xref: /openbmc/linux/drivers/gpu/drm/radeon/mkregtable.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /* utility to create the register check tables
2  * this includes inlined list.h safe for userspace.
3  *
4  * Copyright 2009 Jerome Glisse
5  * Copyright 2009 Red Hat Inc.
6  *
7  * Authors:
8  * 	Jerome Glisse
9  * 	Dave Airlie
10  */
11 
12 #include <sys/types.h>
13 #include <stdlib.h>
14 #include <string.h>
15 #include <stdio.h>
16 #include <regex.h>
17 #include <libgen.h>
18 
19 #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
20 /**
21  * container_of - cast a member of a structure out to the containing structure
22  * @ptr:    the pointer to the member.
23  * @type:   the type of the container struct this is embedded in.
24  * @member: the name of the member within the struct.
25  *
26  */
27 #define container_of(ptr, type, member) ({          \
28 	const typeof(((type *)0)->member)*__mptr = (ptr);    \
29 		     (type *)((char *)__mptr - offsetof(type, member)); })
30 
31 /*
32  * Simple doubly linked list implementation.
33  *
34  * Some of the internal functions ("__xxx") are useful when
35  * manipulating whole lists rather than single entries, as
36  * sometimes we already know the next/prev entries and we can
37  * generate better code by using them directly rather than
38  * using the generic single-entry routines.
39  */
40 
41 struct list_head {
42 	struct list_head *next, *prev;
43 };
44 
45 #define LIST_HEAD_INIT(name) { &(name), &(name) }
46 
47 #define LIST_HEAD(name) \
48 	struct list_head name = LIST_HEAD_INIT(name)
49 
50 static inline void INIT_LIST_HEAD(struct list_head *list)
51 {
52 	list->next = list;
53 	list->prev = list;
54 }
55 
56 /*
57  * Insert a new entry between two known consecutive entries.
58  *
59  * This is only for internal list manipulation where we know
60  * the prev/next entries already!
61  */
62 #ifndef CONFIG_DEBUG_LIST
63 static inline void __list_add(struct list_head *new,
64 			      struct list_head *prev, struct list_head *next)
65 {
66 	next->prev = new;
67 	new->next = next;
68 	new->prev = prev;
69 	prev->next = new;
70 }
71 #else
72 extern void __list_add(struct list_head *new,
73 		       struct list_head *prev, struct list_head *next);
74 #endif
75 
76 /**
77  * list_add - add a new entry
78  * @new: new entry to be added
79  * @head: list head to add it after
80  *
81  * Insert a new entry after the specified head.
82  * This is good for implementing stacks.
83  */
84 static inline void list_add(struct list_head *new, struct list_head *head)
85 {
86 	__list_add(new, head, head->next);
87 }
88 
89 /**
90  * list_add_tail - add a new entry
91  * @new: new entry to be added
92  * @head: list head to add it before
93  *
94  * Insert a new entry before the specified head.
95  * This is useful for implementing queues.
96  */
97 static inline void list_add_tail(struct list_head *new, struct list_head *head)
98 {
99 	__list_add(new, head->prev, head);
100 }
101 
102 /*
103  * Delete a list entry by making the prev/next entries
104  * point to each other.
105  *
106  * This is only for internal list manipulation where we know
107  * the prev/next entries already!
108  */
109 static inline void __list_del(struct list_head *prev, struct list_head *next)
110 {
111 	next->prev = prev;
112 	prev->next = next;
113 }
114 
115 /**
116  * list_del - deletes entry from list.
117  * @entry: the element to delete from the list.
118  * Note: list_empty() on entry does not return true after this, the entry is
119  * in an undefined state.
120  */
121 #ifndef CONFIG_DEBUG_LIST
122 static inline void list_del(struct list_head *entry)
123 {
124 	__list_del(entry->prev, entry->next);
125 	entry->next = (void *)0xDEADBEEF;
126 	entry->prev = (void *)0xBEEFDEAD;
127 }
128 #else
129 extern void list_del(struct list_head *entry);
130 #endif
131 
132 /**
133  * list_replace - replace old entry by new one
134  * @old : the element to be replaced
135  * @new : the new element to insert
136  *
137  * If @old was empty, it will be overwritten.
