1 // SPDX-License-Identifier: GPL-2.0
2 /* utility to create the register check tables
3  * this includes inlined list.h safe for userspace.
4  *
5  * Copyright 2009 Jerome Glisse
6  * Copyright 2009 Red Hat Inc.
7  *
8  * Authors:
9  * 	Jerome Glisse
10  * 	Dave Airlie
11  */
12 
13 #include <sys/types.h>
14 #include <stdlib.h>
15 #include <string.h>
16 #include <stdio.h>
17 #include <regex.h>
18 #include <libgen.h>
19 
20 #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
21 /**
22  * container_of - cast a member of a structure out to the containing structure
23  * @ptr:    the pointer to the member.
24  * @type:   the type of the container struct this is embedded in.
25  * @member: the name of the member within the struct.
26  *
27  */
28 #define container_of(ptr, type, member) ({          \
29 	const typeof(((type *)0)->member)*__mptr = (ptr);    \
30 		     (type *)((char *)__mptr - offsetof(type, member)); })
31 
32 /*
33  * Simple doubly linked list implementation.
34  *
35  * Some of the internal functions ("__xxx") are useful when
36  * manipulating whole lists rather than single entries, as
37  * sometimes we already know the next/prev entries and we can
38  * generate better code by using them directly rather than
39  * using the generic single-entry routines.
40  */
41 
42 struct list_head {
43 	struct list_head *next, *prev;
44 };
45 
46 #define LIST_HEAD_INIT(name) { &(name), &(name) }
47 
48 #define LIST_HEAD(name) \
49 	struct list_head name = LIST_HEAD_INIT(name)
50 
51 static inline void INIT_LIST_HEAD(struct list_head *list)
52 {
53 	list->next = list;
54 	list->prev = list;
55 }
56 
57 /*
58  * Insert a new entry between two known consecutive entries.
59  *
60  * This is only for internal list manipulation where we know
61  * the prev/next entries already!
62  */
63 #ifndef CONFIG_DEBUG_LIST
64 static inline void __list_add(struct list_head *new,
65 			      struct list_head *prev, struct list_head *next)
66 {
67 	next->prev = new;
68 	new->next = next;
69 	new->prev = prev;
70 	prev->next = new;
71 }
72 #else
73 extern void __list_add(struct list_head *new,
74 		       struct list_head *prev, struct list_head *next);
75 #endif
76 
77 /**
78  * list_add - add a new entry
79  * @new: new entry to be added
80  * @head: list head to add it after
81  *
82  * Insert a new entry after the specified head.
83  * This is good for implementing stacks.
84  */
85 static inline void list_add(struct list_head *new, struct list_head *head)
86 {
87 	__list_add(new, head, head->next);
88 }
89 
90 /**
91  * list_add_tail - add a new entry
92  * @new: new entry to be added
93  * @head: list head to add it before
94  *
95  * Insert a new entry before the specified head.
96  * This is useful for implementing queues.
97  */
98 static inline void list_add_tail(struct list_head *new, struct list_head *head)
99 {
100 	__list_add(new, head->prev, head);
101 }
102 
103 /*
104  * Delete a list entry by making the prev/next entries
105  * point to each other.
106  *
107  * This is only for internal list manipulation where we know
108  * the prev/next entries already!
109  */
110 static inline void __list_del(struct list_head *prev, struct list_head *next)
111 {
112 	next->prev = prev;
113 	prev->next = next;
114 }
115 
116 /**
117  * list_del - deletes entry from list.
118  * @entry: the element to delete from the list.
119  * Note: list_empty() on entry does not return true after this, the entry is
120  * in an undefined state.
121  */
122 #ifndef CONFIG_DEBUG_LIST
123 static inline void list_del(struct list_head *entry)
124 {
125 	__list_del(entry->prev, entry->next);
126 	entry->next = (void *)0xDEADBEEF;
127 	entry->prev = (void *)0xBEEFDEAD;
128 }
129 #else
130 extern void list_del(struct list_head *entry);
131 #endif
132 
133 /**
134  * list_replace - replace old entry by new one
135  * @old : the element to be replaced
136  * @new : the new element to insert
137  *
138  * If @old was empty, it will be overwritten.
