1 /* 2 * drivers/gpu/drm/omapdrm/omap_gem.c 3 * 4 * Copyright (C) 2011 Texas Instruments 5 * Author: Rob Clark <rob.clark@linaro.org> 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 as published by 9 * the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 21 #include <linux/spinlock.h> 22 #include <linux/shmem_fs.h> 23 24 #include "omap_drv.h" 25 #include "omap_dmm_tiler.h" 26 27 /* remove these once drm core helpers are merged */ 28 struct page **_drm_gem_get_pages(struct drm_gem_object *obj, gfp_t gfpmask); 29 void _drm_gem_put_pages(struct drm_gem_object *obj, struct page **pages, 30 bool dirty, bool accessed); 31 int _drm_gem_create_mmap_offset_size(struct drm_gem_object *obj, size_t size); 32 33 /* 34 * GEM buffer object implementation. 35 */ 36 37 #define to_omap_bo(x) container_of(x, struct omap_gem_object, base) 38 39 /* note: we use upper 8 bits of flags for driver-internal flags: */ 40 #define OMAP_BO_DMA 0x01000000 /* actually is physically contiguous */ 41 #define OMAP_BO_EXT_SYNC 0x02000000 /* externally allocated sync object */ 42 #define OMAP_BO_EXT_MEM 0x04000000 /* externally allocated memory */ 43 44 45 struct omap_gem_object { 46 struct drm_gem_object base; 47 48 struct list_head mm_list; 49 50 uint32_t flags; 51 52 /** width/height for tiled formats (rounded up to slot boundaries) */ 53 uint16_t width, height; 54 55 /** roll applied when mapping to DMM */ 56 uint32_t roll; 57 58 /** 59 * If buffer is allocated physically contiguous, the OMAP_BO_DMA flag 60 * is set and the paddr is valid. Also if the buffer is remapped in 61 * TILER and paddr_cnt > 0, then paddr is valid. But if you are using 62 * the physical address and OMAP_BO_DMA is not set, then you should 63 * be going thru omap_gem_{get,put}_paddr() to ensure the mapping is 64 * not removed from under your feet. 65 * 66 * Note that OMAP_BO_SCANOUT is a hint from userspace that DMA capable 67 * buffer is requested, but doesn't mean that it is. Use the 68 * OMAP_BO_DMA flag to determine if the buffer has a DMA capable 69 * physical address. 70 */ 71 dma_addr_t paddr; 72 73 /** 74 * # of users of paddr 75 */ 76 uint32_t paddr_cnt; 77 78 /** 79 * tiler block used when buffer is remapped in DMM/TILER. 80 */ 81 struct tiler_block *block; 82 83 /** 84 * Array of backing pages, if allocated. Note that pages are never 85 * allocated for buffers originally allocated from contiguous memory 86 */ 87 struct page **pages; 88 89 /** addresses corresponding to pages in above array */ 90 dma_addr_t *addrs; 91 92 /** 93 * Virtual address, if mapped. 94 */ 95 void *vaddr; 96 97 /** 98 * sync-object allocated on demand (if needed) 99 * 100 * Per-buffer sync-object for tracking pending and completed hw/dma 101 * read and write operations. The layout in memory is dictated by 102 * the SGX firmware, which uses this information to stall the command 103 * stream if a surface is not ready yet. 104 * 105 * Note that when buffer is used by SGX, the sync-object needs to be 106 * allocated from a special heap of sync-objects. This way many sync 107 * objects can be packed in a page, and not waste GPU virtual address 108 * space. Because of this we have to have a omap_gem_set_sync_object() 109 * API to allow replacement of the syncobj after it has (potentially) 110 * already been allocated. A bit ugly but I haven't thought of a 111 * better alternative. 112 */ 113 struct { 114 uint32_t write_pending; 115 uint32_t write_complete; 116 uint32_t read_pending; 117 uint32_t read_complete; 118 } *sync; 119 }; 120 121 static int get_pages(struct drm_gem_object *obj, struct page ***pages); 122 static uint64_t mmap_offset(struct drm_gem_object *obj); 123 124 /* To deal with userspace mmap'ings of 2d tiled buffers, which (a) are 125 * not necessarily pinned in TILER all the time, and (b) when they are 126 * they are not necessarily page aligned, we reserve one or more small 127 * regions in each of the 2d containers to use as a user-GART where we 128 * can create a second page-aligned mapping of parts of the buffer 129 * being accessed from userspace. 130 * 131 * Note that we could optimize slightly when we know that multiple 132 * tiler containers are backed by the same PAT.. but I'll leave that 133 * for later.. 134 */ 135 #define NUM_USERGART_ENTRIES 2 136 struct usergart_entry { 137 struct tiler_block *block; /* the reserved tiler block */ 138 dma_addr_t paddr; 139 struct drm_gem_object *obj; /* the current pinned obj */ 140 pgoff_t obj_pgoff; /* page offset of obj currently 141 mapped in */ 142 }; 143 static struct { 144 struct usergart_entry entry[NUM_USERGART_ENTRIES]; 145 int height; /* height in rows */ 146 int height_shift; /* ilog2(height in rows) */ 147 int slot_shift; /* ilog2(width per slot) */ 148 int stride_pfn; /* stride in pages */ 149 int last; /* index of last used entry */ 150 } *usergart; 151 152 static void evict_entry(struct drm_gem_object *obj, 153 enum tiler_fmt fmt, struct usergart_entry *entry) 154 { 155 if (obj->dev->dev_mapping) { 156 struct omap_gem_object *omap_obj = to_omap_bo(obj); 157 int n = usergart[fmt].height; 158 size_t size = PAGE_SIZE * n; 159 loff_t off = mmap_offset(obj) + 160 (entry->obj_pgoff << PAGE_SHIFT); 161 const int m = 1 + ((omap_obj->width << fmt) / PAGE_SIZE); 162 if (m > 1) { 163 int i; 164 /* if stride > than PAGE_SIZE then sparse mapping: */ 165 for (i = n; i > 0; i--) { 166 unmap_mapping_range(obj->dev->dev_mapping, 167 off, PAGE_SIZE, 1); 168 off += PAGE_SIZE * m; 169 } 170 } else { 171 unmap_mapping_range(obj->dev->dev_mapping, off, size, 1); 172 } 173 } 174 175 entry->obj = NULL; 176 } 177 178 /* Evict a buffer from usergart, if it is mapped there */ 179 static void evict(struct drm_gem_object *obj) 180 { 181 struct omap_gem_object *omap_obj = to_omap_bo(obj); 182 183 if (omap_obj->flags & OMAP_BO_TILED) { 184 enum tiler_fmt fmt = gem2fmt(omap_obj->flags); 185 int i; 186 187 if (!usergart) 188 return; 189 190 for (i = 0; i < NUM_USERGART_ENTRIES; i++) { 191 struct usergart_entry *entry = &usergart[fmt].entry[i]; 192 if (entry->obj == obj) 193 evict_entry(obj, fmt, entry); 194 } 195 } 196 } 197 198 /* GEM objects can either be allocated from contiguous memory (in which 199 * case obj->filp==NULL), or w/ shmem backing (obj->filp!