138  */
139 static inline void list_replace(struct list_head *old, struct list_head *new)
140 {
141 	new->next = old->next;
142 	new->next->prev = new;
143 	new->prev = old->prev;
144 	new->prev->next = new;
145 }
146 
147 static inline void list_replace_init(struct list_head *old,
148 				     struct list_head *new)
149 {
150 	list_replace(old, new);
151 	INIT_LIST_HEAD(old);
152 }
153 
154 /**
155  * list_del_init - deletes entry from list and reinitialize it.
156  * @entry: the element to delete from the list.
157  */
158 static inline void list_del_init(struct list_head *entry)
159 {
160 	__list_del(entry->prev, entry->next);
161 	INIT_LIST_HEAD(entry);
162 }
163 
164 /**
165  * list_move - delete from one list and add as another's head
166  * @list: the entry to move
167  * @head: the head that will precede our entry
168  */
169 static inline void list_move(struct list_head *list, struct list_head *head)
170 {
171 	__list_del(list->prev, list->next);
172 	list_add(list, head);
173 }
174 
175 /**
176  * list_move_tail - delete from one list and add as another's tail
177  * @list: the entry to move
178  * @head: the head that will follow our entry
179  */
180 static inline void list_move_tail(struct list_head *list,
181 				  struct list_head *head)
182 {
183 	__list_del(list->prev, list->next);
184 	list_add_tail(list, head);
185 }
186 
187 /**
188  * list_is_last - tests whether @list is the last entry in list @head
189  * @list: the entry to test
190  * @head: the head of the list
191  */
192 static inline int list_is_last(const struct list_head *list,
193 			       const struct list_head *head)
194 {
195 	return list->next == head;
196 }
197 
198 /**
199  * list_empty - tests whether a list is empty
200  * @head: the list to test.
201  */
202 static inline int list_empty(const struct list_head *head)
203 {
204 	return head->next == head;
205 }
206 
207 /**
208  * list_empty_careful - tests whether a list is empty and not being modified
209  * @head: the list to test
210  *
211  * Description:
212  * tests whether a list is empty _and_ checks that no other CPU might be
213  * in the process of modifying either member (next or prev)
214  *
215  * NOTE: using list_empty_careful() without synchronization
216  * can only be safe if the only activity that can happen
217  * to the list entry is list_del_init(). Eg. it cannot be used
218  * if another CPU could re-list_add() it.
219  */
220 static inline int list_empty_careful(const struct list_head *head)
221 {
222 	struct list_head *next = head->next;
223 	return (next == head) && (next == head->prev);
224 }
225 
226 /**
227  * list_is_singular - tests whether a list has just one entry.
228  * @head: the list to test.
229  */
230 static inline int list_is_singular(const struct list_head *head)
231 {
232 	return !list_empty(head) && (head->next == head->prev);
233 }
234 
235 static inline void __list_cut_position(struct list_head *list,
236 				       struct list_head *head,
237 				       struct list_head *entry)
238 {
239 	struct list_head *new_first = entry->next;
240 	list->next = head->next;
241 	list->next->prev = list;
242 	list->prev = entry;
243 	entry->next = list;
244 	head->next = new_first;
245 	new_first->prev = head;
246 }
247 
248 /**
249  * list_cut_position - cut a list into two
250  * @list: a new list to add all removed entries
251  * @head: a list with entries
252  * @entry: an entry within head, could be the head itself
253  *	and if so we won't cut the list
254  *
255  * This helper moves the initial part of @head, up to and
256  * including @entry, from @head to @list. You should
257  * pass on @entry an element you know is on @head. @list
258  * should be an empty list or a list you do not care about
259  * losing its data.