139  */
140 static inline void list_replace(struct list_head *old, struct list_head *new)
141 {
142 	new->next = old->next;
143 	new->next->prev = new;
144 	new->prev = old->prev;
145 	new->prev->next = new;
146 }
147 
148 static inline void list_replace_init(struct list_head *old,
149 				     struct list_head *new)
150 {
151 	list_replace(old, new);
152 	INIT_LIST_HEAD(old);
153 }
154 
155 /**
156  * list_del_init - deletes entry from list and reinitialize it.
157  * @entry: the element to delete from the list.
158  */
159 static inline void list_del_init(struct list_head *entry)
160 {
161 	__list_del(entry->prev, entry->next);
162 	INIT_LIST_HEAD(entry);
163 }
164 
165 /**
166  * list_move - delete from one list and add as another's head
167  * @list: the entry to move
168  * @head: the head that will precede our entry
169  */
170 static inline void list_move(struct list_head *list, struct list_head *head)
171 {
172 	__list_del(list->prev, list->next);
173 	list_add(list, head);
174 }
175 
176 /**
177  * list_move_tail - delete from one list and add as another's tail
178  * @list: the entry to move
179  * @head: the head that will follow our entry
180  */
181 static inline void list_move_tail(struct list_head *list,
182 				  struct list_head *head)
183 {
184 	__list_del(list->prev, list->next);
185 	list_add_tail(list, head);
186 }
187 
188 /**
189  * list_is_last - tests whether @list is the last entry in list @head
190  * @list: the entry to test
191  * @head: the head of the list
192  */
193 static inline int list_is_last(const struct list_head *list,
194 			       const struct list_head *head)
195 {
196 	return list->next == head;
197 }
198 
199 /**
200  * list_empty - tests whether a list is empty
201  * @head: the list to test.
202  */
203 static inline int list_empty(const struct list_head *head)
204 {
205 	return head->next == head;
206 }
207 
208 /**
209  * list_empty_careful - tests whether a list is empty and not being modified
210  * @head: the list to test
211  *
212  * Description:
213  * tests whether a list is empty _and_ checks that no other CPU might be
214  * in the process of modifying either member (next or prev)
215  *
216  * NOTE: using list_empty_careful() without synchronization
217  * can only be safe if the only activity that can happen
218  * to the list entry is list_del_init(). Eg. it cannot be used
219  * if another CPU could re-list_add() it.
220  */
221 static inline int list_empty_careful(const struct list_head *head)
222 {
223 	struct list_head *next = head->next;
224 	return (next == head) && (next == head->prev);
225 }
226 
227 /**
228  * list_is_singular - tests whether a list has just one entry.
229  * @head: the list to test.
230  */
231 static inline int list_is_singular(const struct list_head *head)
232 {
233 	return !list_empty(head) && (head->next == head->prev);
234 }
235 
236 static inline void __list_cut_position(struct list_head *list,
237 				       struct list_head *head,
238 				       struct list_head *entry)
239 {
240 	struct list_head *new_first = entry->next;
241 	list->next = head->next;
242 	list->next->prev = list;
243 	list->prev = entry;
244 	entry->next = list;
245 	head->next = new_first;
246 	new_first->prev = head;
247 }
248 
249 /**
250  * list_cut_position - cut a list into two
251  * @list: a new list to add all removed entries
252  * @head: a list with entries
253  * @entry: an entry within head, could be the head itself
254  *	and if so we won't cut the list
255  *
256  * This helper moves the initial part of @head, up to and
257  * including @entry, from @head to @list. You should
258  * pass on @entry an element you know is on @head. @list
259  * should be an empty list or a list you do not care about
260  * losing its data.
