1 /* 2 * Copyright 2013 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Alex Deucher 23 */ 24 #include <linux/firmware.h> 25 #include <drm/drmP.h> 26 #include "radeon.h" 27 #include "radeon_ucode.h" 28 #include "radeon_asic.h" 29 #include "radeon_trace.h" 30 #include "cikd.h" 31 32 /* sdma */ 33 #define CIK_SDMA_UCODE_SIZE 1050 34 #define CIK_SDMA_UCODE_VERSION 64 35 36 u32 cik_gpu_check_soft_reset(struct radeon_device *rdev); 37 38 /* 39 * sDMA - System DMA 40 * Starting with CIK, the GPU has new asynchronous 41 * DMA engines. These engines are used for compute 42 * and gfx. There are two DMA engines (SDMA0, SDMA1) 43 * and each one supports 1 ring buffer used for gfx 44 * and 2 queues used for compute. 45 * 46 * The programming model is very similar to the CP 47 * (ring buffer, IBs, etc.), but sDMA has it's own 48 * packet format that is different from the PM4 format 49 * used by the CP. sDMA supports copying data, writing 50 * embedded data, solid fills, and a number of other 51 * things. It also has support for tiling/detiling of 52 * buffers. 53 */ 54 55 /** 56 * cik_sdma_get_rptr - get the current read pointer 57 * 58 * @rdev: radeon_device pointer 59 * @ring: radeon ring pointer 60 * 61 * Get the current rptr from the hardware (CIK+). 62 */ 63 uint32_t cik_sdma_get_rptr(struct radeon_device *rdev, 64 struct radeon_ring *ring) 65 { 66 u32 rptr, reg; 67 68 if (rdev->wb.enabled) { 69 rptr = rdev->wb.wb[ring->rptr_offs/4]; 70 } else { 71 if (ring->idx == R600_RING_TYPE_DMA_INDEX) 72 reg = SDMA0_GFX_RB_RPTR + SDMA0_REGISTER_OFFSET; 73 else 74 reg = SDMA0_GFX_RB_RPTR + SDMA1_REGISTER_OFFSET; 75 76 rptr = RREG32(reg); 77 } 78 79 return (rptr & 0x3fffc) >> 2; 80 } 81 82 /** 83 * cik_sdma_get_wptr - get the current write pointer 84 * 85 * @rdev: radeon_device pointer 86 * @ring: radeon ring pointer 87 * 88 * Get the current wptr from the hardware (CIK+). 89 */ 90 uint32_t cik_sdma_get_wptr(struct radeon_device *rdev, 91 struct radeon_ring *ring) 92 { 93 u32 reg; 94 95 if (ring->idx == R600_RING_TYPE_DMA_INDEX) 96 reg = SDMA0_GFX_RB_WPTR + SDMA0_REGISTER_OFFSET; 97 else 98 reg = SDMA0_GFX_RB_WPTR + SDMA1_REGISTER_OFFSET; 99 100 return (RREG32(reg) & 0x3fffc) >> 2; 101 } 102 103 /** 104 * cik_sdma_set_wptr - commit the write pointer 105 * 106 * @rdev: radeon_device pointer 107 * @ring: radeon ring pointer 108 * 109 * Write the wptr back to the hardware (CIK+). 110 */ 111 void cik_sdma_set_wptr(struct radeon_device *rdev, 112 struct radeon_ring *ring) 113 { 114 u32 reg; 115 116 if (ring->idx == R600_RING_TYPE_DMA_INDEX) 117 reg = SDMA0_GFX_RB_WPTR + SDMA0_REGISTER_OFFSET; 118 else 119 reg = SDMA0_GFX_RB_WPTR + SDMA1_REGISTER_OFFSET; 120 121 WREG32(reg, (ring->wptr << 2) & 0x3fffc); 122 (void)RREG32(reg); 123 } 124 125 /** 126 * cik_sdma_ring_ib_execute - Schedule an IB on the DMA engine 127 * 128 * @rdev: radeon_device pointer 129 * @ib: IB object to schedule 130 * 131 * Schedule an IB in the DMA ring (CIK). 132 */ 133 void cik_sdma_ring_ib_execute(struct radeon_device *rdev, 134 struct radeon_ib *ib) 135 { 136 struct radeon_ring *ring = &rdev->ring[ib->ring]; 137 u32 extra_bits = (ib->vm ? ib->vm->ids[ib->ring].id : 0) & 0xf; 138 139 if (rdev->wb.enabled) { 140 u32 next_rptr = ring->wptr + 5; 141 while ((next_rptr & 7) != 4) 142 next_rptr++; 143 next_rptr += 4; 144 radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0)); 145 radeon_ring_write(ring, ring->next_rptr_gpu_addr & 0xfffffffc); 146 radeon_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr)); 147 radeon_ring_write(ring, 1); /* number of DWs to follow */ 148 radeon_ring_write(ring, next_rptr); 149 } 150 151 /* IB packet must end on a 8 DW boundary */ 152 while ((ring->wptr & 7) != 4) 153 radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0)); 154 radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_INDIRECT_BUFFER, 0, extra_bits)); 155 radeon_ring_write(ring, ib->gpu_addr & 0xffffffe0); /* base must be 32 byte aligned */ 156 radeon_ring_write(ring, upper_32_bits(ib->gpu_addr)); 157 radeon_ring_write(ring, ib->length_dw); 158 159 } 160 161 /** 162 * cik_sdma_hdp_flush_ring_emit - emit an hdp flush on the DMA ring 163 * 164 * @rdev: radeon_device pointer 165 * @ridx: radeon ring index 166 * 167 * Emit an hdp flush packet on the requested DMA ring. 168 */ 169 static void cik_sdma_hdp_flush_ring_emit(struct radeon_device *rdev, 170 int ridx) 171 { 172 struct radeon_ring *ring = &rdev->ring[ridx]; 173 u32 extra_bits = (SDMA_POLL_REG_MEM_EXTRA_OP(1) | 174 SDMA_POLL_REG_MEM_EXTRA_FUNC(3)); /* == */ 175 u32 ref_and_mask; 176 177 if (ridx == R600_RING_TYPE_DMA_INDEX) 178 ref_and_mask = SDMA0; 179 else 180 ref_and_mask = SDMA1; 181 182 radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_POLL_REG_MEM, 0, extra_bits)); 183 radeon_ring_write(ring, GPU_HDP_FLUSH_DONE); 184 radeon_ring_write(ring, GPU_HDP_FLUSH_REQ); 185 radeon_ring_write(ring, ref_and_mask); /* reference */ 186 radeon_ring_write(ring, ref_and_mask); /* mask */ 187 radeon_ring_write(ring, (0xfff << 16) | 10); /* retry count, poll interval */ 188 } 189 190 /** 191 * cik_sdma_fence_ring_emit - emit a fence on the DMA ring 192 * 193 * @rdev: radeon_device pointer 194 * @fence: radeon fence object 195 * 196 * Add a DMA fence packet to the ring to write 197 * the fence seq number and DMA trap packet to generate 198 * an interrupt if needed (CIK). 199 */ 200 void cik_sdma_fence_ring_emit(struct radeon_device *rdev, 201 struct radeon_fence *fence) 202 { 203 struct radeon_ring *ring = &rdev->ring[fence->ring]; 204 u64 addr = rdev->fence_drv[fence->ring].gpu_addr; 205 206 /* write the fence */ 207 radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_FENCE, 0, 0)); 208 radeon_ring_write(ring, lower_32_bits(addr)); 209 radeon_ring_write(ring, upper_32_bits(addr)); 210 radeon_ring_write(ring, fence->seq); 211 /* generate an interrupt */ 212 radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_TRAP, 0, 0)); 213 /* flush HDP */ 214 cik_sdma_hdp_flush_ring_emit(rdev, fence->ring); 215 } 216 217 /** 218 * cik_sdma_semaphore_ring_emit - emit a semaphore on the dma ring 219 * 220 * @rdev: radeon_device pointer 221 * @ring: radeon_ring structure holding ring information 222 * @semaphore: radeon semaphore object 223 * @emit_wait: wait or signal semaphore 224 * 225 * Add a DMA semaphore packet to the ring wait on or signal 226 * other rings (CIK). 227 */ 228 bool cik_sdma_semaphore_ring_emit(struct radeon_device *rdev, 229 struct radeon_ring *ring, 230 struct radeon_semaphore *semaphore, 231 bool emit_wait) 232 { 233 u64 addr = semaphore->gpu_addr; 234 u32 extra_bits = emit_wait ? 0 : SDMA_SEMAPHORE_EXTRA_S; 235 236 radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SEMAPHORE, 0, extra_bits)); 237 radeon_ring_write(ring, addr & 0xfffffff8); 238 radeon_ring_write(ring, upper_32_bits(addr)); 239 240 return true; 241 } 242 243 /** 244 * cik_sdma_gfx_stop - stop the gfx async dma engines 245 * 246 * @rdev: radeon_device pointer 247 * 248 * Stop the gfx async dma ring buffers (CIK). 