260  *
261  */
262 static inline void list_cut_position(struct list_head *list,
263 				     struct list_head *head,
264 				     struct list_head *entry)
265 {
266 	if (list_empty(head))
267 		return;
268 	if (list_is_singular(head) && (head->next != entry && head != entry))
269 		return;
270 	if (entry == head)
271 		INIT_LIST_HEAD(list);
272 	else
273 		__list_cut_position(list, head, entry);
274 }
275 
276 static inline void __list_splice(const struct list_head *list,
277 				 struct list_head *prev, struct list_head *next)
278 {
279 	struct list_head *first = list->next;
280 	struct list_head *last = list->prev;
281 
282 	first->prev = prev;
283 	prev->next = first;
284 
285 	last->next = next;
286 	next->prev = last;
287 }
288 
289 /**
290  * list_splice - join two lists, this is designed for stacks
291  * @list: the new list to add.
292  * @head: the place to add it in the first list.
293  */
294 static inline void list_splice(const struct list_head *list,
295 			       struct list_head *head)
296 {
297 	if (!list_empty(list))
298 		__list_splice(list, head, head->next);
299 }
300 
301 /**
302  * list_splice_tail - join two lists, each list being a queue
303  * @list: the new list to add.
304  * @head: the place to add it in the first list.
305  */
306 static inline void list_splice_tail(struct list_head *list,
307 				    struct list_head *head)
308 {
309 	if (!list_empty(list))
310 		__list_splice(list, head->prev, head);
311 }
312 
313 /**
314  * list_splice_init - join two lists and reinitialise the emptied list.
315  * @list: the new list to add.
316  * @head: the place to add it in the first list.
317  *
318  * The list at @list is reinitialised
319  */
320 static inline void list_splice_init(struct list_head *list,
321 				    struct list_head *head)
322 {
323 	if (!list_empty(list)) {
324 		__list_splice(list, head, head->next);
325 		INIT_LIST_HEAD(list);
326 	}
327 }
328 
329 /**
330  * list_splice_tail_init - join two lists and reinitialise the emptied list
331  * @list: the new list to add.
332  * @head: the place to add it in the first list.
333  *
334  * Each of the lists is a queue.
335  * The list at @list is reinitialised
336  */
337 static inline void list_splice_tail_init(struct list_head *list,
338 					 struct list_head *head)
339 {
340 	if (!list_empty(list)) {
341 		__list_splice(list, head->prev, head);
342 		INIT_LIST_HEAD(list);
343 	}
344 }
345 
346 /**
347  * list_entry - get the struct for this entry
348  * @ptr:	the &struct list_head pointer.
349  * @type:	the type of the struct this is embedded in.
350  * @member:	the name of the list_head within the struct.
351  */
352 #define list_entry(ptr, type, member) \
353 	container_of(ptr, type, member)
354 
355 /**
356  * list_first_entry - get the first element from a list
357  * @ptr:	the list head to take the element from.
358  * @type:	the type of the struct this is embedded in.
359  * @member:	the name of the list_head within the struct.
360  *
361  * Note, that list is expected to be not empty.
362  */
363 #define list_first_entry(ptr, type, member) \
364 	list_entry((ptr)->next, type, member)
365 
366 /**
367  * list_for_each	-	iterate over a list
368  * @pos:	the &struct list_head to use as a loop cursor.
369  * @head:	the head for your list.
370  */
371 #define list_for_each(pos, head) \
372 	for (pos = (head)->next; prefetch(pos->next), pos != (head); \
373 		pos = pos->next)
374 
375 /**
376  * list_for_each_prev	-	iterate over a list backwards
377  * @pos:	the &struct list_head to use as a loop cursor.
378  * @head:	the head for your list.
379  */
380 #define list_for_each_prev(pos, head) \
381 	for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \
382 		pos = pos->prev)
383 
384 /**
385  * list_for_each_safe - iterate over a list safe against removal of list entry
386  * @pos:	the &struct list_head to use as a loop cursor.
387  * @n:		another &struct list_head to use as temporary storage
388  * @head:	the head for your list.
