xref: /openbmc/linux/drivers/gpu/drm/radeon/radeon_device.c (revision 63c43812ee99efe7903955bae8cd928e9582477a)
1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <linux/console.h>
29 #include <linux/slab.h>
30 #include <drm/drmP.h>
31 #include <drm/drm_crtc_helper.h>
32 #include <drm/radeon_drm.h>
33 #include <linux/vgaarb.h>
34 #include <linux/vga_switcheroo.h>
35 #include <linux/efi.h>
36 #include "radeon_reg.h"
37 #include "radeon.h"
38 #include "atom.h"
39 
40 static const char radeon_family_name[][16] = {
41 	"R100",
42 	"RV100",
43 	"RS100",
44 	"RV200",
45 	"RS200",
46 	"R200",
47 	"RV250",
48 	"RS300",
49 	"RV280",
50 	"R300",
51 	"R350",
52 	"RV350",
53 	"RV380",
54 	"R420",
55 	"R423",
56 	"RV410",
57 	"RS400",
58 	"RS480",
59 	"RS600",
60 	"RS690",
61 	"RS740",
62 	"RV515",
63 	"R520",
64 	"RV530",
65 	"RV560",
66 	"RV570",
67 	"R580",
68 	"R600",
69 	"RV610",
70 	"RV630",
71 	"RV670",
72 	"RV620",
73 	"RV635",
74 	"RS780",
75 	"RS880",
76 	"RV770",
77 	"RV730",
78 	"RV710",
79 	"RV740",
80 	"CEDAR",
81 	"REDWOOD",
82 	"JUNIPER",
83 	"CYPRESS",
84 	"HEMLOCK",
85 	"PALM",
86 	"SUMO",
87 	"SUMO2",
88 	"BARTS",
89 	"TURKS",
90 	"CAICOS",
91 	"CAYMAN",
92 	"ARUBA",
93 	"TAHITI",
94 	"PITCAIRN",
95 	"VERDE",
96 	"OLAND",
97 	"HAINAN",
98 	"BONAIRE",
99 	"KAVERI",
100 	"KABINI",
101 	"HAWAII",
102 	"MULLINS",
103 	"LAST",
104 };
105 
106 #define RADEON_PX_QUIRK_DISABLE_PX  (1 << 0)
107 #define RADEON_PX_QUIRK_LONG_WAKEUP (1 << 1)
108 
109 struct radeon_px_quirk {
110 	u32 chip_vendor;
111 	u32 chip_device;
112 	u32 subsys_vendor;
113 	u32 subsys_device;
114 	u32 px_quirk_flags;
115 };
116 
117 static struct radeon_px_quirk radeon_px_quirk_list[] = {
118 	/* Acer aspire 5560g (CPU: AMD A4-3305M; GPU: AMD Radeon HD 6480g + 7470m)
119 	 * https://bugzilla.kernel.org/show_bug.cgi?id=74551
120 	 */
121 	{ PCI_VENDOR_ID_ATI, 0x6760, 0x1025, 0x0672, RADEON_PX_QUIRK_DISABLE_PX },
122 	/* Asus K73TA laptop with AMD A6-3400M APU and Radeon 6550 GPU
123 	 * https://bugzilla.kernel.org/show_bug.cgi?id=51381
124 	 */
125 	{ PCI_VENDOR_ID_ATI, 0x6741, 0x1043, 0x108c, RADEON_PX_QUIRK_DISABLE_PX },
126 	/* Asus K53TK laptop with AMD A6-3420M APU and Radeon 7670m GPU
127 	 * https://bugzilla.kernel.org/show_bug.cgi?id=51381
128 	 */
129 	{ PCI_VENDOR_ID_ATI, 0x6840, 0x1043, 0x2122, RADEON_PX_QUIRK_DISABLE_PX },
130 	/* macbook pro 8.2 */
131 	{ PCI_VENDOR_ID_ATI, 0x6741, PCI_VENDOR_ID_APPLE, 0x00e2, RADEON_PX_QUIRK_LONG_WAKEUP },
132 	{ 0, 0, 0, 0, 0 },
133 };
134 
135 bool radeon_is_px(struct drm_device *dev)
136 {
137 	struct radeon_device *rdev = dev->dev_private;
138 
139 	if (rdev->flags & RADEON_IS_PX)
140 		return true;
141 	return false;
142 }
143 
144 static void radeon_device_handle_px_quirks(struct radeon_device *rdev)
145 {
146 	struct radeon_px_quirk *p = radeon_px_quirk_list;
147 
148 	/* Apply PX quirks */
149 	while (p && p->chip_device != 0) {
150 		if (rdev->pdev->vendor == p->chip_vendor &&
151 		    rdev->pdev->device == p->chip_device &&
152 		    rdev->pdev->subsystem_vendor == p->subsys_vendor &&
153 		    rdev->pdev->subsystem_device == p->subsys_device) {
154 			rdev->px_quirk_flags = p->px_quirk_flags;
155 			break;
156 		}
157 		++p;
158 	}
159 
160 	if (rdev->px_quirk_flags & RADEON_PX_QUIRK_DISABLE_PX)
161 		rdev->flags &= ~RADEON_IS_PX;
162 }
163 
164 /**
165  * radeon_program_register_sequence - program an array of registers.
166  *
167  * @rdev: radeon_device pointer
168  * @registers: pointer to the register array
169  * @array_size: size of the register array
170  *
171  * Programs an array or registers with and and or masks.
172  * This is a helper for setting golden registers.
173  */
174 void radeon_program_register_sequence(struct radeon_device *rdev,
175 				      const u32 *registers,
176 				      const u32 array_size)
177 {
178 	u32 tmp, reg, and_mask, or_mask;
179 	int i;
180 
181 	if (array_size % 3)
182 		return;
183 
184 	for (i = 0; i < array_size; i +=3) {
185 		reg = registers[i + 0];
186 		and_mask = registers[i + 1];
187 		or_mask = registers[i + 2];
188 
189 		if (and_mask == 0xffffffff) {
190 			tmp = or_mask;
191 		} else {
192 			tmp = RREG32(reg);
193 			tmp &= ~and_mask;
194 			tmp |= or_mask;
195 		}
196 		WREG32(reg, tmp);
197 	}
198 }
199 
200 void radeon_pci_config_reset(struct radeon_device *rdev)
201 {
202 	pci_write_config_dword(rdev->pdev, 0x7c, RADEON_ASIC_RESET_DATA);
203 }
204 
205 /**
206  * radeon_surface_init - Clear GPU surface registers.
207  *
208  * @rdev: radeon_device pointer
209  *
210  * Clear GPU surface registers (r1xx-r5xx).
211  */
212 void radeon_surface_init(struct radeon_device *rdev)
213 {
214 	/* FIXME: check this out */
215 	if (rdev->family < CHIP_R600) {
216 		int i;
217 
218 		for (i = 0; i < RADEON_GEM_MAX_SURFACES; i++) {
219 			if (rdev->surface_regs[i].bo)
220 				radeon_bo_get_surface_reg(rdev->surface_regs[i].bo);
221 			else
222 				radeon_clear_surface_reg(rdev, i);
223 		}
224 		/* enable surfaces */
225 		WREG32(RADEON_SURFACE_CNTL, 0);
226 	}
227 }
228 
229 /*
230  * GPU scratch registers helpers function.
231  */
232 /**
233  * radeon_scratch_init - Init scratch register driver information.
234  *
235  * @rdev: radeon_device pointer
236  *
237  * Init CP scratch register driver information (r1xx-r5xx)
238  */
239 void radeon_scratch_init(struct radeon_device *rdev)
240 {
241 	int i;
242 
243 	/* FIXME: check this out */
244 	if (rdev->family < CHIP_R300) {
245 		rdev->scratch.num_reg = 5;
246 	} else {
247 		rdev->scratch.num_reg = 7;
248 	}
249 	rdev->scratch.reg_base = RADEON_SCRATCH_REG0;
250 	for (i = 0; i < rdev->scratch.num_reg; i++) {
251 		rdev->scratch.free[i] = true;
252 		rdev->scratch.reg[i] = rdev->scratch.reg_base + (i * 4);
253 	}
254 }
255 
256 /**
257  * radeon_scratch_get - Allocate a scratch register
258  *
259  * @rdev: radeon_device pointer
260  * @reg: scratch register mmio offset
261  *
262  * Allocate a CP scratch register for use by the driver (all asics).
263  * Returns 0 on success or -EINVAL on failure.
264  */
265 int radeon_scratch_get(struct radeon_device *rdev, uint32_t *reg)
266 {
267 	int i;
268 
269 	for (i = 0; i < rdev->scratch.num_reg; i++) {
270 		if (rdev->scratch.free[i]) {
271 			rdev->scratch.free[i] = false;
272 			*reg = rdev->scratch.reg[i];
273 			return 0;
274 		}
275 	}
276 	return -EINVAL;
277 }
278 
279 /**
280  * radeon_scratch_free - Free a scratch register
281  *
282  * @rdev: radeon_device pointer
283  * @reg: scratch register mmio offset
284  *
285  * Free a CP scratch register allocated for use by the driver (all asics)
286  */
287 void radeon_scratch_free(struct radeon_device *rdev, uint32_t reg)
288 {
289 	int i;
290 
291 	for (i = 0; i < rdev->scratch.num_reg; i++) {
292 		if (rdev->scratch.reg[i] == reg) {
293 			rdev->scratch.free[i] = true;
294 			return;
295 		}
296 	}
297 }
298 
299 /*
300  * GPU doorbell aperture helpers function.
