xref: /openbmc/linux/drivers/gpu/drm/radeon/kv_dpm.c (revision 62e7ca52)
1 /*
2  * Copyright 2013 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include "drmP.h"
25 #include "radeon.h"
26 #include "cikd.h"
27 #include "r600_dpm.h"
28 #include "kv_dpm.h"
29 #include "radeon_asic.h"
30 #include <linux/seq_file.h>
31 
32 #define KV_MAX_DEEPSLEEP_DIVIDER_ID     5
33 #define KV_MINIMUM_ENGINE_CLOCK         800
34 #define SMC_RAM_END                     0x40000
35 
36 static void kv_init_graphics_levels(struct radeon_device *rdev);
37 static int kv_calculate_ds_divider(struct radeon_device *rdev);
38 static int kv_calculate_nbps_level_settings(struct radeon_device *rdev);
39 static int kv_calculate_dpm_settings(struct radeon_device *rdev);
40 static void kv_enable_new_levels(struct radeon_device *rdev);
41 static void kv_program_nbps_index_settings(struct radeon_device *rdev,
42 					   struct radeon_ps *new_rps);
43 static int kv_set_enabled_level(struct radeon_device *rdev, u32 level);
44 static int kv_set_enabled_levels(struct radeon_device *rdev);
45 static int kv_force_dpm_highest(struct radeon_device *rdev);
46 static int kv_force_dpm_lowest(struct radeon_device *rdev);
47 static void kv_apply_state_adjust_rules(struct radeon_device *rdev,
48 					struct radeon_ps *new_rps,
49 					struct radeon_ps *old_rps);
50 static int kv_set_thermal_temperature_range(struct radeon_device *rdev,
51 					    int min_temp, int max_temp);
52 static int kv_init_fps_limits(struct radeon_device *rdev);
53 
54 void kv_dpm_powergate_uvd(struct radeon_device *rdev, bool gate);
55 static void kv_dpm_powergate_vce(struct radeon_device *rdev, bool gate);
56 static void kv_dpm_powergate_samu(struct radeon_device *rdev, bool gate);
57 static void kv_dpm_powergate_acp(struct radeon_device *rdev, bool gate);
58 
59 extern void cik_enter_rlc_safe_mode(struct radeon_device *rdev);
60 extern void cik_exit_rlc_safe_mode(struct radeon_device *rdev);
61 extern void cik_update_cg(struct radeon_device *rdev,
62 			  u32 block, bool enable);
63 
64 static const struct kv_lcac_config_values sx_local_cac_cfg_kv[] =
65 {
66 	{  0,       4,        1    },
67 	{  1,       4,        1    },
68 	{  2,       5,        1    },
69 	{  3,       4,        2    },
70 	{  4,       1,        1    },
71 	{  5,       5,        2    },
72 	{  6,       6,        1    },
73 	{  7,       9,        2    },
74 	{ 0xffffffff }
75 };
76 
77 static const struct kv_lcac_config_values mc0_local_cac_cfg_kv[] =
78 {
79 	{  0,       4,        1    },
80 	{ 0xffffffff }
81 };
82 
83 static const struct kv_lcac_config_values mc1_local_cac_cfg_kv[] =
84 {
85 	{  0,       4,        1    },
86 	{ 0xffffffff }
87 };
88 
89 static const struct kv_lcac_config_values mc2_local_cac_cfg_kv[] =
90 {
91 	{  0,       4,        1    },
92 	{ 0xffffffff }
93 };
94 
95 static const struct kv_lcac_config_values mc3_local_cac_cfg_kv[] =
96 {
97 	{  0,       4,        1    },
98 	{ 0xffffffff }
99 };
100 
101 static const struct kv_lcac_config_values cpl_local_cac_cfg_kv[] =
102 {
103 	{  0,       4,        1    },
104 	{  1,       4,        1    },
105 	{  2,       5,        1    },
106 	{  3,       4,        1    },
107 	{  4,       1,        1    },
108 	{  5,       5,        1    },
109 	{  6,       6,        1    },
110 	{  7,       9,        1    },
111 	{  8,       4,        1    },
112 	{  9,       2,        1    },
113 	{  10,      3,        1    },
114 	{  11,      6,        1    },
115 	{  12,      8,        2    },
116 	{  13,      1,        1    },
117 	{  14,      2,        1    },
118 	{  15,      3,        1    },
119 	{  16,      1,        1    },
120 	{  17,      4,        1    },
121 	{  18,      3,        1    },
122 	{  19,      1,        1    },
123 	{  20,      8,        1    },
124 	{  21,      5,        1    },
125 	{  22,      1,        1    },
126 	{  23,      1,        1    },
127 	{  24,      4,        1    },
128 	{  27,      6,        1    },
129 	{  28,      1,        1    },
130 	{ 0xffffffff }
131 };
132 
133 static const struct kv_lcac_config_reg sx0_cac_config_reg[] =
134 {
135 	{ 0xc0400d00, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
136 };
137 
138 static const struct kv_lcac_config_reg mc0_cac_config_reg[] =
139 {
140 	{ 0xc0400d30, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
141 };
142 
143 static const struct kv_lcac_config_reg mc1_cac_config_reg[] =
144 {
145 	{ 0xc0400d3c, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
146 };
147 
148 static const struct kv_lcac_config_reg mc2_cac_config_reg[] =
149 {
150 	{ 0xc0400d48, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
151 };
152 
153 static const struct kv_lcac_config_reg mc3_cac_config_reg[] =
154 {
155 	{ 0xc0400d54, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
156 };
157 
158 static const struct kv_lcac_config_reg cpl_cac_config_reg[] =
159 {
160 	{ 0xc0400d80, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
161 };
162 
163 static const struct kv_pt_config_reg didt_config_kv[] =
164 {
165 	{ 0x10, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
166 	{ 0x10, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
167 	{ 0x10, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
168 	{ 0x10, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
169 	{ 0x11, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
170 	{ 0x11, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
171 	{ 0x11, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
172 	{ 0x11, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
173 	{ 0x12, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
174 	{ 0x12, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
175 	{ 0x12, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
176 	{ 0x12, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
177 	{ 0x2, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
178 	{ 0x2, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
179 	{ 0x2, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
180 	{ 0x1, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
181 	{ 0x1, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
182 	{ 0x0, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
183 	{ 0x30, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
184 	{ 0x30, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
185 	{ 0x30, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
186 	{ 0x30, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
187 	{ 0x31, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
188 	{ 0x31, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
189 	{ 0x31, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
190 	{ 0x31, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
191 	{ 0x32, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
192 	{ 0x32, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
193 	{ 0x32, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
194 	{ 0x32, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
195 	{ 0x22, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
196 	{ 0x22, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
197 	{ 0x22, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
198 	{ 0x21, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
199 	{ 0x21, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
200 	{ 0x20, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
201 	{ 0x50, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
202 	{ 0x50, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
203 	{ 0x50, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
204 	{ 0x50, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
205 	{ 0x51, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
206 	{ 0x51, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
207 	{ 0x51, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
208 	{ 0x51, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
209 	{ 0x52, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
210 	{ 0x52, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
211 	{ 0x52, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
212 	{ 0x52, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
213 	{ 0x42, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
214 	{ 0x42, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
215 	{ 0x42, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
216 	{ 0x41, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
217 	{ 0x41, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
218 	{ 0x40, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
219 	{ 0x70, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
220 	{ 0x70, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
221 	{ 0x70, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
222 	{ 0x70, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
223 	{ 0x71, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
224 	{ 0x71, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
225 	{ 0x71, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
226 	{ 0x71, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
227 	{ 0x72, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
228 	{ 0x72, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
229 	{ 0x72, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
230 	{ 0x72, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
231 	{ 0x62, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
232 	{ 0x62, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
233 	{ 0x62, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
234 	{ 0x61, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
235 	{ 0x61, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
236 	{ 0x60, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
237 	{ 0xFFFFFFFF }
238 };
239 
240 static struct kv_ps *kv_get_ps(struct radeon_ps *rps)
241 {
242 	struct kv_ps *ps = rps->ps_priv;
243 
244 	return ps;
245 }
246 
247 static struct kv_power_info *kv_get_pi(struct radeon_device *rdev)
248 {
249 	struct kv_power_info *pi = rdev->pm.dpm.priv;
250 
251 	return pi;
252 }
253 
254 #if 0
255 static void kv_program_local_cac_table(struct radeon_device *rdev,
256 				       const struct kv_lcac_config_values *local_cac_table,
257 				       const struct kv_lcac_config_reg *local_cac_reg)
258 {
259 	u32 i, count, data;
260 	const struct kv_lcac_config_values *values = local_cac_table;
261 
262 	while (values->block_id != 0xffffffff) {
263 		count = values->signal_id;
264 		for (i = 0; i < count; i++) {
265 			data = ((values->block_id << local_cac_reg->block_shift) &
266 				local_cac_reg->block_mask);
267 			data |= ((i << local_cac_reg->signal_shift) &
268 				 local_cac_reg->signal_mask);
269 			data |= ((values->t << local_cac_reg->t_shift) &
270 				 local_cac_reg->t_mask);
271 			data |= ((1 << local_cac_reg->enable_shift) &
272 				 local_cac_reg->enable_mask);
273 			WREG32_SMC(local_cac_reg->cntl, data);
274 		}
275 		values++;
276 	}
277 }
278 #endif
279 
280 static int kv_program_pt_config_registers(struct radeon_device *rdev,
281 					  const struct kv_pt_config_reg *cac_config_regs)
282 {
283 	const struct kv_pt_config_reg *config_regs = cac_config_regs;