389  */
390 #define list_for_each_safe(pos, n, head) \
391 	for (pos = (head)->next, n = pos->next; pos != (head); \
392 		pos = n, n = pos->next)
393 
394 /**
395  * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
396  * @pos:	the &struct list_head to use as a loop cursor.
397  * @n:		another &struct list_head to use as temporary storage
398  * @head:	the head for your list.
399  */
400 #define list_for_each_prev_safe(pos, n, head) \
401 	for (pos = (head)->prev, n = pos->prev; \
402 	     prefetch(pos->prev), pos != (head); \
403 	     pos = n, n = pos->prev)
404 
405 /**
406  * list_for_each_entry	-	iterate over list of given type
407  * @pos:	the type * to use as a loop cursor.
408  * @head:	the head for your list.
409  * @member:	the name of the list_head within the struct.
410  */
411 #define list_for_each_entry(pos, head, member)				\
412 	for (pos = list_entry((head)->next, typeof(*pos), member);	\
413 	     &pos->member != (head); 	\
414 	     pos = list_entry(pos->member.next, typeof(*pos), member))
415 
416 /**
417  * list_for_each_entry_reverse - iterate backwards over list of given type.
418  * @pos:	the type * to use as a loop cursor.
419  * @head:	the head for your list.
420  * @member:	the name of the list_head within the struct.
421  */
422 #define list_for_each_entry_reverse(pos, head, member)			\
423 	for (pos = list_entry((head)->prev, typeof(*pos), member);	\
424 	     prefetch(pos->member.prev), &pos->member != (head); 	\
425 	     pos = list_entry(pos->member.prev, typeof(*pos), member))
426 
427 /**
428  * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
429  * @pos:	the type * to use as a start point
430  * @head:	the head of the list
431  * @member:	the name of the list_head within the struct.
432  *
433  * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
434  */
435 #define list_prepare_entry(pos, head, member) \
436 	((pos) ? : list_entry(head, typeof(*pos), member))
437 
438 /**
439  * list_for_each_entry_continue - continue iteration over list of given type
440  * @pos:	the type * to use as a loop cursor.
441  * @head:	the head for your list.
442  * @member:	the name of the list_head within the struct.
443  *
444  * Continue to iterate over list of given type, continuing after
445  * the current position.
446  */
447 #define list_for_each_entry_continue(pos, head, member) 		\
448 	for (pos = list_entry(pos->member.next, typeof(*pos), member);	\
449 	     prefetch(pos->member.next), &pos->member != (head);	\
450 	     pos = list_entry(pos->member.next, typeof(*pos), member))
451 
452 /**
453  * list_for_each_entry_continue_reverse - iterate backwards from the given point
454  * @pos:	the type * to use as a loop cursor.
455  * @head:	the head for your list.
456  * @member:	the name of the list_head within the struct.
457  *
458  * Start to iterate over list of given type backwards, continuing after
459  * the current position.
460  */
461 #define list_for_each_entry_continue_reverse(pos, head, member)		\
462 	for (pos = list_entry(pos->member.prev, typeof(*pos), member);	\
463 	     prefetch(pos->member.prev), &pos->member != (head);	\
464 	     pos = list_entry(pos->member.prev, typeof(*pos), member))
465 
466 /**
467  * list_for_each_entry_from - iterate over list of given type from the current point
468  * @pos:	the type * to use as a loop cursor.
469  * @head:	the head for your list.
470  * @member:	the name of the list_head within the struct.
471  *
472  * Iterate over list of given type, continuing from current position.
473  */
474 #define list_for_each_entry_from(pos, head, member) 			\
475 	for (; prefetch(pos->member.next), &pos->member != (head);	\
476 	     pos = list_entry(pos->member.next, typeof(*pos), member))
477 
478 /**
479  * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
480  * @pos:	the type * to use as a loop cursor.
481  * @n:		another type * to use as temporary storage
482  * @head:	the head for your list.
483  * @member:	the name of the list_head within the struct.