301  */
302 /**
303  * radeon_doorbell_init - Init doorbell driver information.
304  *
305  * @rdev: radeon_device pointer
306  *
307  * Init doorbell driver information (CIK)
308  * Returns 0 on success, error on failure.
309  */
310 static int radeon_doorbell_init(struct radeon_device *rdev)
311 {
312 	/* doorbell bar mapping */
313 	rdev->doorbell.base = pci_resource_start(rdev->pdev, 2);
314 	rdev->doorbell.size = pci_resource_len(rdev->pdev, 2);
315 
316 	rdev->doorbell.num_doorbells = min_t(u32, rdev->doorbell.size / sizeof(u32), RADEON_MAX_DOORBELLS);
317 	if (rdev->doorbell.num_doorbells == 0)
318 		return -EINVAL;
319 
320 	rdev->doorbell.ptr = ioremap(rdev->doorbell.base, rdev->doorbell.num_doorbells * sizeof(u32));
321 	if (rdev->doorbell.ptr == NULL) {
322 		return -ENOMEM;
323 	}
324 	DRM_INFO("doorbell mmio base: 0x%08X\n", (uint32_t)rdev->doorbell.base);
325 	DRM_INFO("doorbell mmio size: %u\n", (unsigned)rdev->doorbell.size);
326 
327 	memset(&rdev->doorbell.used, 0, sizeof(rdev->doorbell.used));
328 
329 	return 0;
330 }
331 
332 /**
333  * radeon_doorbell_fini - Tear down doorbell driver information.
334  *
335  * @rdev: radeon_device pointer
336  *
337  * Tear down doorbell driver information (CIK)
338  */
339 static void radeon_doorbell_fini(struct radeon_device *rdev)
340 {
341 	iounmap(rdev->doorbell.ptr);
342 	rdev->doorbell.ptr = NULL;
343 }
344 
345 /**
346  * radeon_doorbell_get - Allocate a doorbell entry
347  *
348  * @rdev: radeon_device pointer
349  * @doorbell: doorbell index
350  *
351  * Allocate a doorbell for use by the driver (all asics).
352  * Returns 0 on success or -EINVAL on failure.
353  */
354 int radeon_doorbell_get(struct radeon_device *rdev, u32 *doorbell)
355 {
356 	unsigned long offset = find_first_zero_bit(rdev->doorbell.used, rdev->doorbell.num_doorbells);
357 	if (offset < rdev->doorbell.num_doorbells) {
358 		__set_bit(offset, rdev->doorbell.used);
359 		*doorbell = offset;
360 		return 0;
361 	} else {
362 		return -EINVAL;
363 	}
364 }
365 
366 /**
367  * radeon_doorbell_free - Free a doorbell entry
368  *
369  * @rdev: radeon_device pointer
370  * @doorbell: doorbell index
371  *
372  * Free a doorbell allocated for use by the driver (all asics)
373  */
374 void radeon_doorbell_free(struct radeon_device *rdev, u32 doorbell)
375 {
376 	if (doorbell < rdev->doorbell.num_doorbells)
377 		__clear_bit(doorbell, rdev->doorbell.used);
378 }
379 
380 /**
381  * radeon_doorbell_get_kfd_info - Report doorbell configuration required to
382  *                                setup KFD
383  *
384  * @rdev: radeon_device pointer
385  * @aperture_base: output returning doorbell aperture base physical address
386  * @aperture_size: output returning doorbell aperture size in bytes
387  * @start_offset: output returning # of doorbell bytes reserved for radeon.
388  *
389  * Radeon and the KFD share the doorbell aperture. Radeon sets it up,
390  * takes doorbells required for its own rings and reports the setup to KFD.
391  * Radeon reserved doorbells are at the start of the doorbell aperture.
392  */
393 void radeon_doorbell_get_kfd_info(struct radeon_device *rdev,
394 				  phys_addr_t *aperture_base,
395 				  size_t *aperture_size,
396 				  size_t *start_offset)
397 {
398 	/* The first num_doorbells are used by radeon.
399 	 * KFD takes whatever's left in the aperture. */
400 	if (rdev->doorbell.size > rdev->doorbell.num_doorbells * sizeof(u32)) {
401 		*aperture_base = rdev->doorbell.base;
402 		*aperture_size = rdev->doorbell.size;
403 		*start_offset = rdev->doorbell.num_doorbells * sizeof(u32);
404 	} else {
405 		*aperture_base = 0;
406 		*aperture_size = 0;
407 		*start_offset = 0;
408 	}
409 }
410 
411 /*
412  * radeon_wb_*()
413  * Writeback is the the method by which the the GPU updates special pages
414  * in memory with the status of certain GPU events (fences, ring pointers,
415  * etc.).
416  */
417 
418 /**
419  * radeon_wb_disable - Disable Writeback
420  *
421  * @rdev: radeon_device pointer
422  *
423  * Disables Writeback (all asics).  Used for suspend.
424  */
425 void radeon_wb_disable(struct radeon_device *rdev)
426 {
427 	rdev->wb.enabled = false;
428 }
429 
430 /**
431  * radeon_wb_fini - Disable Writeback and free memory
432  *
433  * @rdev: radeon_device pointer
434  *
435  * Disables Writeback and frees the Writeback memory (all asics).
436  * Used at driver shutdown.
437  */
438 void radeon_wb_fini(struct radeon_device *rdev)
439 {
440 	radeon_wb_disable(rdev);
441 	if (rdev->wb.wb_obj) {
442 		if (!radeon_bo_reserve(rdev->wb.wb_obj, false)) {
443 			radeon_bo_kunmap(rdev->wb.wb_obj);
444 			radeon_bo_unpin(rdev->wb.wb_obj);
445 			radeon_bo_unreserve(rdev->wb.wb_obj);
446 		}
447 		radeon_bo_unref(&rdev->wb.wb_obj);
448 		rdev->wb.wb = NULL;
449 		rdev->wb.wb_obj = NULL;
450 	}
451 }
452 
453 /**
454  * radeon_wb_init- Init Writeback driver info and allocate memory
455  *
456  * @rdev: radeon_device pointer
457  *
458  * Disables Writeback and frees the Writeback memory (all asics).
459  * Used at driver startup.
460  * Returns 0 on success or an -error on failure.
461  */
462 int radeon_wb_init(struct radeon_device *rdev)
463 {
464 	int r;
465 
466 	if (rdev->wb.wb_obj == NULL) {
467 		r = radeon_bo_create(rdev, RADEON_GPU_PAGE_SIZE, PAGE_SIZE, true,
468 				     RADEON_GEM_DOMAIN_GTT, 0, NULL, NULL,
469 				     &rdev->wb.wb_obj);
470 		if (r) {
471 			dev_warn(rdev->dev, "(%d) create WB bo failed\n", r);
472 			return r;
473 		}
474 		r = radeon_bo_reserve(rdev->wb.wb_obj, false);
475 		if (unlikely(r != 0)) {
476 			radeon_wb_fini(rdev);
477 			return r;
478 		}
479 		r = radeon_bo_pin(rdev->wb.wb_obj, RADEON_GEM_DOMAIN_GTT,
480 				&rdev->wb.gpu_addr);
481 		if (r) {
482 			radeon_bo_unreserve(rdev->wb.wb_obj);
483 			dev_warn(rdev->dev, "(%d) pin WB bo failed\n", r);
484 			radeon_wb_fini(rdev);
485 			return r;
486 		}
487 		r = radeon_bo_kmap(rdev->wb.wb_obj, (void **)&rdev->wb.wb);
488 		radeon_bo_unreserve(rdev->wb.wb_obj);
489 		if (r) {
490 			dev_warn(rdev->dev, "(%d) map WB bo failed\n", r);
491 			radeon_wb_fini(rdev);
492 			return r;
493 		}
494 	}
495 
496 	/* clear wb memory */
497 	memset((char *)rdev->wb.wb, 0, RADEON_GPU_PAGE_SIZE);
498 	/* disable event_write fences */
499 	rdev->wb.use_event = false;
500 	/* disabled via module param */
501 	if (radeon_no_wb == 1) {
502 		rdev->wb.enabled = false;
503 	} else {
504 		if (rdev->flags & RADEON_IS_AGP) {
505 			/* often unreliable on AGP */
506 			rdev->wb.enabled = false;
507 		} else if (rdev->family < CHIP_R300) {
508 			/* often unreliable on pre-r300 */
509 			rdev->wb.enabled = false;
510 		} else {
511 			rdev->wb.enabled = true;
512 			/* event_write fences are only available on r600+ */
513 			if (rdev->family >= CHIP_R600) {
514 				rdev->wb.use_event = true;
515 			}
516 		}
517 	}
518 	/* always use writeback/events on NI, APUs */
519 	if (rdev->family >= CHIP_PALM) {
520 		rdev->wb.enabled = true;
521 		rdev->wb.use_event = true;
522 	}
523 
524 	dev_info(rdev->dev, "WB %sabled\n", rdev->wb.enabled ? "en" : "dis");
525 
526 	return 0;
527 }
528 
529 /**
530  * radeon_vram_location - try to find VRAM location
531  * @rdev: radeon device structure holding all necessary informations
532  * @mc: memory controller structure holding memory informations
533  * @base: base address at which to put VRAM
534  *
535  * Function will place try to place VRAM at base address provided
536  * as parameter (which is so far either PCI aperture address or
537  * for IGP TOM base address).
