->gtt_size; 619 } else { 620 if (mc->gtt_size > size_af) { 621 dev_warn(rdev->dev, "limiting GTT\n"); 622 mc->gtt_size = size_af; 623 } 624 mc->gtt_start = (mc->vram_end + 1 + mc->gtt_base_align) & ~mc->gtt_base_align; 625 } 626 mc->gtt_end = mc->gtt_start + mc->gtt_size - 1; 627 dev_info(rdev->dev, "GTT: %lluM 0x%016llX - 0x%016llX\n", 628 mc->gtt_size >> 20, mc->gtt_start, mc->gtt_end); 629 } 630 631 /* 632 * GPU helpers function. 633 */ 634 635 /** 636 * radeon_device_is_virtual - check if we are running is a virtual environment 637 * 638 * Check if the asic has been passed through to a VM (all asics). 639 * Used at driver startup. 640 * Returns true if virtual or false if not. 641 */ 642 bool radeon_device_is_virtual(void) 643 { 644 #ifdef CONFIG_X86 645 return boot_cpu_has(X86_FEATURE_HYPERVISOR); 646 #else 647 return false; 648 #endif 649 } 650 651 /** 652 * radeon_card_posted - check if the hw has already been initialized 653 * 654 * @rdev: radeon_device pointer 655 * 656 * Check if the asic has been initialized (all asics). 657 * Used at driver startup. 658 * Returns true if initialized or false if not. 659 */ 660 bool radeon_card_posted(struct radeon_device *rdev) 661 { 662 uint32_t reg; 663 664 /* for pass through, always force asic_init for CI */ 665 if (rdev->family >= CHIP_BONAIRE && 666 radeon_device_is_virtual()) 667 return false; 668 669 /* required for EFI mode on macbook2,1 which uses an r5xx asic */ 670 if (efi_enabled(EFI_BOOT) && 671 (rdev->pdev->subsystem_vendor == PCI_VENDOR_ID_APPLE) && 672 (rdev->family < CHIP_R600)) 673 return false; 674 675 if (ASIC_IS_NODCE(rdev)) 676 goto check_memsize; 677 678 /* first check CRTCs */ 679 if (ASIC_IS_DCE4(rdev)) { 680 reg = RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC0_REGISTER_OFFSET) | 681 RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC1_REGISTER_OFFSET); 682 if (rdev->num_crtc >= 4) { 683 reg |= RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC2_REGISTER_OFFSET) | 684 RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC3_REGISTER_OFFSET); 685 } 686 if (rdev->num_crtc >= 6) { 687 reg |= RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC4_REGISTER_OFFSET) | 688 RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC5_REGISTER_OFFSET); 689 } 690 if (reg & EVERGREEN_CRTC_MASTER_EN) 691 return true; 692 } else if (ASIC_IS_AVIVO(rdev)) { 693 reg = RREG32(AVIVO_D1CRTC_CONTROL) | 694 RREG32(AVIVO_D2CRTC_CONTROL); 695 if (reg & AVIVO_CRTC_EN) { 696 return true; 697 } 698 } else { 699 reg = RREG32(RADEON_CRTC_GEN_CNTL) | 700 RREG32(RADEON_CRTC2_GEN_CNTL); 701 if (reg & RADEON_CRTC_EN) { 702 return true; 703 } 704 } 705 706 check_memsize: 707 /* then check MEM_SIZE, in case the crtcs are off */ 708 if (rdev->family >= CHIP_R600) 709 reg = RREG32(R600_CONFIG_MEMSIZE); 710 else 711 reg = RREG32(RADEON_CONFIG_MEMSIZE); 712 713 if (reg) 714 return true; 715 716 return false; 717 718 } 719 720 /** 721 * radeon_update_bandwidth_info - update display bandwidth params 722 * 723 * @rdev: radeon_device pointer 724 * 725 * Used when sclk/mclk are switched or display modes are set. 726 * params are used to calculate display watermarks (all asics) 727 */ 728 void radeon_update_bandwidth_info(struct radeon_device *rdev) 729 { 730 fixed20_12 a; 731 u32 sclk = rdev->pm.current_sclk; 732 u32 mclk = rdev->pm.current_mclk; 733 734 /* sclk/mclk in Mhz */ 735 a.full = dfixed_const(100); 736 rdev->pm.sclk.full = dfixed_const(sclk); 737 rdev->pm.sclk.full = dfixed_div(rdev->pm.sclk, a); 738 rdev->pm.mclk.full = dfixed_const(mclk); 739 rdev->pm.mclk.full = dfixed_div(rdev->pm.mclk, a); 740 741 if (rdev->flags & RADEON_IS_IGP) { 742 a.full = dfixed_const(16); 743 /* core_bandwidth = sclk(Mhz) * 16 */ 744 rdev->pm.core_bandwidth.full = dfixed_div(rdev->pm.sclk, a); 745 } 746 } 747 748 /** 749 * radeon_boot_test_post_card - check and possibly initialize the hw 750 * 751 * @rdev: radeon_device pointer 752 * 753 * Check if the asic is initialized and if not, attempt to initialize 754 * it (all asics). 755 * Returns true if initialized or false if not. 756 */ 757 bool radeon_boot_test_post_card(struct radeon_device *rdev) 758 { 759 if (radeon_card_posted(rdev)) 760 return true; 761 762 if (rdev->bios) { 763 DRM_INFO("GPU not posted. posting now...\n"); 764 if (rdev->is_atom_bios) 765 atom_asic_init(rdev->mode_info.atom_context); 766 else 767 radeon_combios_asic_init(rdev->ddev); 768 return true; 769 } else { 770 dev_err(rdev->dev, "Card not posted and no BIOS - ignoring\n"); 771 return false; 772 } 773 } 774 775 /** 776 * radeon_dummy_page_init - init dummy page used by the driver 777 * 778 * @rdev: radeon_device pointer 779 * 780 * Allocate the dummy page used by the driver (all asics). 781 * This dummy page is used by the driver as a filler for gart entries 782 * when pages are taken out of the GART 783 * Returns 0 on sucess, -ENOMEM on failure. 