284 	u32 data;
285 	u32 cache = 0;
286 
287 	if (config_regs == NULL)
288 		return -EINVAL;
289 
290 	while (config_regs->offset != 0xFFFFFFFF) {
291 		if (config_regs->type == KV_CONFIGREG_CACHE) {
292 			cache |= ((config_regs->value << config_regs->shift) & config_regs->mask);
293 		} else {
294 			switch (config_regs->type) {
295 			case KV_CONFIGREG_SMC_IND:
296 				data = RREG32_SMC(config_regs->offset);
297 				break;
298 			case KV_CONFIGREG_DIDT_IND:
299 				data = RREG32_DIDT(config_regs->offset);
300 				break;
301 			default:
302 				data = RREG32(config_regs->offset << 2);
303 				break;
304 			}
305 
306 			data &= ~config_regs->mask;
307 			data |= ((config_regs->value << config_regs->shift) & config_regs->mask);
308 			data |= cache;
309 			cache = 0;
310 
311 			switch (config_regs->type) {
312 			case KV_CONFIGREG_SMC_IND:
313 				WREG32_SMC(config_regs->offset, data);
314 				break;
315 			case KV_CONFIGREG_DIDT_IND:
316 				WREG32_DIDT(config_regs->offset, data);
317 				break;
318 			default:
319 				WREG32(config_regs->offset << 2, data);
320 				break;
321 			}
322 		}
323 		config_regs++;
324 	}
325 
326 	return 0;
327 }
328 
329 static void kv_do_enable_didt(struct radeon_device *rdev, bool enable)
330 {
331 	struct kv_power_info *pi = kv_get_pi(rdev);
332 	u32 data;
333 
334 	if (pi->caps_sq_ramping) {
335 		data = RREG32_DIDT(DIDT_SQ_CTRL0);
336 		if (enable)
337 			data |= DIDT_CTRL_EN;
338 		else
339 			data &= ~DIDT_CTRL_EN;
340 		WREG32_DIDT(DIDT_SQ_CTRL0, data);
341 	}
342 
343 	if (pi->caps_db_ramping) {
344 		data = RREG32_DIDT(DIDT_DB_CTRL0);
345 		if (enable)
346 			data |= DIDT_CTRL_EN;
347 		else
348 			data &= ~DIDT_CTRL_EN;
349 		WREG32_DIDT(DIDT_DB_CTRL0, data);
350 	}
351 
352 	if (pi->caps_td_ramping) {
353 		data = RREG32_DIDT(DIDT_TD_CTRL0);
354 		if (enable)
355 			data |= DIDT_CTRL_EN;
356 		else
357 			data &= ~DIDT_CTRL_EN;
358 		WREG32_DIDT(DIDT_TD_CTRL0, data);
359 	}
360 
361 	if (pi->caps_tcp_ramping) {
362 		data = RREG32_DIDT(DIDT_TCP_CTRL0);
363 		if (enable)
364 			data |= DIDT_CTRL_EN;
365 		else
366 			data &= ~DIDT_CTRL_EN;
367 		WREG32_DIDT(DIDT_TCP_CTRL0, data);
368 	}
369 }
370 
371 static int kv_enable_didt(struct radeon_device *rdev, bool enable)
372 {
373 	struct kv_power_info *pi = kv_get_pi(rdev);
374 	int ret;
375 
376 	if (pi->caps_sq_ramping ||
377 	    pi->caps_db_ramping ||
378 	    pi->caps_td_ramping ||
379 	    pi->caps_tcp_ramping) {
380 		cik_enter_rlc_safe_mode(rdev);
381 
382 		if (enable) {
383 			ret = kv_program_pt_config_registers(rdev, didt_config_kv);
384 			if (ret) {
385 				cik_exit_rlc_safe_mode(rdev);
386 				return ret;
387 			}
388 		}
389 
390 		kv_do_enable_didt(rdev, enable);
391 
392 		cik_exit_rlc_safe_mode(rdev);
393 	}
394 
395 	return 0;
396 }
397 
398 #if 0
399 static void kv_initialize_hardware_cac_manager(struct radeon_device *rdev)
400 {
401 	struct kv_power_info *pi = kv_get_pi(rdev);
402 
403 	if (pi->caps_cac) {
404 		WREG32_SMC(LCAC_SX0_OVR_SEL, 0);
405 		WREG32_SMC(LCAC_SX0_OVR_VAL, 0);
406 		kv_program_local_cac_table(rdev, sx_local_cac_cfg_kv, sx0_cac_config_reg);
407 
408 		WREG32_SMC(LCAC_MC0_OVR_SEL, 0);
409 		WREG32_SMC(LCAC_MC0_OVR_VAL, 0);
410 		kv_program_local_cac_table(rdev, mc0_local_cac_cfg_kv, mc0_cac_config_reg);
411 
412 		WREG32_SMC(LCAC_MC1_OVR_SEL, 0);
413 		WREG32_SMC(LCAC_MC1_OVR_VAL, 0);
414 		kv_program_local_cac_table(rdev, mc1_local_cac_cfg_kv, mc1_cac_config_reg);
415 
416 		WREG32_SMC(LCAC_MC2_OVR_SEL, 0);
417 		WREG32_SMC(LCAC_MC2_OVR_VAL, 0);
418 		kv_program_local_cac_table(rdev, mc2_local_cac_cfg_kv, mc2_cac_config_reg);
419 
420 		WREG32_SMC(LCAC_MC3_OVR_SEL, 0);
421 		WREG32_SMC(LCAC_MC3_OVR_VAL, 0);
422 		kv_program_local_cac_table(rdev, mc3_local_cac_cfg_kv, mc3_cac_config_reg);
423 
424 		WREG32_SMC(LCAC_CPL_OVR_SEL, 0);
425 		WREG32_SMC(LCAC_CPL_OVR_VAL, 0);
426 		kv_program_local_cac_table(rdev, cpl_local_cac_cfg_kv, cpl_cac_config_reg);
427 	}
428 }
429 #endif
430 
431 static int kv_enable_smc_cac(struct radeon_device *rdev, bool enable)
432 {
433 	struct kv_power_info *pi = kv_get_pi(rdev);
434 	int ret = 0;
435 
436 	if (pi->caps_cac) {
437 		if (enable) {
438 			ret = kv_notify_message_to_smu(rdev, PPSMC_MSG_EnableCac);
439 			if (ret)
440 				pi->cac_enabled = false;
441 			else
442 				pi->cac_enabled = true;
443 		} else if (pi->cac_enabled) {
444 			kv_notify_message_to_smu(rdev, PPSMC_MSG_DisableCac);
445 			pi->cac_enabled = false;
446 		}
447 	}
448 
449 	return ret;
450 }
451 
452 static int kv_process_firmware_header(struct radeon_device *rdev)
453 {
454 	struct kv_power_info *pi = kv_get_pi(rdev);
455 	u32 tmp;
456 	int ret;
457 
458 	ret = kv_read_smc_sram_dword(rdev, SMU7_FIRMWARE_HEADER_LOCATION +
459 				     offsetof(SMU7_Firmware_Header, DpmTable),
460 				     &tmp, pi->sram_end);
461 
462 	if (ret == 0)
463 		pi->dpm_table_start = tmp;
464 
465 	ret = kv_read_smc_sram_dword(rdev, SMU7_FIRMWARE_HEADER_LOCATION +
466 				     offsetof(SMU7_Firmware_Header, SoftRegisters),
467 				     &tmp, pi->sram_end);
468 
469 	if (ret == 0)
470 		pi->soft_regs_start = tmp;
471 
472 	return ret;
473 }
474 
475 static int kv_enable_dpm_voltage_scaling(struct radeon_device *rdev)
476 {
477 	struct kv_power_info *pi = kv_get_pi(rdev);
478 	int ret;
479 
480 	pi->graphics_voltage_change_enable = 1;
481 
482 	ret = kv_copy_bytes_to_smc(rdev,
483 				   pi->dpm_table_start +
484 				   offsetof(SMU7_Fusion_DpmTable, GraphicsVoltageChangeEnable),
485 				   &pi->graphics_voltage_change_enable,
486 				   sizeof(u8), pi->sram_end);
487 
488 	return ret;
489 }
490 
491 static int kv_set_dpm_interval(struct radeon_device *rdev)
492 {
493 	struct kv_power_info *pi = kv_get_pi(rdev);
494 	int ret;
495 
496 	pi->graphics_interval = 1;
497 
498 	ret = kv_copy_bytes_to_smc(rdev,
499 				   pi->dpm_table_start +
500 				   offsetof(SMU7_Fusion_DpmTable, GraphicsInterval),
501 				   &pi->graphics_interval,
502 				   sizeof(u8), pi->sram_end);
503 
504 	return ret;
505 }
506 
507 static int kv_set_dpm_boot_state(struct radeon_device *rdev)
508 {
509 	struct kv_power_info *pi = kv_get_pi(rdev);
510 	int ret;
511 
512 	ret = kv_copy_bytes_to_smc(rdev,
513 				   pi->dpm_table_start +
514 				   offsetof(SMU7_Fusion_DpmTable, GraphicsBootLevel),
515 				   &pi->graphics_boot_level,
516 				   sizeof(u8), pi->sram_end);
517 
518 	return ret;
519 }
520 
521 static void kv_program_vc(struct radeon_device *rdev)
522 {
523 	WREG32_SMC(CG_FTV_0, 0x3FFFC100);
524 }
525 
526 static void kv_clear_vc(struct radeon_device *rdev)
527 {
528 	WREG32_SMC(CG_FTV_0, 0);
529 }
530 
531 static int kv_set_divider_value(struct radeon_device *rdev,
532 				u32 index, u32 sclk)
533 {
534 	struct kv_power_info *pi = kv_get_pi(rdev);
535 	struct atom_clock_dividers dividers;
536 	int ret;
537 
538 	ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
539 					     sclk, false, &dividers);
540 	if (ret)
541 		return ret;
542 
543 	pi->graphics_level[index].SclkDid = (u8)dividers.post_div;
544 	pi->graphics_level[index].SclkFrequency = cpu_to_be32(sclk);
545 
546 	return 0;
547 }
548 
549 static u32 kv_convert_vid2_to_vid7(struct radeon_device *rdev,
550 				   struct sumo_vid_mapping_table *vid_mapping_table,
551 				   u32 vid_2bit)
552 {
553 	struct radeon_clock_voltage_dependency_table *vddc_sclk_table =
554 		&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
555 	u32 i;
556 
557 	if (vddc_sclk_table && vddc_sclk_table->count) {
558 		if (vid_2bit < vddc_sclk_table->count)
559 			return vddc_sclk_table->entries[vid_2bit].v;
560 		else
561 			return vddc_sclk_table->entries[vddc_sclk_table->count - 1].v;
562 	} else {
563 		for (i = 0; i < vid_mapping_table->num_entries; i++) {
564 			if (vid_mapping_table->entries[i].vid_2bit == vid_2bit)
565 				return vid_mapping_table->entries[i].vid_7bit;
566 		}
567 		return vid_mapping_table->entries[vid_mapping_table->num_entries - 1].vid_7bit;
568 	}
569 }
570 
571 static u32 kv_convert_vid7_to_vid2(struct radeon_device *rdev,
572 				   struct sumo_vid_mapping_table *vid_mapping_table,
573 				   u32 vid_7bit)
574 {
575 	struct radeon_clock_voltage_dependency_table *vddc_sclk_table =
576 		&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
577 	u32 i;
578 
579 	if (vddc_sclk_table && vddc_sclk_table->count) {
580 		for (i = 0; i < vddc_sclk_table->count; i++) {
581 			if (vddc_sclk_table->entries[i].v == vid_7bit)
582 				return i;
583 		}
584 		return vddc_sclk_table->count - 1;
585 	} else {
586 		for (i = 0; i < vid_mapping_table->num_entries; i++) {
587 			if (vid_mapping_table->entries[i].vid_7bit == vid_7bit)
588 				return vid_mapping_table->entries[i].vid_2bit;
589 		}
590 
591 		return vid_mapping_table->entries[vid_mapping_table->num_entries - 1].vid_2bit;
592 	}
593 }
594 
595 static u16 kv_convert_8bit_index_to_voltage(struct radeon_device *rdev,
596 					    u16 voltage)
597 {
598 	return 6200 - (voltage * 25);
599 }
600 
601 static u16 kv_convert_2bit_index_to_voltage(struct radeon_device *rdev,
602 					    u32 vid_2bit)
603 {
604 	struct kv_power_info *pi = kv_get_pi(rdev);
605 	u32 vid_8bit = kv_convert_vid2_to_vid7(rdev,
606 					       &pi->sys_info.vid_mapping_table,
607 					       vid_2bit);
608 
609 	return kv_convert_8bit_index_to_voltage(rdev, (u16)vid_8bit);
610 }
611 
612 
613 static int kv_set_vid(struct radeon_device *rdev, u32 index, u32 vid)
614 {
615 	struct kv_power_info *pi = kv_get_pi(rdev);
616 
617 	pi->graphics_level[index].VoltageDownH = (u8)pi->voltage_drop_t;
618 	pi->graphics_level[index].MinVddNb =
619 		cpu_to_be32(kv_convert_2bit_index_to_voltage(rdev, vid));
620 
621 	return 0;
622 }
623 
624 static int kv_set_at(struct radeon_device *rdev, u32 index, u32 at)
625 {
626 	struct kv_power_info *pi = kv_get_pi(rdev);
627 
628 	pi->graphics_level[index].AT = cpu_to_be16((u16)at);
629 
630 	return 0;
631 }
632 
633 static void kv_dpm_power_level_enable(struct radeon_device *rdev,
634 				      u32 index, bool enable)
635 {
636 	struct kv_power_info *pi = kv_get_pi(rdev);
637 
638 	pi->graphics_level[index].EnabledForActivity = enable ? 1 : 0;
639 }
640 
641 static void kv_start_dpm(struct radeon_device *rdev)
642 {
643 	u32 tmp = RREG32_SMC(GENERAL_PWRMGT);
644 
645 	tmp |= GLOBAL_PWRMGT_EN;
646 	WREG32_SMC(GENERAL_PWRMGT, tmp);
647 
648 	kv_smc_dpm_enable(rdev, true);
649 }
650 
651 static void kv_stop_dpm(struct radeon_device *rdev)
652 {
653 	kv_smc_dpm_enable(rdev, false);
654 }
655 
656 static void kv_start_am(struct radeon_device *rdev)
657 {
658 	u32 sclk_pwrmgt_cntl = RREG32_SMC(SCLK_PWRMGT_CNTL);
659 
660 	sclk_pwrmgt_cntl &= ~(RESET_SCLK_CNT | RESET_BUSY_CNT);
661 	sclk_pwrmgt_cntl |= DYNAMIC_PM_EN;
662 
663 	WREG32_SMC(SCLK_PWRMGT_CNTL, sclk_pwrmgt_cntl);
664 }
665 
666 static void kv_reset_am(struct radeon_device *rdev)
667 {
668 	u32 sclk_pwrmgt_cntl = RREG32_SMC(SCLK_PWRMGT_CNTL);
669 
670 	sclk_pwrmgt_cntl |= (RESET_SCLK_CNT | RESET_BUSY_CNT);
671 
672 	WREG32_SMC(SCLK_PWRMGT_CNTL, sclk_pwrmgt_cntl);
673 }
674 
675 static int kv_freeze_sclk_dpm(struct radeon_device *rdev, bool freeze)
676 {
677 	return kv_notify_message_to_smu(rdev, freeze ?