538  *
539  * If there is not enough space to fit the unvisible VRAM in the 32bits
540  * address space then we limit the VRAM size to the aperture.
541  *
542  * If we are using AGP and if the AGP aperture doesn't allow us to have
543  * room for all the VRAM than we restrict the VRAM to the PCI aperture
544  * size and print a warning.
545  *
546  * This function will never fails, worst case are limiting VRAM.
547  *
548  * Note: GTT start, end, size should be initialized before calling this
549  * function on AGP platform.
550  *
551  * Note: We don't explicitly enforce VRAM start to be aligned on VRAM size,
552  * this shouldn't be a problem as we are using the PCI aperture as a reference.
553  * Otherwise this would be needed for rv280, all r3xx, and all r4xx, but
554  * not IGP.
555  *
556  * Note: we use mc_vram_size as on some board we need to program the mc to
557  * cover the whole aperture even if VRAM size is inferior to aperture size
558  * Novell bug 204882 + along with lots of ubuntu ones
559  *
560  * Note: when limiting vram it's safe to overwritte real_vram_size because
561  * we are not in case where real_vram_size is inferior to mc_vram_size (ie
562  * note afected by bogus hw of Novell bug 204882 + along with lots of ubuntu
563  * ones)
564  *
565  * Note: IGP TOM addr should be the same as the aperture addr, we don't
566  * explicitly check for that thought.
567  *
568  * FIXME: when reducing VRAM size align new size on power of 2.
569  */
570 void radeon_vram_location(struct radeon_device *rdev, struct radeon_mc *mc, u64 base)
571 {
572 	uint64_t limit = (uint64_t)radeon_vram_limit << 20;
573 
574 	mc->vram_start = base;
575 	if (mc->mc_vram_size > (rdev->mc.mc_mask - base + 1)) {
576 		dev_warn(rdev->dev, "limiting VRAM to PCI aperture size\n");
577 		mc->real_vram_size = mc->aper_size;
578 		mc->mc_vram_size = mc->aper_size;
579 	}
580 	mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
581 	if (rdev->flags & RADEON_IS_AGP && mc->vram_end > mc->gtt_start && mc->vram_start <= mc->gtt_end) {
582 		dev_warn(rdev->dev, "limiting VRAM to PCI aperture size\n");
583 		mc->real_vram_size = mc->aper_size;
584 		mc->mc_vram_size = mc->aper_size;
585 	}
586 	mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
587 	if (limit && limit < mc->real_vram_size)
588 		mc->real_vram_size = limit;
589 	dev_info(rdev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
590 			mc->mc_vram_size >> 20, mc->vram_start,
591 			mc->vram_end, mc->real_vram_size >> 20);
592 }
593 
594 /**
595  * radeon_gtt_location - try to find GTT location
596  * @rdev: radeon device structure holding all necessary informations
597  * @mc: memory controller structure holding memory informations
598  *
599  * Function will place try to place GTT before or after VRAM.
600  *
601  * If GTT size is bigger than space left then we ajust GTT size.
602  * Thus function will never fails.
603  *
604  * FIXME: when reducing GTT size align new size on power of 2.
605  */
606 void radeon_gtt_location(struct radeon_device *rdev, struct radeon_mc *mc)
607 {
608 	u64 size_af, size_bf;
609 
610 	size_af = ((rdev->mc.mc_mask - mc->vram_end) + mc->gtt_base_align) & ~mc->gtt_base_align;
611 	size_bf = mc->vram_start & ~mc->gtt_base_align;
612 	if (size_bf > size_af) {
613 		if (mc->gtt_size > size_bf) {
614 			dev_warn(rdev->dev, "limiting GTT\n");
615 			mc->gtt_size = size_bf;
616 		}
617 		mc->gtt_start = (mc->vram_start & ~mc->gtt_base_align) - mc->gtt_size;
618 	} else {
619 		if (mc->gtt_size > size_af) {
620 			dev_warn(rdev->dev, "limiting GTT\n");
621 			mc->gtt_size = size_af;
622 		}
623 		mc->gtt_start = (mc->vram_end + 1 + mc->gtt_base_align) & ~mc->gtt_base_align;
624 	}
625 	mc->gtt_end = mc->gtt_start + mc->gtt_size - 1;
626 	dev_info(rdev->dev, "GTT: %lluM 0x%016llX - 0x%016llX\n",
627 			mc->gtt_size >> 20, mc->gtt_start, mc->gtt_end);
628 }
629 
630 /*
631  * GPU helpers function.
632  */
633 /**
634  * radeon_card_posted - check if the hw has already been initialized
635  *
636  * @rdev: radeon_device pointer
637  *
638  * Check if the asic has been initialized (all asics).
639  * Used at driver startup.
640  * Returns true if initialized or false if not.
641  */
642 bool radeon_card_posted(struct radeon_device *rdev)
643 {
644 	uint32_t reg;
645 
646 	/* required for EFI mode on macbook2,1 which uses an r5xx asic */
647 	if (efi_enabled(EFI_BOOT) &&
648 	    (rdev->pdev->subsystem_vendor == PCI_VENDOR_ID_APPLE) &&
649 	    (rdev->family < CHIP_R600))
650 		return false;
651 
652 	if (ASIC_IS_NODCE(rdev))
653 		goto check_memsize;
654 
655 	/* first check CRTCs */
656 	if (ASIC_IS_DCE4(rdev)) {
657 		reg = RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC0_REGISTER_OFFSET) |
658 			RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC1_REGISTER_OFFSET);
659 			if (rdev->num_crtc >= 4) {
660 				reg |= RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC2_REGISTER_OFFSET) |
661 					RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC3_REGISTER_OFFSET);
662 			}
663 			if (rdev->num_crtc >= 6) {
664 				reg |= RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC4_REGISTER_OFFSET) |
665 					RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC5_REGISTER_OFFSET);
666 			}
667 		if (reg & EVERGREEN_CRTC_MASTER_EN)
668 			return true;
669 	} else if (ASIC_IS_AVIVO(rdev)) {
670 		reg = RREG32(AVIVO_D1CRTC_CONTROL) |
671 		      RREG32(AVIVO_D2CRTC_CONTROL);
672 		if (reg & AVIVO_CRTC_EN) {
673 			return true;
674 		}
675 	} else {
676 		reg = RREG32(RADEON_CRTC_GEN_CNTL) |
677 		      RREG32(RADEON_CRTC2_GEN_CNTL);
678 		if (reg & RADEON_CRTC_EN) {
679 			return true;
680 		}
681 	}
682 
683 check_memsize:
684 	/* then check MEM_SIZE, in case the crtcs are off */
685 	if (rdev->family >= CHIP_R600)
686 		reg = RREG32(R600_CONFIG_MEMSIZE);
687 	else
688 		reg = RREG32(RADEON_CONFIG_MEMSIZE);
689 
690 	if (reg)
691 		return true;
692 
693 	return false;
694 
695 }
696 
697 /**
698  * radeon_update_bandwidth_info - update display bandwidth params
699  *
700  * @rdev: radeon_device pointer
701  *
702  * Used when sclk/mclk are switched or display modes are set.
703  * params are used to calculate display watermarks (all asics)
704  */
705 void radeon_update_bandwidth_info(struct radeon_device *rdev)
706 {
707 	fixed20_12 a;
708 	u32 sclk = rdev->pm.current_sclk;
709 	u32 mclk = rdev->pm.current_mclk;
710 
711 	/* sclk/mclk in Mhz */
712 	a.full = dfixed_const(100);
713 	rdev->pm.sclk.full = dfixed_const(sclk);
714 	rdev->pm.sclk.full = dfixed_div(rdev->pm.sclk, a);
715 	rdev->pm.mclk.full = dfixed_const(mclk);
716 	rdev->pm.mclk.full = dfixed_div(rdev->pm.mclk, a);
717 
718 	if (rdev->flags & RADEON_IS_IGP) {
719 		a.full = dfixed_const(16);
720 		/* core_bandwidth = sclk(Mhz) * 16 */
721 		rdev->pm.core_bandwidth.full = dfixed_div(rdev->pm.sclk, a);
722 	}
723 }
724 
725 /**
726  * radeon_boot_test_post_card - check and possibly initialize the hw
727  *
728  * @rdev: radeon_device pointer
729  *
730  * Check if the asic is initialized and if not, attempt to initialize
731  * it (all asics).