784 */ 785 int radeon_dummy_page_init(struct radeon_device *rdev) 786 { 787 if (rdev->dummy_page.page) 788 return 0; 789 rdev->dummy_page.page = alloc_page(GFP_DMA32 | GFP_KERNEL | __GFP_ZERO); 790 if (rdev->dummy_page.page == NULL) 791 return -ENOMEM; 792 rdev->dummy_page.addr = pci_map_page(rdev->pdev, rdev->dummy_page.page, 793 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); 794 if (pci_dma_mapping_error(rdev->pdev, rdev->dummy_page.addr)) { 795 dev_err(&rdev->pdev->dev, "Failed to DMA MAP the dummy page\n"); 796 __free_page(rdev->dummy_page.page); 797 rdev->dummy_page.page = NULL; 798 return -ENOMEM; 799 } 800 rdev->dummy_page.entry = radeon_gart_get_page_entry(rdev->dummy_page.addr, 801 RADEON_GART_PAGE_DUMMY); 802 return 0; 803 } 804 805 /** 806 * radeon_dummy_page_fini - free dummy page used by the driver 807 * 808 * @rdev: radeon_device pointer 809 * 810 * Frees the dummy page used by the driver (all asics). 811 */ 812 void radeon_dummy_page_fini(struct radeon_device *rdev) 813 { 814 if (rdev->dummy_page.page == NULL) 815 return; 816 pci_unmap_page(rdev->pdev, rdev->dummy_page.addr, 817 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); 818 __free_page(rdev->dummy_page.page); 819 rdev->dummy_page.page = NULL; 820 } 821 822 823 /* ATOM accessor methods */ 824 /* 825 * ATOM is an interpreted byte code stored in tables in the vbios. The 826 * driver registers callbacks to access registers and the interpreter 827 * in the driver parses the tables and executes then to program specific 828 * actions (set display modes, asic init, etc.). See radeon_atombios.c, 829 * atombios.h, and atom.c 830 */ 831 832 /** 833 * cail_pll_read - read PLL register 834 * 835 * @info: atom card_info pointer 836 * @reg: PLL register offset 837 * 838 * Provides a PLL register accessor for the atom interpreter (r4xx+). 839 * Returns the value of the PLL register. 840 */ 841 static uint32_t cail_pll_read(struct card_info *info, uint32_t reg) 842 { 843 struct radeon_device *rdev = info->dev->dev_private; 844 uint32_t r; 845 846 r = rdev->pll_rreg(rdev, reg); 847 return r; 848 } 849 850 /** 851 * cail_pll_write - write PLL register 852 * 853 * @info: atom card_info pointer 854 * @reg: PLL register offset 855 * @val: value to write to the pll register 856 * 857 * Provides a PLL register accessor for the atom interpreter (r4xx+). 858 */ 859 static void cail_pll_write(struct card_info *info, uint32_t reg, uint32_t val) 860 { 861 struct radeon_device *rdev = info->dev->dev_private; 862 863 rdev->pll_wreg(rdev, reg, val); 864 } 865 866 /** 867 * cail_mc_read - read MC (Memory Controller) register 868 * 869 * @info: atom card_info pointer 870 * @reg: MC register offset 871 * 872 * Provides an MC register accessor for the atom interpreter (r4xx+). 873 * Returns the value of the MC register. 874 */ 875 static uint32_t cail_mc_read(struct card_info *info, uint32_t reg) 876 { 877 struct radeon_device *rdev = info->dev->dev_private; 878 uint32_t r; 879 880 r = rdev->mc_rreg(rdev, reg); 881 return r; 882 } 883 884 /** 885 * cail_mc_write - write MC (Memory Controller) register 886 * 887 * @info: atom card_info pointer 888 * @reg: MC register offset 889 * @val: value to write to the pll register 890 * 891 * Provides a MC register accessor for the atom interpreter (r4xx+). 892 */ 893 static void cail_mc_write(struct card_info *info, uint32_t reg, uint32_t val) 894 { 895 struct radeon_device *rdev = info->dev->dev_private; 896 897 rdev->mc_wreg(rdev, reg, val); 898 } 899 900 /** 901 * cail_reg_write - write MMIO register 902 * 903 * @info: atom card_info pointer 904 * @reg: MMIO register offset 905 * @val: value to write to the pll register 906 * 907 * Provides a MMIO register accessor for the atom interpreter (r4xx+). 908 */ 909 static void cail_reg_write(struct card_info *info, uint32_t reg, uint32_t val) 910 { 911 struct radeon_device *rdev = info->dev->dev_private; 912 913 WREG32(reg*4, val); 914 } 915 916 /** 917 * cail_reg_read - read MMIO register 918 * 919 * @info: atom card_info pointer 920 * @reg: MMIO register offset 921 * 922 * Provides an MMIO register accessor for the atom interpreter (r4xx+). 923 * Returns the value of the MMIO register. 924 */ 925 static uint32_t cail_reg_read(struct card_info *info, uint32_t reg) 926 { 927 struct radeon_device *rdev = info->dev->dev_private; 928 uint32_t r; 929 930 r = RREG32(reg*4); 931 return r; 932 } 933 934 /** 935 * cail_ioreg_write - write IO register 936 * 937 * @info: atom card_info pointer 938 * @reg: IO register offset 939 * @val: value to write to the pll register 940 * 941 * Provides a IO register accessor for the atom interpreter (r4xx+). 942 */ 943 static void cail_ioreg_write(struct card_info *info, uint32_t reg, uint32_t val) 944 { 945 struct radeon_device *rdev = info->dev->dev_private; 946 947 WREG32_IO(reg*4, val); 948 } 949 950 /** 951 * cail_ioreg_read - read IO register 952 * 953 * @info: atom card_info pointer 954 * @reg: IO register offset 955 * 956 * Provides an IO register accessor for the atom interpreter (r4xx+). 957 * Returns the value of the IO register. 