249 */ 250 static void cik_sdma_gfx_stop(struct radeon_device *rdev) 251 { 252 u32 rb_cntl, reg_offset; 253 int i; 254 255 if ((rdev->asic->copy.copy_ring_index == R600_RING_TYPE_DMA_INDEX) || 256 (rdev->asic->copy.copy_ring_index == CAYMAN_RING_TYPE_DMA1_INDEX)) 257 radeon_ttm_set_active_vram_size(rdev, rdev->mc.visible_vram_size); 258 259 for (i = 0; i < 2; i++) { 260 if (i == 0) 261 reg_offset = SDMA0_REGISTER_OFFSET; 262 else 263 reg_offset = SDMA1_REGISTER_OFFSET; 264 rb_cntl = RREG32(SDMA0_GFX_RB_CNTL + reg_offset); 265 rb_cntl &= ~SDMA_RB_ENABLE; 266 WREG32(SDMA0_GFX_RB_CNTL + reg_offset, rb_cntl); 267 WREG32(SDMA0_GFX_IB_CNTL + reg_offset, 0); 268 } 269 rdev->ring[R600_RING_TYPE_DMA_INDEX].ready = false; 270 rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX].ready = false; 271 272 /* FIXME use something else than big hammer but after few days can not 273 * seem to find good combination so reset SDMA blocks as it seems we 274 * do not shut them down properly. This fix hibernation and does not 275 * affect suspend to ram. 276 */ 277 WREG32(SRBM_SOFT_RESET, SOFT_RESET_SDMA | SOFT_RESET_SDMA1); 278 (void)RREG32(SRBM_SOFT_RESET); 279 udelay(50); 280 WREG32(SRBM_SOFT_RESET, 0); 281 (void)RREG32(SRBM_SOFT_RESET); 282 } 283 284 /** 285 * cik_sdma_rlc_stop - stop the compute async dma engines 286 * 287 * @rdev: radeon_device pointer 288 * 289 * Stop the compute async dma queues (CIK). 290 */ 291 static void cik_sdma_rlc_stop(struct radeon_device *rdev) 292 { 293 /* XXX todo */ 294 } 295 296 /** 297 * cik_sdma_ctx_switch_enable - enable/disable sdma engine preemption 298 * 299 * @rdev: radeon_device pointer 300 * @enable: enable/disable preemption. 301 * 302 * Halt or unhalt the async dma engines (CIK). 303 */ 304 static void cik_sdma_ctx_switch_enable(struct radeon_device *rdev, bool enable) 305 { 306 uint32_t reg_offset, value; 307 int i; 308 309 for (i = 0; i < 2; i++) { 310 if (i == 0) 311 reg_offset = SDMA0_REGISTER_OFFSET; 312 else 313 reg_offset = SDMA1_REGISTER_OFFSET; 314 value = RREG32(SDMA0_CNTL + reg_offset); 315 if (enable) 316 value |= AUTO_CTXSW_ENABLE; 317 else 318 value &= ~AUTO_CTXSW_ENABLE; 319 WREG32(SDMA0_CNTL + reg_offset, value); 320 } 321 } 322 323 /** 324 * cik_sdma_enable - stop the async dma engines 325 * 326 * @rdev: radeon_device pointer 327 * @enable: enable/disable the DMA MEs. 328 * 329 * Halt or unhalt the async dma engines (CIK). 330 */ 331 void cik_sdma_enable(struct radeon_device *rdev, bool enable) 332 { 333 u32 me_cntl, reg_offset; 334 int i; 335 336 if (enable == false) { 337 cik_sdma_gfx_stop(rdev); 338 cik_sdma_rlc_stop(rdev); 339 } 340 341 for (i = 0; i < 2; i++) { 342 if (i == 0) 343 reg_offset = SDMA0_REGISTER_OFFSET; 344 else 345 reg_offset = SDMA1_REGISTER_OFFSET; 346 me_cntl = RREG32(SDMA0_ME_CNTL + reg_offset); 347 if (enable) 348 me_cntl &= ~SDMA_HALT; 349 else 350 me_cntl |= SDMA_HALT; 351 WREG32(SDMA0_ME_CNTL + reg_offset, me_cntl); 352 } 353 354 cik_sdma_ctx_switch_enable(rdev, enable); 355 } 356 357 /** 358 * cik_sdma_gfx_resume - setup and start the async dma engines 359 * 360 * @rdev: radeon_device pointer 361 * 362 * Set up the gfx DMA ring buffers and enable them (CIK). 363 * Returns 0 for success, error for failure. 364 */ 365 static int cik_sdma_gfx_resume(struct radeon_device *rdev) 366 { 367 struct radeon_ring *ring; 368 u32 rb_cntl, ib_cntl; 369 u32 rb_bufsz; 370 u32 reg_offset, wb_offset; 371 int i, r; 372 373 for (i = 0; i < 2; i++) { 374 if (i == 0) { 375 ring = &rdev->ring[R600_RING_TYPE_DMA_INDEX]; 376 reg_offset = SDMA0_REGISTER_OFFSET; 377 wb_offset = R600_WB_DMA_RPTR_OFFSET; 378 } else { 379 ring = &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX]; 380 reg_offset = SDMA1_REGISTER_OFFSET; 381 wb_offset = CAYMAN_WB_DMA1_RPTR_OFFSET; 382 } 383 384 WREG32(SDMA0_SEM_INCOMPLETE_TIMER_CNTL + reg_offset, 0); 385 WREG32(SDMA0_SEM_WAIT_FAIL_TIMER_CNTL + reg_offset, 0); 386 387 /* Set ring buffer size in dwords */ 388 rb_bufsz = order_base_2(ring->ring_size / 4); 389 rb_cntl = rb_bufsz << 1; 390 #ifdef __BIG_ENDIAN 391 rb_cntl |= SDMA_RB_SWAP_ENABLE | SDMA_RPTR_WRITEBACK_SWAP_ENABLE; 392 #endif 393 WREG32(SDMA0_GFX_RB_CNTL + reg_offset, rb_cntl); 394 395 /* Initialize the ring buffer's read and write pointers */ 396 WREG32(SDMA0_GFX_RB_RPTR + reg_offset, 0); 397 WREG32(SDMA0_GFX_RB_WPTR + reg_offset, 0); 398 399 /* set the wb address whether it's enabled or not */ 400 WREG32(SDMA0_GFX_RB_RPTR_ADDR_HI + reg_offset, 401 upper_32_bits(rdev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); 402 WREG32(SDMA0_GFX_RB_RPTR_ADDR_LO + reg_offset, 403 ((rdev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC)); 404 405 if (rdev->wb.enabled) 406 rb_cntl |= SDMA_RPTR_WRITEBACK_ENABLE; 407 408 WREG32(SDMA0_GFX_RB_BASE + reg_offset, ring->gpu_addr >> 8); 409 WREG32(SDMA0_GFX_RB_BASE_HI + reg_offset, ring->gpu_addr >> 40); 410 411 ring->wptr = 0; 412 WREG32(SDMA0_GFX_RB_WPTR + reg_offset, ring->wptr << 2); 413 414 /* enable DMA RB */ 415 WREG32(SDMA0_GFX_RB_CNTL + reg_offset, rb_cntl | SDMA_RB_ENABLE); 416 417 ib_cntl = SDMA_IB_ENABLE; 418 #ifdef __BIG_ENDIAN 419 ib_cntl |= SDMA_IB_SWAP_ENABLE; 420 #endif 421 /* enable DMA IBs */ 422 WREG32(SDMA0_GFX_IB_CNTL + reg_offset, ib_cntl); 423 424 ring->ready = true; 425 426 r = radeon_ring_test(rdev, ring->idx, ring); 427 if (r) { 428 ring->ready = false; 429 return r; 430 } 431 } 432 433 if ((rdev->asic->copy.copy_ring_index == R600_RING_TYPE_DMA_INDEX) || 434 (rdev->asic->copy.copy_ring_index == CAYMAN_RING_TYPE_DMA1_INDEX)) 435 radeon_ttm_set_active_vram_size(rdev, rdev->mc.real_vram_size); 436 437 return 0; 438 } 439 440 /** 441 * cik_sdma_rlc_resume - setup and start the async dma engines 442 * 443 * @rdev: radeon_device pointer 444 * 445 * Set up the compute DMA queues and enable them (CIK). 446 * Returns 0 for success, error for failure. 447 */ 448 static int cik_sdma_rlc_resume(struct radeon_device *rdev) 449 { 450 /* XXX todo */ 451 return 0; 452 } 453 454 /** 455 * cik_sdma_load_microcode - load the sDMA ME ucode 456 * 457 * @rdev: radeon_device pointer 458 * 459 * Loads the sDMA0/1 ucode. 460 * Returns 0 for success, -EINVAL if the ucode is not available. 461 */ 462 static int cik_sdma_load_microcode(struct radeon_device *rdev) 463 { 464 int i; 465 466 if (!rdev->sdma_fw) 467 return -EINVAL; 468 469 /* halt the MEs */ 470 cik_sdma_enable(rdev, false); 471 472 if (rdev->new_fw) { 473 const struct sdma_firmware_header_v1_0 *hdr = 474 (const struct sdma_firmware_header_v1_0 *)rdev->sdma_fw->data; 475 const __le32 *fw_data; 476 u32 fw_size; 477 478 radeon_ucode_print_sdma_hdr(&hdr->header); 479 480 /* sdma0 */ 481 fw_data = (const __le32 *) 482 (rdev->sdma_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); 483 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; 484 WREG32(SDMA0_UCODE_ADDR + SDMA0_REGISTER_OFFSET, 0); 485 for (i = 0; i < fw_size; i++) 486 WREG32(SDMA0_UCODE_DATA + SDMA0_REGISTER_OFFSET, le32_to_cpup(fw_data++)); 487 WREG32(SDMA0_UCODE_DATA + SDMA0_REGISTER_OFFSET, CIK_SDMA_UCODE_VERSION); 488 489 /* sdma1 */ 490 fw_data = (const __le32 *) 491 (rdev->sdma_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); 492 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; 493 WREG32(SDMA0_UCODE_ADDR + SDMA1_REGISTER_OFFSET, 0); 494 for (i = 0; i < fw_size; i++) 495 WREG32(SDMA0_UCODE_DATA + SDMA1_REGISTER_OFFSET, le32_to_cpup(fw_data++)); 496 WREG32(SDMA0_UCODE_DATA + SDMA1_REGISTER_OFFSET, CIK_SDMA_UCODE_VERSION); 497 } else { 498 const __be32 *fw_data; 499 500 /* sdma0 */ 501 fw_data = (const __be32 *)rdev->sdma_fw->data; 502 WREG32(SDMA0_UCODE_ADDR + SDMA0_REGISTER_OFFSET, 0); 503 for (i = 0; i < CIK_SDMA_UCODE_SIZE; i++) 504 WREG32(SDMA0_UCODE_DATA + SDMA0_REGISTER_OFFSET, be32_to_cpup(fw_data++)); 