732  * Returns true if initialized or false if not.
733  */
734 bool radeon_boot_test_post_card(struct radeon_device *rdev)
735 {
736 	if (radeon_card_posted(rdev))
737 		return true;
738 
739 	if (rdev->bios) {
740 		DRM_INFO("GPU not posted. posting now...\n");
741 		if (rdev->is_atom_bios)
742 			atom_asic_init(rdev->mode_info.atom_context);
743 		else
744 			radeon_combios_asic_init(rdev->ddev);
745 		return true;
746 	} else {
747 		dev_err(rdev->dev, "Card not posted and no BIOS - ignoring\n");
748 		return false;
749 	}
750 }
751 
752 /**
753  * radeon_dummy_page_init - init dummy page used by the driver
754  *
755  * @rdev: radeon_device pointer
756  *
757  * Allocate the dummy page used by the driver (all asics).
758  * This dummy page is used by the driver as a filler for gart entries
759  * when pages are taken out of the GART
760  * Returns 0 on sucess, -ENOMEM on failure.
761  */
762 int radeon_dummy_page_init(struct radeon_device *rdev)
763 {
764 	if (rdev->dummy_page.page)
765 		return 0;
766 	rdev->dummy_page.page = alloc_page(GFP_DMA32 | GFP_KERNEL | __GFP_ZERO);
767 	if (rdev->dummy_page.page == NULL)
768 		return -ENOMEM;
769 	rdev->dummy_page.addr = pci_map_page(rdev->pdev, rdev->dummy_page.page,
770 					0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
771 	if (pci_dma_mapping_error(rdev->pdev, rdev->dummy_page.addr)) {
772 		dev_err(&rdev->pdev->dev, "Failed to DMA MAP the dummy page\n");
773 		__free_page(rdev->dummy_page.page);
774 		rdev->dummy_page.page = NULL;
775 		return -ENOMEM;
776 	}
777 	rdev->dummy_page.entry = radeon_gart_get_page_entry(rdev->dummy_page.addr,
778 							    RADEON_GART_PAGE_DUMMY);
779 	return 0;
780 }
781 
782 /**
783  * radeon_dummy_page_fini - free dummy page used by the driver
784  *
785  * @rdev: radeon_device pointer
786  *
787  * Frees the dummy page used by the driver (all asics).
788  */
789 void radeon_dummy_page_fini(struct radeon_device *rdev)
790 {
791 	if (rdev->dummy_page.page == NULL)
792 		return;
793 	pci_unmap_page(rdev->pdev, rdev->dummy_page.addr,
794 			PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
795 	__free_page(rdev->dummy_page.page);
796 	rdev->dummy_page.page = NULL;
797 }
798 
799 
800 /* ATOM accessor methods */
801 /*
802  * ATOM is an interpreted byte code stored in tables in the vbios.  The
803  * driver registers callbacks to access registers and the interpreter
804  * in the driver parses the tables and executes then to program specific
805  * actions (set display modes, asic init, etc.).  See radeon_atombios.c,
806  * atombios.h, and atom.c
807  */
808 
809 /**
810  * cail_pll_read - read PLL register
811  *
812  * @info: atom card_info pointer
813  * @reg: PLL register offset
814  *
815  * Provides a PLL register accessor for the atom interpreter (r4xx+).
816  * Returns the value of the PLL register.
817  */
818 static uint32_t cail_pll_read(struct card_info *info, uint32_t reg)
819 {
820 	struct radeon_device *rdev = info->dev->dev_private;
821 	uint32_t r;
822 
823 	r = rdev->pll_rreg(rdev, reg);
824 	return r;
825 }
826 
827 /**
828  * cail_pll_write - write PLL register
829  *
830  * @info: atom card_info pointer
831  * @reg: PLL register offset
832  * @val: value to write to the pll register
833  *
834  * Provides a PLL register accessor for the atom interpreter (r4xx+).
835  */
836 static void cail_pll_write(struct card_info *info, uint32_t reg, uint32_t val)
837 {
838 	struct radeon_device *rdev = info->dev->dev_private;
839 
840 	rdev->pll_wreg(rdev, reg, val);
841 }
842 
843 /**
844  * cail_mc_read - read MC (Memory Controller) register
845  *
846  * @info: atom card_info pointer
847  * @reg: MC register offset
848  *
849  * Provides an MC register accessor for the atom interpreter (r4xx+).
850  * Returns the value of the MC register.
851  */
852 static uint32_t cail_mc_read(struct card_info *info, uint32_t reg)
853 {
854 	struct radeon_device *rdev = info->dev->dev_private;
855 	uint32_t r;
856 
857 	r = rdev->mc_rreg(rdev, reg);
858 	return r;
859 }
860 
861 /**
862  * cail_mc_write - write MC (Memory Controller) register
863  *
864  * @info: atom card_info pointer
865  * @reg: MC register offset
866  * @val: value to write to the pll register
867  *
868  * Provides a MC register accessor for the atom interpreter (r4xx+).
869  */
870 static void cail_mc_write(struct card_info *info, uint32_t reg, uint32_t val)
871 {
872 	struct radeon_device *rdev = info->dev->dev_private;
873 
874 	rdev->mc_wreg(rdev, reg, val);
875 }
876 
877 /**
878  * cail_reg_write - write MMIO register
879  *
880  * @info: atom card_info pointer
881  * @reg: MMIO register offset
882  * @val: value to write to the pll register
883  *
884  * Provides a MMIO register accessor for the atom interpreter (r4xx+).
885  */
886 static void cail_reg_write(struct card_info *info, uint32_t reg, uint32_t val)
887 {
888 	struct radeon_device *rdev = info->dev->dev_private;
889 
890 	WREG32(reg*4, val);
891 }
892 
893 /**
894  * cail_reg_read - read MMIO register
895  *
896  * @info: atom card_info pointer
897  * @reg: MMIO register offset
898  *
899  * Provides an MMIO register accessor for the atom interpreter (r4xx+).
900  * Returns the value of the MMIO register.
901  */
902 static uint32_t cail_reg_read(struct card_info *info, uint32_t reg)
903 {
904 	struct radeon_device *rdev = info->dev->dev_private;
905 	uint32_t r;
906 
907 	r = RREG32(reg*4);
908 	return r;
909 }
910 
911 /**
912  * cail_ioreg_write - write IO register
913  *
914  * @info: atom card_info pointer
915  * @reg: IO register offset
916  * @val: value to write to the pll register
917  *
918  * Provides a IO register accessor for the atom interpreter (r4xx+).
919  */
920 static void cail_ioreg_write(struct card_info *info, uint32_t reg, uint32_t val)
921 {
922 	struct radeon_device *rdev = info->dev->dev_private;
923 
924 	WREG32_IO(reg*4, val);
925 }
926 
927 /**
928  * cail_ioreg_read - read IO register
929  *
930  * @info: atom card_info pointer
931  * @reg: IO register offset
932  *
933  * Provides an IO register accessor for the atom interpreter (r4xx+).
934  * Returns the value of the IO register.
935  */
936 static uint32_t cail_ioreg_read(struct card_info *info, uint32_t reg)
937 {
938 	struct radeon_device *rdev = info->dev->dev_private;
939 	uint32_t r;
940 
941 	r = RREG32_IO(reg*4);
942 	return r;
943 }
944 
945 /**
946  * radeon_atombios_init - init the driver info and callbacks for atombios
947  *
948  * @rdev: radeon_device pointer
949  *
950  * Initializes the driver info and register access callbacks for the
951  * ATOM interpreter (r4xx+).
952  * Returns 0 on sucess, -ENOMEM on failure.
953  * Called at driver startup.
954  */
955 int radeon_atombios_init(struct radeon_device *rdev)
956 {
957 	struct card_info *atom_card_info =
958 	    kzalloc(sizeof(struct card_info), GFP_KERNEL);
959 
960 	if (!atom_card_info)
961 		return -ENOMEM;
962 
963 	rdev->mode_info.atom_card_info = atom_card_info;
964 	atom_card_info->dev = rdev->ddev;
965 	atom_card_info->reg_read = cail_reg_read;
966 	atom_card_info->reg_write = cail_reg_write;
967 	/* needed for iio ops */
968 	if (rdev->rio_mem) {
969 		atom_card_info->ioreg_read = cail_ioreg_read;
970 		atom_card_info->ioreg_write = cail_ioreg_write;
971 	} else {
972 		DRM_ERROR("Unable to find PCI I/O BAR; using MMIO for ATOM IIO\n");
973 		atom_card_info->ioreg_read = cail_reg_read;
974 		atom_card_info->ioreg_write = cail_reg_write;
975 	}
976 	atom_card_info->mc_read = cail_mc_read;
977 	atom_card_info->mc_write = cail_mc_write;
978 	atom_card_info->pll_read = cail_pll_read;
979 	atom_card_info->pll_write = cail_pll_write;
980 
981 	rdev->mode_info.atom_context = atom_parse(atom_card_info, rdev->bios);
982 	if (!rdev->mode_info.atom_context) {
983 		radeon_atombios_fini(rdev);
984 		return -ENOMEM;
985 	}
986 
987 	mutex_init(&rdev->mode_info.atom_context->mutex);
988 	mutex_init(&rdev->mode_info.atom_context->scratch_mutex);
989 	radeon_atom_initialize_bios_scratch_regs(rdev->ddev);
990 	atom_allocate_fb_scratch(rdev->mode_info.atom_context);
991 	return 0;
992 }
993 
994 /**
995  * radeon_atombios_fini - free the driver info and callbacks for atombios
996  *
997  * @rdev: radeon_device pointer
998  *
999  * Frees the driver info and register access callbacks for the ATOM
1000  * interpreter (r4xx+).