958 */ 959 static uint32_t cail_ioreg_read(struct card_info *info, uint32_t reg) 960 { 961 struct radeon_device *rdev = info->dev->dev_private; 962 uint32_t r; 963 964 r = RREG32_IO(reg*4); 965 return r; 966 } 967 968 /** 969 * radeon_atombios_init - init the driver info and callbacks for atombios 970 * 971 * @rdev: radeon_device pointer 972 * 973 * Initializes the driver info and register access callbacks for the 974 * ATOM interpreter (r4xx+). 975 * Returns 0 on sucess, -ENOMEM on failure. 976 * Called at driver startup. 977 */ 978 int radeon_atombios_init(struct radeon_device *rdev) 979 { 980 struct card_info *atom_card_info = 981 kzalloc(sizeof(struct card_info), GFP_KERNEL); 982 983 if (!atom_card_info) 984 return -ENOMEM; 985 986 rdev->mode_info.atom_card_info = atom_card_info; 987 atom_card_info->dev = rdev->ddev; 988 atom_card_info->reg_read = cail_reg_read; 989 atom_card_info->reg_write = cail_reg_write; 990 /* needed for iio ops */ 991 if (rdev->rio_mem) { 992 atom_card_info->ioreg_read = cail_ioreg_read; 993 atom_card_info->ioreg_write = cail_ioreg_write; 994 } else { 995 DRM_ERROR("Unable to find PCI I/O BAR; using MMIO for ATOM IIO\n"); 996 atom_card_info->ioreg_read = cail_reg_read; 997 atom_card_info->ioreg_write = cail_reg_write; 998 } 999 atom_card_info->mc_read = cail_mc_read; 1000 atom_card_info->mc_write = cail_mc_write; 1001 atom_card_info->pll_read = cail_pll_read; 1002 atom_card_info->pll_write = cail_pll_write; 1003 1004 rdev->mode_info.atom_context = atom_parse(atom_card_info, rdev->bios); 1005 if (!rdev->mode_info.atom_context) { 1006 radeon_atombios_fini(rdev); 1007 return -ENOMEM; 1008 } 1009 1010 mutex_init(&rdev->mode_info.atom_context->mutex); 1011 mutex_init(&rdev->mode_info.atom_context->scratch_mutex); 1012 radeon_atom_initialize_bios_scratch_regs(rdev->ddev); 1013 atom_allocate_fb_scratch(rdev->mode_info.atom_context); 1014 return 0; 1015 } 1016 1017 /** 1018 * radeon_atombios_fini - free the driver info and callbacks for atombios 1019 * 1020 * @rdev: radeon_device pointer 1021 * 1022 * Frees the driver info and register access callbacks for the ATOM 1023 * interpreter (r4xx+). 1024 * Called at driver shutdown. 1025 */ 1026 void radeon_atombios_fini(struct radeon_device *rdev) 1027 { 1028 if (rdev->mode_info.atom_context) { 1029 kfree(rdev->mode_info.atom_context->scratch); 1030 } 1031 kfree(rdev->mode_info.atom_context); 1032 rdev->mode_info.atom_context = NULL; 1033 kfree(rdev->mode_info.atom_card_info); 1034 rdev->mode_info.atom_card_info = NULL; 1035 } 1036 1037 /* COMBIOS */ 1038 /* 1039 * COMBIOS is the bios format prior to ATOM. It provides 1040 * command tables similar to ATOM, but doesn't have a unified 1041 * parser. See radeon_combios.c 1042 */ 1043 1044 /** 1045 * radeon_combios_init - init the driver info for combios 1046 * 1047 * @rdev: radeon_device pointer 1048 * 1049 * Initializes the driver info for combios (r1xx-r3xx). 1050 * Returns 0 on sucess. 1051 * Called at driver startup. 1052 */ 1053 int radeon_combios_init(struct radeon_device *rdev) 1054 { 1055 radeon_combios_initialize_bios_scratch_regs(rdev->ddev); 1056 return 0; 1057 } 1058 1059 /** 1060 * radeon_combios_fini - free the driver info for combios 1061 * 1062 * @rdev: radeon_device pointer 1063 * 1064 * Frees the driver info for combios (r1xx-r3xx). 1065 * Called at driver shutdown. 1066 */ 1067 void radeon_combios_fini(struct radeon_device *rdev) 1068 { 1069 } 1070 1071 /* if we get transitioned to only one device, take VGA back */ 1072 /** 1073 * radeon_vga_set_decode - enable/disable vga decode 1074 * 1075 * @cookie: radeon_device pointer 1076 * @state: enable/disable vga decode 1077 * 1078 * Enable/disable vga decode (all asics). 1079 * Returns VGA resource flags. 1080 */ 1081 static unsigned int radeon_vga_set_decode(void *cookie, bool state) 1082 { 1083 struct radeon_device *rdev = cookie; 1084 radeon_vga_set_state(rdev, state); 1085 if (state) 1086 return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM | 1087 VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM; 1088 else 1089 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM; 1090 } 1091 1092 /** 1093 * radeon_check_pot_argument - check that argument is a power of two 1094 * 1095 * @arg: value to check 1096 * 1097 * Validates that a certain argument is a power of two (all asics). 1098 * Returns true if argument is valid. 1099 */ 1100 static bool radeon_check_pot_argument(int arg) 1101 { 1102 return (arg & (arg - 1)) == 0; 1103 } 1104 1105 /** 1106 * Determine a sensible default GART size according to ASIC family. 1107 * 1108 * @family ASIC family name 1109 */ 1110 static int radeon_gart_size_auto(enum radeon_family family) 1111 { 1112 /* default to a larger gart size on newer asics */ 1113 if (family >= CHIP_TAHITI) 1114 return 2048; 1115 else if (family >= CHIP_RV770) 1116 return 1024; 1117 else 1118 return 512; 1119 } 1120 1121 /** 1122 * radeon_check_arguments - validate module params 1123 * 1124 * @rdev: radeon_device pointer 1125 * 1126 * Validates certain module parameters and updates 1127 * the associated values used by the driver (all asics). 