484  */
485 #define list_for_each_entry_safe(pos, n, head, member)			\
486 	for (pos = list_entry((head)->next, typeof(*pos), member),	\
487 		n = list_entry(pos->member.next, typeof(*pos), member);	\
488 	     &pos->member != (head); 					\
489 	     pos = n, n = list_entry(n->member.next, typeof(*n), member))
490 
491 /**
492  * list_for_each_entry_safe_continue
493  * @pos:	the type * to use as a loop cursor.
494  * @n:		another type * to use as temporary storage
495  * @head:	the head for your list.
496  * @member:	the name of the list_head within the struct.
497  *
498  * Iterate over list of given type, continuing after current point,
499  * safe against removal of list entry.
500  */
501 #define list_for_each_entry_safe_continue(pos, n, head, member) 		\
502 	for (pos = list_entry(pos->member.next, typeof(*pos), member), 		\
503 		n = list_entry(pos->member.next, typeof(*pos), member);		\
504 	     &pos->member != (head);						\
505 	     pos = n, n = list_entry(n->member.next, typeof(*n), member))
506 
507 /**
508  * list_for_each_entry_safe_from
509  * @pos:	the type * to use as a loop cursor.
510  * @n:		another type * to use as temporary storage
511  * @head:	the head for your list.
512  * @member:	the name of the list_head within the struct.
513  *
514  * Iterate over list of given type from current point, safe against
515  * removal of list entry.
516  */
517 #define list_for_each_entry_safe_from(pos, n, head, member) 			\
518 	for (n = list_entry(pos->member.next, typeof(*pos), member);		\
519 	     &pos->member != (head);						\
520 	     pos = n, n = list_entry(n->member.next, typeof(*n), member))
521 
522 /**
523  * list_for_each_entry_safe_reverse
524  * @pos:	the type * to use as a loop cursor.
525  * @n:		another type * to use as temporary storage
526  * @head:	the head for your list.
527  * @member:	the name of the list_head within the struct.
528  *
529  * Iterate backwards over list of given type, safe against removal
530  * of list entry.
531  */
532 #define list_for_each_entry_safe_reverse(pos, n, head, member)		\
533 	for (pos = list_entry((head)->prev, typeof(*pos), member),	\
534 		n = list_entry(pos->member.prev, typeof(*pos), member);	\
535 	     &pos->member != (head); 					\
536 	     pos = n, n = list_entry(n->member.prev, typeof(*n), member))
537 
538 struct offset {
539 	struct list_head list;
540 	unsigned offset;
541 };
542 
543 struct table {
544 	struct list_head offsets;
545 	unsigned offset_max;
546 	unsigned nentry;
547 	unsigned *table;
548 	char *gpu_prefix;
549 };
550 
551 static struct offset *offset_new(unsigned o)
552 {
553 	struct offset *offset;
554 
555 	offset = (struct offset *)malloc(sizeof(struct offset));
556 	if (offset) {
557 		INIT_LIST_HEAD(&offset->list);
558 		offset->offset = o;
559 	}
560 	return offset;
561 }
562 
563 static void table_offset_add(struct table *t, struct offset *offset)
564 {
565 	list_add_tail(&offset->list, &t->offsets);
566 }
567 
568 static void table_init(struct table *t)
569 {
570 	INIT_LIST_HEAD(&t->offsets);
571 	t->offset_max = 0;
572 	t->nentry = 0;
573 	t->table = NULL;
574 }
575 
576 static void table_print(struct table *t)
577 {
578 	unsigned nlloop, i, j, n, c, id;
579 
580 	nlloop = (t->nentry + 3) / 4;
581 	c = t->nentry;