1001  * Called at driver shutdown.
1002  */
1003 void radeon_atombios_fini(struct radeon_device *rdev)
1004 {
1005 	if (rdev->mode_info.atom_context) {
1006 		kfree(rdev->mode_info.atom_context->scratch);
1007 	}
1008 	kfree(rdev->mode_info.atom_context);
1009 	rdev->mode_info.atom_context = NULL;
1010 	kfree(rdev->mode_info.atom_card_info);
1011 	rdev->mode_info.atom_card_info = NULL;
1012 }
1013 
1014 /* COMBIOS */
1015 /*
1016  * COMBIOS is the bios format prior to ATOM. It provides
1017  * command tables similar to ATOM, but doesn't have a unified
1018  * parser.  See radeon_combios.c
1019  */
1020 
1021 /**
1022  * radeon_combios_init - init the driver info for combios
1023  *
1024  * @rdev: radeon_device pointer
1025  *
1026  * Initializes the driver info for combios (r1xx-r3xx).
1027  * Returns 0 on sucess.
1028  * Called at driver startup.
1029  */
1030 int radeon_combios_init(struct radeon_device *rdev)
1031 {
1032 	radeon_combios_initialize_bios_scratch_regs(rdev->ddev);
1033 	return 0;
1034 }
1035 
1036 /**
1037  * radeon_combios_fini - free the driver info for combios
1038  *
1039  * @rdev: radeon_device pointer
1040  *
1041  * Frees the driver info for combios (r1xx-r3xx).
1042  * Called at driver shutdown.
1043  */
1044 void radeon_combios_fini(struct radeon_device *rdev)
1045 {
1046 }
1047 
1048 /* if we get transitioned to only one device, take VGA back */
1049 /**
1050  * radeon_vga_set_decode - enable/disable vga decode
1051  *
1052  * @cookie: radeon_device pointer
1053  * @state: enable/disable vga decode
1054  *
1055  * Enable/disable vga decode (all asics).
1056  * Returns VGA resource flags.
1057  */
1058 static unsigned int radeon_vga_set_decode(void *cookie, bool state)
1059 {
1060 	struct radeon_device *rdev = cookie;
1061 	radeon_vga_set_state(rdev, state);
1062 	if (state)
1063 		return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
1064 		       VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
1065 	else
1066 		return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
1067 }
1068 
1069 /**
1070  * radeon_check_pot_argument - check that argument is a power of two
1071  *
1072  * @arg: value to check
1073  *
1074  * Validates that a certain argument is a power of two (all asics).
1075  * Returns true if argument is valid.
1076  */
1077 static bool radeon_check_pot_argument(int arg)
1078 {
1079 	return (arg & (arg - 1)) == 0;
1080 }
1081 
1082 /**
1083  * radeon_check_arguments - validate module params
1084  *
1085  * @rdev: radeon_device pointer
1086  *
1087  * Validates certain module parameters and updates
1088  * the associated values used by the driver (all asics).
1089  */
1090 static void radeon_check_arguments(struct radeon_device *rdev)
1091 {
1092 	/* vramlimit must be a power of two */
1093 	if (!radeon_check_pot_argument(radeon_vram_limit)) {
1094 		dev_warn(rdev->dev, "vram limit (%d) must be a power of 2\n",
1095 				radeon_vram_limit);
1096 		radeon_vram_limit = 0;
1097 	}
1098 
1099 	if (radeon_gart_size == -1) {
1100 		/* default to a larger gart size on newer asics */
1101 		if (rdev->family >= CHIP_RV770)
1102 			radeon_gart_size = 1024;
1103 		else
1104 			radeon_gart_size = 512;
1105 	}
1106 	/* gtt size must be power of two and greater or equal to 32M */
1107 	if (radeon_gart_size < 32) {
1108 		dev_warn(rdev->dev, "gart size (%d) too small\n",
1109 				radeon_gart_size);
1110 		if (rdev->family >= CHIP_RV770)
1111 			radeon_gart_size = 1024;
1112 		else
1113 			radeon_gart_size = 512;
1114 	} else if (!radeon_check_pot_argument(radeon_gart_size)) {
1115 		dev_warn(rdev->dev, "gart size (%d) must be a power of 2\n",
1116 				radeon_gart_size);
1117 		if (rdev->family >= CHIP_RV770)
1118 			radeon_gart_size = 1024;
1119 		else
1120 			radeon_gart_size = 512;
1121 	}
1122 	rdev->mc.gtt_size = (uint64_t)radeon_gart_size << 20;
1123 
1124 	/* AGP mode can only be -1, 1, 2, 4, 8 */
1125 	switch (radeon_agpmode) {
1126 	case -1:
1127 	case 0:
1128 	case 1:
1129 	case 2:
1130 	case 4:
1131 	case 8:
1132 		break;
1133 	default:
1134 		dev_warn(rdev->dev, "invalid AGP mode %d (valid mode: "
1135 				"-1, 0, 1, 2, 4, 8)\n", radeon_agpmode);
1136 		radeon_agpmode = 0;
1137 		break;
1138 	}
1139 
1140 	if (!radeon_check_pot_argument(radeon_vm_size)) {
1141 		dev_warn(rdev->dev, "VM size (%d) must be a power of 2\n",
1142 			 radeon_vm_size);
1143 		radeon_vm_size = 4;
1144 	}
1145 
1146 	if (radeon_vm_size < 1) {
1147 		dev_warn(rdev->dev, "VM size (%d) to small, min is 1GB\n",
1148 			 radeon_vm_size);
1149 		radeon_vm_size = 4;
1150 	}
1151 
1152        /*
1153         * Max GPUVM size for Cayman, SI and CI are 40 bits.
1154         */
1155 	if (radeon_vm_size > 1024) {
1156 		dev_warn(rdev->dev, "VM size (%d) too large, max is 1TB\n",
1157 			 radeon_vm_size);
1158 		radeon_vm_size = 4;
1159 	}
1160 
1161 	/* defines number of bits in page table versus page directory,
1162 	 * a page is 4KB so we have 12 bits offset, minimum 9 bits in the
1163 	 * page table and the remaining bits are in the page directory */
1164 	if (radeon_vm_block_size == -1) {
1165 
1166 		/* Total bits covered by PD + PTs */
1167 		unsigned bits = ilog2(radeon_vm_size) + 18;
1168 
1169 		/* Make sure the PD is 4K in size up to 8GB address space.
1170 		   Above that split equal between PD and PTs */
1171 		if (radeon_vm_size <= 8)
1172 			radeon_vm_block_size = bits - 9;
1173 		else
1174 			radeon_vm_block_size = (bits + 3) / 2;
1175 
1176 	} else if (radeon_vm_block_size < 9) {
1177 		dev_warn(rdev->dev, "VM page table size (%d) too small\n",
1178 			 radeon_vm_block_size);
1179 		radeon_vm_block_size = 9;
1180 	}
1181 
1182 	if (radeon_vm_block_size > 24 ||
1183 	    (radeon_vm_size * 1024) < (1ull << radeon_vm_block_size)) {
1184 		dev_warn(rdev->dev, "VM page table size (%d) too large\n",
1185 			 radeon_vm_block_size);
1186 		radeon_vm_block_size = 9;
1187 	}
1188 }
1189 
1190 /**
1191  * radeon_switcheroo_set_state - set switcheroo state
1192  *
1193  * @pdev: pci dev pointer
1194  * @state: vga switcheroo state
1195  *
1196  * Callback for the switcheroo driver.  Suspends or resumes the
1197  * the asics before or after it is powered up using ACPI methods.
1198  */
1199 static void radeon_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
1200 {
1201 	struct drm_device *dev = pci_get_drvdata(pdev);
1202 	struct radeon_device *rdev = dev->dev_private;
1203 
1204 	if (radeon_is_px(dev) && state == VGA_SWITCHEROO_OFF)
1205 		return;
1206 
1207 	if (state == VGA_SWITCHEROO_ON) {
1208 		unsigned d3_delay = dev->pdev->d3_delay;
1209 
1210 		printk(KERN_INFO "radeon: switched on\n");
1211 		/* don't suspend or resume card normally */
1212 		dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
1213 
1214 		if (d3_delay < 20 && (rdev->px_quirk_flags & RADEON_PX_QUIRK_LONG_WAKEUP))
1215 			dev->pdev->d3_delay = 20;
1216 
1217 		radeon_resume_kms(dev, true, true);
1218 
1219 		dev->pdev->d3_delay = d3_delay;
1220 
1221 		dev->switch_power_state = DRM_SWITCH_POWER_ON;
1222 		drm_kms_helper_poll_enable(dev);
1223 	} else {
1224 		printk(KERN_INFO "radeon: switched off\n");
1225 		drm_kms_helper_poll_disable(dev);
1226 		dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
1227 		radeon_suspend_kms(dev, true, true);
1228 		dev->switch_power_state = DRM_SWITCH_POWER_OFF;
1229 	}
1230 }
1231 
1232 /**
1233  * radeon_switcheroo_can_switch - see if switcheroo state can change
1234  *
1235  * @pdev: pci dev pointer
1236  *
1237  * Callback for the switcheroo driver.  Check of the switcheroo
1238  * state can be changed.