1128 */ 1129 static void radeon_check_arguments(struct radeon_device *rdev) 1130 { 1131 /* vramlimit must be a power of two */ 1132 if (!radeon_check_pot_argument(radeon_vram_limit)) { 1133 dev_warn(rdev->dev, "vram limit (%d) must be a power of 2\n", 1134 radeon_vram_limit); 1135 radeon_vram_limit = 0; 1136 } 1137 1138 if (radeon_gart_size == -1) { 1139 radeon_gart_size = radeon_gart_size_auto(rdev->family); 1140 } 1141 /* gtt size must be power of two and greater or equal to 32M */ 1142 if (radeon_gart_size < 32) { 1143 dev_warn(rdev->dev, "gart size (%d) too small\n", 1144 radeon_gart_size); 1145 radeon_gart_size = radeon_gart_size_auto(rdev->family); 1146 } else if (!radeon_check_pot_argument(radeon_gart_size)) { 1147 dev_warn(rdev->dev, "gart size (%d) must be a power of 2\n", 1148 radeon_gart_size); 1149 radeon_gart_size = radeon_gart_size_auto(rdev->family); 1150 } 1151 rdev->mc.gtt_size = (uint64_t)radeon_gart_size << 20; 1152 1153 /* AGP mode can only be -1, 1, 2, 4, 8 */ 1154 switch (radeon_agpmode) { 1155 case -1: 1156 case 0: 1157 case 1: 1158 case 2: 1159 case 4: 1160 case 8: 1161 break; 1162 default: 1163 dev_warn(rdev->dev, "invalid AGP mode %d (valid mode: " 1164 "-1, 0, 1, 2, 4, 8)\n", radeon_agpmode); 1165 radeon_agpmode = 0; 1166 break; 1167 } 1168 1169 if (!radeon_check_pot_argument(radeon_vm_size)) { 1170 dev_warn(rdev->dev, "VM size (%d) must be a power of 2\n", 1171 radeon_vm_size); 1172 radeon_vm_size = 4; 1173 } 1174 1175 if (radeon_vm_size < 1) { 1176 dev_warn(rdev->dev, "VM size (%d) too small, min is 1GB\n", 1177 radeon_vm_size); 1178 radeon_vm_size = 4; 1179 } 1180 1181 /* 1182 * Max GPUVM size for Cayman, SI and CI are 40 bits. 1183 */ 1184 if (radeon_vm_size > 1024) { 1185 dev_warn(rdev->dev, "VM size (%d) too large, max is 1TB\n", 1186 radeon_vm_size); 1187 radeon_vm_size = 4; 1188 } 1189 1190 /* defines number of bits in page table versus page directory, 1191 * a page is 4KB so we have 12 bits offset, minimum 9 bits in the 1192 * page table and the remaining bits are in the page directory */ 1193 if (radeon_vm_block_size == -1) { 1194 1195 /* Total bits covered by PD + PTs */ 1196 unsigned bits = ilog2(radeon_vm_size) + 18; 1197 1198 /* Make sure the PD is 4K in size up to 8GB address space. 1199 Above that split equal between PD and PTs */ 1200 if (radeon_vm_size <= 8) 1201 radeon_vm_block_size = bits - 9; 1202 else 1203 radeon_vm_block_size = (bits + 3) / 2; 1204 1205 } else if (radeon_vm_block_size < 9) { 1206 dev_warn(rdev->dev, "VM page table size (%d) too small\n", 1207 radeon_vm_block_size); 1208 radeon_vm_block_size = 9; 1209 } 1210 1211 if (radeon_vm_block_size > 24 || 1212 (radeon_vm_size * 1024) < (1ull << radeon_vm_block_size)) { 1213 dev_warn(rdev->dev, "VM page table size (%d) too large\n", 1214 radeon_vm_block_size); 1215 radeon_vm_block_size = 9; 1216 } 1217 } 1218 1219 /** 1220 * radeon_switcheroo_set_state - set switcheroo state 1221 * 1222 * @pdev: pci dev pointer 1223 * @state: vga_switcheroo state 1224 * 1225 * Callback for the switcheroo driver. Suspends or resumes the 1226 * the asics before or after it is powered up using ACPI methods. 1227 */ 1228 static void radeon_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state) 1229 { 1230 struct drm_device *dev = pci_get_drvdata(pdev); 1231 struct radeon_device *rdev = dev->dev_private; 1232 1233 if (radeon_is_px(dev) && state == VGA_SWITCHEROO_OFF) 1234 return; 1235 1236 if (state == VGA_SWITCHEROO_ON) { 1237 unsigned d3_delay = dev->pdev->d3_delay; 1238 1239 printk(KERN_INFO "radeon: switched on\n"); 1240 /* don't suspend or resume card normally */ 1241 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING; 1242 1243 if (d3_delay < 20 && (rdev->px_quirk_flags & RADEON_PX_QUIRK_LONG_WAKEUP)) 1244 dev->pdev->d3_delay = 20; 1245 1246 radeon_resume_kms(dev, true, true); 1247 1248 dev->pdev->d3_delay = d3_delay; 1249 1250 dev->switch_power_state = DRM_SWITCH_POWER_ON; 1251 drm_kms_helper_poll_enable(dev); 1252 } else { 1253 printk(KERN_INFO "radeon: switched off\n"); 1254 drm_kms_helper_poll_disable(dev); 1255 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING; 1256 radeon_suspend_kms(dev, true, true, false); 1257 dev->switch_power_state = DRM_SWITCH_POWER_OFF; 1258 } 1259 } 1260 1261 /** 1262 * radeon_switcheroo_can_switch - see if switcheroo state can change 1263 * 1264 * @pdev: pci dev pointer 1265 * 1266 * Callback for the switcheroo driver. Check of the switcheroo 1267 * state can be changed. 1268 * Returns true if the state can be changed, false if not. 1269 */ 1270 static bool radeon_switcheroo_can_switch(struct pci_dev *pdev) 1271 { 1272 struct drm_device *dev = pci_get_drvdata(pdev); 1273 1274 /* 1275 * FIXME: open_count is protected by drm_global_mutex but that would lead to 1276 * locking inversion with the driver load path. And the access here is 1277 * completely racy anyway. So don't bother with locking for now. 1278 */ 1279 return dev->open_count == 0; 1280 } 1281 1282 static const struct vga_switcheroo_client_ops radeon_switcheroo_ops = { 1283 .set_gpu_state = radeon_switcheroo_set_state, 1284 .reprobe = NULL, 1285 .can_switch = radeon_switcheroo_can_switch, 1286 }; 1287 1288 /** 1289 * radeon_device_init - initialize the driver 1290 * 1291 * @rdev: radeon_device pointer 1292 * @pdev: drm dev pointer 1293 * @pdev: pci dev pointer 1294 * @flags: driver flags 1295 * 1296 * Initializes the driver info and hw (all asics). 