505 WREG32(SDMA0_UCODE_DATA + SDMA0_REGISTER_OFFSET, CIK_SDMA_UCODE_VERSION); 506 507 /* sdma1 */ 508 fw_data = (const __be32 *)rdev->sdma_fw->data; 509 WREG32(SDMA0_UCODE_ADDR + SDMA1_REGISTER_OFFSET, 0); 510 for (i = 0; i < CIK_SDMA_UCODE_SIZE; i++) 511 WREG32(SDMA0_UCODE_DATA + SDMA1_REGISTER_OFFSET, be32_to_cpup(fw_data++)); 512 WREG32(SDMA0_UCODE_DATA + SDMA1_REGISTER_OFFSET, CIK_SDMA_UCODE_VERSION); 513 } 514 515 WREG32(SDMA0_UCODE_ADDR + SDMA0_REGISTER_OFFSET, 0); 516 WREG32(SDMA0_UCODE_ADDR + SDMA1_REGISTER_OFFSET, 0); 517 return 0; 518 } 519 520 /** 521 * cik_sdma_resume - setup and start the async dma engines 522 * 523 * @rdev: radeon_device pointer 524 * 525 * Set up the DMA engines and enable them (CIK). 526 * Returns 0 for success, error for failure. 527 */ 528 int cik_sdma_resume(struct radeon_device *rdev) 529 { 530 int r; 531 532 r = cik_sdma_load_microcode(rdev); 533 if (r) 534 return r; 535 536 /* unhalt the MEs */ 537 cik_sdma_enable(rdev, true); 538 539 /* start the gfx rings and rlc compute queues */ 540 r = cik_sdma_gfx_resume(rdev); 541 if (r) 542 return r; 543 r = cik_sdma_rlc_resume(rdev); 544 if (r) 545 return r; 546 547 return 0; 548 } 549 550 /** 551 * cik_sdma_fini - tear down the async dma engines 552 * 553 * @rdev: radeon_device pointer 554 * 555 * Stop the async dma engines and free the rings (CIK). 556 */ 557 void cik_sdma_fini(struct radeon_device *rdev) 558 { 559 /* halt the MEs */ 560 cik_sdma_enable(rdev, false); 561 radeon_ring_fini(rdev, &rdev->ring[R600_RING_TYPE_DMA_INDEX]); 562 radeon_ring_fini(rdev, &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX]); 563 /* XXX - compute dma queue tear down */ 564 } 565 566 /** 567 * cik_copy_dma - copy pages using the DMA engine 568 * 569 * @rdev: radeon_device pointer 570 * @src_offset: src GPU address 571 * @dst_offset: dst GPU address 572 * @num_gpu_pages: number of GPU pages to xfer 573 * @resv: reservation object to sync to 574 * 575 * Copy GPU paging using the DMA engine (CIK). 576 * Used by the radeon ttm implementation to move pages if 577 * registered as the asic copy callback. 578 */ 579 struct radeon_fence *cik_copy_dma(struct radeon_device *rdev, 580 uint64_t src_offset, uint64_t dst_offset, 581 unsigned num_gpu_pages, 582 struct reservation_object *resv) 583 { 584 struct radeon_fence *fence; 585 struct radeon_sync sync; 586 int ring_index = rdev->asic->copy.dma_ring_index; 587 struct radeon_ring *ring = &rdev->ring[ring_index]; 588 u32 size_in_bytes, cur_size_in_bytes; 589 int i, num_loops; 590 int r = 0; 591 592 radeon_sync_create(&sync); 593 594 size_in_bytes = (num_gpu_pages << RADEON_GPU_PAGE_SHIFT); 595 num_loops = DIV_ROUND_UP(size_in_bytes, 0x1fffff); 596 r = radeon_ring_lock(rdev, ring, num_loops * 7 + 14); 597 if (r) { 598 DRM_ERROR("radeon: moving bo (%d).\n", r); 599 radeon_sync_free(rdev, &sync, NULL); 600 return ERR_PTR(r); 601 } 602 603 radeon_sync_resv(rdev, &sync, resv, false); 604 radeon_sync_rings(rdev, &sync, ring->idx); 605 606 for (i = 0; i < num_loops; i++) { 607 cur_size_in_bytes = size_in_bytes; 608 if (cur_size_in_bytes > 0x1fffff) 609 cur_size_in_bytes = 0x1fffff; 610 size_in_bytes -= cur_size_in_bytes; 611 radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_COPY, SDMA_COPY_SUB_OPCODE_LINEAR, 0)); 612 radeon_ring_write(ring, cur_size_in_bytes); 613 radeon_ring_write(ring, 0); /* src/dst endian swap */ 614 radeon_ring_write(ring, lower_32_bits(src_offset)); 615 radeon_ring_write(ring, upper_32_bits(src_offset)); 616 radeon_ring_write(ring, lower_32_bits(dst_offset)); 617 radeon_ring_write(ring, upper_32_bits(dst_offset)); 618 src_offset += cur_size_in_bytes; 619 dst_offset += cur_size_in_bytes; 620 } 621 622 r = radeon_fence_emit(rdev, &fence, ring->idx); 623 if (r) { 624 radeon_ring_unlock_undo(rdev, ring); 625 radeon_sync_free(rdev, &sync, NULL); 626 return ERR_PTR(r); 627 } 628 629 radeon_ring_unlock_commit(rdev, ring, false); 630 radeon_sync_free(rdev, &sync, fence); 631 632 return fence; 633 } 634 635 /** 636 * cik_sdma_ring_test - simple async dma engine test 637 * 638 * @rdev: radeon_device pointer 639 * @ring: radeon_ring structure holding ring information 640 * 641 * Test the DMA engine by writing using it to write an 642 * value to memory. (CIK). 643 * Returns 0 for success, error for failure. 644 */ 645 int cik_sdma_ring_test(struct radeon_device *rdev, 646 struct radeon_ring *ring) 647 { 648 unsigned i; 649 int r; 650 unsigned index; 651 u32 tmp; 652 u64 gpu_addr; 653 654 if (ring->idx == R600_RING_TYPE_DMA_INDEX) 655 index = R600_WB_DMA_RING_TEST_OFFSET; 656 else 657 index = CAYMAN_WB_DMA1_RING_TEST_OFFSET; 658 659 gpu_addr = rdev->wb.gpu_addr + index; 660 661 tmp = 0xCAFEDEAD; 662 rdev->wb.wb[index/4] = cpu_to_le32(tmp); 663 664 r = radeon_ring_lock(rdev, ring, 5); 665 if (r) { 666 DRM_ERROR("radeon: dma failed to lock ring %d (%d).\n", ring->idx, r); 667 return r; 668 } 669 radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0)); 670 radeon_ring_write(ring, lower_32_bits(gpu_addr)); 671 radeon_ring_write(ring, upper_32_bits(gpu_addr)); 672 radeon_ring_write(ring, 1); /* number of DWs to follow */ 673 radeon_ring_write(ring, 0xDEADBEEF); 674 radeon_ring_unlock_commit(rdev, ring, false); 675 676 for (i = 0; i < rdev->usec_timeout; i++) { 677 tmp = le32_to_cpu(rdev->wb.wb[index/4]); 678 if (tmp == 0xDEADBEEF) 679 break; 680 DRM_UDELAY(1); 681 } 682 683 if (i < rdev->usec_timeout) { 684 DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i); 685 } else { 686 DRM_ERROR("radeon: ring %d test failed (0x%08X)\n", 687 ring->idx, tmp); 688 r = -EINVAL; 689 } 690 return r; 691 } 692 693 /** 694 * cik_sdma_ib_test - test an IB on the DMA engine 695 * 696 * @rdev: radeon_device pointer 697 * @ring: radeon_ring structure holding ring information 698 * 699 * Test a simple IB in the DMA ring (CIK). 700 * Returns 0 on success, error on failure. 701 */ 702 int cik_sdma_ib_test(struct radeon_device *rdev, struct radeon_ring *ring) 703 { 704 struct radeon_ib ib; 705 unsigned i; 706 unsigned index; 707 int r; 708 u32 tmp = 0; 709 u64 gpu_addr; 710 711 if (ring->idx == R600_RING_TYPE_DMA_INDEX) 712 index = R600_WB_DMA_RING_TEST_OFFSET; 713 else 714 index = CAYMAN_WB_DMA1_RING_TEST_OFFSET; 715 716 gpu_addr = rdev->wb.gpu_addr + index; 717 718 tmp = 0xCAFEDEAD; 719 rdev->wb.wb[index/4] = cpu_to_le32(tmp); 720 721 r = radeon_ib_get(rdev, ring->idx, &ib, NULL, 256); 722 if (r) { 723 DRM_ERROR("radeon: failed to get ib (%d).\n", r); 724 return r; 725 } 726 727 ib.ptr[0] = SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0); 728 ib.ptr[1] = lower_32_bits(gpu_addr); 729 ib.ptr[2] = upper_32_bits(gpu_addr); 730 ib.ptr[3] = 1; 731 ib.ptr[4] = 0xDEADBEEF; 732 ib.length_dw = 5; 733 734 r = radeon_ib_schedule(rdev, &ib, NULL, false); 735 if (r) { 736 radeon_ib_free(rdev, &ib); 737 DRM_ERROR("radeon: failed to schedule ib (%d).\n", r); 738 return r; 739 } 740 r = radeon_fence_wait(ib.fence, false); 741 if (r) { 742 DRM_ERROR("radeon: fence wait failed (%d).\n", r); 743 return r; 744 } 745 for (i = 0; i < rdev->usec_timeout; i++) { 746 tmp = le32_to_cpu(rdev->wb.wb[index/4]); 747 if (tmp == 0xDEADBEEF) 748 break; 749 DRM_UDELAY(1); 750 } 751 if (i < rdev->usec_timeout) { 752 DRM_INFO("ib test on ring %d succeeded in %u usecs\n", ib.fence->ring, i); 753 } else { 754 DRM_ERROR("radeon: ib test failed (0x%08X)\n", tmp); 755 r = -EINVAL; 756 } 757 radeon_ib_free(rdev, &ib); 758 return r; 759 } 760 761 /** 762 * cik_sdma_is_lockup - Check if the DMA engine is locked up 763 * 764 * @rdev: radeon_device pointer 765 * @ring: radeon_ring structure holding ring information 766 * 767 * Check if the async DMA engine is locked up (CIK). 