1239  * Returns true if the state can be changed, false if not.
1240  */
1241 static bool radeon_switcheroo_can_switch(struct pci_dev *pdev)
1242 {
1243 	struct drm_device *dev = pci_get_drvdata(pdev);
1244 
1245 	/*
1246 	 * FIXME: open_count is protected by drm_global_mutex but that would lead to
1247 	 * locking inversion with the driver load path. And the access here is
1248 	 * completely racy anyway. So don't bother with locking for now.
1249 	 */
1250 	return dev->open_count == 0;
1251 }
1252 
1253 static const struct vga_switcheroo_client_ops radeon_switcheroo_ops = {
1254 	.set_gpu_state = radeon_switcheroo_set_state,
1255 	.reprobe = NULL,
1256 	.can_switch = radeon_switcheroo_can_switch,
1257 };
1258 
1259 /**
1260  * radeon_device_init - initialize the driver
1261  *
1262  * @rdev: radeon_device pointer
1263  * @pdev: drm dev pointer
1264  * @pdev: pci dev pointer
1265  * @flags: driver flags
1266  *
1267  * Initializes the driver info and hw (all asics).
1268  * Returns 0 for success or an error on failure.
1269  * Called at driver startup.
1270  */
1271 int radeon_device_init(struct radeon_device *rdev,
1272 		       struct drm_device *ddev,
1273 		       struct pci_dev *pdev,
1274 		       uint32_t flags)
1275 {
1276 	int r, i;
1277 	int dma_bits;
1278 	bool runtime = false;
1279 
1280 	rdev->shutdown = false;
1281 	rdev->dev = &pdev->dev;
1282 	rdev->ddev = ddev;
1283 	rdev->pdev = pdev;
1284 	rdev->flags = flags;
1285 	rdev->family = flags & RADEON_FAMILY_MASK;
1286 	rdev->is_atom_bios = false;
1287 	rdev->usec_timeout = RADEON_MAX_USEC_TIMEOUT;
1288 	rdev->mc.gtt_size = 512 * 1024 * 1024;
1289 	rdev->accel_working = false;
1290 	/* set up ring ids */
1291 	for (i = 0; i < RADEON_NUM_RINGS; i++) {
1292 		rdev->ring[i].idx = i;
1293 	}
1294 	rdev->fence_context = fence_context_alloc(RADEON_NUM_RINGS);
1295 
1296 	DRM_INFO("initializing kernel modesetting (%s 0x%04X:0x%04X 0x%04X:0x%04X).\n",
1297 		radeon_family_name[rdev->family], pdev->vendor, pdev->device,
1298 		pdev->subsystem_vendor, pdev->subsystem_device);
1299 
1300 	/* mutex initialization are all done here so we
1301 	 * can recall function without having locking issues */
1302 	mutex_init(&rdev->ring_lock);
1303 	mutex_init(&rdev->dc_hw_i2c_mutex);
1304 	atomic_set(&rdev->ih.lock, 0);
1305 	mutex_init(&rdev->gem.mutex);
1306 	mutex_init(&rdev->pm.mutex);
1307 	mutex_init(&rdev->gpu_clock_mutex);
1308 	mutex_init(&rdev->srbm_mutex);
1309 	mutex_init(&rdev->grbm_idx_mutex);
1310 	init_rwsem(&rdev->pm.mclk_lock);
1311 	init_rwsem(&rdev->exclusive_lock);
1312 	init_waitqueue_head(&rdev->irq.vblank_queue);
1313 	mutex_init(&rdev->mn_lock);
1314 	hash_init(rdev->mn_hash);
1315 	r = radeon_gem_init(rdev);
1316 	if (r)
1317 		return r;
1318 
1319 	radeon_check_arguments(rdev);
1320 	/* Adjust VM size here.
1321 	 * Max GPUVM size for cayman+ is 40 bits.
1322 	 */
1323 	rdev->vm_manager.max_pfn = radeon_vm_size << 18;
1324 
1325 	/* Set asic functions */
1326 	r = radeon_asic_init(rdev);
1327 	if (r)
1328 		return r;
1329 
1330 	/* all of the newer IGP chips have an internal gart
1331 	 * However some rs4xx report as AGP, so remove that here.
1332 	 */
1333 	if ((rdev->family >= CHIP_RS400) &&
1334 	    (rdev->flags & RADEON_IS_IGP)) {
1335 		rdev->flags &= ~RADEON_IS_AGP;
1336 	}
1337 
1338 	if (rdev->flags & RADEON_IS_AGP && radeon_agpmode == -1) {
1339 		radeon_agp_disable(rdev);
1340 	}
1341 
1342 	/* Set the internal MC address mask
1343 	 * This is the max address of the GPU's
1344 	 * internal address space.
1345 	 */
1346 	if (rdev->family >= CHIP_CAYMAN)
1347 		rdev->mc.mc_mask = 0xffffffffffULL; /* 40 bit MC */
1348 	else if (rdev->family >= CHIP_CEDAR)
1349 		rdev->mc.mc_mask = 0xfffffffffULL; /* 36 bit MC */
1350 	else
1351 		rdev->mc.mc_mask = 0xffffffffULL; /* 32 bit MC */
1352 
1353 	/* set DMA mask + need_dma32 flags.
1354 	 * PCIE - can handle 40-bits.
1355 	 * IGP - can handle 40-bits
1356 	 * AGP - generally dma32 is safest
1357 	 * PCI - dma32 for legacy pci gart, 40 bits on newer asics
1358 	 */
1359 	rdev->need_dma32 = false;
1360 	if (rdev->flags & RADEON_IS_AGP)
1361 		rdev->need_dma32 = true;
1362 	if ((rdev->flags & RADEON_IS_PCI) &&
1363 	    (rdev->family <= CHIP_RS740))
1364 		rdev->need_dma32 = true;
1365 
1366 	dma_bits = rdev->need_dma32 ? 32 : 40;
1367 	r = pci_set_dma_mask(rdev->pdev, DMA_BIT_MASK(dma_bits));
1368 	if (r) {
1369 		rdev->need_dma32 = true;
1370 		dma_bits = 32;
1371 		printk(KERN_WARNING "radeon: No suitable DMA available.\n");
1372 	}
1373 	r = pci_set_consistent_dma_mask(rdev->pdev, DMA_BIT_MASK(dma_bits));
1374 	if (r) {
1375 		pci_set_consistent_dma_mask(rdev->pdev, DMA_BIT_MASK(32));
1376 		printk(KERN_WARNING "radeon: No coherent DMA available.\n");
1377 	}
1378 
1379 	/* Registers mapping */
1380 	/* TODO: block userspace mapping of io register */
1381 	spin_lock_init(&rdev->mmio_idx_lock);
1382 	spin_lock_init(&rdev->smc_idx_lock);
1383 	spin_lock_init(&rdev->pll_idx_lock);
1384 	spin_lock_init(&rdev->mc_idx_lock);
1385 	spin_lock_init(&rdev->pcie_idx_lock);
1386 	spin_lock_init(&rdev->pciep_idx_lock);
1387 	spin_lock_init(&rdev->pif_idx_lock);
1388 	spin_lock_init(&rdev->cg_idx_lock);
1389 	spin_lock_init(&rdev->uvd_idx_lock);
1390 	spin_lock_init(&rdev->rcu_idx_lock);
1391 	spin_lock_init(&rdev->didt_idx_lock);
1392 	spin_lock_init(&rdev->end_idx_lock);
1393 	if (rdev->family >= CHIP_BONAIRE) {
1394 		rdev->rmmio_base = pci_resource_start(rdev->pdev, 5);
1395 		rdev->rmmio_size = pci_resource_len(rdev->pdev, 5);
1396 	} else {
1397 		rdev->rmmio_base = pci_resource_start(rdev->pdev, 2);
1398 		rdev->rmmio_size = pci_resource_len(rdev->pdev, 2);
1399 	}
1400 	rdev->rmmio = ioremap(rdev->rmmio_base, rdev->rmmio_size);
1401 	if (rdev->rmmio == NULL) {
1402 		return -ENOMEM;
1403 	}
1404 	DRM_INFO("register mmio base: 0x%08X\n", (uint32_t)rdev->rmmio_base);
1405 	DRM_INFO("register mmio size: %u\n", (unsigned)rdev->rmmio_size);
1406 
1407 	/* doorbell bar mapping */
1408 	if (rdev->family >= CHIP_BONAIRE)
1409 		radeon_doorbell_init(rdev);
1410 
1411 	/* io port mapping */
1412 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