=NULL). But non 200 * contiguous buffers can be remapped in TILER/DMM if they need to be 201 * contiguous... but we don't do this all the time to reduce pressure 202 * on TILER/DMM space when we know at allocation time that the buffer 203 * will need to be scanned out. 204 */ 205 static inline bool is_shmem(struct drm_gem_object *obj) 206 { 207 return obj->filp != NULL; 208 } 209 210 /** 211 * shmem buffers that are mapped cached can simulate coherency via using 212 * page faulting to keep track of dirty pages 213 */ 214 static inline bool is_cached_coherent(struct drm_gem_object *obj) 215 { 216 struct omap_gem_object *omap_obj = to_omap_bo(obj); 217 return is_shmem(obj) && 218 ((omap_obj->flags & OMAP_BO_CACHE_MASK) == OMAP_BO_CACHED); 219 } 220 221 static DEFINE_SPINLOCK(sync_lock); 222 223 /** ensure backing pages are allocated */ 224 static int omap_gem_attach_pages(struct drm_gem_object *obj) 225 { 226 struct drm_device *dev = obj->dev; 227 struct omap_gem_object *omap_obj = to_omap_bo(obj); 228 struct page **pages; 229 int npages = obj->size >> PAGE_SHIFT; 230 int i, ret; 231 dma_addr_t *addrs; 232 233 WARN_ON(omap_obj->pages); 234 235 /* TODO: __GFP_DMA32 .. but somehow GFP_HIGHMEM is coming from the 236 * mapping_gfp_mask(mapping) which conflicts w/ GFP_DMA32.. probably 237 * we actually want CMA memory for it all anyways.. 238 */ 239 pages = _drm_gem_get_pages(obj, GFP_KERNEL); 240 if (IS_ERR(pages)) { 241 dev_err(obj->dev->dev, "could not get pages: %ld\n", PTR_ERR(pages)); 242 return PTR_ERR(pages); 243 } 244 245 /* for non-cached buffers, ensure the new pages are clean because 246 * DSS, GPU, etc. are not cache coherent: 247 */ 248 if (omap_obj->flags & (OMAP_BO_WC|OMAP_BO_UNCACHED)) { 249 addrs = kmalloc(npages * sizeof(*addrs), GFP_KERNEL); 250 if (!addrs) { 251 ret = -ENOMEM; 252 goto free_pages; 253 } 254 255 for (i = 0; i < npages; i++) { 256 addrs[i] = dma_map_page(dev->dev, pages[i], 257 0, PAGE_SIZE, DMA_BIDIRECTIONAL); 258 } 259 } else { 260 addrs = kzalloc(npages * sizeof(*addrs), GFP_KERNEL); 261 if (!addrs) { 262 ret = -ENOMEM; 263 goto free_pages; 264 } 265 } 266 267 omap_obj->addrs = addrs; 268 omap_obj->pages = pages; 269 270 return 0; 271 272 free_pages: 273 _drm_gem_put_pages(obj, pages, true, false); 274 275 return ret; 276 } 277 278 /** release backing pages */ 279 static void omap_gem_detach_pages(struct drm_gem_object *obj) 280 { 281 struct omap_gem_object *omap_obj = to_omap_bo(obj); 282 283 /* for non-cached buffers, ensure the new pages are clean because 284 * DSS, GPU, etc. are not cache coherent: 285 */ 286 if (omap_obj->flags & (OMAP_BO_WC|OMAP_BO_UNCACHED)) { 287 int i, npages = obj->size >> PAGE_SHIFT; 288 for (i = 0; i < npages; i++) { 289 dma_unmap_page(obj->dev->dev, omap_obj->addrs[i], 290 PAGE_SIZE, DMA_BIDIRECTIONAL); 291 } 292 } 293 294 kfree(omap_obj->addrs); 295 omap_obj->addrs = NULL; 296 297 _drm_gem_put_pages(obj, omap_obj->pages, true, false); 298 omap_obj->pages = NULL; 299 } 300 301 /* get buffer flags */ 302 uint32_t omap_gem_flags(struct drm_gem_object *obj) 303 { 304 return to_omap_bo(obj)->flags; 305 } 306 307 /** get mmap offset */ 308 static uint64_t mmap_offset(struct drm_gem_object *obj) 309 { 310 struct drm_device *dev = obj->dev; 311 312 WARN_ON(!mutex_is_locked(&dev->struct_mutex)); 313 314 if (!obj->map_list.map) { 315 /* Make it mmapable */ 316 size_t size = omap_gem_mmap_size(obj); 317 int ret = _drm_gem_create_mmap_offset_size(obj, size); 318 319 if (ret) { 320 dev_err(dev->dev, "could not allocate mmap offset\n"); 321 return 0; 322 } 323 } 324 325 return (uint64_t)obj->map_list.hash.key << PAGE_SHIFT; 326 } 327 328 uint64_t omap_gem_mmap_offset(struct drm_gem_object *obj) 329 { 330 uint64_t offset; 331 mutex_lock(&obj->dev->struct_mutex); 332 offset = mmap_offset(obj); 333 mutex_unlock(&obj->dev->struct_mutex); 334 return offset; 335 } 336 337 /** get mmap size */ 338 size_t omap_gem_mmap_size(struct drm_gem_object *obj) 339 { 340 struct omap_gem_object *omap_obj = to_omap_bo(obj); 341 size_t size = obj->size; 342 343 if (omap_obj->flags & OMAP_BO_TILED) { 344 /* for tiled buffers, the virtual size has stride rounded up 345 * to 4kb.. (to hide the fact that row n+1 might start 16kb or 346 * 32kb later!). But we don't back the entire buffer with 347 * pages, only the valid picture part.. so need to adjust for 348 * this in the size used to mmap and generate mmap offset 349 */ 350 size = tiler_vsize(gem2fmt(omap_obj->flags), 351 omap_obj->width, omap_obj->height); 352 } 353 354 return size; 355 } 356 357 /* get tiled size, returns -EINVAL if not tiled buffer */ 358 int omap_gem_tiled_size(struct drm_gem_object *obj, uint16_t *w, uint16_t *h) 359 { 360 struct omap_gem_object *omap_obj = to_omap_bo(obj); 361 if (omap_obj->flags & OMAP_BO_TILED) { 362 *w = omap_obj->width; 363 *h = omap_obj->height; 364 return 0; 365 } 366 return -EINVAL; 367 } 368 369 /* Normal handling for the case of faulting in non-tiled buffers */ 370 static int fault_1d(struct drm_gem_object *obj, 371 struct vm_area_struct *vma, struct vm_fault *vmf) 372 { 373 struct omap_gem_object *omap_obj = to_omap_bo(obj); 374 unsigned long pfn; 375 pgoff_t pgoff; 376 377 /* We don't use vmf->pgoff since that has the fake offset: */ 378 pgoff = ((unsigned long)vmf->virtual_address - 379 vma->vm_start) >> PAGE_SHIFT; 380 381 if (omap_obj->pages) { 382 omap_gem_cpu_sync(obj, pgoff); 383 pfn = page_to_pfn(omap_obj->pages[pgoff]); 384 } else { 385 BUG_ON(!