768 * Returns true if the engine appears to be locked up, false if not. 769 */ 770 bool cik_sdma_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring) 771 { 772 u32 reset_mask = cik_gpu_check_soft_reset(rdev); 773 u32 mask; 774 775 if (ring->idx == R600_RING_TYPE_DMA_INDEX) 776 mask = RADEON_RESET_DMA; 777 else 778 mask = RADEON_RESET_DMA1; 779 780 if (!(reset_mask & mask)) { 781 radeon_ring_lockup_update(rdev, ring); 782 return false; 783 } 784 return radeon_ring_test_lockup(rdev, ring); 785 } 786 787 /** 788 * cik_sdma_vm_copy_pages - update PTEs by copying them from the GART 789 * 790 * @rdev: radeon_device pointer 791 * @ib: indirect buffer to fill with commands 792 * @pe: addr of the page entry 793 * @src: src addr to copy from 794 * @count: number of page entries to update 795 * 796 * Update PTEs by copying them from the GART using sDMA (CIK). 797 */ 798 void cik_sdma_vm_copy_pages(struct radeon_device *rdev, 799 struct radeon_ib *ib, 800 uint64_t pe, uint64_t src, 801 unsigned count) 802 { 803 while (count) { 804 unsigned bytes = count * 8; 805 if (bytes > 0x1FFFF8) 806 bytes = 0x1FFFF8; 807 808 ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_COPY, 809 SDMA_WRITE_SUB_OPCODE_LINEAR, 0); 810 ib->ptr[ib->length_dw++] = bytes; 811 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 812 ib->ptr[ib->length_dw++] = lower_32_bits(src); 813 ib->ptr[ib->length_dw++] = upper_32_bits(src); 814 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 815 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 816 817 pe += bytes; 818 src += bytes; 819 count -= bytes / 8; 820 } 821 } 822 823 /** 824 * cik_sdma_vm_write_pages - update PTEs by writing them manually 825 * 826 * @rdev: radeon_device pointer 827 * @ib: indirect buffer to fill with commands 828 * @pe: addr of the page entry 829 * @addr: dst addr to write into pe 830 * @count: number of page entries to update 831 * @incr: increase next addr by incr bytes 832 * @flags: access flags 833 * 834 * Update PTEs by writing them manually using sDMA (CIK). 835 */ 836 void cik_sdma_vm_write_pages(struct radeon_device *rdev, 837 struct radeon_ib *ib, 838 uint64_t pe, 839 uint64_t addr, unsigned count, 840 uint32_t incr, uint32_t flags) 841 { 842 uint64_t value; 843 unsigned ndw; 844 845 while (count) { 846 ndw = count * 2; 847 if (ndw > 0xFFFFE) 848 ndw = 0xFFFFE; 849 850 /* for non-physically contiguous pages (system) */ 851 ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_WRITE, 852 SDMA_WRITE_SUB_OPCODE_LINEAR, 0); 853 ib->ptr[ib->length_dw++] = pe; 854 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 855 ib->ptr[ib->length_dw++] = ndw; 856 for (; ndw > 0; ndw -= 2, --count, pe += 8) { 857 if (flags & R600_PTE_SYSTEM) { 858 value = radeon_vm_map_gart(rdev, addr); 859 } else if (flags & R600_PTE_VALID) { 860 value = addr; 861 } else { 862 value = 0; 863 } 864 addr += incr; 865 value |= flags; 866 ib->ptr[ib->length_dw++] = value; 867 ib->ptr[ib->length_dw++] = upper_32_bits(value); 868 } 869 } 870 } 871 872 /** 873 * cik_sdma_vm_set_pages - update the page tables using sDMA 874 * 875 * @rdev: radeon_device pointer 876 * @ib: indirect buffer to fill with commands 877 * @pe: addr of the page entry 878 * @addr: dst addr to write into pe 879 * @count: number of page entries to update 880 * @incr: increase next addr by incr bytes 881 * @flags: access flags 882 * 883 * Update the page tables using sDMA (CIK). 