678 					PPSMC_MSG_SCLKDPM_FreezeLevel : PPSMC_MSG_SCLKDPM_UnfreezeLevel);
679 }
680 
681 static int kv_force_lowest_valid(struct radeon_device *rdev)
682 {
683 	return kv_force_dpm_lowest(rdev);
684 }
685 
686 static int kv_unforce_levels(struct radeon_device *rdev)
687 {
688 	if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS)
689 		return kv_notify_message_to_smu(rdev, PPSMC_MSG_NoForcedLevel);
690 	else
691 		return kv_set_enabled_levels(rdev);
692 }
693 
694 static int kv_update_sclk_t(struct radeon_device *rdev)
695 {
696 	struct kv_power_info *pi = kv_get_pi(rdev);
697 	u32 low_sclk_interrupt_t = 0;
698 	int ret = 0;
699 
700 	if (pi->caps_sclk_throttle_low_notification) {
701 		low_sclk_interrupt_t = cpu_to_be32(pi->low_sclk_interrupt_t);
702 
703 		ret = kv_copy_bytes_to_smc(rdev,
704 					   pi->dpm_table_start +
705 					   offsetof(SMU7_Fusion_DpmTable, LowSclkInterruptT),
706 					   (u8 *)&low_sclk_interrupt_t,
707 					   sizeof(u32), pi->sram_end);
708 	}
709 	return ret;
710 }
711 
712 static int kv_program_bootup_state(struct radeon_device *rdev)
713 {
714 	struct kv_power_info *pi = kv_get_pi(rdev);
715 	u32 i;
716 	struct radeon_clock_voltage_dependency_table *table =
717 		&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
718 
719 	if (table && table->count) {
720 		for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
721 			if (table->entries[i].clk == pi->boot_pl.sclk)
722 				break;
723 		}
724 
725 		pi->graphics_boot_level = (u8)i;
726 		kv_dpm_power_level_enable(rdev, i, true);
727 	} else {
728 		struct sumo_sclk_voltage_mapping_table *table =
729 			&pi->sys_info.sclk_voltage_mapping_table;
730 
731 		if (table->num_max_dpm_entries == 0)
732 			return -EINVAL;
733 
734 		for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
735 			if (table->entries[i].sclk_frequency == pi->boot_pl.sclk)
736 				break;
737 		}
738 
739 		pi->graphics_boot_level = (u8)i;
740 		kv_dpm_power_level_enable(rdev, i, true);
741 	}
742 	return 0;
743 }
744 
745 static int kv_enable_auto_thermal_throttling(struct radeon_device *rdev)
746 {
747 	struct kv_power_info *pi = kv_get_pi(rdev);
748 	int ret;
749 
750 	pi->graphics_therm_throttle_enable = 1;
751 
752 	ret = kv_copy_bytes_to_smc(rdev,
753 				   pi->dpm_table_start +
754 				   offsetof(SMU7_Fusion_DpmTable, GraphicsThermThrottleEnable),
755 				   &pi->graphics_therm_throttle_enable,
756 				   sizeof(u8), pi->sram_end);
757 
758 	return ret;
759 }
760 
761 static int kv_upload_dpm_settings(struct radeon_device *rdev)
762 {
763 	struct kv_power_info *pi = kv_get_pi(rdev);
764 	int ret;
765 
766 	ret = kv_copy_bytes_to_smc(rdev,
767 				   pi->dpm_table_start +
768 				   offsetof(SMU7_Fusion_DpmTable, GraphicsLevel),
769 				   (u8 *)&pi->graphics_level,
770 				   sizeof(SMU7_Fusion_GraphicsLevel) * SMU7_MAX_LEVELS_GRAPHICS,
771 				   pi->sram_end);
772 
773 	if (ret)
774 		return ret;
775 
776 	ret = kv_copy_bytes_to_smc(rdev,
777 				   pi->dpm_table_start +
778 				   offsetof(SMU7_Fusion_DpmTable, GraphicsDpmLevelCount),
779 				   &pi->graphics_dpm_level_count,
780 				   sizeof(u8), pi->sram_end);
781 
782 	return ret;
783 }
784 
785 static u32 kv_get_clock_difference(u32 a, u32 b)
786 {
787 	return (a >= b) ? a - b : b - a;
788 }
789 
790 static u32 kv_get_clk_bypass(struct radeon_device *rdev, u32 clk)
791 {
792 	struct kv_power_info *pi = kv_get_pi(rdev);
793 	u32 value;
794 
795 	if (pi->caps_enable_dfs_bypass) {
796 		if (kv_get_clock_difference(clk, 40000) < 200)
797 			value = 3;
798 		else if (kv_get_clock_difference(clk, 30000) < 200)
799 			value = 2;
800 		else if (kv_get_clock_difference(clk, 20000) < 200)
801 			value = 7;
802 		else if (kv_get_clock_difference(clk, 15000) < 200)
803 			value = 6;
804 		else if (kv_get_clock_difference(clk, 10000) < 200)
805 			value = 8;
806 		else
807 			value = 0;
808 	} else {
809 		value = 0;
810 	}
811 
812 	return value;
813 }
814 
815 static int kv_populate_uvd_table(struct radeon_device *rdev)
816 {
817 	struct kv_power_info *pi = kv_get_pi(rdev);
818 	struct radeon_uvd_clock_voltage_dependency_table *table =
819 		&rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
820 	struct atom_clock_dividers dividers;
821 	int ret;
822 	u32 i;
823 
824 	if (table == NULL || table->count == 0)
825 		return 0;
826 
827 	pi->uvd_level_count = 0;
828 	for (i = 0; i < table->count; i++) {
829 		if (pi->high_voltage_t &&
830 		    (pi->high_voltage_t < table->entries[i].v))
831 			break;
832 
833 		pi->uvd_level[i].VclkFrequency = cpu_to_be32(table->entries[i].vclk);
834 		pi->uvd_level[i].DclkFrequency = cpu_to_be32(table->entries[i].dclk);
835 		pi->uvd_level[i].MinVddNb = cpu_to_be16(table->entries[i].v);
836 
837 		pi->uvd_level[i].VClkBypassCntl =
838 			(u8)kv_get_clk_bypass(rdev, table->entries[i].vclk);
839 		pi->uvd_level[i].DClkBypassCntl =
840 			(u8)kv_get_clk_bypass(rdev, table->entries[i].dclk);
841 
842 		ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
843 						     table->entries[i].vclk, false, &dividers);
844 		if (ret)
845 			return ret;
846 		pi->uvd_level[i].VclkDivider = (u8)dividers.post_div;
847 
848 		ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
849 						     table->entries[i].dclk, false, &dividers);
850 		if (ret)
851 			return ret;
852 		pi->uvd_level[i].DclkDivider = (u8)dividers.post_div;
853 
854 		pi->uvd_level_count++;
855 	}
856 
857 	ret = kv_copy_bytes_to_smc(rdev,
858 				   pi->dpm_table_start +
859 				   offsetof(SMU7_Fusion_DpmTable, UvdLevelCount),
860 				   (u8 *)&pi->uvd_level_count,
861 				   sizeof(u8), pi->sram_end);
862 	if (ret)
863 		return ret;
864 
865 	pi->uvd_interval = 1;
866 
867 	ret = kv_copy_bytes_to_smc(rdev,
868 				   pi->dpm_table_start +
869 				   offsetof(SMU7_Fusion_DpmTable, UVDInterval),
870 				   &pi->uvd_interval,
871 				   sizeof(u8), pi->sram_end);
872 	if (ret)
873 		return ret;
874 
875 	ret = kv_copy_bytes_to_smc(rdev,
876 				   pi->dpm_table_start +
877 				   offsetof(SMU7_Fusion_DpmTable, UvdLevel),
878 				   (u8 *)&pi->uvd_level,
879 				   sizeof(SMU7_Fusion_UvdLevel) * SMU7_MAX_LEVELS_UVD,
880 				   pi->sram_end);
881 
882 	return ret;
883 
884 }
885 
886 static int kv_populate_vce_table(struct radeon_device *rdev)
887 {
888 	struct kv_power_info *pi = kv_get_pi(rdev);
889 	int ret;
890 	u32 i;
891 	struct radeon_vce_clock_voltage_dependency_table *table =
892 		&rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
893 	struct atom_clock_dividers dividers;
894 
895 	if (table == NULL || table->count == 0)
896 		return 0;
897 
898 	pi->vce_level_count = 0;
899 	for (i = 0; i < table->count; i++) {
900 		if (pi->high_voltage_t &&
901 		    pi->high_voltage_t < table->entries[i].v)
902 			break;
903 
904 		pi->vce_level[i].Frequency = cpu_to_be32(table->entries[i].evclk);
905 		pi->vce_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
906 
907 		pi->vce_level[i].ClkBypassCntl =
908 			(u8)kv_get_clk_bypass(rdev, table->entries[i].evclk);
909 
910 		ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
911 						     table->entries[i].evclk, false, &dividers);
912 		if (ret)
913 			return ret;
914 		pi->vce_level[i].Divider = (u8)dividers.post_div;
915 
916 		pi->vce_level_count++;
917 	}
918 
919 	ret = kv_copy_bytes_to_smc(rdev,
920 				   pi->dpm_table_start +
921 				   offsetof(SMU7_Fusion_DpmTable, VceLevelCount),
922 				   (u8 *)&pi->vce_level_count,
923 				   sizeof(u8),
924 				   pi->sram_end);
925 	if (ret)
926 		return ret;
927 
928 	pi->vce_interval = 1;
929 
930 	ret = kv_copy_bytes_to_smc(rdev,
931 				   pi->dpm_table_start +
932 				   offsetof(SMU7_Fusion_DpmTable, VCEInterval),
933 				   (u8 *)&pi->vce_interval,
934 				   sizeof(u8),
935 				   pi->sram_end);
936 	if (ret)
937 		return ret;
938 
939 	ret = kv_copy_bytes_to_smc(rdev,
940 				   pi->dpm_table_start +
941 				   offsetof(SMU7_Fusion_DpmTable, VceLevel),
942 				   (u8 *)&pi->vce_level,
943 				   sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_VCE,
944 				   pi->sram_end);
945 
946 	return ret;
947 }
948 
949 static int kv_populate_samu_table(struct radeon_device *rdev)
950 {
951 	struct kv_power_info *pi = kv_get_pi(rdev);
952 	struct radeon_clock_voltage_dependency_table *table =
953 		&rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table;
954 	struct atom_clock_dividers dividers;
955 	int ret;
956 	u32 i;
957 
958 	if (table == NULL || table->count == 0)
959 		return 0;
960 
961 	pi->samu_level_count = 0;
962 	for (i = 0; i < table->count; i++) {
963 		if (pi->high_voltage_t &&
964 		    pi->high_voltage_t < table->entries[i].v)
965 			break;
966 
967 		pi->samu_level[i].Frequency = cpu_to_be32(table->entries[i].clk);
968 		pi->samu_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
969 
970 		pi->samu_level[i].ClkBypassCntl =
971 			(u8)kv_get_clk_bypass(rdev, table->entries[i].clk);
972 
973 		ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
974 						     table->entries[i].clk, false, &dividers);
975 		if (ret)
976 			return ret;
977 		pi->samu_level[i].Divider = (u8)dividers.post_div;
978 
979 		pi->samu_level_count++;
980 	}
981 
982 	ret = kv_copy_bytes_to_smc(rdev,
983 				   pi->dpm_table_start +
984 				   offsetof(SMU7_Fusion_DpmTable, SamuLevelCount),
985 				   (u8 *)&pi->samu_level_count,
986 				   sizeof(u8),
987 				   pi->sram_end);
988 	if (ret)
989 		return ret;
990 
991 	pi->samu_interval = 1;
992 
993 	ret = kv_copy_bytes_to_smc(rdev,
994 				   pi->dpm_table_start +
995 				   offsetof(SMU7_Fusion_DpmTable, SAMUInterval),
996 				   (u8 *)&pi->samu_interval,
997 				   sizeof(u8),
998 				   pi->sram_end);
999 	if (ret)
1000 		return ret;
1001 
1002 	ret = kv_copy_bytes_to_smc(rdev,
1003 				   pi->dpm_table_start +
1004 				   offsetof(SMU7_Fusion_DpmTable, SamuLevel),
1005 				   (u8 *)&pi->samu_level,
1006 				   sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_SAMU,
1007 				   pi->sram_end);
1008 	if (ret)
1009 		return ret;
1010 
1011 	return ret;
1012 }
1013 
1014 
1015 static int kv_populate_acp_table(struct radeon_device *rdev)
1016 {
1017 	struct kv_power_info *pi = kv_get_pi(rdev);
1018 	struct radeon_clock_voltage_dependency_table *table =
1019 		&rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
1020 	struct atom_clock_dividers dividers;
1021 	int ret;
1022 	u32 i;
1023 
1024 	if (table == NULL || table->count == 0)
1025 		return 0;
1026 
1027 	pi->acp_level_count = 0;
1028 	for (i = 0; i < table->count; i++) {
1029 		pi->acp_level[i].Frequency = cpu_to_be32(table->entries[i].clk);
1030 		pi->acp_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
1031 
1032 		ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
1033 						     table->entries[i].clk, false, &dividers);
1034 		if (ret)
1035 			return ret;
1036 		pi->acp_level[i].Divider = (u8)dividers.post_div;
1037 
1038 		pi->acp_level_count++;
1039 	}
1040 
1041 	ret = kv_copy_bytes_to_smc(rdev,
1042 				   pi->dpm_table_start +
1043 				   offsetof(SMU7_Fusion_DpmTable, AcpLevelCount),
1044 				   (u8 *)&pi->acp_level_count,
1045 				   sizeof(u8),
1046 				   pi->sram_end);
1047 	if (ret)
1048 		return ret;
1049 
1050 	pi->acp_interval = 1;
1051 
1052 	ret = kv_copy_bytes_to_smc(rdev,
1053 				   pi->dpm_table_start +
1054 				   offsetof(SMU7_Fusion_DpmTable, ACPInterval),
1055 				   (u8 *)&pi->acp_interval,
1056 				   sizeof(u8),
1057 				   pi->sram_end);
1058 	if (ret)
1059 		return ret;
1060 
1061 	ret = kv_copy_bytes_to_smc(rdev,
1062 				   pi->dpm_table_start +
1063 				   offsetof(SMU7_Fusion_DpmTable, AcpLevel),
1064 				   (u8 *)&pi->acp_level,
1065 				   sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_ACP,
1066 				   pi->sram_end);
1067 	if (ret)
1068 		return ret;
1069 
1070 	return ret;
1071 }
1072 
1073 static void kv_calculate_dfs_bypass_settings(struct radeon_device *rdev)
1074 {
1075 	struct kv_power_info *pi = kv_get_pi(rdev);
1076 	u32 i;
1077 	struct radeon_clock_voltage_dependency_table *table =
1078 		&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
1079 
1080 	if (table && table->count) {
1081 		for (i = 0; i < pi->graphics_dpm_level_count; i++) {
1082 			if (pi->caps_enable_dfs_bypass) {
1083 				if (kv_get_clock_difference(table->entries[i].clk, 40000) < 200)
1084 					pi->graphics_level[i].ClkBypassCntl = 3;
1085 				else if (kv_get_clock_difference(table->entries[i].clk, 30000) < 200)
1086 					pi->graphics_level[i].ClkBypassCntl = 2;
1087 				else if (kv_get_clock_difference(table->entries[i].clk, 26600) < 200)
1088 					pi->graphics_level[i].ClkBypassCntl = 7;
1089 				else if (kv_get_clock_difference(table->entries[i].clk , 20000) < 200)
1090 					pi->graphics_level[i].ClkBypassCntl = 6;
1091 				else if (kv_get_clock_difference(table->entries[i].clk , 10000) < 200)
1092 					pi->graphics_level[i].ClkBypassCntl = 8;
1093 				else
1094 					pi->graphics_level[i].ClkBypassCntl = 0;
1095 			} else {
1096 				pi->graphics_level[i].ClkBypassCntl = 0;
1097 			}
1098 		}
1099 	} else {
1100 		struct sumo_sclk_voltage_mapping_table *table =
1101 			&pi->sys_info.sclk_voltage_mapping_table;
1102 		for (i = 0; i < pi->graphics_dpm_level_count; i++) {
1103 			if (pi->caps_enable_dfs_bypass) {
1104 				if (kv_get_clock_difference(table->entries[i].sclk_frequency, 40000) < 200)
1105 					pi->graphics_level[i].ClkBypassCntl = 3;
1106 				else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 30000) < 200)
1107 					pi->graphics_level[i].ClkBypassCntl = 2;
1108 				else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 26600) < 200)
1109 					pi->graphics_level[i].ClkBypassCntl = 7;
1110 				else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 20000) < 200)
1111 					pi->graphics_level[i].ClkBypassCntl = 6;
1112 				else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 10000) < 200)
1113 					pi->graphics_level[i].ClkBypassCntl = 8;
1114 				else
1115 					pi->graphics_level[i].ClkBypassCntl = 0;
1116 			} else {
1117 				pi->graphics_level[i].ClkBypassCntl = 0;
1118 			}
1119 		}
1120 	}
1121 }
1122 
1123 static int kv_enable_ulv(struct radeon_device *rdev, bool enable)
1124 {
1125 	return kv_notify_message_to_smu(rdev, enable ?