582 	printf("static const unsigned %s_reg_safe_bm[%d] = {\n", t->gpu_prefix,
583 	       t->nentry);
584 	for (i = 0, id = 0; i < nlloop; i++) {
585 		n = 4;
586 		if (n > c)
587 			n = c;
588 		c -= n;
589 		for (j = 0; j < n; j++) {
590 			if (j == 0)
591 				printf("\t");
592 			else
593 				printf(" ");
594 			printf("0x%08X,", t->table[id++]);
595 		}
596 		printf("\n");
597 	}
598 	printf("};\n");
599 }
600 
601 static int table_build(struct table *t)
602 {
603 	struct offset *offset;
604 	unsigned i, m;
605 
606 	t->nentry = ((t->offset_max >> 2) + 31) / 32;
607 	t->table = (unsigned *)malloc(sizeof(unsigned) * t->nentry);
608 	if (t->table == NULL)
609 		return -1;
610 	memset(t->table, 0xff, sizeof(unsigned) * t->nentry);
611 	list_for_each_entry(offset, &t->offsets, list) {
612 		i = (offset->offset >> 2) / 32;
613 		m = (offset->offset >> 2) & 31;
614 		m = 1 << m;
615 		t->table[i] ^= m;
616 	}
617 	return 0;
618 }
619 
620 static char gpu_name[10];
621 static int parser_auth(struct table *t, const char *filename)
622 {
623 	FILE *file;
624 	regex_t mask_rex;
625 	regmatch_t match[4];
626 	char buf[1024];
627 	size_t end;
628 	int len;
629 	int done = 0;
630 	int r;
631 	unsigned o;
632 	struct offset *offset;
633 	char last_reg_s[10];
634 	int last_reg;
635 
636 	if (regcomp
637 	    (&mask_rex, "(0x[0-9a-fA-F]*) *([_a-zA-Z0-9]*)", REG_EXTENDED)) {
638 		fprintf(stderr, "Failed to compile regular expression\n");
639 		return -1;
640 	}
641 	file = fopen(filename, "r");
642 	if (file == NULL) {
643 		fprintf(stderr, "Failed to open: %s\n", filename);
644 		return -1;
645 	}
646 	fseek(file, 0, SEEK_END);
647 	end = ftell(file);
648 	fseek(file, 0, SEEK_SET);
649 
650 	/* get header */
651 	if (fgets(buf, 1024, file) == NULL) {
652 		fclose(file);
653 		return -1;
654 	}
655 
656 	/* first line will contain the last register
657 	 * and gpu name */
658 	sscanf(buf, "%9s %9s", gpu_name, last_reg_s);
659 	t->gpu_prefix = gpu_name;
660 	last_reg = strtol(last_reg_s, NULL, 16);
661 
662 	do {
663 		if (fgets(buf, 1024, file) == NULL) {
664 			fclose(file);
665 			return -1;
666 		}
667 		len = strlen(buf);
668 		if (ftell(file) == end)
669 			done = 1;
670 		if (len) {
671 			r = regexec(&mask_rex, buf, 4, match, 0);
672 			if (r == REG_NOMATCH) {
673 			} else if (r) {
674 				fprintf(stderr,
675 					"Error matching regular expression %d in %s\n",
676 					r, filename);
677 				fclose(file);
678 				return -1;
679 			} else {
680 				buf[match[0].rm_eo] = 0;
681 				buf[match[1].rm_eo] = 0;
682 				buf[match[2].rm_eo] = 0;
683 				o = strtol(&buf[match[1].rm_so], NULL, 16);
684 				offset = offset_new(o);
685 				table_offset_add(t, offset);
686 				if (o > t->offset_max)
687 					t->offset_max = o;
688 			}
689 		}
690 	} while (!done);
691 	fclose(file);
692 	if (t->offset_max < last_reg)
693 		t->offset_max = last_reg;
694 	return table_build(t);
695 }
696 
697 int main(int argc, char *argv[])
698 {
699 	struct table t;
700 
701 	if (argc != 2) {
702 		fprintf(stderr, "Usage: %s <authfile>\n", argv[0]);
703 		exit(1);
704 	}
705 	table_init(&t);
706 	if (parser_auth(&t, argv[1])) {
707 		fprintf(stderr, "Failed to parse file %s\n", argv[1]);
708 		return -1;
709 	}
710 	table_print(&t);
711 	return 0;
712 }
713