1413 		if (pci_resource_flags(rdev->pdev, i) & IORESOURCE_IO) {
1414 			rdev->rio_mem_size = pci_resource_len(rdev->pdev, i);
1415 			rdev->rio_mem = pci_iomap(rdev->pdev, i, rdev->rio_mem_size);
1416 			break;
1417 		}
1418 	}
1419 	if (rdev->rio_mem == NULL)
1420 		DRM_ERROR("Unable to find PCI I/O BAR\n");
1421 
1422 	if (rdev->flags & RADEON_IS_PX)
1423 		radeon_device_handle_px_quirks(rdev);
1424 
1425 	/* if we have > 1 VGA cards, then disable the radeon VGA resources */
1426 	/* this will fail for cards that aren't VGA class devices, just
1427 	 * ignore it */
1428 	vga_client_register(rdev->pdev, rdev, NULL, radeon_vga_set_decode);
1429 
1430 	if (rdev->flags & RADEON_IS_PX)
1431 		runtime = true;
1432 	vga_switcheroo_register_client(rdev->pdev, &radeon_switcheroo_ops, runtime);
1433 	if (runtime)
1434 		vga_switcheroo_init_domain_pm_ops(rdev->dev, &rdev->vga_pm_domain);
1435 
1436 	r = radeon_init(rdev);
1437 	if (r)
1438 		goto failed;
1439 
1440 	r = radeon_gem_debugfs_init(rdev);
1441 	if (r) {
1442 		DRM_ERROR("registering gem debugfs failed (%d).\n", r);
1443 	}
1444 
1445 	r = radeon_mst_debugfs_init(rdev);
1446 	if (r) {
1447 		DRM_ERROR("registering mst debugfs failed (%d).\n", r);
1448 	}
1449 
1450 	if (rdev->flags & RADEON_IS_AGP && !rdev->accel_working) {
1451 		/* Acceleration not working on AGP card try again
1452 		 * with fallback to PCI or PCIE GART
1453 		 */
1454 		radeon_asic_reset(rdev);
1455 		radeon_fini(rdev);
1456 		radeon_agp_disable(rdev);
1457 		r = radeon_init(rdev);
1458 		if (r)
1459 			goto failed;
1460 	}
1461 
1462 	r = radeon_ib_ring_tests(rdev);
1463 	if (r)
1464 		DRM_ERROR("ib ring test failed (%d).\n", r);
1465 
1466 	if ((radeon_testing & 1)) {
1467 		if (rdev->accel_working)
1468 			radeon_test_moves(rdev);
1469 		else
1470 			DRM_INFO("radeon: acceleration disabled, skipping move tests\n");
1471 	}
1472 	if ((radeon_testing & 2)) {
1473 		if (rdev->accel_working)
1474 			radeon_test_syncing(rdev);
1475 		else
1476 			DRM_INFO("radeon: acceleration disabled, skipping sync tests\n");
1477 	}
1478 	if (radeon_benchmarking) {
1479 		if (rdev->accel_working)
1480 			radeon_benchmark(rdev, radeon_benchmarking);
1481 		else
1482 			DRM_INFO("radeon: acceleration disabled, skipping benchmarks\n");
1483 	}
1484 	return 0;
1485 
1486 failed:
1487 	if (runtime)
1488 		vga_switcheroo_fini_domain_pm_ops(rdev->dev);
1489 	return r;
1490 }
1491 
1492 static void radeon_debugfs_remove_files(struct radeon_device *rdev);
1493 
1494 /**
1495  * radeon_device_fini - tear down the driver
1496  *
1497  * @rdev: radeon_device pointer
1498  *
1499  * Tear down the driver info (all asics).
1500  * Called at driver shutdown.
1501  */
1502 void radeon_device_fini(struct radeon_device *rdev)
1503 {
1504 	DRM_INFO("radeon: finishing device.\n");
1505 	rdev->shutdown = true;
1506 	/* evict vram memory */
1507 	radeon_bo_evict_vram(rdev);
1508 	radeon_fini(rdev);
1509 	vga_switcheroo_unregister_client(rdev->pdev);
1510 	if (rdev->flags & RADEON_IS_PX)
1511 		vga_switcheroo_fini_domain_pm_ops(rdev->dev);
1512 	vga_client_register(rdev->pdev, NULL, NULL, NULL);
1513 	if (rdev->rio_mem)
1514 		pci_iounmap(rdev->pdev, rdev->rio_mem);
1515 	rdev->rio_mem = NULL;
1516 	iounmap(rdev->rmmio);
1517 	rdev->rmmio = NULL;
1518 	if (rdev->family >= CHIP_BONAIRE)
1519 		radeon_doorbell_fini(rdev);
1520 	radeon_debugfs_remove_files(rdev);
1521 }
1522 
1523 
1524 /*
1525  * Suspend & resume.
1526  */
1527 /**
1528  * radeon_suspend_kms - initiate device suspend
1529  *
1530  * @pdev: drm dev pointer
1531  * @state: suspend state
1532  *
1533  * Puts the hw in the suspend state (all asics).
1534  * Returns 0 for success or an error on failure.
1535  * Called at driver suspend.
1536  */
1537 int radeon_suspend_kms(struct drm_device *dev, bool suspend, bool fbcon)
1538 {
1539 	struct radeon_device *rdev;
1540 	struct drm_crtc *crtc;
1541 	struct drm_connector *connector;
1542 	int i, r;
1543 
1544 	if (dev == NULL || dev->dev_private == NULL) {
1545 		return -ENODEV;
1546 	}
1547 
1548 	rdev = dev->dev_private;
1549 
1550 	if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1551 		return 0;
1552 
1553 	drm_kms_helper_poll_disable(dev);
1554 
1555 	/* turn off display hw */
1556 	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1557 		drm_helper_connector_dpms(connector, DRM_MODE_DPMS_OFF);
1558 	}
1559 
1560 	/* unpin the front buffers */
1561 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1562 		struct radeon_framebuffer *rfb = to_radeon_framebuffer(crtc->primary->fb);
1563 		struct radeon_bo *robj;
1564 
1565 		if (rfb == NULL || rfb->obj == NULL) {
1566 			continue;
1567 		}
1568 		robj = gem_to_radeon_bo(rfb->obj);
1569 		/* don't unpin kernel fb objects */
1570 		if (!radeon_fbdev_robj_is_fb(rdev, robj)) {
1571 			r = radeon_bo_reserve(robj, false);
1572 			if (r == 0) {
1573 				radeon_bo_unpin(robj);
1574 				radeon_bo_unreserve(robj);
1575 			}
1576 		}
1577 	}
1578 	/* evict vram memory */
1579 	radeon_bo_evict_vram(rdev);
1580 
1581 	/* wait for gpu to finish processing current batch */
1582 	for (i = 0; i < RADEON_NUM_RINGS; i++) {
1583 		r = radeon_fence_wait_empty(rdev, i);
1584 		if (r) {
1585 			/* delay GPU reset to resume */
1586 			radeon_fence_driver_force_completion(rdev, i);
1587 		}
1588 	}
1589 
1590 	radeon_save_bios_scratch_regs(rdev);
1591 
1592 	radeon_suspend(rdev);
1593 	radeon_hpd_fini(rdev);
1594 	/* evict remaining vram memory */
1595 	radeon_bo_evict_vram(rdev);
1596 
1597 	radeon_agp_suspend(rdev);
1598 
1599 	pci_save_state(dev->pdev);
1600 	if (suspend) {
1601 		/* Shut down the device */
1602 		pci_disable_device(dev->pdev);
1603 		pci_set_power_state(dev->pdev, PCI_D3hot);
1604 	}
1605 
1606 	if (fbcon) {
1607 		console_lock();
1608 		radeon_fbdev_set_suspend(rdev, 1);
1609 		console_unlock();
1610 	}
1611 	return 0;
1612 }
1613 
1614 /**
1615  * radeon_resume_kms - initiate device resume
1616  *
1617  * @pdev: drm dev pointer
1618  *
1619  * Bring the hw back to operating state (all asics).
1620  * Returns 0 for success or an error on failure.
1621  * Called at driver resume.