1126 					PPSMC_MSG_EnableULV : PPSMC_MSG_DisableULV);
1127 }
1128 
1129 static void kv_reset_acp_boot_level(struct radeon_device *rdev)
1130 {
1131 	struct kv_power_info *pi = kv_get_pi(rdev);
1132 
1133 	pi->acp_boot_level = 0xff;
1134 }
1135 
1136 static void kv_update_current_ps(struct radeon_device *rdev,
1137 				 struct radeon_ps *rps)
1138 {
1139 	struct kv_ps *new_ps = kv_get_ps(rps);
1140 	struct kv_power_info *pi = kv_get_pi(rdev);
1141 
1142 	pi->current_rps = *rps;
1143 	pi->current_ps = *new_ps;
1144 	pi->current_rps.ps_priv = &pi->current_ps;
1145 }
1146 
1147 static void kv_update_requested_ps(struct radeon_device *rdev,
1148 				   struct radeon_ps *rps)
1149 {
1150 	struct kv_ps *new_ps = kv_get_ps(rps);
1151 	struct kv_power_info *pi = kv_get_pi(rdev);
1152 
1153 	pi->requested_rps = *rps;
1154 	pi->requested_ps = *new_ps;
1155 	pi->requested_rps.ps_priv = &pi->requested_ps;
1156 }
1157 
1158 void kv_dpm_enable_bapm(struct radeon_device *rdev, bool enable)
1159 {
1160 	struct kv_power_info *pi = kv_get_pi(rdev);
1161 	int ret;
1162 
1163 	if (pi->bapm_enable) {
1164 		ret = kv_smc_bapm_enable(rdev, enable);
1165 		if (ret)
1166 			DRM_ERROR("kv_smc_bapm_enable failed\n");
1167 	}
1168 }
1169 
1170 int kv_dpm_enable(struct radeon_device *rdev)
1171 {
1172 	struct kv_power_info *pi = kv_get_pi(rdev);
1173 	int ret;
1174 
1175 	ret = kv_process_firmware_header(rdev);
1176 	if (ret) {
1177 		DRM_ERROR("kv_process_firmware_header failed\n");
1178 		return ret;
1179 	}
1180 	kv_init_fps_limits(rdev);
1181 	kv_init_graphics_levels(rdev);
1182 	ret = kv_program_bootup_state(rdev);
1183 	if (ret) {
1184 		DRM_ERROR("kv_program_bootup_state failed\n");
1185 		return ret;
1186 	}
1187 	kv_calculate_dfs_bypass_settings(rdev);
1188 	ret = kv_upload_dpm_settings(rdev);
1189 	if (ret) {
1190 		DRM_ERROR("kv_upload_dpm_settings failed\n");
1191 		return ret;
1192 	}
1193 	ret = kv_populate_uvd_table(rdev);
1194 	if (ret) {
1195 		DRM_ERROR("kv_populate_uvd_table failed\n");
1196 		return ret;
1197 	}
1198 	ret = kv_populate_vce_table(rdev);
1199 	if (ret) {
1200 		DRM_ERROR("kv_populate_vce_table failed\n");
1201 		return ret;
1202 	}
1203 	ret = kv_populate_samu_table(rdev);
1204 	if (ret) {
1205 		DRM_ERROR("kv_populate_samu_table failed\n");
1206 		return ret;
1207 	}
1208 	ret = kv_populate_acp_table(rdev);
1209 	if (ret) {
1210 		DRM_ERROR("kv_populate_acp_table failed\n");
1211 		return ret;
1212 	}
1213 	kv_program_vc(rdev);
1214 #if 0
1215 	kv_initialize_hardware_cac_manager(rdev);
1216 #endif
1217 	kv_start_am(rdev);
1218 	if (pi->enable_auto_thermal_throttling) {
1219 		ret = kv_enable_auto_thermal_throttling(rdev);
1220 		if (ret) {
1221 			DRM_ERROR("kv_enable_auto_thermal_throttling failed\n");
1222 			return ret;
1223 		}
1224 	}
1225 	ret = kv_enable_dpm_voltage_scaling(rdev);
1226 	if (ret) {
1227 		DRM_ERROR("kv_enable_dpm_voltage_scaling failed\n");
1228 		return ret;
1229 	}
1230 	ret = kv_set_dpm_interval(rdev);
1231 	if (ret) {
1232 		DRM_ERROR("kv_set_dpm_interval failed\n");
1233 		return ret;
1234 	}
1235 	ret = kv_set_dpm_boot_state(rdev);
1236 	if (ret) {
1237 		DRM_ERROR("kv_set_dpm_boot_state failed\n");
1238 		return ret;
1239 	}
1240 	ret = kv_enable_ulv(rdev, true);
1241 	if (ret) {
1242 		DRM_ERROR("kv_enable_ulv failed\n");
1243 		return ret;
1244 	}
1245 	kv_start_dpm(rdev);
1246 	ret = kv_enable_didt(rdev, true);
1247 	if (ret) {
1248 		DRM_ERROR("kv_enable_didt failed\n");
1249 		return ret;
1250 	}
1251 	ret = kv_enable_smc_cac(rdev, true);
1252 	if (ret) {
1253 		DRM_ERROR("kv_enable_smc_cac failed\n");
1254 		return ret;
1255 	}
1256 
1257 	kv_reset_acp_boot_level(rdev);
1258 
1259 	ret = kv_smc_bapm_enable(rdev, false);
1260 	if (ret) {
1261 		DRM_ERROR("kv_smc_bapm_enable failed\n");
1262 		return ret;
1263 	}
1264 
1265 	kv_update_current_ps(rdev, rdev->pm.dpm.boot_ps);
1266 
1267 	return ret;
1268 }
1269 
1270 int kv_dpm_late_enable(struct radeon_device *rdev)
1271 {
1272 	int ret = 0;
1273 
1274 	if (rdev->irq.installed &&
1275 	    r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) {
1276 		ret = kv_set_thermal_temperature_range(rdev, R600_TEMP_RANGE_MIN, R600_TEMP_RANGE_MAX);
1277 		if (ret) {
1278 			DRM_ERROR("kv_set_thermal_temperature_range failed\n");
1279 			return ret;
1280 		}
1281 		rdev->irq.dpm_thermal = true;
1282 		radeon_irq_set(rdev);
1283 	}
1284 
1285 	/* powerdown unused blocks for now */
1286 	kv_dpm_powergate_acp(rdev, true);
1287 	kv_dpm_powergate_samu(rdev, true);
1288 	kv_dpm_powergate_vce(rdev, true);
1289 	kv_dpm_powergate_uvd(rdev, true);
1290 
1291 	return ret;
1292 }
1293 
1294 void kv_dpm_disable(struct radeon_device *rdev)
1295 {
1296 	kv_smc_bapm_enable(rdev, false);
1297 
1298 	/* powerup blocks */
1299 	kv_dpm_powergate_acp(rdev, false);
1300 	kv_dpm_powergate_samu(rdev, false);
1301 	kv_dpm_powergate_vce(rdev, false);
1302 	kv_dpm_powergate_uvd(rdev, false);
1303 
1304 	kv_enable_smc_cac(rdev, false);
1305 	kv_enable_didt(rdev, false);
1306 	kv_clear_vc(rdev);
1307 	kv_stop_dpm(rdev);
1308 	kv_enable_ulv(rdev, false);
1309 	kv_reset_am(rdev);
1310 
1311 	kv_update_current_ps(rdev, rdev->pm.dpm.boot_ps);
1312 }
1313 
1314 #if 0
1315 static int kv_write_smc_soft_register(struct radeon_device *rdev,
1316 				      u16 reg_offset, u32 value)
1317 {
1318 	struct kv_power_info *pi = kv_get_pi(rdev);
1319 
1320 	return kv_copy_bytes_to_smc(rdev, pi->soft_regs_start + reg_offset,
1321 				    (u8 *)&value, sizeof(u16), pi->sram_end);
1322 }
1323 
1324 static int kv_read_smc_soft_register(struct radeon_device *rdev,
1325 				     u16 reg_offset, u32 *value)
1326 {
1327 	struct kv_power_info *pi = kv_get_pi(rdev);
1328 
1329 	return kv_read_smc_sram_dword(rdev, pi->soft_regs_start + reg_offset,
1330 				      value, pi->sram_end);
1331 }
1332 #endif
1333 
1334 static void kv_init_sclk_t(struct radeon_device *rdev)
1335 {
1336 	struct kv_power_info *pi = kv_get_pi(rdev);
1337 
1338 	pi->low_sclk_interrupt_t = 0;
1339 }
1340 
1341 static int kv_init_fps_limits(struct radeon_device *rdev)
1342 {
1343 	struct kv_power_info *pi = kv_get_pi(rdev);
1344 	int ret = 0;
1345 
1346 	if (pi->caps_fps) {
1347 		u16 tmp;
1348 
1349 		tmp = 45;
1350 		pi->fps_high_t = cpu_to_be16(tmp);
1351 		ret = kv_copy_bytes_to_smc(rdev,
1352 					   pi->dpm_table_start +
1353 					   offsetof(SMU7_Fusion_DpmTable, FpsHighT),
1354 					   (u8 *)&pi->fps_high_t,
1355 					   sizeof(u16), pi->sram_end);
1356 
1357 		tmp = 30;
1358 		pi->fps_low_t = cpu_to_be16(tmp);
1359 
1360 		ret = kv_copy_bytes_to_smc(rdev,
1361 					   pi->dpm_table_start +
1362 					   offsetof(SMU7_Fusion_DpmTable, FpsLowT),
1363 					   (u8 *)&pi->fps_low_t,
1364 					   sizeof(u16), pi->sram_end);
1365 
1366 	}
1367 	return ret;
1368 }
1369 
1370 static void kv_init_powergate_state(struct radeon_device *rdev)
1371 {
1372 	struct kv_power_info *pi = kv_get_pi(rdev);
1373 
1374 	pi->uvd_power_gated = false;
1375 	pi->vce_power_gated = false;
1376 	pi->samu_power_gated = false;
1377 	pi->acp_power_gated = false;
1378 
1379 }
1380 
1381 static int kv_enable_uvd_dpm(struct radeon_device *rdev, bool enable)
1382 {
1383 	return kv_notify_message_to_smu(rdev, enable ?
1384 					PPSMC_MSG_UVDDPM_Enable : PPSMC_MSG_UVDDPM_Disable);
1385 }
1386 
1387 static int kv_enable_vce_dpm(struct radeon_device *rdev, bool enable)
1388 {
1389 	return kv_notify_message_to_smu(rdev, enable ?
1390 					PPSMC_MSG_VCEDPM_Enable : PPSMC_MSG_VCEDPM_Disable);
1391 }
1392 
1393 static int kv_enable_samu_dpm(struct radeon_device *rdev, bool enable)
1394 {
1395 	return kv_notify_message_to_smu(rdev, enable ?
1396 					PPSMC_MSG_SAMUDPM_Enable : PPSMC_MSG_SAMUDPM_Disable);
1397 }
1398 
1399 static int kv_enable_acp_dpm(struct radeon_device *rdev, bool enable)
1400 {
1401 	return kv_notify_message_to_smu(rdev, enable ?