(omap_obj->flags & OMAP_BO_DMA)); 386 pfn = (omap_obj->paddr >> PAGE_SHIFT) + pgoff; 387 } 388 389 VERB("Inserting %p pfn %lx, pa %lx", vmf->virtual_address, 390 pfn, pfn << PAGE_SHIFT); 391 392 return vm_insert_mixed(vma, (unsigned long)vmf->virtual_address, pfn); 393 } 394 395 /* Special handling for the case of faulting in 2d tiled buffers */ 396 static int fault_2d(struct drm_gem_object *obj, 397 struct vm_area_struct *vma, struct vm_fault *vmf) 398 { 399 struct omap_gem_object *omap_obj = to_omap_bo(obj); 400 struct usergart_entry *entry; 401 enum tiler_fmt fmt = gem2fmt(omap_obj->flags); 402 struct page *pages[64]; /* XXX is this too much to have on stack? */ 403 unsigned long pfn; 404 pgoff_t pgoff, base_pgoff; 405 void __user *vaddr; 406 int i, ret, slots; 407 408 /* 409 * Note the height of the slot is also equal to the number of pages 410 * that need to be mapped in to fill 4kb wide CPU page. If the slot 411 * height is 64, then 64 pages fill a 4kb wide by 64 row region. 412 */ 413 const int n = usergart[fmt].height; 414 const int n_shift = usergart[fmt].height_shift; 415 416 /* 417 * If buffer width in bytes > PAGE_SIZE then the virtual stride is 418 * rounded up to next multiple of PAGE_SIZE.. this need to be taken 419 * into account in some of the math, so figure out virtual stride 420 * in pages 421 */ 422 const int m = 1 + ((omap_obj->width << fmt) / PAGE_SIZE); 423 424 /* We don't use vmf->pgoff since that has the fake offset: */ 425 pgoff = ((unsigned long)vmf->virtual_address - 426 vma->vm_start) >> PAGE_SHIFT; 427 428 /* 429 * Actual address we start mapping at is rounded down to previous slot 430 * boundary in the y direction: 431 */ 432 base_pgoff = round_down(pgoff, m << n_shift); 433 434 /* figure out buffer width in slots */ 435 slots = omap_obj->width >> usergart[fmt].slot_shift; 436 437 vaddr = vmf->virtual_address - ((pgoff - base_pgoff) << PAGE_SHIFT); 438 439 entry = &usergart[fmt].entry[usergart[fmt].last]; 440 441 /* evict previous buffer using this usergart entry, if any: */ 442 if (entry->obj) 443 evict_entry(entry->obj, fmt, entry); 444 445 entry->obj = obj; 446 entry->obj_pgoff = base_pgoff; 447 448 /* now convert base_pgoff to phys offset from virt offset: */ 449 base_pgoff = (base_pgoff >> n_shift) * slots; 450 451 /* for wider-than 4k.. figure out which part of the slot-row we want: */ 452 if (m > 1) { 453 int off = pgoff % m; 454 entry->obj_pgoff += off; 455 base_pgoff /= m; 456 slots = min(slots - (off << n_shift), n); 457 base_pgoff += off << n_shift; 458 vaddr += off << PAGE_SHIFT; 459 } 460 461 /* 462 * Map in pages. Beyond the valid pixel part of the buffer, we set 463 * pages[i] to NULL to get a dummy page mapped in.. if someone 464 * reads/writes it they will get random/undefined content, but at 465 * least it won't be corrupting whatever other random page used to 466 * be mapped in, or other undefined behavior. 467 */ 468 memcpy(pages, &omap_obj->pages[base_pgoff], 469 sizeof(struct page *) * slots); 470 memset(pages + slots, 0, 471 sizeof(struct page *) * (n - slots)); 472 473 ret = tiler_pin(entry->block, pages, ARRAY_SIZE(pages), 0, true); 474 if (ret) { 475 dev_err(obj->dev->dev, "failed to pin: %d\n", ret); 476 return ret; 477 } 478 479 pfn = entry->paddr >> PAGE_SHIFT; 480 481 VERB("Inserting %p pfn %lx, pa %lx", vmf->virtual_address, 482 pfn, pfn << PAGE_SHIFT); 483 484 for (i = n; i > 0; i--) { 485 vm_insert_mixed(vma, (unsigned long)vaddr, pfn); 486 pfn += usergart[fmt].stride_pfn; 487 vaddr += PAGE_SIZE * m; 488 } 489 490 /* simple round-robin: */ 491 usergart[fmt].last = (usergart[fmt].last + 1) % NUM_USERGART_ENTRIES; 492 493 return 0; 494 } 495 496 /** 497 * omap_gem_fault - pagefault handler for GEM objects 498 * @vma: the VMA of the GEM object 499 * @vmf: fault detail 500 * 501 * Invoked when a fault occurs on an mmap of a GEM managed area. GEM 502 * does most of the work for us including the actual map/unmap calls 503 * but we need to do the actual page work. 504 * 505 * The VMA was set up by GEM. In doing so it also ensured that the 506 * vma->vm_private_data points to the GEM object that is backing this 507 * mapping. 508 */ 509 int omap_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 510 { 511 struct drm_gem_object *obj = vma->vm_private_data; 512 struct omap_gem_object *omap_obj = to_omap_bo(obj); 513 struct drm_device *dev = obj->dev; 514 struct page **pages; 515 int ret; 516 517 /* Make sure we don't parallel update on a fault, nor move or remove 518 * something from beneath our feet 519 */ 520 mutex_lock(&dev->struct_mutex); 521 522 /* if a shmem backed object, make sure we have pages attached now */ 523 ret = get_pages(obj, &pages); 524 if (ret) 525 goto fail; 526 527 /* where should we do corresponding put_pages().. we are mapping 528 * the original page, rather than thru a GART, so we can't rely 529 * on eviction to trigger this. But munmap() or all mappings should 530 * probably trigger put_pages()? 