1297 * Returns 0 for success or an error on failure. 1298 * Called at driver startup. 1299 */ 1300 int radeon_device_init(struct radeon_device *rdev, 1301 struct drm_device *ddev, 1302 struct pci_dev *pdev, 1303 uint32_t flags) 1304 { 1305 int r, i; 1306 int dma_bits; 1307 bool runtime = false; 1308 1309 rdev->shutdown = false; 1310 rdev->dev = &pdev->dev; 1311 rdev->ddev = ddev; 1312 rdev->pdev = pdev; 1313 rdev->flags = flags; 1314 rdev->family = flags & RADEON_FAMILY_MASK; 1315 rdev->is_atom_bios = false; 1316 rdev->usec_timeout = RADEON_MAX_USEC_TIMEOUT; 1317 rdev->mc.gtt_size = 512 * 1024 * 1024; 1318 rdev->accel_working = false; 1319 /* set up ring ids */ 1320 for (i = 0; i < RADEON_NUM_RINGS; i++) { 1321 rdev->ring[i].idx = i; 1322 } 1323 rdev->fence_context = dma_fence_context_alloc(RADEON_NUM_RINGS); 1324 1325 DRM_INFO("initializing kernel modesetting (%s 0x%04X:0x%04X 0x%04X:0x%04X 0x%02X).\n", 1326 radeon_family_name[rdev->family], pdev->vendor, pdev->device, 1327 pdev->subsystem_vendor, pdev->subsystem_device, pdev->revision); 1328 1329 /* mutex initialization are all done here so we 1330 * can recall function without having locking issues */ 1331 mutex_init(&rdev->ring_lock); 1332 mutex_init(&rdev->dc_hw_i2c_mutex); 1333 atomic_set(&rdev->ih.lock, 0); 1334 mutex_init(&rdev->gem.mutex); 1335 mutex_init(&rdev->pm.mutex); 1336 mutex_init(&rdev->gpu_clock_mutex); 1337 mutex_init(&rdev->srbm_mutex); 1338 mutex_init(&rdev->grbm_idx_mutex); 1339 init_rwsem(&rdev->pm.mclk_lock); 1340 init_rwsem(&rdev->exclusive_lock); 1341 init_waitqueue_head(&rdev->irq.vblank_queue); 1342 mutex_init(&rdev->mn_lock); 1343 hash_init(rdev->mn_hash); 1344 r = radeon_gem_init(rdev); 1345 if (r) 1346 return r; 1347 1348 radeon_check_arguments(rdev); 1349 /* Adjust VM size here. 1350 * Max GPUVM size for cayman+ is 40 bits. 1351 */ 1352 rdev->vm_manager.max_pfn = radeon_vm_size << 18; 1353 1354 /* Set asic functions */ 1355 r = radeon_asic_init(rdev); 1356 if (r) 1357 return r; 1358 1359 /* all of the newer IGP chips have an internal gart 1360 * However some rs4xx report as AGP, so remove that here. 1361 */ 1362 if ((rdev->family >= CHIP_RS400) && 1363 (rdev->flags & RADEON_IS_IGP)) { 1364 rdev->flags &= ~RADEON_IS_AGP; 1365 } 1366 1367 if (rdev->flags & RADEON_IS_AGP && radeon_agpmode == -1) { 1368 radeon_agp_disable(rdev); 1369 } 1370 1371 /* Set the internal MC address mask 1372 * This is the max address of the GPU's 1373 * internal address space. 1374 */ 1375 if (rdev->family >= CHIP_CAYMAN) 1376 rdev->mc.mc_mask = 0xffffffffffULL; /* 40 bit MC */ 1377 else if (rdev->family >= CHIP_CEDAR) 1378 rdev->mc.mc_mask = 0xfffffffffULL; /* 36 bit MC */ 1379 else 1380 rdev->mc.mc_mask = 0xffffffffULL; /* 32 bit MC */ 1381 1382 /* set DMA mask + need_dma32 flags. 1383 * PCIE - can handle 40-bits. 1384 * IGP - can handle 40-bits 1385 * AGP - generally dma32 is safest 1386 * PCI - dma32 for legacy pci gart, 40 bits on newer asics 1387 */ 1388 rdev->need_dma32 = false; 1389 if (rdev->flags & RADEON_IS_AGP) 1390 rdev->need_dma32 = true; 1391 if ((rdev->flags & RADEON_IS_PCI) && 1392 (rdev->family <= CHIP_RS740)) 1393 rdev->need_dma32 = true; 1394 1395 dma_bits = rdev->need_dma32 ? 32 : 40; 1396 r = pci_set_dma_mask(rdev->pdev, DMA_BIT_MASK(dma_bits)); 1397 if (r) { 1398 rdev->need_dma32 = true; 1399 dma_bits = 32; 1400 printk(KERN_WARNING "radeon: No suitable DMA available.\n"); 1401 } 1402 r = pci_set_consistent_dma_mask(rdev->pdev, DMA_BIT_MASK(dma_bits)); 1403 if (r) { 1404 pci_set_consistent_dma_mask(rdev->pdev, DMA_BIT_MASK(32)); 1405 printk(KERN_WARNING "radeon: No coherent DMA available.\n"); 1406 } 1407 1408 /* Registers mapping */ 1409 /* TODO: block userspace mapping of io register */ 1410 spin_lock_init(&rdev->mmio_idx_lock); 1411 spin_lock_init(&rdev->smc_idx_lock); 1412 spin_lock_init(&rdev->pll_idx_lock); 1413 spin_lock_init(&rdev->mc_idx_lock); 1414 spin_lock_init(&rdev->pcie_idx_lock); 1415 spin_lock_init(&rdev->pciep_idx_lock); 1416 spin_lock_init(&rdev->pif_idx_lock); 1417 spin_lock_init(&rdev->cg_idx_lock); 1418 spin_lock_init(&rdev->uvd_idx_lock); 1419 spin_lock_init(&rdev->rcu_idx_lock); 1420 spin_lock_init(&rdev->didt_idx_lock); 1421 spin_lock_init(&rdev->end_idx_lock); 1422 if (rdev->family >= CHIP_BONAIRE) { 1423 rdev->rmmio_base = pci_resource_start(rdev->pdev, 5); 1424 rdev->rmmio_size = pci_resource_len(rdev->pdev, 5); 1425 } else { 1426 rdev->rmmio_base = pci_resource_start(rdev->pdev, 2); 1427 rdev->rmmio_size = pci_resource_len(rdev->pdev, 2); 1428 } 1429 rdev->rmmio = ioremap(rdev->rmmio_base, rdev->rmmio_size); 1430 if (rdev->rmmio == NULL) { 1431 return -ENOMEM; 1432 } 1433 DRM_INFO("register mmio base: 0x%08X\n", (uint32_t)rdev->rmmio_base); 1434 DRM_INFO("register mmio size: %u\n", (unsigned)rdev->rmmio_size); 1435 1436 /* doorbell bar mapping */ 1437 if (rdev->family >= CHIP_BONAIRE) 1438 radeon_doorbell_init(rdev); 1439 1440 /* io port mapping */ 1441 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 1442 if (pci_resource_flags(rdev->pdev, i) & IORESOURCE_IO) { 1443 rdev->rio_mem_size = pci_resource_len(rdev->pdev, i); 1444 rdev->rio_mem = pci_iomap(rdev->pdev, i, rdev->rio_mem_size); 1445 break; 1446 } 1447 } 1448 if (rdev->rio_mem == NULL) 1449 DRM_ERROR("Unable to find PCI I/O BAR\n"); 1450 1451 if (rdev->flags & RADEON_IS_PX) 1452 radeon_device_handle_px_quirks(rdev); 1453 1454 /* if we have > 1 VGA cards, then disable the radeon VGA resources */ 1455 /* this will fail for cards that aren't VGA class devices, just 1456 * ignore it */ 1457 vga_client_register(rdev->pdev, rdev, NULL, radeon_vga_set_decode); 1458 1459 if (rdev->flags & RADEON_IS_PX) 1460 runtime = true; 1461 vga_switcheroo_register_client(rdev->pdev, &radeon_switcheroo_ops, runtime); 1462 if (runtime) 1463 vga_switcheroo_init_domain_pm_ops(rdev->dev, &rdev->vga_pm_domain); 1464 1465 r = radeon_init(rdev); 1466 if (r) 1467 goto failed; 1468 1469 r = radeon_gem_debugfs_init(rdev); 1470 if (r) { 1471 DRM_ERROR("registering gem debugfs failed (%d).\n", r); 1472 } 1473 1474 r = radeon_mst_debugfs_init(rdev); 1475 if (r) { 1476 DRM_ERROR("registering mst debugfs failed (%d).\n", r); 1477 } 1478 1479 if (rdev->flags & RADEON_IS_AGP && !rdev->accel_working) { 1480 /* Acceleration not working on AGP card try again 1481 * with fallback to PCI or PCIE GART 1482 */ 1483 radeon_asic_reset(rdev); 1484 radeon_fini(rdev); 1485 radeon_agp_disable(rdev); 1486 r = radeon_init(rdev); 1487 if (r) 1488 goto failed; 1489 } 1490 1491 r = radeon_ib_ring_tests(rdev); 1492 if (r) 1493 DRM_ERROR("ib ring test failed (%d).\n", r); 1494 1495 /* 1496 * Turks/Thames GPU will freeze whole laptop if DPM is not restarted 1497 * after the CP ring have chew one packet at least. Hence here we stop 1498 * and restart DPM after the radeon_ib_ring_tests(). 1499 */ 1500 if (rdev->pm.dpm_enabled && 1501 (rdev->pm.pm_method == PM_METHOD_DPM) && 1502 (rdev->family == CHIP_TURKS) && 1503 (rdev->flags & RADEON_IS_MOBILITY)) { 1504 mutex_lock(&rdev->pm.mutex); 1505 radeon_dpm_disable(rdev); 1506 radeon_dpm_enable(rdev); 1507 mutex_unlock(&rdev->pm.mutex); 1508 } 1509 1510 if ((radeon_testing & 1)) { 1511 if (rdev->accel_working) 1512 radeon_test_moves(rdev); 1513 else 1514 DRM_INFO("radeon: acceleration disabled, skipping move tests\n"); 1515 } 1516 if ((radeon_testing & 2)) { 1517 if (rdev->accel_working) 1518 radeon_test_syncing(rdev); 1519 else 1520 DRM_INFO("radeon: acceleration disabled, skipping sync tests\n"); 1521 } 1522 if (radeon_benchmarking) { 1523 if (rdev->accel_working) 1524 radeon_benchmark(rdev, radeon_benchmarking); 1525 else 1526 DRM_INFO("radeon: acceleration disabled, skipping benchmarks\n"); 1527 } 1528 return 0; 1529 1530 failed: 1531 /* balance pm_runtime_get_sync() in radeon_driver_unload_kms() */ 1532 if (radeon_is_px(ddev)) 1533 pm_runtime_put_noidle(ddev->dev); 1534 if (runtime) 1535 vga_switcheroo_fini_domain_pm_ops(rdev->dev); 1536 return r; 1537 } 1538 1539 static void radeon_debugfs_remove_files(struct radeon_device *rdev); 1540 1541 /** 1542 * radeon_device_fini - tear down the driver 1543 * 1544 * @rdev: radeon_device pointer 1545 * 1546 * Tear down the driver info (all asics). 1547 * Called at driver shutdown. 1548 */ 1549 void radeon_device_fini(struct radeon_device *rdev) 1550 { 1551 DRM_INFO("radeon: finishing device.\n"); 1552 rdev->shutdown = true; 1553 /* evict vram memory */ 1554 radeon_bo_evict_vram(rdev); 1555 radeon_fini(rdev); 1556 vga_switcheroo_unregister_client(rdev->pdev); 1557 if (rdev->flags & RADEON_IS_PX) 1558 vga_switcheroo_fini_domain_pm_ops(rdev->dev); 1559 vga_client_register(rdev->pdev, NULL, NULL, NULL); 1560 if (rdev->rio_mem) 1561 pci_iounmap(rdev->pdev, rdev->rio_mem); 1562 rdev->rio_mem = NULL; 1563 iounmap(rdev->rmmio); 1564 rdev->rmmio = NULL; 1565 if (rdev->family >= CHIP_BONAIRE) 1566 radeon_doorbell_fini(rdev); 1567 radeon_debugfs_remove_files(rdev); 1568 } 1569 1570 1571 /* 1572 * Suspend & resume. 1573 */ 1574 /** 1575 * radeon_suspend_kms - initiate device suspend 1576 * 1577 * @pdev: drm dev pointer 1578 * @state: suspend state 1579 * 1580 * Puts the hw in the suspend state (all asics). 1581 * Returns 0 for success or an error on failure. 1582 * Called at driver suspend. 