1402 					PPSMC_MSG_ACPDPM_Enable : PPSMC_MSG_ACPDPM_Disable);
1403 }
1404 
1405 static int kv_update_uvd_dpm(struct radeon_device *rdev, bool gate)
1406 {
1407 	struct kv_power_info *pi = kv_get_pi(rdev);
1408 	struct radeon_uvd_clock_voltage_dependency_table *table =
1409 		&rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
1410 	int ret;
1411 	u32 mask;
1412 
1413 	if (!gate) {
1414 		if (table->count)
1415 			pi->uvd_boot_level = table->count - 1;
1416 		else
1417 			pi->uvd_boot_level = 0;
1418 
1419 		if (!pi->caps_uvd_dpm || pi->caps_stable_p_state) {
1420 			mask = 1 << pi->uvd_boot_level;
1421 		} else {
1422 			mask = 0x1f;
1423 		}
1424 
1425 		ret = kv_copy_bytes_to_smc(rdev,
1426 					   pi->dpm_table_start +
1427 					   offsetof(SMU7_Fusion_DpmTable, UvdBootLevel),
1428 					   (uint8_t *)&pi->uvd_boot_level,
1429 					   sizeof(u8), pi->sram_end);
1430 		if (ret)
1431 			return ret;
1432 
1433 		kv_send_msg_to_smc_with_parameter(rdev,
1434 						  PPSMC_MSG_UVDDPM_SetEnabledMask,
1435 						  mask);
1436 	}
1437 
1438 	return kv_enable_uvd_dpm(rdev, !gate);
1439 }
1440 
1441 static u8 kv_get_vce_boot_level(struct radeon_device *rdev)
1442 {
1443 	u8 i;
1444 	struct radeon_vce_clock_voltage_dependency_table *table =
1445 		&rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
1446 
1447 	for (i = 0; i < table->count; i++) {
1448 		if (table->entries[i].evclk >= 0) /* XXX */
1449 			break;
1450 	}
1451 
1452 	return i;
1453 }
1454 
1455 static int kv_update_vce_dpm(struct radeon_device *rdev,
1456 			     struct radeon_ps *radeon_new_state,
1457 			     struct radeon_ps *radeon_current_state)
1458 {
1459 	struct kv_power_info *pi = kv_get_pi(rdev);
1460 	struct radeon_vce_clock_voltage_dependency_table *table =
1461 		&rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
1462 	int ret;
1463 
1464 	if (radeon_new_state->evclk > 0 && radeon_current_state->evclk == 0) {
1465 		kv_dpm_powergate_vce(rdev, false);
1466 		/* turn the clocks on when encoding */
1467 		cik_update_cg(rdev, RADEON_CG_BLOCK_VCE, false);
1468 		if (pi->caps_stable_p_state)
1469 			pi->vce_boot_level = table->count - 1;
1470 		else
1471 			pi->vce_boot_level = kv_get_vce_boot_level(rdev);
1472 
1473 		ret = kv_copy_bytes_to_smc(rdev,
1474 					   pi->dpm_table_start +
1475 					   offsetof(SMU7_Fusion_DpmTable, VceBootLevel),
1476 					   (u8 *)&pi->vce_boot_level,
1477 					   sizeof(u8),
1478 					   pi->sram_end);
1479 		if (ret)
1480 			return ret;
1481 
1482 		if (pi->caps_stable_p_state)
1483 			kv_send_msg_to_smc_with_parameter(rdev,
1484 							  PPSMC_MSG_VCEDPM_SetEnabledMask,
1485 							  (1 << pi->vce_boot_level));
1486 
1487 		kv_enable_vce_dpm(rdev, true);
1488 	} else if (radeon_new_state->evclk == 0 && radeon_current_state->evclk > 0) {
1489 		kv_enable_vce_dpm(rdev, false);
1490 		/* turn the clocks off when not encoding */
1491 		cik_update_cg(rdev, RADEON_CG_BLOCK_VCE, true);
1492 		kv_dpm_powergate_vce(rdev, true);
1493 	}
1494 
1495 	return 0;
1496 }
1497 
1498 static int kv_update_samu_dpm(struct radeon_device *rdev, bool gate)
1499 {
1500 	struct kv_power_info *pi = kv_get_pi(rdev);
1501 	struct radeon_clock_voltage_dependency_table *table =
1502 		&rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table;
1503 	int ret;
1504 
1505 	if (!gate) {
1506 		if (pi->caps_stable_p_state)
1507 			pi->samu_boot_level = table->count - 1;
1508 		else
1509 			pi->samu_boot_level = 0;
1510 
1511 		ret = kv_copy_bytes_to_smc(rdev,
1512 					   pi->dpm_table_start +
1513 					   offsetof(SMU7_Fusion_DpmTable, SamuBootLevel),
1514 					   (u8 *)&pi->samu_boot_level,
1515 					   sizeof(u8),
1516 					   pi->sram_end);
1517 		if (ret)
1518 			return ret;
1519 
1520 		if (pi->caps_stable_p_state)
1521 			kv_send_msg_to_smc_with_parameter(rdev,
1522 							  PPSMC_MSG_SAMUDPM_SetEnabledMask,
1523 							  (1 << pi->samu_boot_level));
1524 	}
1525 
1526 	return kv_enable_samu_dpm(rdev, !gate);
1527 }
1528 
1529 static u8 kv_get_acp_boot_level(struct radeon_device *rdev)
1530 {
1531 	u8 i;
1532 	struct radeon_clock_voltage_dependency_table *table =
1533 		&rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
1534 
1535 	for (i = 0; i < table->count; i++) {
1536 		if (table->entries[i].clk >= 0) /* XXX */
1537 			break;
1538 	}
1539 
1540 	if (i >= table->count)
1541 		i = table->count - 1;
1542 
1543 	return i;
1544 }
1545 
1546 static void kv_update_acp_boot_level(struct radeon_device *rdev)
1547 {
1548 	struct kv_power_info *pi = kv_get_pi(rdev);
1549 	u8 acp_boot_level;
1550 
1551 	if (!pi->caps_stable_p_state) {
1552 		acp_boot_level = kv_get_acp_boot_level(rdev);
1553 		if (acp_boot_level != pi->acp_boot_level) {
1554 			pi->acp_boot_level = acp_boot_level;
1555 			kv_send_msg_to_smc_with_parameter(rdev,
1556 							  PPSMC_MSG_ACPDPM_SetEnabledMask,
1557 							  (1 << pi->acp_boot_level));
1558 		}
1559 	}
1560 }
1561 
1562 static int kv_update_acp_dpm(struct radeon_device *rdev, bool gate)
1563 {
1564 	struct kv_power_info *pi = kv_get_pi(rdev);
1565 	struct radeon_clock_voltage_dependency_table *table =
1566 		&rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
1567 	int ret;
1568 
1569 	if (!gate) {
1570 		if (pi->caps_stable_p_state)
1571 			pi->acp_boot_level = table->count - 1;
1572 		else
1573 			pi->acp_boot_level = kv_get_acp_boot_level(rdev);
1574 
1575 		ret = kv_copy_bytes_to_smc(rdev,
1576 					   pi->dpm_table_start +
1577 					   offsetof(SMU7_Fusion_DpmTable, AcpBootLevel),
1578 					   (u8 *)&pi->acp_boot_level,
1579 					   sizeof(u8),
1580 					   pi->sram_end);
1581 		if (ret)
1582 			return ret;
1583 
1584 		if (pi->caps_stable_p_state)
1585 			kv_send_msg_to_smc_with_parameter(rdev,
1586 							  PPSMC_MSG_ACPDPM_SetEnabledMask,
1587 							  (1 << pi->acp_boot_level));
1588 	}
1589 
1590 	return kv_enable_acp_dpm(rdev, !gate);
1591 }
1592 
1593 void kv_dpm_powergate_uvd(struct radeon_device *rdev, bool gate)
1594 {
1595 	struct kv_power_info *pi = kv_get_pi(rdev);
1596 
1597 	if (pi->uvd_power_gated == gate)
1598 		return;
1599 
1600 	pi->uvd_power_gated = gate;
1601 
1602 	if (gate) {
1603 		if (pi->caps_uvd_pg) {
1604 			uvd_v1_0_stop(rdev);
1605 			cik_update_cg(rdev, RADEON_CG_BLOCK_UVD, false);
1606 		}
1607 		kv_update_uvd_dpm(rdev, gate);
1608 		if (pi->caps_uvd_pg)
1609 			kv_notify_message_to_smu(rdev, PPSMC_MSG_UVDPowerOFF);
1610 	} else {
1611 		if (pi->caps_uvd_pg) {
1612 			kv_notify_message_to_smu(rdev, PPSMC_MSG_UVDPowerON);
1613 			uvd_v4_2_resume(rdev);
1614 			uvd_v1_0_start(rdev);
1615 			cik_update_cg(rdev, RADEON_CG_BLOCK_UVD, true);
1616 		}
1617 		kv_update_uvd_dpm(rdev, gate);
1618 	}
1619 }
1620 
1621 static void kv_dpm_powergate_vce(struct radeon_device *rdev, bool gate)
1622 {
1623 	struct kv_power_info *pi = kv_get_pi(rdev);
1624 
1625 	if (pi->vce_power_gated == gate)
1626 		return;
1627 
1628 	pi->vce_power_gated = gate;
1629 
1630 	if (gate) {
1631 		if (pi->caps_vce_pg) {
1632 			/* XXX do we need a vce_v1_0_stop() ?  */
1633 			kv_notify_message_to_smu(rdev, PPSMC_MSG_VCEPowerOFF);
1634 		}
1635 	} else {
1636 		if (pi->caps_vce_pg) {
1637 			kv_notify_message_to_smu(rdev, PPSMC_MSG_VCEPowerON);
1638 			vce_v2_0_resume(rdev);
1639 			vce_v1_0_start(rdev);
1640 		}
1641 	}
1642 }
1643 
1644 static void kv_dpm_powergate_samu(struct radeon_device *rdev, bool gate)
1645 {
1646 	struct kv_power_info *pi = kv_get_pi(rdev);
1647 
1648 	if (pi->samu_power_gated == gate)
1649 		return;
1650 
1651 	pi->samu_power_gated = gate;
1652 
1653 	if (gate) {
1654 		kv_update_samu_dpm(rdev, true);
1655 		if (pi->caps_samu_pg)
1656 			kv_notify_message_to_smu(rdev, PPSMC_MSG_SAMPowerOFF);
1657 	} else {
1658 		if (pi->caps_samu_pg)
1659 			kv_notify_message_to_smu(rdev, PPSMC_MSG_SAMPowerON);
1660 		kv_update_samu_dpm(rdev, false);
1661 	}
1662 }
1663 
1664 static void kv_dpm_powergate_acp(struct radeon_device *rdev, bool gate)
1665 {
1666 	struct kv_power_info *pi = kv_get_pi(rdev);
1667 
1668 	if (pi->acp_power_gated == gate)
1669 		return;
1670 
1671 	if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS)
1672 		return;
1673 
1674 	pi->acp_power_gated = gate;
1675 
1676 	if (gate) {
1677 		kv_update_acp_dpm(rdev, true);
1678 		if (pi->caps_acp_pg)
1679 			kv_notify_message_to_smu(rdev, PPSMC_MSG_ACPPowerOFF);
1680 	} else {
1681 		if (pi->caps_acp_pg)
1682 			kv_notify_message_to_smu(rdev, PPSMC_MSG_ACPPowerON);
1683 		kv_update_acp_dpm(rdev, false);
1684 	}
1685 }
1686 
1687 static void kv_set_valid_clock_range(struct radeon_device *rdev,
1688 				     struct radeon_ps *new_rps)
1689 {
1690 	struct kv_ps *new_ps = kv_get_ps(new_rps);
1691 	struct kv_power_info *pi = kv_get_pi(rdev);
1692 	u32 i;
1693 	struct radeon_clock_voltage_dependency_table *table =
1694 		&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
1695 
1696 	if (table && table->count) {
1697 		for (i = 0; i < pi->graphics_dpm_level_count; i++) {
1698 			if ((table->entries[i].clk >= new_ps->levels[0].sclk) ||
1699 			    (i == (pi->graphics_dpm_level_count - 1))) {
1700 				pi->lowest_valid = i;
1701 				break;
1702 			}
1703 		}
1704 
1705 		for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
1706 			if (table->entries[i].clk <= new_ps->levels[new_ps->num_levels - 1].sclk)
1707 				break;
1708 		}
1709 		pi->highest_valid = i;
1710 
1711 		if (pi->lowest_valid > pi->highest_valid) {
1712 			if ((new_ps->levels[0].sclk - table->entries[pi->highest_valid].clk) >
1713 			    (table->entries[pi->lowest_valid].clk - new_ps->levels[new_ps->num_levels - 1].sclk))
1714 				pi->highest_valid = pi->lowest_valid;
1715 			else
1716 				pi->lowest_valid =  pi->highest_valid;
1717 		}
1718 	} else {
1719 		struct sumo_sclk_voltage_mapping_table *table =
1720 			&pi->sys_info.sclk_voltage_mapping_table;
1721 
1722 		for (i = 0; i < (int)pi->graphics_dpm_level_count; i++) {
1723 			if (table->entries[i].sclk_frequency >= new_ps->levels[0].sclk ||
1724 			    i == (int)(pi->graphics_dpm_level_count - 1)) {
1725 				pi->lowest_valid = i;
1726 				break;
1727 			}
1728 		}
1729 
1730 		for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
1731 			if (table->entries[i].sclk_frequency <=
1732 			    new_ps->levels[new_ps->num_levels - 1].sclk)
1733 				break;
1734 		}
1735 		pi->highest_valid = i;
1736 
1737 		if (pi->lowest_valid > pi->highest_valid) {
1738 			if ((new_ps->levels[0].sclk -
1739 			     table->entries[pi->highest_valid].sclk_frequency) >
1740 			    (table->entries[pi->lowest_valid].sclk_frequency -
1741 			     new_ps->levels[new_ps->num_levels -1].sclk))
1742 				pi->highest_valid = pi->lowest_valid;
1743 			else
1744 				pi->lowest_valid =  pi->highest_valid;
1745 		}
1746 	}
1747 }
1748 
1749 static int kv_update_dfs_bypass_settings(struct radeon_device *rdev,
1750 					 struct radeon_ps *new_rps)
1751 {
1752 	struct kv_ps *new_ps = kv_get_ps(new_rps);
1753 	struct kv_power_info *pi = kv_get_pi(rdev);
1754 	int ret = 0;
1755 	u8 clk_bypass_cntl;
1756 
1757 	if (pi->caps_enable_dfs_bypass) {
1758 		clk_bypass_cntl = new_ps->need_dfs_bypass ?