531 */ 532 533 if (omap_obj->flags & OMAP_BO_TILED) 534 ret = fault_2d(obj, vma, vmf); 535 else 536 ret = fault_1d(obj, vma, vmf); 537 538 539 fail: 540 mutex_unlock(&dev->struct_mutex); 541 switch (ret) { 542 case 0: 543 case -ERESTARTSYS: 544 case -EINTR: 545 return VM_FAULT_NOPAGE; 546 case -ENOMEM: 547 return VM_FAULT_OOM; 548 default: 549 return VM_FAULT_SIGBUS; 550 } 551 } 552 553 /** We override mainly to fix up some of the vm mapping flags.. */ 554 int omap_gem_mmap(struct file *filp, struct vm_area_struct *vma) 555 { 556 int ret; 557 558 ret = drm_gem_mmap(filp, vma); 559 if (ret) { 560 DBG("mmap failed: %d", ret); 561 return ret; 562 } 563 564 return omap_gem_mmap_obj(vma->vm_private_data, vma); 565 } 566 567 int omap_gem_mmap_obj(struct drm_gem_object *obj, 568 struct vm_area_struct *vma) 569 { 570 struct omap_gem_object *omap_obj = to_omap_bo(obj); 571 572 vma->vm_flags &= ~VM_PFNMAP; 573 vma->vm_flags |= VM_MIXEDMAP; 574 575 if (omap_obj->flags & OMAP_BO_WC) { 576 vma->vm_page_prot = pgprot_writecombine(vm_get_page_prot(vma->vm_flags)); 577 } else if (omap_obj->flags & OMAP_BO_UNCACHED) { 578 vma->vm_page_prot = pgprot_noncached(vm_get_page_prot(vma->vm_flags)); 579 } else { 580 /* 581 * We do have some private objects, at least for scanout buffers 582 * on hardware without DMM/TILER. But these are allocated write- 583 * combine 584 */ 585 if (WARN_ON(!obj->filp)) 586 return -EINVAL; 587 588 /* 589 * Shunt off cached objs to shmem file so they have their own 590 * address_space (so unmap_mapping_range does what we want, 591 * in particular in the case of mmap'd dmabufs) 592 */ 593 fput(vma->vm_file); 594 vma->vm_pgoff = 0; 595 vma->vm_file = get_file(obj->filp); 596 597 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 598 } 599 600 return 0; 601 } 602 603 604 /** 605 * omap_gem_dumb_create - create a dumb buffer 606 * @drm_file: our client file 607 * @dev: our device 608 * @args: the requested arguments copied from userspace 609 * 610 * Allocate a buffer suitable for use for a frame buffer of the 611 * form described by user space. Give userspace a handle by which 612 * to reference it. 613 */ 614 int omap_gem_dumb_create(struct drm_file *file, struct drm_device *dev, 615 struct drm_mode_create_dumb *args) 616 { 617 union omap_gem_size gsize; 618 619 /* in case someone tries to feed us a completely bogus stride: */ 620 args->pitch = align_pitch(args->pitch, args->width, args->bpp); 621 args->size = PAGE_ALIGN(args->pitch * args->height); 622 623 gsize = (union omap_gem_size){ 624 .bytes = args->size, 625 }; 626 627 return omap_gem_new_handle(dev, file, gsize, 628 OMAP_BO_SCANOUT | OMAP_BO_WC, &args->handle); 629 } 630 631 /** 632 * omap_gem_dumb_destroy - destroy a dumb buffer 633 * @file: client file 634 * @dev: our DRM device 635 * @handle: the object handle 636 * 637 * Destroy a handle that was created via omap_gem_dumb_create. 638 */ 639 int omap_gem_dumb_destroy(struct drm_file *file, struct drm_device *dev, 640 uint32_t handle) 641 { 642 /* No special work needed, drop the reference and see what falls out */ 643 return drm_gem_handle_delete(file, handle); 644 } 645 646 /** 647 * omap_gem_dumb_map - buffer mapping for dumb interface 648 * @file: our drm client file 649 * @dev: drm device 650 * @handle: GEM handle to the object (from dumb_create) 651 * 652 * Do the necessary setup to allow the mapping of the frame buffer 653 * into user memory. We don't have to do much here at the moment. 654 */ 655 int omap_gem_dumb_map_offset(struct drm_file *file, struct drm_device *dev, 656 uint32_t handle, uint64_t *offset) 657 { 658 struct drm_gem_object *obj; 659 int ret = 0; 660 661 /* GEM does all our handle to object mapping */ 662 obj = drm_gem_object_lookup(dev, file, handle); 663 if (obj == NULL) { 664 ret = -ENOENT; 665 goto fail; 666 } 667 668 *offset = omap_gem_mmap_offset(obj); 669 670 drm_gem_object_unreference_unlocked(obj); 671 672 fail: 673 return ret; 674 } 675 676 /* Set scrolling position. This allows us to implement fast scrolling 677 * for console. 678 * 679 * Call only from non-atomic contexts. 680 */ 681 int omap_gem_roll(struct drm_gem_object *obj, uint32_t roll) 682 { 683 struct omap_gem_object *omap_obj = to_omap_bo(obj); 684 uint32_t npages = obj->size >> PAGE_SHIFT; 685 int ret = 0; 686 687 if (roll > npages) { 688 dev_err(obj->dev->dev, "invalid roll: %d\n", roll); 689 return -EINVAL; 690 } 691 692 omap_obj->roll = roll; 693 694 mutex_lock(&obj->dev->struct_mutex); 695 696 /* if we aren't mapped yet, we don't need to do anything */ 697 if (omap_obj->block) { 698 struct page **pages; 699 ret = get_pages(obj, &pages); 700 if (ret) 701 goto fail; 702 ret = tiler_pin(omap_obj->block, pages, npages, roll, true); 703 if (ret) 704 dev_err(obj->dev->dev, "could not repin: %d\n", ret); 705 } 706 707 fail: 708 mutex_unlock(&obj->dev->struct_mutex); 709 710 return ret; 711 } 712 713 /* Sync the buffer for CPU access.. note pages should already be 714 * attached, ie. omap_gem_get_pages() 715 */ 716 void omap_gem_cpu_sync(struct drm_gem_object *obj, int pgoff) 717 { 718 struct drm_device *dev = obj->dev; 719 struct omap_gem_object *omap_obj = to_omap_bo(obj); 720 721 if (is_cached_coherent(obj) && omap_obj->addrs[pgoff]) { 722 dma_unmap_page(dev->dev, omap_obj->addrs[pgoff], 723 PAGE_SIZE, DMA_BIDIRECTIONAL); 724 omap_obj->addrs[pgoff] = 0; 725 } 726 } 727 728 /* sync the buffer for DMA access */ 729 void omap_gem_dma_sync(struct drm_gem_object *obj, 730 enum dma_data_direction dir) 731 { 732 struct drm_device *dev = obj->dev; 733 struct omap_gem_object *omap_obj = to_omap_bo(obj); 734 735 if (is_cached_coherent(obj)) { 736 int i, npages = obj->size >> PAGE_SHIFT; 737 struct page **pages = omap_obj->pages; 738 bool dirty = false; 739 740 for (i = 0; i < npages; i++) { 741 if (!omap_obj->addrs[i]) { 742 omap_obj->addrs[i] = dma_map_page(dev->dev, pages[i], 0, 743 PAGE_SIZE, DMA_BIDIRECTIONAL); 744 dirty = true; 745 } 746 } 747 748 if (dirty) { 749 unmap_mapping_range(obj->filp->f_mapping, 0, 750 omap_gem_mmap_size(obj), 1); 751 } 752 } 753 } 754 755 /* Get physical address for DMA.. if 'remap' is true, and the buffer is not 756 * already contiguous, remap it to pin in physically contiguous memory.. (ie. 757 * map in TILER) 758 */ 759 int omap_gem_get_paddr(struct drm_gem_object *obj, 760 dma_addr_t *paddr, bool remap) 761 { 762 struct omap_drm_private *priv = obj->dev->dev_private; 763 struct omap_gem_object *omap_obj = to_omap_bo(obj); 764 int ret = 0; 765 766 mutex_lock(&obj->dev->struct_mutex); 767 768 if (remap && is_shmem(obj) && priv->has_dmm) { 769 if (omap_obj->paddr_cnt == 0) { 770 struct page **pages; 771 uint32_t npages = obj->size >> PAGE_SHIFT; 772 enum tiler_fmt fmt = gem2fmt(omap_obj->flags); 773 struct tiler_block *block; 774 775 BUG_ON(omap_obj->block); 776 777 ret = get_pages(obj, &pages); 778 if (ret) 779 goto fail; 780 781 if (omap_obj->flags & OMAP_BO_TILED) { 782 block = tiler_reserve_2d(fmt, 783 omap_obj->width, 784 omap_obj->height, 0); 785 } else { 786 block = tiler_reserve_1d(obj->size); 787 } 788 789 if (IS_ERR(block)) { 790 ret = PTR_ERR(block); 791 dev_err(obj->dev->dev, 792 "could not remap: %d (%d)\n", ret, fmt); 793 goto fail; 794 } 795 796 /* TODO: enable async refill.. */ 797 ret = tiler_pin(block, pages, npages, 798 omap_obj->roll, true); 799 if (ret) { 800 tiler_release(block); 801 dev_err(obj->dev->dev, 802 "could not pin: %d\n", ret); 803 goto fail; 804 } 805 806 omap_obj->paddr = tiler_ssptr(block); 807 omap_obj->block = block; 808 809 DBG("got paddr: %08x", omap_obj->paddr); 810 } 811 812 omap_obj->paddr_cnt++; 813 814 *paddr = omap_obj->paddr; 815 } else if (omap_obj->flags & OMAP_BO_DMA) { 816 *paddr = omap_obj->paddr; 817 } else { 818 ret = -EINVAL; 819 goto fail; 820 } 821 822 fail: 823 mutex_unlock(&obj->dev->struct_mutex); 824 825 return ret; 826 } 827 828 /* Release physical address, when DMA is no longer being performed.. this 829 * could potentially unpin and unmap buffers from TILER 830 */ 831 int omap_gem_put_paddr(struct drm_gem_object *obj) 832 { 833 struct omap_gem_object *omap_obj = to_omap_bo(obj); 834 int ret = 0; 835 836 mutex_lock(&obj->dev->struct_mutex); 837 if (omap_obj->paddr_cnt > 0) { 838 omap_obj->paddr_cnt--; 839 if (omap_obj->paddr_cnt == 0) { 840 ret = tiler_unpin(omap_obj->block); 841 if (ret) { 842 dev_err(obj->dev->dev, 843 "could not unpin pages: %d\n", ret); 844 goto fail; 845 } 846 ret = tiler_release(omap_obj->block); 847 if (ret) { 848 dev_err(obj->dev->dev, 849 "could not release unmap: %d\n", ret); 850 } 851 omap_obj->block = NULL; 852 } 853 } 854 fail: 855 mutex_unlock(&obj->dev->struct_mutex); 856 return ret; 857 } 858 859 /* Get rotated scanout address (only valid if already pinned), at the 860 * specified orientation and x,y offset from top-left corner of buffer 861 * (only valid for tiled 2d buffers) 862 */ 863 int omap_gem_rotated_paddr(struct drm_gem_object *obj, uint32_t orient, 864 int x, int y, dma_addr_t *paddr) 865 { 866 struct omap_gem_object *omap_obj = to_omap_bo(obj); 867 int ret = -EINVAL; 868 869 mutex_lock(&obj->dev->struct_mutex); 870 if ((omap_obj->paddr_cnt > 0) && omap_obj->block && 871 (omap_obj->flags & OMAP_BO_TILED)) { 872 *paddr = tiler_tsptr(omap_obj->block, orient, x, y); 873 ret = 0; 874 } 875 mutex_unlock(&obj->dev->struct_mutex); 876 return ret; 877 } 878 879 /* Get tiler stride for the buffer (only valid for 2d tiled buffers) */ 880 int omap_gem_tiled_stride(struct drm_gem_object *obj, uint32_t orient) 881 { 882 struct omap_gem_object *omap_obj = to_omap_bo(obj); 883 int ret = -EINVAL; 884 if (omap_obj->flags & OMAP_BO_TILED) 885 ret = tiler_stride(gem2fmt(omap_obj->flags), orient); 886 return ret; 887 } 888 889 /* acquire pages when needed (for example, for DMA where physically 890 * contiguous buffer is not required 891 */ 892 static int get_pages(struct drm_gem_object *obj, struct page ***pages) 893 { 894 struct omap_gem_object *omap_obj = to_omap_bo(obj); 895 int ret = 0; 896 897 if (is_shmem(obj) && !omap_obj->pages) { 898 ret = omap_gem_attach_pages(obj); 899 if (ret) { 900 dev_err(obj->dev->dev, "could not attach pages\n"); 901 return ret; 902 } 903 } 904 905 /* TODO: even phys-contig.. we should have a list of pages? */ 906 *pages = omap_obj->pages; 907 908 return 0; 909 } 910 911 /* if !remap, and we don't have pages backing, then fail, rather than 912 * increasing the pin count (which we don't really do yet anyways, 913 * because we don't support swapping pages back out). And 'remap' 914 * might not be quite the right name, but I wanted to keep it working 915 * similarly to omap_gem_get_paddr(). Note though that mutex is not 916 * aquired if !remap (because this can be called in atomic ctxt), 917 * but probably omap_gem_get_paddr() should be changed to work in the 918 * same way. If !remap, a matching omap_gem_put_pages() call is not 919 * required (and should not be made). 