261  *
262  */
263 static inline void list_cut_position(struct list_head *list,
264 				     struct list_head *head,
265 				     struct list_head *entry)
266 {
267 	if (list_empty(head))
268 		return;
269 	if (list_is_singular(head) && (head->next != entry && head != entry))
270 		return;
271 	if (entry == head)
272 		INIT_LIST_HEAD(list);
273 	else
274 		__list_cut_position(list, head, entry);
275 }
276 
277 static inline void __list_splice(const struct list_head *list,
278 				 struct list_head *prev, struct list_head *next)
279 {
280 	struct list_head *first = list->next;
281 	struct list_head *last = list->prev;
282 
283 	first->prev = prev;
284 	prev->next = first;
285 
286 	last->next = next;
287 	next->prev = last;
288 }
289 
290 /**
291  * list_splice - join two lists, this is designed for stacks
292  * @list: the new list to add.
293  * @head: the place to add it in the first list.
294  */
295 static inline void list_splice(const struct list_head *list,
296 			       struct list_head *head)
297 {
298 	if (!list_empty(list))
299 		__list_splice(list, head, head->next);
300 }
301 
302 /**
303  * list_splice_tail - join two lists, each list being a queue
304  * @list: the new list to add.
305  * @head: the place to add it in the first list.
306  */
307 static inline void list_splice_tail(struct list_head *list,
308 				    struct list_head *head)
309 {
310 	if (!list_empty(list))
311 		__list_splice(list, head->prev, head);
312 }
313 
314 /**
315  * list_splice_init - join two lists and reinitialise the emptied list.
316  * @list: the new list to add.
317  * @head: the place to add it in the first list.
318  *
319  * The list at @list is reinitialised
320  */
321 static inline void list_splice_init(struct list_head *list,
322 				    struct list_head *head)
323 {
324 	if (!list_empty(list)) {
325 		__list_splice(list, head, head->next);
326 		INIT_LIST_HEAD(list);
327 	}
328 }
329 
330 /**
331  * list_splice_tail_init - join two lists and reinitialise the emptied list
332  * @list: the new list to add.
333  * @head: the place to add it in the first list.
334  *
335  * Each of the lists is a queue.
336  * The list at @list is reinitialised
337  */
338 static inline void list_splice_tail_init(struct list_head *list,
339 					 struct list_head *head)
340 {
341 	if (!list_empty(list)) {
342 		__list_splice(list, head->prev, head);
343 		INIT_LIST_HEAD(list);
344 	}
345 }
346 
347 /**
348  * list_entry - get the struct for this entry
349  * @ptr:	the &struct list_head pointer.
350  * @type:	the type of the struct this is embedded in.
351  * @member:	the name of the list_head within the struct.
352  */
353 #define list_entry(ptr, type, member) \
354 	container_of(ptr, type, member)
355 
356 /**
357  * list_first_entry - get the first element from a list
358  * @ptr:	the list head to take the element from.
359  * @type:	the type of the struct this is embedded in.
360  * @member:	the name of the list_head within the struct.
361  *
362  * Note, that list is expected to be not empty.
363  */
364 #define list_first_entry(ptr, type, member) \
365 	list_entry((ptr)->next, type, member)
366 
367 /**
368  * list_for_each	-	iterate over a list
369  * @pos:	the &struct list_head to use as a loop cursor.
370  * @head:	the head for your list.
371  */
372 #define list_for_each(pos, head) \
373 	for (pos = (head)->next; prefetch(pos->next), pos != (head); \
374 		pos = pos->next)
375 
376 /**
377  * list_for_each_prev	-	iterate over a list backwards
378  * @pos:	the &struct list_head to use as a loop cursor.
379  * @head:	the head for your list.
380  */
381 #define list_for_each_prev(pos, head) \
382 	for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \
383 		pos = pos->prev)
384 
385 /**
386  * list_for_each_safe - iterate over a list safe against removal of list entry
387  * @pos:	the &struct list_head to use as a loop cursor.
388  * @n:		another &struct list_head to use as temporary storage
389  * @head:	the head for your list.