1759 			pi->graphics_level[pi->graphics_boot_level].ClkBypassCntl : 0;
1760 		ret = kv_copy_bytes_to_smc(rdev,
1761 					   (pi->dpm_table_start +
1762 					    offsetof(SMU7_Fusion_DpmTable, GraphicsLevel) +
1763 					    (pi->graphics_boot_level * sizeof(SMU7_Fusion_GraphicsLevel)) +
1764 					    offsetof(SMU7_Fusion_GraphicsLevel, ClkBypassCntl)),
1765 					   &clk_bypass_cntl,
1766 					   sizeof(u8), pi->sram_end);
1767 	}
1768 
1769 	return ret;
1770 }
1771 
1772 static int kv_enable_nb_dpm(struct radeon_device *rdev)
1773 {
1774 	struct kv_power_info *pi = kv_get_pi(rdev);
1775 	int ret = 0;
1776 
1777 	if (pi->enable_nb_dpm && !pi->nb_dpm_enabled) {
1778 		ret = kv_notify_message_to_smu(rdev, PPSMC_MSG_NBDPM_Enable);
1779 		if (ret == 0)
1780 			pi->nb_dpm_enabled = true;
1781 	}
1782 
1783 	return ret;
1784 }
1785 
1786 int kv_dpm_force_performance_level(struct radeon_device *rdev,
1787 				   enum radeon_dpm_forced_level level)
1788 {
1789 	int ret;
1790 
1791 	if (level == RADEON_DPM_FORCED_LEVEL_HIGH) {
1792 		ret = kv_force_dpm_highest(rdev);
1793 		if (ret)
1794 			return ret;
1795 	} else if (level == RADEON_DPM_FORCED_LEVEL_LOW) {
1796 		ret = kv_force_dpm_lowest(rdev);
1797 		if (ret)
1798 			return ret;
1799 	} else if (level == RADEON_DPM_FORCED_LEVEL_AUTO) {
1800 		ret = kv_unforce_levels(rdev);
1801 		if (ret)
1802 			return ret;
1803 	}
1804 
1805 	rdev->pm.dpm.forced_level = level;
1806 
1807 	return 0;
1808 }
1809 
1810 int kv_dpm_pre_set_power_state(struct radeon_device *rdev)
1811 {
1812 	struct kv_power_info *pi = kv_get_pi(rdev);
1813 	struct radeon_ps requested_ps = *rdev->pm.dpm.requested_ps;
1814 	struct radeon_ps *new_ps = &requested_ps;
1815 
1816 	kv_update_requested_ps(rdev, new_ps);
1817 
1818 	kv_apply_state_adjust_rules(rdev,
1819 				    &pi->requested_rps,
1820 				    &pi->current_rps);
1821 
1822 	return 0;
1823 }
1824 
1825 int kv_dpm_set_power_state(struct radeon_device *rdev)
1826 {
1827 	struct kv_power_info *pi = kv_get_pi(rdev);
1828 	struct radeon_ps *new_ps = &pi->requested_rps;
1829 	struct radeon_ps *old_ps = &pi->current_rps;
1830 	int ret;
1831 
1832 	if (pi->bapm_enable) {
1833 		ret = kv_smc_bapm_enable(rdev, rdev->pm.dpm.ac_power);
1834 		if (ret) {
1835 			DRM_ERROR("kv_smc_bapm_enable failed\n");
1836 			return ret;
1837 		}
1838 	}
1839 
1840 	if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS) {
1841 		if (pi->enable_dpm) {
1842 			kv_set_valid_clock_range(rdev, new_ps);
1843 			kv_update_dfs_bypass_settings(rdev, new_ps);
1844 			ret = kv_calculate_ds_divider(rdev);
1845 			if (ret) {
1846 				DRM_ERROR("kv_calculate_ds_divider failed\n");
1847 				return ret;
1848 			}
1849 			kv_calculate_nbps_level_settings(rdev);
1850 			kv_calculate_dpm_settings(rdev);
1851 			kv_force_lowest_valid(rdev);
1852 			kv_enable_new_levels(rdev);
1853 			kv_upload_dpm_settings(rdev);
1854 			kv_program_nbps_index_settings(rdev, new_ps);
1855 			kv_unforce_levels(rdev);
1856 			kv_set_enabled_levels(rdev);
1857 			kv_force_lowest_valid(rdev);
1858 			kv_unforce_levels(rdev);
1859 
1860 			ret = kv_update_vce_dpm(rdev, new_ps, old_ps);
1861 			if (ret) {
1862 				DRM_ERROR("kv_update_vce_dpm failed\n");
1863 				return ret;
1864 			}
1865 			kv_update_sclk_t(rdev);
1866 			if (rdev->family == CHIP_MULLINS)
1867 				kv_enable_nb_dpm(rdev);
1868 		}
1869 	} else {
1870 		if (pi->enable_dpm) {
1871 			kv_set_valid_clock_range(rdev, new_ps);
1872 			kv_update_dfs_bypass_settings(rdev, new_ps);
1873 			ret = kv_calculate_ds_divider(rdev);
1874 			if (ret) {
1875 				DRM_ERROR("kv_calculate_ds_divider failed\n");
1876 				return ret;
1877 			}
1878 			kv_calculate_nbps_level_settings(rdev);
1879 			kv_calculate_dpm_settings(rdev);
1880 			kv_freeze_sclk_dpm(rdev, true);
1881 			kv_upload_dpm_settings(rdev);
1882 			kv_program_nbps_index_settings(rdev, new_ps);
1883 			kv_freeze_sclk_dpm(rdev, false);
1884 			kv_set_enabled_levels(rdev);
1885 			ret = kv_update_vce_dpm(rdev, new_ps, old_ps);
1886 			if (ret) {
1887 				DRM_ERROR("kv_update_vce_dpm failed\n");
1888 				return ret;
1889 			}
1890 			kv_update_acp_boot_level(rdev);
1891 			kv_update_sclk_t(rdev);
1892 			kv_enable_nb_dpm(rdev);
1893 		}
1894 	}
1895 
1896 	return 0;
1897 }
1898 
1899 void kv_dpm_post_set_power_state(struct radeon_device *rdev)
1900 {
1901 	struct kv_power_info *pi = kv_get_pi(rdev);
1902 	struct radeon_ps *new_ps = &pi->requested_rps;
1903 
1904 	kv_update_current_ps(rdev, new_ps);
1905 }
1906 
1907 void kv_dpm_setup_asic(struct radeon_device *rdev)
1908 {
1909 	sumo_take_smu_control(rdev, true);
1910 	kv_init_powergate_state(rdev);
1911 	kv_init_sclk_t(rdev);
1912 }
1913 
1914 void kv_dpm_reset_asic(struct radeon_device *rdev)
1915 {
1916 	struct kv_power_info *pi = kv_get_pi(rdev);
1917 
1918 	if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS) {
1919 		kv_force_lowest_valid(rdev);
1920 		kv_init_graphics_levels(rdev);
1921 		kv_program_bootup_state(rdev);
1922 		kv_upload_dpm_settings(rdev);
1923 		kv_force_lowest_valid(rdev);
1924 		kv_unforce_levels(rdev);
1925 	} else {
1926 		kv_init_graphics_levels(rdev);
1927 		kv_program_bootup_state(rdev);
1928 		kv_freeze_sclk_dpm(rdev, true);
1929 		kv_upload_dpm_settings(rdev);
1930 		kv_freeze_sclk_dpm(rdev, false);
1931 		kv_set_enabled_level(rdev, pi->graphics_boot_level);
1932 	}
1933 }
1934 
1935 //XXX use sumo_dpm_display_configuration_changed
1936 
1937 static void kv_construct_max_power_limits_table(struct radeon_device *rdev,
1938 						struct radeon_clock_and_voltage_limits *table)
1939 {
1940 	struct kv_power_info *pi = kv_get_pi(rdev);
1941 
1942 	if (pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries > 0) {
1943 		int idx = pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries - 1;
1944 		table->sclk =
1945 			pi->sys_info.sclk_voltage_mapping_table.entries[idx].sclk_frequency;
1946 		table->vddc =
1947 			kv_convert_2bit_index_to_voltage(rdev,
1948 							 pi->sys_info.sclk_voltage_mapping_table.entries[idx].vid_2bit);
1949 	}
1950 
1951 	table->mclk = pi->sys_info.nbp_memory_clock[0];
1952 }
1953 
1954 static void kv_patch_voltage_values(struct radeon_device *rdev)
1955 {
1956 	int i;
1957 	struct radeon_uvd_clock_voltage_dependency_table *uvd_table =
1958 		&rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
1959 	struct radeon_vce_clock_voltage_dependency_table *vce_table =
1960 		&rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
1961 	struct radeon_clock_voltage_dependency_table *samu_table =
1962 		&rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table;
1963 	struct radeon_clock_voltage_dependency_table *acp_table =
1964 		&rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
1965 
1966 	if (uvd_table->count) {
1967 		for (i = 0; i < uvd_table->count; i++)
1968 			uvd_table->entries[i].v =
1969 				kv_convert_8bit_index_to_voltage(rdev,
1970 								 uvd_table->entries[i].v);
1971 	}
1972 
1973 	if (vce_table->count) {
1974 		for (i = 0; i < vce_table->count; i++)
1975 			vce_table->entries[i].v =
1976 				kv_convert_8bit_index_to_voltage(rdev,
1977 								 vce_table->entries[i].v);
1978 	}
1979 
1980 	if (samu_table->count) {
1981 		for (i = 0; i < samu_table->count; i++)
1982 			samu_table->entries[i].v =
1983 				kv_convert_8bit_index_to_voltage(rdev,
1984 								 samu_table->entries[i].v);
1985 	}
1986 
1987 	if (acp_table->count) {
1988 		for (i = 0; i < acp_table->count; i++)
1989 			acp_table->entries[i].v =
1990 				kv_convert_8bit_index_to_voltage(rdev,
1991 								 acp_table->entries[i].v);
1992 	}
1993 
1994 }
1995 
1996 static void kv_construct_boot_state(struct radeon_device *rdev)
1997 {
1998 	struct kv_power_info *pi = kv_get_pi(rdev);
1999 
2000 	pi->boot_pl.sclk = pi->sys_info.bootup_sclk;
2001 	pi->boot_pl.vddc_index = pi->sys_info.bootup_nb_voltage_index;
2002 	pi->boot_pl.ds_divider_index = 0;
2003 	pi->boot_pl.ss_divider_index = 0;
2004 	pi->boot_pl.allow_gnb_slow = 1;
2005 	pi->boot_pl.force_nbp_state = 0;
2006 	pi->boot_pl.display_wm = 0;
2007 	pi->boot_pl.vce_wm = 0;
2008 }
2009 
2010 static int kv_force_dpm_highest(struct radeon_device *rdev)
2011 {
2012 	int ret;
2013 	u32 enable_mask, i;
2014 
2015 	ret = kv_dpm_get_enable_mask(rdev, &enable_mask);
2016 	if (ret)
2017 		return ret;
2018 
2019 	for (i = SMU7_MAX_LEVELS_GRAPHICS - 1; i > 0; i--) {
2020 		if (enable_mask & (1 << i))
2021 			break;
2022 	}
2023 
2024 	if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS)
2025 		return kv_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_DPM_ForceState, i);
2026 	else
2027 		return kv_set_enabled_level(rdev, i);
2028 }
2029 
2030 static int kv_force_dpm_lowest(struct radeon_device *rdev)
2031 {
2032 	int ret;
2033 	u32 enable_mask, i;
2034 
2035 	ret = kv_dpm_get_enable_mask(rdev, &enable_mask);
2036 	if (ret)
2037 		return ret;
2038 
2039 	for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++) {
2040 		if (enable_mask & (1 << i))
2041 			break;
2042 	}
2043 
2044 	if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS)
2045 		return kv_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_DPM_ForceState, i);
2046 	else
2047 		return kv_set_enabled_level(rdev, i);
2048 }
2049 
2050 static u8 kv_get_sleep_divider_id_from_clock(struct radeon_device *rdev,
2051 					     u32 sclk, u32 min_sclk_in_sr)
2052 {
2053 	struct kv_power_info *pi = kv_get_pi(rdev);
2054 	u32 i;
2055 	u32 temp;
2056 	u32 min = (min_sclk_in_sr > KV_MINIMUM_ENGINE_CLOCK) ?
2057 		min_sclk_in_sr : KV_MINIMUM_ENGINE_CLOCK;
2058 
2059 	if (sclk < min)
2060 		return 0;
2061 
2062 	if (!pi->caps_sclk_ds)
2063 		return 0;
2064 
2065 	for (i = KV_MAX_DEEPSLEEP_DIVIDER_ID; i > 0; i--) {
2066 		temp = sclk / sumo_get_sleep_divider_from_id(i);
2067 		if (temp >= min)
2068 			break;
2069 	}
2070 
2071 	return (u8)i;
2072 }
2073 
2074 static int kv_get_high_voltage_limit(struct radeon_device *rdev, int *limit)
2075 {
2076 	struct kv_power_info *pi = kv_get_pi(rdev);
2077 	struct radeon_clock_voltage_dependency_table *table =
2078 		&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
2079 	int i;
2080 
2081 	if (table && table->count) {
2082 		for (i = table->count - 1; i >= 0; i--) {
2083 			if (pi->high_voltage_t &&
2084 			    (kv_convert_8bit_index_to_voltage(rdev, table->entries[i].v) <=
2085 			     pi->high_voltage_t)) {
2086 				*limit = i;
2087 				return 0;
2088 			}
2089 		}
2090 	} else {
2091 		struct sumo_sclk_voltage_mapping_table *table =
2092 			&pi->sys_info.sclk_voltage_mapping_table;
2093 
2094 		for (i = table->num_max_dpm_entries - 1; i >= 0; i--) {
2095 			if (pi->high_voltage_t &&
2096 			    (kv_convert_2bit_index_to_voltage(rdev, table->entries[i].vid_2bit) <=
2097 			     pi->high_voltage_t)) {
2098 				*limit = i;
2099 				return 0;
2100 			}
2101 		}
2102 	}
2103 
2104 	*limit = 0;
2105 	return 0;
2106 }
2107 
2108 static void kv_apply_state_adjust_rules(struct radeon_device *rdev,
2109 					struct radeon_ps *new_rps,
2110 					struct radeon_ps *old_rps)
2111 {
2112 	struct kv_ps *ps = kv_get_ps(new_rps);
2113 	struct kv_power_info *pi = kv_get_pi(rdev);
2114 	u32 min_sclk = 10000; /* ??? */
2115 	u32 sclk, mclk = 0;
2116 	int i, limit;
2117 	bool force_high;
2118 	struct radeon_clock_voltage_dependency_table *table =
2119 		&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
2120 	u32 stable_p_state_sclk = 0;
2121 	struct radeon_clock_and_voltage_limits *max_limits =
2122 		&rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
2123 
2124 	if (new_rps->vce_active) {
2125 		new_rps->evclk = rdev->pm.dpm.vce_states[rdev->pm.dpm.vce_level].evclk;
2126 		new_rps->ecclk = rdev->pm.dpm.vce_states[rdev->pm.dpm.vce_level].ecclk;
2127 	} else {
2128 		new_rps->evclk = 0;
2129 		new_rps->ecclk = 0;
2130 	}
2131 
2132 	mclk = max_limits->mclk;
2133 	sclk = min_sclk;
2134 
2135 	if (pi->caps_stable_p_state) {