920 */ 921 int omap_gem_get_pages(struct drm_gem_object *obj, struct page ***pages, 922 bool remap) 923 { 924 int ret; 925 if (!remap) { 926 struct omap_gem_object *omap_obj = to_omap_bo(obj); 927 if (!omap_obj->pages) 928 return -ENOMEM; 929 *pages = omap_obj->pages; 930 return 0; 931 } 932 mutex_lock(&obj->dev->struct_mutex); 933 ret = get_pages(obj, pages); 934 mutex_unlock(&obj->dev->struct_mutex); 935 return ret; 936 } 937 938 /* release pages when DMA no longer being performed */ 939 int omap_gem_put_pages(struct drm_gem_object *obj) 940 { 941 /* do something here if we dynamically attach/detach pages.. at 942 * least they would no longer need to be pinned if everyone has 943 * released the pages.. 944 */ 945 return 0; 946 } 947 948 /* Get kernel virtual address for CPU access.. this more or less only 949 * exists for omap_fbdev. This should be called with struct_mutex 950 * held. 951 */ 952 void *omap_gem_vaddr(struct drm_gem_object *obj) 953 { 954 struct omap_gem_object *omap_obj = to_omap_bo(obj); 955 WARN_ON(!mutex_is_locked(&obj->dev->struct_mutex)); 956 if (!omap_obj->vaddr) { 957 struct page **pages; 958 int ret = get_pages(obj, &pages); 959 if (ret) 960 return ERR_PTR(ret); 961 omap_obj->vaddr = vmap(pages, obj->size >> PAGE_SHIFT, 962 VM_MAP, pgprot_writecombine(PAGE_KERNEL)); 963 } 964 return omap_obj->vaddr; 965 } 966 967 #ifdef CONFIG_PM 968 /* re-pin objects in DMM in resume path: */ 969 int omap_gem_resume(struct device *dev) 970 { 971 struct drm_device *drm_dev = dev_get_drvdata(dev); 972 struct omap_drm_private *priv = drm_dev->dev_private; 973 struct omap_gem_object *omap_obj; 974 int ret = 0; 975 976 list_for_each_entry(omap_obj, &priv->obj_list, mm_list) { 977 if (omap_obj->block) { 978 struct drm_gem_object *obj = &omap_obj->base; 979 uint32_t npages = obj->size >> PAGE_SHIFT; 980 WARN_ON(!omap_obj->pages); /* this can't happen */ 981 ret = tiler_pin(omap_obj->block, 982 omap_obj->pages, npages, 983 omap_obj->roll, true); 984 if (ret) { 985 dev_err(dev, "could not repin: %d\n", ret); 986 return ret; 987 } 988 } 989 } 990 991 return 0; 992 } 993 #endif 994 995 #ifdef CONFIG_DEBUG_FS 996 void omap_gem_describe(struct drm_gem_object *obj, struct seq_file *m) 997 { 998 struct drm_device *dev = obj->dev; 999 struct omap_gem_object *omap_obj = to_omap_bo(obj); 1000 uint64_t off = 0; 1001 1002 WARN_ON(!mutex_is_locked(&dev->struct_mutex)); 1003 1004 if (obj->map_list.map) 1005 off = (uint64_t)obj->map_list.hash.key; 1006 1007 seq_printf(m, "%08x: %2d (%2d) %08llx %08Zx (%2d) %p %4d", 1008 omap_obj->flags, obj->name, obj->refcount.refcount.counter, 1009 off, omap_obj->paddr, omap_obj->paddr_cnt, 1010 omap_obj->vaddr, omap_obj->roll); 1011 1012 if (omap_obj->flags & OMAP_BO_TILED) { 1013 seq_printf(m, " %dx%d", omap_obj->width, omap_obj->height); 1014 if (omap_obj->block) { 1015 struct tcm_area *area = &omap_obj->block->area; 1016 seq_printf(m, " (%dx%d, %dx%d)", 1017 area->p0.x, area->p0.y, 1018 area->p1.x, area->p1.y); 1019 } 1020 } else { 1021 seq_printf(m, " %d", obj->size); 1022 } 1023 1024 seq_printf(m, "\n"); 1025 } 1026 1027 void omap_gem_describe_objects(struct list_head *list, struct seq_file *m) 1028 { 1029 struct omap_gem_object *omap_obj; 1030 int count = 0; 1031 size_t size = 0; 1032 1033 list_for_each_entry(omap_obj, list, mm_list) { 1034 struct drm_gem_object *obj = &omap_obj->base; 1035 seq_printf(m, " "); 1036 omap_gem_describe(obj, m); 1037 count++; 1038 size += obj->size; 1039 } 1040 1041 seq_printf(m, "Total %d objects, %zu bytes\n", count, size); 1042 } 1043 #endif 1044 1045 /* Buffer Synchronization: 1046 */ 1047 1048 struct omap_gem_sync_waiter { 1049 struct list_head list; 1050 struct omap_gem_object *omap_obj; 1051 enum omap_gem_op op; 1052 uint32_t read_target, write_target; 1053 /* notify called w/ sync_lock held */ 1054 void (*notify)(void *arg); 1055 void *arg; 1056 }; 1057 1058 /* list of omap_gem_sync_waiter.. the notify fxn gets called back when 1059 * the read and/or write target count is achieved which can call a user 1060 * callback (ex. to kick 3d and/or 2d), wakeup blocked task (prep for 1061 * cpu access), etc. 1062 */ 1063 static LIST_HEAD(waiters); 1064 1065 static inline bool is_waiting(struct omap_gem_sync_waiter *waiter) 1066 { 1067 struct omap_gem_object *omap_obj = waiter->omap_obj; 1068 if ((waiter->op & OMAP_GEM_READ) && 1069 (omap_obj->sync->read_complete < waiter->read_target)) 1070 return true; 1071 if ((waiter->op & OMAP_GEM_WRITE) && 1072 (omap_obj->sync->write_complete < waiter->write_target)) 1073 return true; 1074 return false; 1075 } 1076 1077 /* macro for sync debug.. */ 1078 #define SYNCDBG 0 1079 #define SYNC(fmt, ...) do { if (SYNCDBG) \ 1080 printk(KERN_ERR "%s:%d: "fmt"\n", \ 1081 __func__, __LINE__, ##__VA_ARGS__); \ 1082 } while (0) 1083 1084 1085 static void sync_op_update(void) 1086 { 1087 struct omap_gem_sync_waiter *waiter, *n; 1088 list_for_each_entry_safe(waiter, n, &waiters, list) { 1089 if (!is_waiting(waiter)) { 1090 list_del(&waiter->list); 1091 SYNC("notify: %p", waiter); 1092 waiter->notify(waiter->arg); 1093 kfree(waiter); 1094 } 1095 } 1096 } 1097 1098 static inline int sync_op(struct drm_gem_object *obj, 1099 enum omap_gem_op op, bool start) 1100 { 1101 struct omap_gem_object *omap_obj = to_omap_bo(obj); 1102 int ret = 0; 1103 1104 spin_lock(&sync_lock); 1105 1106 if (!omap_obj->sync) { 1107 omap_obj->sync = kzalloc(sizeof(*omap_obj->sync), GFP_ATOMIC); 1108 if (!omap_obj->sync) { 1109 ret = -ENOMEM; 1110 goto unlock; 1111 } 1112 } 1113 1114 if (start) { 1115 if (op & OMAP_GEM_READ) 1116 omap_obj->sync->read_pending++; 1117 if (op & OMAP_GEM_WRITE) 1118 omap_obj->sync->write_pending++; 1119 } else { 1120 if (op & OMAP_GEM_READ) 1121 