390  */
391 #define list_for_each_safe(pos, n, head) \
392 	for (pos = (head)->next, n = pos->next; pos != (head); \
393 		pos = n, n = pos->next)
394 
395 /**
396  * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
397  * @pos:	the &struct list_head to use as a loop cursor.
398  * @n:		another &struct list_head to use as temporary storage
399  * @head:	the head for your list.
400  */
401 #define list_for_each_prev_safe(pos, n, head) \
402 	for (pos = (head)->prev, n = pos->prev; \
403 	     prefetch(pos->prev), pos != (head); \
404 	     pos = n, n = pos->prev)
405 
406 /**
407  * list_for_each_entry	-	iterate over list of given type
408  * @pos:	the type * to use as a loop cursor.
409  * @head:	the head for your list.
410  * @member:	the name of the list_head within the struct.
411  */
412 #define list_for_each_entry(pos, head, member)				\
413 	for (pos = list_entry((head)->next, typeof(*pos), member);	\
414 	     &pos->member != (head); 	\
415 	     pos = list_entry(pos->member.next, typeof(*pos), member))
416 
417 /**
418  * list_for_each_entry_reverse - iterate backwards over list of given type.
419  * @pos:	the type * to use as a loop cursor.
420  * @head:	the head for your list.
421  * @member:	the name of the list_head within the struct.
422  */
423 #define list_for_each_entry_reverse(pos, head, member)			\
424 	for (pos = list_entry((head)->prev, typeof(*pos), member);	\
425 	     prefetch(pos->member.prev), &pos->member != (head); 	\
426 	     pos = list_entry(pos->member.prev, typeof(*pos), member))
427 
428 /**
429  * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
430  * @pos:	the type * to use as a start point
431  * @head:	the head of the list
432  * @member:	the name of the list_head within the struct.
433  *
434  * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
435  */
436 #define list_prepare_entry(pos, head, member) \
437 	((pos) ? : list_entry(head, typeof(*pos), member))
438 
439 /**
440  * list_for_each_entry_continue - continue iteration over list of given type
441  * @pos:	the type * to use as a loop cursor.
442  * @head:	the head for your list.
443  * @member:	the name of the list_head within the struct.
444  *
445  * Continue to iterate over list of given type, continuing after
446  * the current position.
447  */
448 #define list_for_each_entry_continue(pos, head, member) 		\
449 	for (pos = list_entry(pos->member.next, typeof(*pos), member);	\
450 	     prefetch(pos->member.next), &pos->member != (head);	\
451 	     pos = list_entry(pos->member.next, typeof(*pos), member))
452 
453 /**
454  * list_for_each_entry_continue_reverse - iterate backwards from the given point
455  * @pos:	the type * to use as a loop cursor.
456  * @head:	the head for your list.
457  * @member:	the name of the list_head within the struct.
458  *
459  * Start to iterate over list of given type backwards, continuing after
460  * the current position.
461  */
462 #define list_for_each_entry_continue_reverse(pos, head, member)		\
463 	for (pos = list_entry(pos->member.prev, typeof(*pos), member);	\
464 	     prefetch(pos->member.prev), &pos->member != (head);	\
465 	     pos = list_entry(pos->member.prev, typeof(*pos), member))
466 
467 /**
468  * list_for_each_entry_from - iterate over list of given type from the current point
469  * @pos:	the type * to use as a loop cursor.
470  * @head:	the head for your list.
471  * @member:	the name of the list_head within the struct.
472  *
473  * Iterate over list of given type, continuing from current position.
474  */
475 #define list_for_each_entry_from(pos, head, member) 			\
476 	for (; prefetch(pos->member.next), &pos->member != (head);	\
477 	     pos = list_entry(pos->member.next, typeof(*pos), member))
478 
479 /**
480  * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
481  * @pos:	the type * to use as a loop cursor.
482  * @n:		another type * to use as temporary storage
483  * @head:	the head for your list.
484  * @member:	the name of the list_head within the struct.