2136 		stable_p_state_sclk = (max_limits->sclk * 75) / 100;
2137 
2138 		for (i = table->count - 1; i >= 0; i++) {
2139 			if (stable_p_state_sclk >= table->entries[i].clk) {
2140 				stable_p_state_sclk = table->entries[i].clk;
2141 				break;
2142 			}
2143 		}
2144 
2145 		if (i > 0)
2146 			stable_p_state_sclk = table->entries[0].clk;
2147 
2148 		sclk = stable_p_state_sclk;
2149 	}
2150 
2151 	if (new_rps->vce_active) {
2152 		if (sclk < rdev->pm.dpm.vce_states[rdev->pm.dpm.vce_level].sclk)
2153 			sclk = rdev->pm.dpm.vce_states[rdev->pm.dpm.vce_level].sclk;
2154 	}
2155 
2156 	ps->need_dfs_bypass = true;
2157 
2158 	for (i = 0; i < ps->num_levels; i++) {
2159 		if (ps->levels[i].sclk < sclk)
2160 			ps->levels[i].sclk = sclk;
2161 	}
2162 
2163 	if (table && table->count) {
2164 		for (i = 0; i < ps->num_levels; i++) {
2165 			if (pi->high_voltage_t &&
2166 			    (pi->high_voltage_t <
2167 			     kv_convert_8bit_index_to_voltage(rdev, ps->levels[i].vddc_index))) {
2168 				kv_get_high_voltage_limit(rdev, &limit);
2169 				ps->levels[i].sclk = table->entries[limit].clk;
2170 			}
2171 		}
2172 	} else {
2173 		struct sumo_sclk_voltage_mapping_table *table =
2174 			&pi->sys_info.sclk_voltage_mapping_table;
2175 
2176 		for (i = 0; i < ps->num_levels; i++) {
2177 			if (pi->high_voltage_t &&
2178 			    (pi->high_voltage_t <
2179 			     kv_convert_8bit_index_to_voltage(rdev, ps->levels[i].vddc_index))) {
2180 				kv_get_high_voltage_limit(rdev, &limit);
2181 				ps->levels[i].sclk = table->entries[limit].sclk_frequency;
2182 			}
2183 		}
2184 	}
2185 
2186 	if (pi->caps_stable_p_state) {
2187 		for (i = 0; i < ps->num_levels; i++) {
2188 			ps->levels[i].sclk = stable_p_state_sclk;
2189 		}
2190 	}
2191 
2192 	pi->video_start = new_rps->dclk || new_rps->vclk ||
2193 		new_rps->evclk || new_rps->ecclk;
2194 
2195 	if ((new_rps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) ==
2196 	    ATOM_PPLIB_CLASSIFICATION_UI_BATTERY)
2197 		pi->battery_state = true;
2198 	else
2199 		pi->battery_state = false;
2200 
2201 	if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS) {
2202 		ps->dpm0_pg_nb_ps_lo = 0x1;
2203 		ps->dpm0_pg_nb_ps_hi = 0x0;
2204 		ps->dpmx_nb_ps_lo = 0x1;
2205 		ps->dpmx_nb_ps_hi = 0x0;
2206 	} else {
2207 		ps->dpm0_pg_nb_ps_lo = 0x3;
2208 		ps->dpm0_pg_nb_ps_hi = 0x0;
2209 		ps->dpmx_nb_ps_lo = 0x3;
2210 		ps->dpmx_nb_ps_hi = 0x0;
2211 
2212 		if (pi->sys_info.nb_dpm_enable) {
2213 			force_high = (mclk >= pi->sys_info.nbp_memory_clock[3]) ||
2214 				pi->video_start || (rdev->pm.dpm.new_active_crtc_count >= 3) ||
2215 				pi->disable_nb_ps3_in_battery;
2216 			ps->dpm0_pg_nb_ps_lo = force_high ? 0x2 : 0x3;
2217 			ps->dpm0_pg_nb_ps_hi = 0x2;
2218 			ps->dpmx_nb_ps_lo = force_high ? 0x2 : 0x3;
2219 			ps->dpmx_nb_ps_hi = 0x2;
2220 		}
2221 	}
2222 }
2223 
2224 static void kv_dpm_power_level_enabled_for_throttle(struct radeon_device *rdev,
2225 						    u32 index, bool enable)
2226 {
2227 	struct kv_power_info *pi = kv_get_pi(rdev);
2228 
2229 	pi->graphics_level[index].EnabledForThrottle = enable ? 1 : 0;
2230 }
2231 
2232 static int kv_calculate_ds_divider(struct radeon_device *rdev)
2233 {
2234 	struct kv_power_info *pi = kv_get_pi(rdev);
2235 	u32 sclk_in_sr = 10000; /* ??? */
2236 	u32 i;
2237 
2238 	if (pi->lowest_valid > pi->highest_valid)
2239 		return -EINVAL;
2240 
2241 	for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
2242 		pi->graphics_level[i].DeepSleepDivId =
2243 			kv_get_sleep_divider_id_from_clock(rdev,
2244 							   be32_to_cpu(pi->graphics_level[i].SclkFrequency),
2245 							   sclk_in_sr);
2246 	}
2247 	return 0;
2248 }
2249 
2250 static int kv_calculate_nbps_level_settings(struct radeon_device *rdev)
2251 {
2252 	struct kv_power_info *pi = kv_get_pi(rdev);
2253 	u32 i;
2254 	bool force_high;
2255 	struct radeon_clock_and_voltage_limits *max_limits =
2256 		&rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
2257 	u32 mclk = max_limits->mclk;
2258 
2259 	if (pi->lowest_valid > pi->highest_valid)
2260 		return -EINVAL;
2261 
2262 	if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS) {
2263 		for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
2264 			pi->graphics_level[i].GnbSlow = 1;
2265 			pi->graphics_level[i].ForceNbPs1 = 0;
2266 			pi->graphics_level[i].UpH = 0;
2267 		}
2268 
2269 		if (!pi->sys_info.nb_dpm_enable)
2270 			return 0;
2271 
2272 		force_high = ((mclk >= pi->sys_info.nbp_memory_clock[3]) ||
2273 			      (rdev->pm.dpm.new_active_crtc_count >= 3) || pi->video_start);
2274 
2275 		if (force_high) {
2276 			for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
2277 				pi->graphics_level[i].GnbSlow = 0;
2278 		} else {
2279 			if (pi->battery_state)
2280 				pi->graphics_level[0].ForceNbPs1 = 1;
2281 
2282 			pi->graphics_level[1].GnbSlow = 0;
2283 			pi->graphics_level[2].GnbSlow = 0;
2284 			pi->graphics_level[3].GnbSlow = 0;
2285 			pi->graphics_level[4].GnbSlow = 0;
2286 		}
2287 	} else {
2288 		for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
2289 			pi->graphics_level[i].GnbSlow = 1;
2290 			pi->graphics_level[i].ForceNbPs1 = 0;
2291 			pi->graphics_level[i].UpH = 0;
2292 		}
2293 
2294 		if (pi->sys_info.nb_dpm_enable && pi->battery_state) {
2295 			pi->graphics_level[pi->lowest_valid].UpH = 0x28;
2296 			pi->graphics_level[pi->lowest_valid].GnbSlow = 0;
2297 			if (pi->lowest_valid != pi->highest_valid)
2298 				pi->graphics_level[pi->lowest_valid].ForceNbPs1 = 1;
2299 		}
2300 	}
2301 	return 0;
2302 }
2303 
2304 static int kv_calculate_dpm_settings(struct radeon_device *rdev)
2305 {
2306 	struct kv_power_info *pi = kv_get_pi(rdev);
2307 	u32 i;
2308 
2309 	if (pi->lowest_valid > pi->highest_valid)
2310 		return -EINVAL;
2311 
2312 	for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
2313 		pi->graphics_level[i].DisplayWatermark = (i == pi->highest_valid) ? 1 : 0;
2314 
2315 	return 0;
2316 }
2317 
2318 static void kv_init_graphics_levels(struct radeon_device *rdev)
2319 {
2320 	struct kv_power_info *pi = kv_get_pi(rdev);
2321 	u32 i;
2322 	struct radeon_clock_voltage_dependency_table *table =
2323 		&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
2324 
2325 	if (table && table->count) {
2326 		u32 vid_2bit;
2327 
2328 		pi->graphics_dpm_level_count = 0;
2329 		for (i = 0; i < table->count; i++) {
2330 			if (pi->high_voltage_t &&
2331 			    (pi->high_voltage_t <
2332 			     kv_convert_8bit_index_to_voltage(rdev, table->entries[i].v)))
2333 				break;
2334 
2335 			kv_set_divider_value(rdev, i, table->entries[i].clk);
2336 			vid_2bit = kv_convert_vid7_to_vid2(rdev,
2337 							   &pi->sys_info.vid_mapping_table,
2338 							   table->entries[i].v);
2339 			kv_set_vid(rdev, i, vid_2bit);
2340 			kv_set_at(rdev, i, pi->at[i]);
2341 			kv_dpm_power_level_enabled_for_throttle(rdev, i, true);
2342 			pi->graphics_dpm_level_count++;
2343 		}
2344 	} else {
2345 		struct sumo_sclk_voltage_mapping_table *table =
2346 			&pi->sys_info.sclk_voltage_mapping_table;
2347 
2348 		pi->graphics_dpm_level_count = 0;
2349 		for (i = 0; i < table->num_max_dpm_entries; i++) {
2350 			if (pi->high_voltage_t &&
2351 			    pi->high_voltage_t <
2352 			    kv_convert_2bit_index_to_voltage(rdev, table->entries[i].vid_2bit))
2353 				break;
2354 
2355 			kv_set_divider_value(rdev, i, table->entries[i].sclk_frequency);
2356 			kv_set_vid(rdev, i, table->entries[i].vid_2bit);
2357 			kv_set_at(rdev, i, pi->at[i]);
2358 			kv_dpm_power_level_enabled_for_throttle(rdev, i, true);
2359 			pi->graphics_dpm_level_count++;
2360 		}
2361 	}
2362 
2363 	for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++)
2364 		kv_dpm_power_level_enable(rdev, i, false);
2365 }
2366 
2367 static void kv_enable_new_levels(struct radeon_device *rdev)
2368 {
2369 	struct kv_power_info *pi = kv_get_pi(rdev);
2370 	u32 i;
2371 
2372 	for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++) {
2373 		if (i >= pi->lowest_valid && i <= pi->highest_valid)
2374 			kv_dpm_power_level_enable(rdev, i, true);
2375 	}
2376 }
2377 
2378 static int kv_set_enabled_level(struct radeon_device *rdev, u32 level)
2379 {
2380 	u32 new_mask = (1 << level);
2381 
2382 	return kv_send_msg_to_smc_with_parameter(rdev,
2383 						 PPSMC_MSG_SCLKDPM_SetEnabledMask,
2384 						 new_mask);
2385 }
2386 
2387 static int kv_set_enabled_levels(struct radeon_device *rdev)
2388 {
2389 	struct kv_power_info *pi = kv_get_pi(rdev);
2390 	u32 i, new_mask = 0;
2391 
2392 	for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
2393 		new_mask |= (1 << i);
2394 
2395 	return kv_send_msg_to_smc_with_parameter(rdev,
2396 						 PPSMC_MSG_SCLKDPM_SetEnabledMask,
2397 						 new_mask);
2398 }
2399 
2400 static void kv_program_nbps_index_settings(struct radeon_device *rdev,
2401 					   struct radeon_ps *new_rps)
2402 {
2403 	struct kv_ps *new_ps = kv_get_ps(new_rps);
2404 	struct kv_power_info *pi = kv_get_pi(rdev);
2405 	u32 nbdpmconfig1;
2406 
2407 	if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS)
2408 		return;
2409 
2410 	if (pi->sys_info.nb_dpm_enable) {
2411 		nbdpmconfig1 = RREG32_SMC(NB_DPM_CONFIG_1);
2412 		nbdpmconfig1 &= ~(Dpm0PgNbPsLo_MASK | Dpm0PgNbPsHi_MASK |
2413 				  DpmXNbPsLo_MASK | DpmXNbPsHi_MASK);
2414 		nbdpmconfig1 |= (Dpm0PgNbPsLo(new_ps->dpm0_pg_nb_ps_lo) |
2415 				 Dpm0PgNbPsHi(new_ps->dpm0_pg_nb_ps_hi) |
2416 				 DpmXNbPsLo(new_ps->dpmx_nb_ps_lo) |
2417 				 DpmXNbPsHi(new_ps->dpmx_nb_ps_hi));
2418 		WREG32_SMC(NB_DPM_CONFIG_1, nbdpmconfig1);
2419 	}
2420 }
2421 
2422 static int kv_set_thermal_temperature_range(struct radeon_device *rdev,
2423 					    int min_temp, int max_temp)
2424 {
2425 	int low_temp = 0 * 1000;
2426 	int high_temp = 255 * 1000;
2427 	u32 tmp;
2428 
2429 	if (low_temp < min_temp)
2430 		low_temp = min_temp;
2431 	if (high_temp > max_temp)
2432 		high_temp = max_temp;
2433 	if (high_temp < low_temp) {
2434 		DRM_ERROR("invalid thermal range: %d - %d\n", low_temp, high_temp);
2435 		return -EINVAL;
2436 	}
2437 
2438 	tmp = RREG32_SMC(CG_THERMAL_INT_CTRL);
2439 	tmp &= ~(DIG_THERM_INTH_MASK | DIG_THERM_INTL_MASK);
2440 	tmp |= (DIG_THERM_INTH(49 + (high_temp / 1000)) |
2441 		DIG_THERM_INTL(49 + (low_temp / 1000)));
2442 	WREG32_SMC(CG_THERMAL_INT_CTRL, tmp);
2443 
2444 	rdev->pm.dpm.thermal.min_temp = low_temp;
2445 	rdev->pm.dpm.thermal.max_temp = high_temp;
2446 
2447 	return 0;
2448 }
2449 
2450 union igp_info {
2451 	struct _ATOM_INTEGRATED_SYSTEM_INFO info;
2452 	struct _ATOM_INTEGRATED_SYSTEM_INFO_V2 info_2;
2453 	struct _ATOM_INTEGRATED_SYSTEM_INFO_V5 info_5;
2454 	struct _ATOM_INTEGRATED_SYSTEM_INFO_V6 info_6;
2455 	struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_7 info_7;
2456 	struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_8 info_8;
2457 };
2458 
2459 static int kv_parse_sys_info_table(struct radeon_device *rdev)
2460 {
2461 	struct kv_power_info *pi = kv_get_pi(rdev);
2462 	struct radeon_mode_info *mode_info = &rdev->mode_info;
2463 	int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo);
2464 	union igp_info *igp_info;
2465 	u8 frev, crev;
2466 	u16 data_offset;
2467 	int i;
2468 
2469 	if (atom_parse_data_header(mode_info->atom_context, index, NULL,
2470 				   &frev, &crev, &data_offset)) {
2471 		igp_info = (union igp_info *)(mode_info->atom_context->bios +
2472 					      data_offset);
2473 
2474 		if (crev != 8) {
2475 			DRM_ERROR("Unsupported IGP table: %d %d\n", frev, crev);
2476 			return -EINVAL;
2477 		}
2478 		pi->sys_info.bootup_sclk = le32_to_cpu(igp_info->info_8.ulBootUpEngineClock);
2479 		pi->sys_info.bootup_uma_clk = le32_to_cpu(igp_info->info_8.ulBootUpUMAClock);
2480 		pi->sys_info.bootup_nb_voltage_index =
2481 			le16_to_cpu(igp_info->info_8.usBootUpNBVoltage);
2482 		if (igp_info->info_8.ucHtcTmpLmt == 0)
2483 			pi->sys_info.htc_tmp_lmt = 203;
2484 		else