1583 */ 1584 int radeon_suspend_kms(struct drm_device *dev, bool suspend, 1585 bool fbcon, bool freeze) 1586 { 1587 struct radeon_device *rdev; 1588 struct drm_crtc *crtc; 1589 struct drm_connector *connector; 1590 int i, r; 1591 1592 if (dev == NULL || dev->dev_private == NULL) { 1593 return -ENODEV; 1594 } 1595 1596 rdev = dev->dev_private; 1597 1598 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF) 1599 return 0; 1600 1601 drm_kms_helper_poll_disable(dev); 1602 1603 drm_modeset_lock_all(dev); 1604 /* turn off display hw */ 1605 list_for_each_entry(connector, &dev->mode_config.connector_list, head) { 1606 drm_helper_connector_dpms(connector, DRM_MODE_DPMS_OFF); 1607 } 1608 drm_modeset_unlock_all(dev); 1609 1610 /* unpin the front buffers and cursors */ 1611 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 1612 struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); 1613 struct radeon_framebuffer *rfb = to_radeon_framebuffer(crtc->primary->fb); 1614 struct radeon_bo *robj; 1615 1616 if (radeon_crtc->cursor_bo) { 1617 struct radeon_bo *robj = gem_to_radeon_bo(radeon_crtc->cursor_bo); 1618 r = radeon_bo_reserve(robj, false); 1619 if (r == 0) { 1620 radeon_bo_unpin(robj); 1621 radeon_bo_unreserve(robj); 1622 } 1623 } 1624 1625 if (rfb == NULL || rfb->obj == NULL) { 1626 continue; 1627 } 1628 robj = gem_to_radeon_bo(rfb->obj); 1629 /* don't unpin kernel fb objects */ 1630 if (!radeon_fbdev_robj_is_fb(rdev, robj)) { 1631 r = radeon_bo_reserve(robj, false); 1632 if (r == 0) { 1633 radeon_bo_unpin(robj); 1634 radeon_bo_unreserve(robj); 1635 } 1636 } 1637 } 1638 /* evict vram memory */ 1639 radeon_bo_evict_vram(rdev); 1640 1641 /* wait for gpu to finish processing current batch */ 1642 for (i = 0; i < RADEON_NUM_RINGS; i++) { 1643 r = radeon_fence_wait_empty(rdev, i); 1644 if (r) { 1645 /* delay GPU reset to resume */ 1646 radeon_fence_driver_force_completion(rdev, i); 1647 } 1648 } 1649 1650 radeon_save_bios_scratch_regs(rdev); 1651 1652 radeon_suspend(rdev); 1653 radeon_hpd_fini(rdev); 1654 /* evict remaining vram memory 1655 * This second call to evict vram is to evict the gart page table 1656 * using the CPU. 1657 */ 1658 radeon_bo_evict_vram(rdev); 1659 1660 radeon_agp_suspend(rdev); 1661 1662 pci_save_state(dev->pdev); 1663 if (freeze && rdev->family >= CHIP_CEDAR) { 1664 rdev->asic->asic_reset(rdev, true); 1665 pci_restore_state(dev->pdev); 1666 } else if (suspend) { 1667 /* Shut down the device */ 1668 pci_disable_device(dev->pdev); 1669 pci_set_power_state(dev->pdev, PCI_D3hot); 1670 } 1671 1672 if (fbcon) { 1673 console_lock(); 1674 radeon_fbdev_set_suspend(rdev, 1); 1675 console_unlock(); 1676 } 1677 return 0; 1678 } 1679 1680 /** 1681 * radeon_resume_kms - initiate device resume 1682 * 1683 * @pdev: drm dev pointer 1684 * 1685 * Bring the hw back to operating state (all asics). 1686 * Returns 0 for success or an error on failure. 1687 * Called at driver resume. 1688 */ 1689 int radeon_resume_kms(struct drm_device *dev, bool resume, bool fbcon) 1690 { 1691 struct drm_connector *connector; 1692 struct radeon_device *rdev = dev->dev_private; 1693 struct drm_crtc *crtc; 1694 int r; 1695 1696 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF) 1697 return 0; 1698 1699 if (fbcon) { 1700 console_lock(); 1701 } 1702 if (resume) { 1703 pci_set_power_state(dev->pdev, PCI_D0); 1704 pci_restore_state(dev->pdev); 1705 if (pci_enable_device(dev->pdev)) { 1706 if (fbcon) 1707 console_unlock(); 1708 return -1; 1709 } 1710 } 1711 /* resume AGP if in use */ 1712 radeon_agp_resume(rdev); 1713 radeon_resume(rdev); 1714 1715 r = radeon_ib_ring_tests(rdev); 1716 if (r) 1717 DRM_ERROR("ib ring test failed (%d).\n", r); 1718 1719 if ((rdev->pm.pm_method == PM_METHOD_DPM) && rdev->pm.dpm_enabled) { 1720 /* do dpm late init */ 1721 r = radeon_pm_late_init(rdev); 1722 if (r) { 1723 rdev->pm.dpm_enabled = false; 1724 DRM_ERROR("radeon_pm_late_init failed, disabling dpm\n"); 1725 } 1726 } else { 1727 /* resume old pm late */ 1728 radeon_pm_resume(rdev); 1729 } 1730 1731 radeon_restore_bios_scratch_regs(rdev); 1732 1733 /* pin cursors */ 1734 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 1735 struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); 1736 1737 if (radeon_crtc->cursor_bo) { 1738 struct radeon_bo *robj = gem_to_radeon_bo(radeon_crtc->cursor_bo); 1739 r = radeon_bo_reserve(robj, false); 1740 if (r == 0) { 1741 /* Only 27 bit offset for legacy cursor */ 1742 r = radeon_bo_pin_restricted(robj, 1743 RADEON_GEM_DOMAIN_VRAM, 1744 ASIC_IS_AVIVO(rdev) ? 1745 0 : 1 << 27, 1746 &radeon_crtc->cursor_addr); 1747 if (r != 0) 1748 DRM_ERROR("Failed to pin cursor BO (%d)\n", r); 1749 radeon_bo_unreserve(robj); 1750 } 1751 } 1752 } 1753 1754 /* init dig PHYs, disp eng pll */ 1755 if (rdev->is_atom_bios) { 1756 radeon_atom_encoder_init(rdev); 1757 radeon_atom_disp_eng_pll_init(rdev); 1758 /* turn on the BL */ 1759 if (rdev->mode_info.bl_encoder) { 1760 u8 bl_level = radeon_get_backlight_level(rdev, 1761 rdev->mode_info.bl_encoder); 1762 radeon_set_backlight_level(rdev, rdev->mode_info.bl_encoder, 1763 bl_level); 1764 } 1765 } 1766 /* reset hpd state */ 1767 radeon_hpd_init(rdev); 1768 /* blat the mode back in */ 1769 if (fbcon) { 1770 drm_helper_resume_force_mode(dev); 1771 /* turn on display hw */ 1772 drm_modeset_lock_all(dev); 1773 list_for_each_entry(connector, &dev->mode_config.connector_list, head) { 1774 drm_helper_connector_dpms(connector, DRM_MODE_DPMS_ON); 1775 } 1776 drm_modeset_unlock_all(dev); 1777 } 1778 1779 drm_kms_helper_poll_enable(dev); 1780 1781 /* set the power state here in case we are a PX system or headless */ 1782 if ((rdev->pm.pm_method == PM_METHOD_DPM) && rdev->pm.dpm_enabled) 1783 radeon_pm_compute_clocks(rdev); 1784 1785 if (fbcon) { 1786 radeon_fbdev_set_suspend(rdev, 0); 1787 console_unlock(); 1788 } 1789 1790 return 0; 1791 } 1792 1793 /** 1794 * radeon_gpu_reset - reset the asic 1795 * 1796 * @rdev: radeon device pointer 1797 * 1798 * Attempt the reset the GPU if it has hung (all asics). 