1622  */
1623 int radeon_resume_kms(struct drm_device *dev, bool resume, bool fbcon)
1624 {
1625 	struct drm_connector *connector;
1626 	struct radeon_device *rdev = dev->dev_private;
1627 	int r;
1628 
1629 	if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1630 		return 0;
1631 
1632 	if (fbcon) {
1633 		console_lock();
1634 	}
1635 	if (resume) {
1636 		pci_set_power_state(dev->pdev, PCI_D0);
1637 		pci_restore_state(dev->pdev);
1638 		if (pci_enable_device(dev->pdev)) {
1639 			if (fbcon)
1640 				console_unlock();
1641 			return -1;
1642 		}
1643 	}
1644 	/* resume AGP if in use */
1645 	radeon_agp_resume(rdev);
1646 	radeon_resume(rdev);
1647 
1648 	r = radeon_ib_ring_tests(rdev);
1649 	if (r)
1650 		DRM_ERROR("ib ring test failed (%d).\n", r);
1651 
1652 	if ((rdev->pm.pm_method == PM_METHOD_DPM) && rdev->pm.dpm_enabled) {
1653 		/* do dpm late init */
1654 		r = radeon_pm_late_init(rdev);
1655 		if (r) {
1656 			rdev->pm.dpm_enabled = false;
1657 			DRM_ERROR("radeon_pm_late_init failed, disabling dpm\n");
1658 		}
1659 	} else {
1660 		/* resume old pm late */
1661 		radeon_pm_resume(rdev);
1662 	}
1663 
1664 	radeon_restore_bios_scratch_regs(rdev);
1665 
1666 	/* init dig PHYs, disp eng pll */
1667 	if (rdev->is_atom_bios) {
1668 		radeon_atom_encoder_init(rdev);
1669 		radeon_atom_disp_eng_pll_init(rdev);
1670 		/* turn on the BL */
1671 		if (rdev->mode_info.bl_encoder) {
1672 			u8 bl_level = radeon_get_backlight_level(rdev,
1673 								 rdev->mode_info.bl_encoder);
1674 			radeon_set_backlight_level(rdev, rdev->mode_info.bl_encoder,
1675 						   bl_level);
1676 		}
1677 	}
1678 	/* reset hpd state */
1679 	radeon_hpd_init(rdev);
1680 	/* blat the mode back in */
1681 	if (fbcon) {
1682 		drm_helper_resume_force_mode(dev);
1683 		/* turn on display hw */
1684 		list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1685 			drm_helper_connector_dpms(connector, DRM_MODE_DPMS_ON);
1686 		}
1687 	}
1688 
1689 	drm_kms_helper_poll_enable(dev);
1690 
1691 	/* set the power state here in case we are a PX system or headless */
1692 	if ((rdev->pm.pm_method == PM_METHOD_DPM) && rdev->pm.dpm_enabled)
1693 		radeon_pm_compute_clocks(rdev);
1694 
1695 	if (fbcon) {
1696 		radeon_fbdev_set_suspend(rdev, 0);
1697 		console_unlock();
1698 	}
1699 
1700 	return 0;
1701 }
1702 
1703 /**
1704  * radeon_gpu_reset - reset the asic
1705  *
1706  * @rdev: radeon device pointer
1707  *
1708  * Attempt the reset the GPU if it has hung (all asics).
1709  * Returns 0 for success or an error on failure.
1710  */
1711 int radeon_gpu_reset(struct radeon_device *rdev)
1712 {
1713 	unsigned ring_sizes[RADEON_NUM_RINGS];
1714 	uint32_t *ring_data[RADEON_NUM_RINGS];
1715 
1716 	bool saved = false;
1717 
1718 	int i, r;
1719 	int resched;
1720 
1721 	down_write(&rdev->exclusive_lock);
1722 
1723 	if (!rdev->needs_reset) {
1724 		up_write(&rdev->exclusive_lock);
1725 		return 0;
1726 	}
1727 
1728 	radeon_save_bios_scratch_regs(rdev);
1729 	/* block TTM */
1730 	resched = ttm_bo_lock_delayed_workqueue(&rdev->mman.bdev);
1731 	radeon_suspend(rdev);
1732 	radeon_hpd_fini(rdev);
1733 
1734 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
1735 		ring_sizes[i] = radeon_ring_backup(rdev, &rdev->ring[i],
1736 						   &ring_data[i]);
1737 		if (ring_sizes[i]) {
1738 			saved = true;
1739 			dev_info(rdev->dev, "Saved %d dwords of commands "
1740 				 "on ring %d.\n", ring_sizes[i], i);
1741 		}
1742 	}
1743 
1744 	r = radeon_asic_reset(rdev);
1745 	if (!r) {
1746 		dev_info(rdev->dev, "GPU reset succeeded, trying to resume\n");
1747 		radeon_resume(rdev);
1748 	}
1749 
1750 	radeon_restore_bios_scratch_regs(rdev);
1751 
1752 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
1753 		if (!r && ring_data[i]) {
1754 			radeon_ring_restore(rdev, &rdev->ring[i],
1755 					    ring_sizes[i], ring_data[i]);
1756 		} else {
1757 			radeon_fence_driver_force_completion(rdev, i);
1758 			kfree(ring_data[i]);
1759 		}
1760 	}
1761 
1762 	if ((rdev->pm.pm_method == PM_METHOD_DPM) && rdev->pm.dpm_enabled) {
1763 		/* do dpm late init */
1764 		r = radeon_pm_late_init(rdev);
1765 		if (r) {
1766 			rdev->pm.dpm_enabled = false;
1767 			DRM_ERROR("radeon_pm_late_init failed, disabling dpm\n");
1768 		}
1769 	} else {
1770 		/* resume old pm late */
1771 		radeon_pm_resume(rdev);
1772 	}
1773 
1774 	/* init dig PHYs, disp eng pll */
1775 	if (rdev->is_atom_bios) {
1776 		radeon_atom_encoder_init(rdev);
1777 		radeon_atom_disp_eng_pll_init(rdev);
1778 		/* turn on the BL */
1779 		if (rdev->mode_info.bl_encoder) {
1780 			u8 bl_level = radeon_get_backlight_level(rdev,
1781 								 rdev->mode_info.bl_encoder);
1782 			radeon_set_backlight_level(rdev, rdev->mode_info.bl_encoder,
1783 						   bl_level);
1784 		}
1785 	}
1786 	/* reset hpd state */
1787 	radeon_hpd_init(rdev);
1788 
1789 	ttm_bo_unlock_delayed_workqueue(&rdev->mman.bdev, resched);
1790 
1791 	rdev->in_reset = true;
1792 	rdev->needs_reset = false;
1793 
1794 	downgrade_write(&rdev->exclusive_lock);
1795 
1796 	drm_helper_resume_force_mode(rdev->ddev);
1797 
1798 	/* set the power state here in case we are a PX system or headless */
1799 	if ((rdev->pm.pm_method == PM_METHOD_DPM) && rdev->pm.dpm_enabled)
1800 		radeon_pm_compute_clocks(rdev);
1801 
1802 	if (!r) {
1803 		r = radeon_ib_ring_tests(rdev);
1804 		if (r && saved)
1805 			r = -EAGAIN;
1806 	} else {
1807 		/* bad news, how to tell it to userspace ? */
1808 		dev_info(rdev->dev, "GPU reset failed\n");
1809 	}
1810 
1811 	rdev->needs_reset = r == -EAGAIN;
1812 	rdev->in_reset = false;
1813 
1814 	up_read(&rdev->exclusive_lock);
1815 	return r;
1816 }
1817 
1818 
1819 /*
1820  * Debugfs
1821  */
1822 int radeon_debugfs_add_files(struct radeon_device *rdev,
1823 			     struct drm_info_list *files,
1824 			     unsigned nfiles)
1825 {
1826 	unsigned i;
1827 
1828 	for (i = 0; i < rdev->debugfs_count; i++) {
1829 		if (rdev->debugfs[i].files == files) {
1830 			/* Already registered */
1831 			return 0;
1832 		}
1833 	}
1834 
1835 	i = rdev->debugfs_count + 1;
1836 	if (i > RADEON_DEBUGFS_MAX_COMPONENTS) {
1837 		DRM_ERROR("Reached maximum number of debugfs components.\n");
1838 		DRM_ERROR("Report so we increase "
1839 		          "RADEON_DEBUGFS_MAX_COMPONENTS.\n");
1840 		return -EINVAL;
1841 	}
1842 	rdev->debugfs[rdev->debugfs_count].files = files;
1843 	rdev->debugfs[rdev->debugfs_count].num_files = nfiles;
1844 	rdev->debugfs_count = i;
1845 #if defined(CONFIG_DEBUG_FS)
1846 	drm_debugfs_create_files(files, nfiles,
1847 				 rdev->ddev->control->debugfs_root,
1848 				 rdev->ddev->control);
1849 	drm_debugfs_create_files(files, nfiles,
1850 				 rdev->ddev->primary->debugfs_root,
1851 				 rdev->ddev->primary);
1852 #endif
1853 	return 0;
1854 }
1855 
1856 static void radeon_debugfs_remove_files(struct radeon_device *rdev)
1857 {
1858 #if defined(CONFIG_DEBUG_FS)
1859 	unsigned i;
1860 
1861 	for (i = 0; i < rdev->debugfs_count; i++) {
1862 		drm_debugfs_remove_files(rdev->debugfs[i].files,
1863 					 rdev->debugfs[i].num_files,
1864 					 rdev->ddev->control);
1865 		drm_debugfs_remove_files(rdev->debugfs[i].files,
1866 					 rdev->debugfs[i].num_files,
1867 					 rdev->ddev->primary);
1868 	}
1869 #endif
1870 }
1871 
1872 #if defined(CONFIG_DEBUG_FS)
1873 int radeon_debugfs_init(struct drm_minor *minor)
1874 {
1875 	return 0;
1876 }
1877 
1878 void radeon_debugfs_cleanup(struct drm_minor *minor)
1879 {
1880 }
1881 #endif
1882