omap_obj->sync->read_complete++; 1122 if (op & OMAP_GEM_WRITE) 1123 omap_obj->sync->write_complete++; 1124 sync_op_update(); 1125 } 1126 1127 unlock: 1128 spin_unlock(&sync_lock); 1129 1130 return ret; 1131 } 1132 1133 /* it is a bit lame to handle updates in this sort of polling way, but 1134 * in case of PVR, the GPU can directly update read/write complete 1135 * values, and not really tell us which ones it updated.. this also 1136 * means that sync_lock is not quite sufficient. So we'll need to 1137 * do something a bit better when it comes time to add support for 1138 * separate 2d hw.. 1139 */ 1140 void omap_gem_op_update(void) 1141 { 1142 spin_lock(&sync_lock); 1143 sync_op_update(); 1144 spin_unlock(&sync_lock); 1145 } 1146 1147 /* mark the start of read and/or write operation */ 1148 int omap_gem_op_start(struct drm_gem_object *obj, enum omap_gem_op op) 1149 { 1150 return sync_op(obj, op, true); 1151 } 1152 1153 int omap_gem_op_finish(struct drm_gem_object *obj, enum omap_gem_op op) 1154 { 1155 return sync_op(obj, op, false); 1156 } 1157 1158 static DECLARE_WAIT_QUEUE_HEAD(sync_event); 1159 1160 static void sync_notify(void *arg) 1161 { 1162 struct task_struct **waiter_task = arg; 1163 *waiter_task = NULL; 1164 wake_up_all(&sync_event); 1165 } 1166 1167 int omap_gem_op_sync(struct drm_gem_object *obj, enum omap_gem_op op) 1168 { 1169 struct omap_gem_object *omap_obj = to_omap_bo(obj); 1170 int ret = 0; 1171 if (omap_obj->sync) { 1172 struct task_struct *waiter_task = current; 1173 struct omap_gem_sync_waiter *waiter = 1174 kzalloc(sizeof(*waiter), GFP_KERNEL); 1175 1176 if (!waiter) 1177 return -ENOMEM; 1178 1179 waiter->omap_obj = omap_obj; 1180 waiter->op = op; 1181 waiter->read_target = omap_obj->sync->read_pending; 1182 waiter->write_target = omap_obj->sync->write_pending; 1183 waiter->notify = sync_notify; 1184 waiter->arg = &waiter_task; 1185 1186 spin_lock(&sync_lock); 1187 if (is_waiting(waiter)) { 1188 SYNC("waited: %p", waiter); 1189 list_add_tail(&waiter->list, &waiters); 1190 spin_unlock(&sync_lock); 1191 ret = wait_event_interruptible(sync_event, 1192 (waiter_task == NULL)); 1193 spin_lock(&sync_lock); 1194 if (waiter_task) { 1195 SYNC("interrupted: %p", waiter); 1196 /* we were interrupted */ 1197 list_del(&waiter->list); 1198 waiter_task = NULL; 1199 } else { 1200 /* freed in sync_op_update() */ 1201 waiter = NULL; 1202 } 1203 } 1204 spin_unlock(&sync_lock); 1205 1206 if (waiter) 1207 kfree(waiter); 1208 } 1209 return ret; 1210 } 1211 1212 /* call fxn(arg), either synchronously or asynchronously if the op 1213 * is currently blocked.. fxn() can be called from any context 1214 * 1215 * (TODO for now fxn is called back from whichever context calls 1216 * omap_gem_op_update().. but this could be better defined later 1217 * if needed) 1218 * 1219 * TODO more code in common w/ _sync().. 1220 */ 1221 int omap_gem_op_async(struct drm_gem_object *obj, enum omap_gem_op op, 1222 void (*fxn)(void *arg), void *arg) 1223 { 1224 struct omap_gem_object *omap_obj = to_omap_bo(obj); 1225 if (omap_obj->sync) { 1226 struct omap_gem_sync_waiter *waiter = 1227 kzalloc(sizeof(*waiter), GFP_ATOMIC); 1228 1229 if (!waiter) 1230 return -ENOMEM; 1231 1232 waiter->omap_obj = omap_obj; 1233 waiter->op = op; 1234 waiter->read_target = omap_obj->sync->read_pending; 1235 waiter->write_target = omap_obj->sync->write_pending; 1236 waiter->notify = fxn; 1237 waiter->arg = arg; 1238 1239 spin_lock(&sync_lock); 1240 if (is_waiting(waiter)) { 1241 SYNC("waited: %p", waiter); 1242 list_add_tail(&waiter->list, &waiters); 1243 spin_unlock(&sync_lock); 1244 return 0; 1245 } 1246 1247 spin_unlock(&sync_lock); 1248 } 1249 1250 /* no waiting.. */ 1251 fxn(arg); 1252 1253 return 0; 1254 } 1255 1256 /* special API so PVR can update the buffer to use a sync-object allocated 1257 * from it's sync-obj heap. Only used for a newly allocated (from PVR's 1258 * perspective) sync-object, so we overwrite the new syncobj w/ values 1259 * from the already allocated syncobj (if there is one) 1260 */ 1261 int omap_gem_set_sync_object(struct drm_gem_object *obj, void *syncobj) 1262 { 1263 struct omap_gem_object *omap_obj = to_omap_bo(obj); 1264 int ret = 0; 1265 1266 spin_lock(&sync_lock); 1267 1268 if ((omap_obj->flags & OMAP_BO_EXT_SYNC) && !syncobj) { 1269 /* clearing a previously set syncobj */ 1270 syncobj = kmemdup(omap_obj->sync, sizeof(*omap_obj->sync), 1271 GFP_ATOMIC); 1272 if (!syncobj) { 1273 ret = -ENOMEM; 1274 goto unlock; 1275 } 1276 omap_obj->flags &= ~OMAP_BO_EXT_SYNC; 1277 omap_obj->sync = syncobj; 1278 } else if (syncobj && !(omap_obj->flags & OMAP_BO_EXT_SYNC)) { 1279 /* replacing an existing syncobj */ 1280 if (omap_obj->sync) { 1281 memcpy(syncobj, omap_obj->sync, sizeof(*omap_obj->sync)); 1282 kfree(omap_obj->sync); 1283 } 1284 omap_obj->flags |= OMAP_BO_EXT_SYNC; 1285 omap_obj->sync = syncobj; 1286 } 1287 1288 unlock: 1289 spin_unlock(&sync_lock); 1290 return ret; 1291 } 1292 1293 int omap_gem_init_object(struct drm_gem_object *obj) 1294 { 1295 return -EINVAL; /* unused */ 1296 } 1297 1298 /* don't call directly.. called from GEM core when it is time to actually 1299 * free the object.. 1300 */ 1301 void omap_gem_free_object(struct drm_gem_object *obj) 1302 { 1303 struct drm_device *dev = obj->dev; 1304 struct omap_gem_object *omap_obj = to_omap_bo(obj); 1305 1306 evict(obj); 1307 1308 WARN_ON(!mutex_is_locked(&dev->struct_mutex)); 1309 1310 list_del(&omap_obj->mm_list); 1311 1312 if (obj->map_list.map) 1313 drm_gem_free_mmap_offset(obj); 1314 1315 /* this means the object is still pinned.. which really should 1316 * not happen. I think.. 