1799 * Returns 0 for success or an error on failure. 1800 */ 1801 int radeon_gpu_reset(struct radeon_device *rdev) 1802 { 1803 unsigned ring_sizes[RADEON_NUM_RINGS]; 1804 uint32_t *ring_data[RADEON_NUM_RINGS]; 1805 1806 bool saved = false; 1807 1808 int i, r; 1809 int resched; 1810 1811 down_write(&rdev->exclusive_lock); 1812 1813 if (!rdev->needs_reset) { 1814 up_write(&rdev->exclusive_lock); 1815 return 0; 1816 } 1817 1818 atomic_inc(&rdev->gpu_reset_counter); 1819 1820 radeon_save_bios_scratch_regs(rdev); 1821 /* block TTM */ 1822 resched = ttm_bo_lock_delayed_workqueue(&rdev->mman.bdev); 1823 radeon_suspend(rdev); 1824 radeon_hpd_fini(rdev); 1825 1826 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 1827 ring_sizes[i] = radeon_ring_backup(rdev, &rdev->ring[i], 1828 &ring_data[i]); 1829 if (ring_sizes[i]) { 1830 saved = true; 1831 dev_info(rdev->dev, "Saved %d dwords of commands " 1832 "on ring %d.\n", ring_sizes[i], i); 1833 } 1834 } 1835 1836 r = radeon_asic_reset(rdev); 1837 if (!r) { 1838 dev_info(rdev->dev, "GPU reset succeeded, trying to resume\n"); 1839 radeon_resume(rdev); 1840 } 1841 1842 radeon_restore_bios_scratch_regs(rdev); 1843 1844 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 1845 if (!r && ring_data[i]) { 1846 radeon_ring_restore(rdev, &rdev->ring[i], 1847 ring_sizes[i], ring_data[i]); 1848 } else { 1849 radeon_fence_driver_force_completion(rdev, i); 1850 kfree(ring_data[i]); 1851 } 1852 } 1853 1854 if ((rdev->pm.pm_method == PM_METHOD_DPM) && rdev->pm.dpm_enabled) { 1855 /* do dpm late init */ 1856 r = radeon_pm_late_init(rdev); 1857 if (r) { 1858 rdev->pm.dpm_enabled = false; 1859 DRM_ERROR("radeon_pm_late_init failed, disabling dpm\n"); 1860 } 1861 } else { 1862 /* resume old pm late */ 1863 radeon_pm_resume(rdev); 1864 } 1865 1866 /* init dig PHYs, disp eng pll */ 1867 if (rdev->is_atom_bios) { 1868 radeon_atom_encoder_init(rdev); 1869 radeon_atom_disp_eng_pll_init(rdev); 1870 /* turn on the BL */ 1871 if (rdev->mode_info.bl_encoder) { 1872 u8 bl_level = radeon_get_backlight_level(rdev, 1873 rdev->mode_info.bl_encoder); 1874 radeon_set_backlight_level(rdev, rdev->mode_info.bl_encoder, 1875 bl_level); 1876 } 1877 } 1878 /* reset hpd state */ 1879 radeon_hpd_init(rdev); 1880 1881 ttm_bo_unlock_delayed_workqueue(&rdev->mman.bdev, resched); 1882 1883 rdev->in_reset = true; 1884 rdev->needs_reset = false; 1885 1886 downgrade_write(&rdev->exclusive_lock); 1887 1888 drm_helper_resume_force_mode(rdev->ddev); 1889 1890 /* set the power state here in case we are a PX system or headless */ 1891 if ((rdev->pm.pm_method == PM_METHOD_DPM) && rdev->pm.dpm_enabled) 1892 radeon_pm_compute_clocks(rdev); 1893 1894 if (!r) { 1895 r = radeon_ib_ring_tests(rdev); 1896 if (r && saved) 1897 r = -EAGAIN; 1898 } else { 1899 /* bad news, how to tell it to userspace ? */ 1900 dev_info(rdev->dev, "GPU reset failed\n"); 1901 } 1902 1903 rdev->needs_reset = r == -EAGAIN; 1904 rdev->in_reset = false; 1905 1906 up_read(&rdev->exclusive_lock); 1907 return r; 1908 } 1909 1910 1911 /* 1912 * Debugfs 1913 */ 1914 int radeon_debugfs_add_files(struct radeon_device *rdev, 1915 struct drm_info_list *files, 1916 unsigned nfiles) 1917 { 1918 unsigned i; 1919 1920 for (i = 0; i < rdev->debugfs_count; i++) { 1921 if (rdev->debugfs[i].files == files) { 1922 /* Already registered */ 1923 return 0; 1924 } 1925 } 1926 1927 i = rdev->debugfs_count + 1; 1928 if (i > RADEON_DEBUGFS_MAX_COMPONENTS) { 1929 DRM_ERROR("Reached maximum number of debugfs components.\n"); 1930 DRM_ERROR("Report so we increase " 1931 "RADEON_DEBUGFS_MAX_COMPONENTS.\n"); 1932 return -EINVAL; 1933 } 1934 rdev->debugfs[rdev->debugfs_count].files = files; 1935 rdev->debugfs[rdev->debugfs_count].num_files = nfiles; 1936 rdev->debugfs_count = i; 1937 #if defined(CONFIG_DEBUG_FS) 1938 drm_debugfs_create_files(files, nfiles, 1939 rdev->ddev->control->debugfs_root, 1940 rdev->ddev->control); 1941 drm_debugfs_create_files(files, nfiles, 1942 rdev->ddev->primary->debugfs_root, 1943 rdev->ddev->primary); 1944 #endif 1945 return 0; 1946 } 1947 1948 static void radeon_debugfs_remove_files(struct radeon_device *rdev) 1949 { 1950 #if defined(CONFIG_DEBUG_FS) 1951 unsigned i; 1952 1953 for (i = 0; i < rdev->debugfs_count; i++) { 1954 drm_debugfs_remove_files(rdev->debugfs[i].files, 1955 rdev->debugfs[i].num_files, 1956 rdev->ddev->control); 1957 drm_debugfs_remove_files(rdev->debugfs[i].files, 1958 rdev->debugfs[i].num_files, 1959 rdev->ddev->primary); 1960 } 1961 #endif 1962 } 1963