884 */ 885 void cik_sdma_vm_set_pages(struct radeon_device *rdev, 886 struct radeon_ib *ib, 887 uint64_t pe, 888 uint64_t addr, unsigned count, 889 uint32_t incr, uint32_t flags) 890 { 891 uint64_t value; 892 unsigned ndw; 893 894 while (count) { 895 ndw = count; 896 if (ndw > 0x7FFFF) 897 ndw = 0x7FFFF; 898 899 if (flags & R600_PTE_VALID) 900 value = addr; 901 else 902 value = 0; 903 904 /* for physically contiguous pages (vram) */ 905 ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_GENERATE_PTE_PDE, 0, 0); 906 ib->ptr[ib->length_dw++] = pe; /* dst addr */ 907 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 908 ib->ptr[ib->length_dw++] = flags; /* mask */ 909 ib->ptr[ib->length_dw++] = 0; 910 ib->ptr[ib->length_dw++] = value; /* value */ 911 ib->ptr[ib->length_dw++] = upper_32_bits(value); 912 ib->ptr[ib->length_dw++] = incr; /* increment size */ 913 ib->ptr[ib->length_dw++] = 0; 914 ib->ptr[ib->length_dw++] = ndw; /* number of entries */ 915 916 pe += ndw * 8; 917 addr += ndw * incr; 918 count -= ndw; 919 } 920 } 921 922 /** 923 * cik_sdma_vm_pad_ib - pad the IB to the required number of dw 924 * 925 * @ib: indirect buffer to fill with padding 926 * 927 */ 928 void cik_sdma_vm_pad_ib(struct radeon_ib *ib) 929 { 930 while (ib->length_dw & 0x7) 931 ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0); 932 } 933 934 /** 935 * cik_dma_vm_flush - cik vm flush using sDMA 936 * 937 * @rdev: radeon_device pointer 938 * 939 * Update the page table base and flush the VM TLB 940 * using sDMA (CIK). 941 */ 942 void cik_dma_vm_flush(struct radeon_device *rdev, struct radeon_ring *ring, 943 unsigned vm_id, uint64_t pd_addr) 944 { 945 u32 extra_bits = (SDMA_POLL_REG_MEM_EXTRA_OP(0) | 946 SDMA_POLL_REG_MEM_EXTRA_FUNC(0)); /* always */ 947 948 radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); 949 if (vm_id < 8) { 950 radeon_ring_write(ring, (VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (vm_id << 2)) >> 2); 951 } else { 952 radeon_ring_write(ring, (VM_CONTEXT8_PAGE_TABLE_BASE_ADDR + ((vm_id - 8) << 2)) >> 2); 953 } 954 radeon_ring_write(ring, pd_addr >> 12); 955 956 /* update SH_MEM_* regs */ 957 radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); 958 radeon_ring_write(ring, SRBM_GFX_CNTL >> 2); 959 radeon_ring_write(ring, VMID(vm_id)); 960 961 radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); 962 radeon_ring_write(ring, SH_MEM_BASES >> 2); 963 radeon_ring_write(ring, 0); 964 965 radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); 966 radeon_ring_write(ring, SH_MEM_CONFIG >> 2); 967 radeon_ring_write(ring, 0); 968 969 radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); 970 radeon_ring_write(ring, SH_MEM_APE1_BASE >> 2); 971 radeon_ring_write(ring, 1); 972 973 radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); 974 radeon_ring_write(ring, SH_MEM_APE1_LIMIT >> 2); 975 radeon_ring_write(ring, 0); 976 977 radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); 978 radeon_ring_write(ring, SRBM_GFX_CNTL >> 2); 979 radeon_ring_write(ring, VMID(0)); 980 981 /* flush HDP */ 982 cik_sdma_hdp_flush_ring_emit(rdev, ring->idx); 983 984 /* flush TLB */ 985 radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); 986 radeon_ring_write(ring, VM_INVALIDATE_REQUEST >> 2); 987 radeon_ring_write(ring, 1 << vm_id); 988 989 radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_POLL_REG_MEM, 0, extra_bits)); 990 radeon_ring_write(ring, VM_INVALIDATE_REQUEST >> 2); 991 radeon_ring_write(ring, 0); 992 radeon_ring_write(ring, 0); /* reference */ 993 radeon_ring_write(ring, 0); /* mask */ 994 radeon_ring_write(ring, (0xfff << 16) | 10); /* retry count, poll interval */ 995 } 996 997