1317 */ 1318 WARN_ON(omap_obj->paddr_cnt > 0); 1319 1320 /* don't free externally allocated backing memory */ 1321 if (!(omap_obj->flags & OMAP_BO_EXT_MEM)) { 1322 if (omap_obj->pages) 1323 omap_gem_detach_pages(obj); 1324 1325 if (!is_shmem(obj)) { 1326 dma_free_writecombine(dev->dev, obj->size, 1327 omap_obj->vaddr, omap_obj->paddr); 1328 } else if (omap_obj->vaddr) { 1329 vunmap(omap_obj->vaddr); 1330 } 1331 } 1332 1333 /* don't free externally allocated syncobj */ 1334 if (!(omap_obj->flags & OMAP_BO_EXT_SYNC)) 1335 kfree(omap_obj->sync); 1336 1337 drm_gem_object_release(obj); 1338 1339 kfree(obj); 1340 } 1341 1342 /* convenience method to construct a GEM buffer object, and userspace handle */ 1343 int omap_gem_new_handle(struct drm_device *dev, struct drm_file *file, 1344 union omap_gem_size gsize, uint32_t flags, uint32_t *handle) 1345 { 1346 struct drm_gem_object *obj; 1347 int ret; 1348 1349 obj = omap_gem_new(dev, gsize, flags); 1350 if (!obj) 1351 return -ENOMEM; 1352 1353 ret = drm_gem_handle_create(file, obj, handle); 1354 if (ret) { 1355 drm_gem_object_release(obj); 1356 kfree(obj); /* TODO isn't there a dtor to call? just copying i915 */ 1357 return ret; 1358 } 1359 1360 /* drop reference from allocate - handle holds it now */ 1361 drm_gem_object_unreference_unlocked(obj); 1362 1363 return 0; 1364 } 1365 1366 /* GEM buffer object constructor */ 1367 struct drm_gem_object *omap_gem_new(struct drm_device *dev, 1368 union omap_gem_size gsize, uint32_t flags) 1369 { 1370 struct omap_drm_private *priv = dev->dev_private; 1371 struct omap_gem_object *omap_obj; 1372 struct drm_gem_object *obj = NULL; 1373 size_t size; 1374 int ret; 1375 1376 if (flags & OMAP_BO_TILED) { 1377 if (!usergart) { 1378 dev_err(dev->dev, "Tiled buffers require DMM\n"); 1379 goto fail; 1380 } 1381 1382 /* tiled buffers are always shmem paged backed.. when they are 1383 * scanned out, they are remapped into DMM/TILER 1384 */ 1385 flags &= ~OMAP_BO_SCANOUT; 1386 1387 /* currently don't allow cached buffers.. there is some caching 1388 * stuff that needs to be handled better 1389 */ 1390 flags &= ~(OMAP_BO_CACHED|OMAP_BO_UNCACHED); 1391 flags |= OMAP_BO_WC; 1392 1393 /* align dimensions to slot boundaries... */ 1394 tiler_align(gem2fmt(flags), 1395 &gsize.tiled.width, &gsize.tiled.height); 1396 1397 /* ...and calculate size based on aligned dimensions */ 1398 size = tiler_size(gem2fmt(flags), 1399 gsize.tiled.width, gsize.tiled.height); 1400 } else { 1401 size = PAGE_ALIGN(gsize.bytes); 1402 } 1403 1404 omap_obj = kzalloc(sizeof(*omap_obj), GFP_KERNEL); 1405 if (!omap_obj) 1406 goto fail; 1407 1408 list_add(&omap_obj->mm_list, &priv->obj_list); 1409 1410 obj = &omap_obj->base; 1411 1412 if ((flags & OMAP_BO_SCANOUT) && !priv->has_dmm) { 1413 /* attempt to allocate contiguous memory if we don't 1414 * have DMM for remappign discontiguous buffers 1415 */ 1416 omap_obj->vaddr = dma_alloc_writecombine(dev->dev, size, 1417 &omap_obj->paddr, GFP_KERNEL); 1418 if (omap_obj->vaddr) 1419 flags |= OMAP_BO_DMA; 1420 1421 } 1422 1423 omap_obj->flags = flags; 1424 1425 if (flags & OMAP_BO_TILED) { 1426 omap_obj->width = gsize.tiled.width; 1427 omap_obj->height = gsize.tiled.height; 1428 } 1429 1430 if (flags & (OMAP_BO_DMA|OMAP_BO_EXT_MEM)) 1431 ret = drm_gem_private_object_init(dev, obj, size); 1432 else 1433 ret = drm_gem_object_init(dev, obj, size); 1434 1435 if (ret) 1436 goto fail; 1437 1438 return obj; 1439 1440 fail: 1441 if (obj) 1442 omap_gem_free_object(obj); 1443 1444 return NULL; 1445 } 1446 1447 /* init/cleanup.. if DMM is used, we need to set some stuff up.. */ 1448 void omap_gem_init(struct drm_device *dev) 1449 { 1450 struct omap_drm_private *priv = dev->dev_private; 1451 const enum tiler_fmt fmts[] = { 1452 TILFMT_8BIT, TILFMT_16BIT, TILFMT_32BIT 1453 }; 1454 int i, j; 1455 1456 if (!dmm_is_available()) { 1457 /* DMM only supported on OMAP4 and later, so this isn't fatal */ 1458 dev_warn(dev->dev, "DMM not available, disable DMM support\n"); 1459 return; 1460 } 1461 1462 usergart = kcalloc(3, sizeof(*usergart), GFP_KERNEL); 1463 if (!usergart) 1464 return; 1465 1466 /* reserve 4k aligned/wide regions for userspace mappings: */ 1467 for (i = 0; i < ARRAY_SIZE(fmts); i++) { 1468 uint16_t h = 1, w = PAGE_SIZE >> i; 1469 tiler_align(fmts[i], &w, &h); 1470 /* note: since each region is 1 4kb page wide, and minimum 1471 * number of rows, the height ends up being the same as the 1472 * # of pages in the region 1473 */ 1474 usergart[i].height = h; 1475 usergart[i].height_shift = ilog2(h); 1476 usergart[i].stride_pfn = tiler_stride(fmts[i], 0) >> PAGE_SHIFT; 1477 usergart[i].slot_shift = ilog2((PAGE_SIZE / h) >> i); 1478 for (j = 0; j < NUM_USERGART_ENTRIES; j++) { 1479 struct usergart_entry *entry = &usergart[i].entry[j]; 1480 struct tiler_block *block = 1481 tiler_reserve_2d(fmts[i], w, h, 1482 PAGE_SIZE); 1483 if (IS_ERR(block)) { 1484 dev_err(dev->dev, 1485 "reserve failed: %d, %d, %ld\n", 1486 i, j, PTR_ERR(block)); 1487 return; 1488 } 1489 entry->paddr = tiler_ssptr(block); 1490 entry->block = block; 1491 1492 DBG("%d:%d: %dx%d: paddr=%08x stride=%d", i, j, w, h, 1493 entry->paddr, 1494 usergart[i].stride_pfn << PAGE_SHIFT); 1495 } 1496 } 1497 1498 priv->has_dmm = true; 1499 } 1500 1501 void omap_gem_deinit(struct drm_device *dev) 1502 { 1503 /* I believe we can rely on there being no more outstanding GEM 1504 * objects which could depend on usergart/dmm at this point. 1505 */ 1506 kfree(usergart); 1507 } 1508