2485 			pi->sys_info.htc_tmp_lmt = igp_info->info_8.ucHtcTmpLmt;
2486 		if (igp_info->info_8.ucHtcHystLmt == 0)
2487 			pi->sys_info.htc_hyst_lmt = 5;
2488 		else
2489 			pi->sys_info.htc_hyst_lmt = igp_info->info_8.ucHtcHystLmt;
2490 		if (pi->sys_info.htc_tmp_lmt <= pi->sys_info.htc_hyst_lmt) {
2491 			DRM_ERROR("The htcTmpLmt should be larger than htcHystLmt.\n");
2492 		}
2493 
2494 		if (le32_to_cpu(igp_info->info_8.ulSystemConfig) & (1 << 3))
2495 			pi->sys_info.nb_dpm_enable = true;
2496 		else
2497 			pi->sys_info.nb_dpm_enable = false;
2498 
2499 		for (i = 0; i < KV_NUM_NBPSTATES; i++) {
2500 			pi->sys_info.nbp_memory_clock[i] =
2501 				le32_to_cpu(igp_info->info_8.ulNbpStateMemclkFreq[i]);
2502 			pi->sys_info.nbp_n_clock[i] =
2503 				le32_to_cpu(igp_info->info_8.ulNbpStateNClkFreq[i]);
2504 		}
2505 		if (le32_to_cpu(igp_info->info_8.ulGPUCapInfo) &
2506 		    SYS_INFO_GPUCAPS__ENABEL_DFS_BYPASS)
2507 			pi->caps_enable_dfs_bypass = true;
2508 
2509 		sumo_construct_sclk_voltage_mapping_table(rdev,
2510 							  &pi->sys_info.sclk_voltage_mapping_table,
2511 							  igp_info->info_8.sAvail_SCLK);
2512 
2513 		sumo_construct_vid_mapping_table(rdev,
2514 						 &pi->sys_info.vid_mapping_table,
2515 						 igp_info->info_8.sAvail_SCLK);
2516 
2517 		kv_construct_max_power_limits_table(rdev,
2518 						    &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac);
2519 	}
2520 	return 0;
2521 }
2522 
2523 union power_info {
2524 	struct _ATOM_POWERPLAY_INFO info;
2525 	struct _ATOM_POWERPLAY_INFO_V2 info_2;
2526 	struct _ATOM_POWERPLAY_INFO_V3 info_3;
2527 	struct _ATOM_PPLIB_POWERPLAYTABLE pplib;
2528 	struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2;
2529 	struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3;
2530 };
2531 
2532 union pplib_clock_info {
2533 	struct _ATOM_PPLIB_R600_CLOCK_INFO r600;
2534 	struct _ATOM_PPLIB_RS780_CLOCK_INFO rs780;
2535 	struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen;
2536 	struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo;
2537 };
2538 
2539 union pplib_power_state {
2540 	struct _ATOM_PPLIB_STATE v1;
2541 	struct _ATOM_PPLIB_STATE_V2 v2;
2542 };
2543 
2544 static void kv_patch_boot_state(struct radeon_device *rdev,
2545 				struct kv_ps *ps)
2546 {
2547 	struct kv_power_info *pi = kv_get_pi(rdev);
2548 
2549 	ps->num_levels = 1;
2550 	ps->levels[0] = pi->boot_pl;
2551 }
2552 
2553 static void kv_parse_pplib_non_clock_info(struct radeon_device *rdev,
2554 					  struct radeon_ps *rps,
2555 					  struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info,
2556 					  u8 table_rev)
2557 {
2558 	struct kv_ps *ps = kv_get_ps(rps);
2559 
2560 	rps->caps = le32_to_cpu(non_clock_info->ulCapsAndSettings);
2561 	rps->class = le16_to_cpu(non_clock_info->usClassification);
2562 	rps->class2 = le16_to_cpu(non_clock_info->usClassification2);
2563 
2564 	if (ATOM_PPLIB_NONCLOCKINFO_VER1 < table_rev) {
2565 		rps->vclk = le32_to_cpu(non_clock_info->ulVCLK);
2566 		rps->dclk = le32_to_cpu(non_clock_info->ulDCLK);
2567 	} else {
2568 		rps->vclk = 0;
2569 		rps->dclk = 0;
2570 	}
2571 
2572 	if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) {
2573 		rdev->pm.dpm.boot_ps = rps;
2574 		kv_patch_boot_state(rdev, ps);
2575 	}
2576 	if (rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
2577 		rdev->pm.dpm.uvd_ps = rps;
2578 }
2579 
2580 static void kv_parse_pplib_clock_info(struct radeon_device *rdev,
2581 				      struct radeon_ps *rps, int index,
2582 					union pplib_clock_info *clock_info)
2583 {
2584 	struct kv_power_info *pi = kv_get_pi(rdev);
2585 	struct kv_ps *ps = kv_get_ps(rps);
2586 	struct kv_pl *pl = &ps->levels[index];
2587 	u32 sclk;
2588 
2589 	sclk = le16_to_cpu(clock_info->sumo.usEngineClockLow);
2590 	sclk |= clock_info->sumo.ucEngineClockHigh << 16;
2591 	pl->sclk = sclk;
2592 	pl->vddc_index = clock_info->sumo.vddcIndex;
2593 
2594 	ps->num_levels = index + 1;
2595 
2596 	if (pi->caps_sclk_ds) {
2597 		pl->ds_divider_index = 5;
2598 		pl->ss_divider_index = 5;
2599 	}
2600 }
2601 
2602 static int kv_parse_power_table(struct radeon_device *rdev)
2603 {
2604 	struct radeon_mode_info *mode_info = &rdev->mode_info;
2605 	struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info;
2606 	union pplib_power_state *power_state;
2607 	int i, j, k, non_clock_array_index, clock_array_index;
2608 	union pplib_clock_info *clock_info;
2609 	struct _StateArray *state_array;
2610 	struct _ClockInfoArray *clock_info_array;
2611 	struct _NonClockInfoArray *non_clock_info_array;
2612 	union power_info *power_info;
2613 	int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
2614         u16 data_offset;
2615 	u8 frev, crev;
2616 	u8 *power_state_offset;
2617 	struct kv_ps *ps;
2618 
2619 	if (!atom_parse_data_header(mode_info->atom_context, index, NULL,
2620 				   &frev, &crev, &data_offset))
2621 		return -EINVAL;
2622 	power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
2623 
2624 	state_array = (struct _StateArray *)
2625 		(mode_info->atom_context->bios + data_offset +
2626 		 le16_to_cpu(power_info->pplib.usStateArrayOffset));
2627 	clock_info_array = (struct _ClockInfoArray *)
2628 		(mode_info->atom_context->bios + data_offset +
2629 		 le16_to_cpu(power_info->pplib.usClockInfoArrayOffset));
2630 	non_clock_info_array = (struct _NonClockInfoArray *)
2631 		(mode_info->atom_context->bios + data_offset +
2632 		 le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset));
2633 
2634 	rdev->pm.dpm.ps = kzalloc(sizeof(struct radeon_ps) *
2635 				  state_array->ucNumEntries, GFP_KERNEL);
2636 	if (!rdev->pm.dpm.ps)
2637 		return -ENOMEM;
2638 	power_state_offset = (u8 *)state_array->states;
2639 	for (i = 0; i < state_array->ucNumEntries; i++) {
2640 		u8 *idx;
2641 		power_state = (union pplib_power_state *)power_state_offset;
2642 		non_clock_array_index = power_state->v2.nonClockInfoIndex;
2643 		non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *)
2644 			&non_clock_info_array->nonClockInfo[non_clock_array_index];
2645 		if (!rdev->pm.power_state[i].clock_info)
2646 			return -EINVAL;
2647 		ps = kzalloc(sizeof(struct kv_ps), GFP_KERNEL);
2648 		if (ps == NULL) {
2649 			kfree(rdev->pm.dpm.ps);
2650 			return -ENOMEM;
2651 		}
2652 		rdev->pm.dpm.ps[i].ps_priv = ps;
2653 		k = 0;
2654 		idx = (u8 *)&power_state->v2.clockInfoIndex[0];
2655 		for (j = 0; j < power_state->v2.ucNumDPMLevels; j++) {
2656 			clock_array_index = idx[j];
2657 			if (clock_array_index >= clock_info_array->ucNumEntries)
2658 				continue;
2659 			if (k >= SUMO_MAX_HARDWARE_POWERLEVELS)
2660 				break;
2661 			clock_info = (union pplib_clock_info *)
2662 				((u8 *)&clock_info_array->clockInfo[0] +
2663 				 (clock_array_index * clock_info_array->ucEntrySize));
2664 			kv_parse_pplib_clock_info(rdev,
2665 						  &rdev->pm.dpm.ps[i], k,
2666 						  clock_info);
2667 			k++;
2668 		}
2669 		kv_parse_pplib_non_clock_info(rdev, &rdev->pm.dpm.ps[i],
2670 					      non_clock_info,
2671 					      non_clock_info_array->ucEntrySize);
2672 		power_state_offset += 2 + power_state->v2.ucNumDPMLevels;
2673 	}
2674 	rdev->pm.dpm.num_ps = state_array->ucNumEntries;
2675 
2676 	/* fill in the vce power states */
2677 	for (i = 0; i < RADEON_MAX_VCE_LEVELS; i++) {
2678 		u32 sclk;
2679 		clock_array_index = rdev->pm.dpm.vce_states[i].clk_idx;
2680 		clock_info = (union pplib_clock_info *)
2681 			&clock_info_array->clockInfo[clock_array_index * clock_info_array->ucEntrySize];
2682 		sclk = le16_to_cpu(clock_info->sumo.usEngineClockLow);
2683 		sclk |= clock_info->sumo.ucEngineClockHigh << 16;
2684 		rdev->pm.dpm.vce_states[i].sclk = sclk;
2685 		rdev->pm.dpm.vce_states[i].mclk = 0;
2686 	}
2687 
2688 	return 0;
2689 }
2690 
2691 int kv_dpm_init(struct radeon_device *rdev)
2692 {
2693 	struct kv_power_info *pi;
2694 	int ret, i;
2695 
2696 	pi = kzalloc(sizeof(struct kv_power_info), GFP_KERNEL);
2697 	if (pi == NULL)
2698 		return -ENOMEM;
2699 	rdev->pm.dpm.priv = pi;
2700 
2701 	ret = r600_get_platform_caps(rdev);
2702 	if (ret)
2703 		return ret;
2704 
2705 	ret = r600_parse_extended_power_table(rdev);
2706 	if (ret)
2707 		return ret;
2708 
2709 	for (i = 0; i < SUMO_MAX_HARDWARE_POWERLEVELS; i++)
2710 		pi->at[i] = TRINITY_AT_DFLT;
2711 
2712         pi->sram_end = SMC_RAM_END;
2713 
2714 	pi->enable_nb_dpm = true;
2715 
2716 	pi->caps_power_containment = true;
2717 	pi->caps_cac = true;
2718 	pi->enable_didt = false;
2719 	if (pi->enable_didt) {
2720 		pi->caps_sq_ramping = true;
2721 		pi->caps_db_ramping = true;
2722 		pi->caps_td_ramping = true;
2723 		pi->caps_tcp_ramping = true;
2724 	}
2725 
2726 	pi->caps_sclk_ds = true;
2727 	pi->enable_auto_thermal_throttling = true;
2728 	pi->disable_nb_ps3_in_battery = false;
2729 	pi->bapm_enable = true;
2730 	pi->voltage_drop_t = 0;
2731 	pi->caps_sclk_throttle_low_notification = false;
2732 	pi->caps_fps = false; /* true? */
2733 	pi->caps_uvd_pg = true;
2734 	pi->caps_uvd_dpm = true;
2735 	pi->caps_vce_pg = false; /* XXX true */
2736 	pi->caps_samu_pg = false;
2737 	pi->caps_acp_pg = false;
2738 	pi->caps_stable_p_state = false;
2739 
2740 	ret = kv_parse_sys_info_table(rdev);
2741 	if (ret)
2742 		return ret;
2743 
2744 	kv_patch_voltage_values(rdev);
2745 	kv_construct_boot_state(rdev);
2746 
2747 	ret = kv_parse_power_table(rdev);
2748 	if (ret)
2749 		return ret;
2750 
2751 	pi->enable_dpm = true;
2752 
2753 	return 0;
2754 }
2755 
2756 void kv_dpm_debugfs_print_current_performance_level(struct radeon_device *rdev,
2757 						    struct seq_file *m)
2758 {
2759 	struct kv_power_info *pi = kv_get_pi(rdev);
2760 	u32 current_index =
2761 		(RREG32_SMC(TARGET_AND_CURRENT_PROFILE_INDEX) & CURR_SCLK_INDEX_MASK) >>
2762 		CURR_SCLK_INDEX_SHIFT;
2763 	u32 sclk, tmp;
2764 	u16 vddc;
2765 
2766 	if (current_index >= SMU__NUM_SCLK_DPM_STATE) {
2767 		seq_printf(m, "invalid dpm profile %d\n", current_index);
2768 	} else {
2769 		sclk = be32_to_cpu(pi->graphics_level[current_index].SclkFrequency);
2770 		tmp = (RREG32_SMC(SMU_VOLTAGE_STATUS) & SMU_VOLTAGE_CURRENT_LEVEL_MASK) >>
2771 			SMU_VOLTAGE_CURRENT_LEVEL_SHIFT;
2772 		vddc = kv_convert_8bit_index_to_voltage(rdev, (u16)tmp);
2773 		seq_printf(m, "power level %d    sclk: %u vddc: %u\n",
2774 			   current_index, sclk, vddc);
2775 	}
2776 }
2777 
2778 void kv_dpm_print_power_state(struct radeon_device *rdev,
2779 			      struct radeon_ps *rps)
2780 {
2781 	int i;
2782 	struct kv_ps *ps = kv_get_ps(rps);
2783 
2784 	r600_dpm_print_class_info(rps->class, rps->class2);
2785 	r600_dpm_print_cap_info(rps->caps);
2786 	printk("\tuvd    vclk: %d dclk: %d\n", rps->vclk, rps->dclk);
2787 	for (i = 0; i < ps->num_levels; i++) {
2788 		struct kv_pl *pl = &ps->levels[i];
2789 		printk("\t\tpower level %d    sclk: %u vddc: %u\n",
2790 		       i, pl->sclk,
2791 		       kv_convert_8bit_index_to_voltage(rdev, pl->vddc_index));
2792 	}
2793 	r600_dpm_print_ps_status(rdev, rps);
2794 }
2795 
2796 void kv_dpm_fini(struct radeon_device *rdev)
2797 {
2798 	int i;
2799 
2800 	for (i = 0; i < rdev->pm.dpm.num_ps; i++) {
2801 		kfree(rdev->pm.dpm.ps[i].ps_priv);
2802 	}
2803 	kfree(rdev->pm.dpm.ps);
2804 	kfree(rdev->pm.dpm.priv);
2805 	r600_free_extended_power_table(rdev);
2806 }
2807 
2808 void kv_dpm_display_configuration_changed(struct radeon_device *rdev)
2809 {
2810 
2811 }
2812 
2813 u32 kv_dpm_get_sclk(struct radeon_device *rdev, bool low)
2814 {
2815 	struct kv_power_info *pi = kv_get_pi(rdev);
2816 	struct kv_ps *requested_state = kv_get_ps(&pi->requested_rps);
2817 
2818 	if (low)
2819 		return requested_state->levels[0].sclk;
2820 	else
2821 		return requested_state->levels[requested_state->num_levels - 1].sclk;
2822 }
2823 
2824 u32 kv_dpm_get_mclk(struct radeon_device *rdev, bool low)
2825 {
2826 	struct kv_power_info *pi = kv_get_pi(rdev);
2827 
2828 	return pi->sys_info.bootup_uma_clk;
2829 }
2830 
2831