485  */
486 #define list_for_each_entry_safe(pos, n, head, member)			\
487 	for (pos = list_entry((head)->next, typeof(*pos), member),	\
488 		n = list_entry(pos->member.next, typeof(*pos), member);	\
489 	     &pos->member != (head); 					\
490 	     pos = n, n = list_entry(n->member.next, typeof(*n), member))
491 
492 /**
493  * list_for_each_entry_safe_continue
494  * @pos:	the type * to use as a loop cursor.
495  * @n:		another type * to use as temporary storage
496  * @head:	the head for your list.
497  * @member:	the name of the list_head within the struct.
498  *
499  * Iterate over list of given type, continuing after current point,
500  * safe against removal of list entry.
501  */
502 #define list_for_each_entry_safe_continue(pos, n, head, member) 		\
503 	for (pos = list_entry(pos->member.next, typeof(*pos), member), 		\
504 		n = list_entry(pos->member.next, typeof(*pos), member);		\
505 	     &pos->member != (head);						\
506 	     pos = n, n = list_entry(n->member.next, typeof(*n), member))
507 
508 /**
509  * list_for_each_entry_safe_from
510  * @pos:	the type * to use as a loop cursor.
511  * @n:		another type * to use as temporary storage
512  * @head:	the head for your list.
513  * @member:	the name of the list_head within the struct.
514  *
515  * Iterate over list of given type from current point, safe against
516  * removal of list entry.
517  */
518 #define list_for_each_entry_safe_from(pos, n, head, member) 			\
519 	for (n = list_entry(pos->member.next, typeof(*pos), member);		\
520 	     &pos->member != (head);						\
521 	     pos = n, n = list_entry(n->member.next, typeof(*n), member))
522 
523 /**
524  * list_for_each_entry_safe_reverse
525  * @pos:	the type * to use as a loop cursor.
526  * @n:		another type * to use as temporary storage
527  * @head:	the head for your list.
528  * @member:	the name of the list_head within the struct.
529  *
530  * Iterate backwards over list of given type, safe against removal
531  * of list entry.
532  */
533 #define list_for_each_entry_safe_reverse(pos, n, head, member)		\
534 	for (pos = list_entry((head)->prev, typeof(*pos), member),	\
535 		n = list_entry(pos->member.prev, typeof(*pos), member);	\
536 	     &pos->member != (head); 					\
537 	     pos = n, n = list_entry(n->member.prev, typeof(*n), member))
538 
539 struct offset {
540 	struct list_head list;
541 	unsigned offset;
542 };
543 
544 struct table {
545 	struct list_head offsets;
546 	unsigned offset_max;
547 	unsigned nentry;
548 	unsigned *table;
549 	char *gpu_prefix;
550 };
551 
552 static struct offset *offset_new(unsigned o)
553 {
554 	struct offset *offset;
555 
556 	offset = (struct offset *)malloc(sizeof(struct offset));
557 	if (offset) {
558 		INIT_LIST_HEAD(&offset->list);
559 		offset->offset = o;
560 	}
561 	return offset;
562 }
563 
564 static void table_offset_add(struct table *t, struct offset *offset)
565 {
566 	list_add_tail(&offset->list, &t->offsets);
567 }
568 
569 static void table_init(struct table *t)
570 {
571 	INIT_LIST_HEAD(&t->offsets);
572 	t->offset_max = 0;
573 	t->nentry = 0;
574 	t->table = NULL;
575 }
576 
577 static void table_print(struct table *t)
578 {
579 	unsigned nlloop, i, j, n, c, id;
580 
581 	nlloop = (t->nentry + 3) / 4;
582 	c = t->nentry;
583 	printf("static const unsigned %s_reg_safe_bm[%d] = {\n", t->gpu_prefix,
584 	       t->nentry);
585 	for (i = 0, id = 0; i < nlloop; i++) {
586 		n = 4;
587 		if (n > c)
588 			n = c;
589 		c -= n;
590 		for (j = 0; j < n; j++) {
591 			if (j == 0)
592 				printf("\t");
593 			else
594 				printf(" ");
595 			printf("0x%08X,", t->table[id++]);
596 		}
597 		printf("\n");
598 	}
599 	printf("};\n");
600 }
601 
602 static int table_build(struct table *t)
603 {
604 	struct offset *offset;
605 	unsigned i, m;
606 
607 	t->nentry = ((t->offset_max >> 2) + 31) / 32;
608 	t->table = (unsigned *)malloc(sizeof(unsigned) * t->nentry);
609 	if (t->table == NULL)
610 		return -1;
611 	memset(t->table, 0xff, sizeof(unsigned) * t->nentry);
612 	list_for_each_entry(offset, &t->offsets, list) {
613 		i = (offset->offset >> 2) / 32;
614 		m = (offset->offset >> 2) & 31;
615 		m = 1 << m;
616 		t->table[i] ^= m;
617 	}
618 	return 0;
619 }
620 
621 static char gpu_name[10];
622 static int parser_auth(struct table *t, const char *filename)
623 {
624 	FILE *file;
625 	regex_t mask_rex;
626 	regmatch_t match[4];
627 	char buf[1024];
628 	size_t end;
629 	int len;
630 	int done = 0;
631 	int r;
632 	unsigned o;
633 	struct offset *offset;
634 	char last_reg_s[10];
635 	int last_reg;
636 
637 	if (regcomp
638 	    (&mask_rex, "(0x[0-9a-fA-F]*) *([_a-zA-Z0-9]*)", REG_EXTENDED)) {
639 		fprintf(stderr, "Failed to compile regular expression\n");
640 		return -1;
641 	}
642 	file = fopen(filename, "r");
643 	if (file == NULL) {
644 		fprintf(stderr, "Failed to open: %s\n", filename);
645 		return -1;
646 	}
647 	fseek(file, 0, SEEK_END);
648 	end = ftell(file);
649 	fseek(file, 0, SEEK_SET);
650 
651 	/* get header */
652 	if (fgets(buf, 1024, file) == NULL) {
653 		fclose(file);
654 		return -1;
655 	}
656 
657 	/* first line will contain the last register
658 	 * and gpu name */
659 	sscanf(buf, "%9s %9s", gpu_name, last_reg_s);
660 	t->gpu_prefix = gpu_name;
661 	last_reg = strtol(last_reg_s, NULL, 16);
662 
663 	do {
664 		if (fgets(buf, 1024, file) == NULL) {
665 			fclose(file);
666 			return -1;
667 		}
668 		len = strlen(buf);
669 		if (ftell(file) == end)
670 			done = 1;
671 		if (len) {
672 			r = regexec(&mask_rex, buf, 4, match, 0);
673 			if (r == REG_NOMATCH) {
674 			} else if (r) {
675 				fprintf(stderr,
676 					"Error matching regular expression %d in %s\n",
677 					r, filename);
678 				fclose(file);
679 				return -1;
680 			} else {
681 				buf[match[0].rm_eo] = 0;
682 				buf[match[1].rm_eo] = 0;
683 				buf[match[2].rm_eo] = 0;
684 				o = strtol(&buf[match[1].rm_so], NULL, 16);
685 				offset = offset_new(o);
686 				table_offset_add(t, offset);
687 				if (o > t->offset_max)
688 					t->offset_max = o;
689 			}
690 		}
691 	} while (!done);
692 	fclose(file);
693 	if (t->offset_max < last_reg)
694 		t->offset_max = last_reg;
695 	return table_build(t);
696 }
697 
698 int main(int argc, char *argv[])
699 {
700 	struct table t;
701 
702 	if (argc != 2) {
703 		fprintf(stderr, "Usage: %s <authfile>\n", argv[0]);
704 		exit(1);
705 	}
706 	table_init(&t);
707 	if (parser_auth(&t, argv[1])) {
708 		fprintf(stderr, "Failed to parse file %s\n", argv[1]);
709 		return -1;
710 	}
711 	table_print(&t);
712 	return 0;
713 }
714