1 /* 2 * drivers/gpu/drm/omapdrm/omap_gem.c 3 * 4 * Copyright (C) 2011 Texas Instruments 5 * Author: Rob Clark <rob.clark@linaro.org> 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 as published by 9 * the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 21 #include <linux/spinlock.h> 22 #include <linux/shmem_fs.h> 23 #include <drm/drm_vma_manager.h> 24 25 #include "omap_drv.h" 26 #include "omap_dmm_tiler.h" 27 28 /* remove these once drm core helpers are merged */ 29 struct page **_drm_gem_get_pages(struct drm_gem_object *obj, gfp_t gfpmask); 30 void _drm_gem_put_pages(struct drm_gem_object *obj, struct page **pages, 31 bool dirty, bool accessed); 32 int _drm_gem_create_mmap_offset_size(struct drm_gem_object *obj, size_t size); 33 34 /* 35 * GEM buffer object implementation. 36 */ 37 38 #define to_omap_bo(x) container_of(x, struct omap_gem_object, base) 39 40 /* note: we use upper 8 bits of flags for driver-internal flags: */ 41 #define OMAP_BO_DMA 0x01000000 /* actually is physically contiguous */ 42 #define OMAP_BO_EXT_SYNC 0x02000000 /* externally allocated sync object */ 43 #define OMAP_BO_EXT_MEM 0x04000000 /* externally allocated memory */ 44 45 46 struct omap_gem_object { 47 struct drm_gem_object base; 48 49 struct list_head mm_list; 50 51 uint32_t flags; 52 53 /** width/height for tiled formats (rounded up to slot boundaries) */ 54 uint16_t width, height; 55 56 /** roll applied when mapping to DMM */ 57 uint32_t roll; 58 59 /** 60 * If buffer is allocated physically contiguous, the OMAP_BO_DMA flag 61 * is set and the paddr is valid. Also if the buffer is remapped in 62 * TILER and paddr_cnt > 0, then paddr is valid. But if you are using 63 * the physical address and OMAP_BO_DMA is not set, then you should 64 * be going thru omap_gem_{get,put}_paddr() to ensure the mapping is 65 * not removed from under your feet. 66 * 67 * Note that OMAP_BO_SCANOUT is a hint from userspace that DMA capable 68 * buffer is requested, but doesn't mean that it is. Use the 69 * OMAP_BO_DMA flag to determine if the buffer has a DMA capable 70 * physical address. 71 */ 72 dma_addr_t paddr; 73 74 /** 75 * # of users of paddr 76 */ 77 uint32_t paddr_cnt; 78 79 /** 80 * tiler block used when buffer is remapped in DMM/TILER. 81 */ 82 struct tiler_block *block; 83 84 /** 85 * Array of backing pages, if allocated. Note that pages are never 86 * allocated for buffers originally allocated from contiguous memory 87 */ 88 struct page **pages; 89 90 /** addresses corresponding to pages in above array */ 91 dma_addr_t *addrs; 92 93 /** 94 * Virtual address, if mapped. 95 */ 96 void *vaddr; 97 98 /** 99 * sync-object allocated on demand (if needed) 100 * 101 * Per-buffer sync-object for tracking pending and completed hw/dma 102 * read and write operations. The layout in memory is dictated by 103 * the SGX firmware, which uses this information to stall the command 104 * stream if a surface is not ready yet. 105 * 106 * Note that when buffer is used by SGX, the sync-object needs to be 107 * allocated from a special heap of sync-objects. This way many sync 108 * objects can be packed in a page, and not waste GPU virtual address 109 * space. Because of this we have to have a omap_gem_set_sync_object() 110 * API to allow replacement of the syncobj after it has (potentially) 111 * already been allocated. A bit ugly but I haven't thought of a 112 * better alternative. 113 */ 114 struct { 115 uint32_t write_pending; 116 uint32_t write_complete; 117 uint32_t read_pending; 118 uint32_t read_complete; 119 } *sync; 120 }; 121 122 static int get_pages(struct drm_gem_object *obj, struct page ***pages); 123 static uint64_t mmap_offset(struct drm_gem_object *obj); 124 125 /* To deal with userspace mmap'ings of 2d tiled buffers, which (a) are 126 * not necessarily pinned in TILER all the time, and (b) when they are 127 * they are not necessarily page aligned, we reserve one or more small 128 * regions in each of the 2d containers to use as a user-GART where we 129 * can create a second page-aligned mapping of parts of the buffer 130 * being accessed from userspace. 131 * 132 * Note that we could optimize slightly when we know that multiple 133 * tiler containers are backed by the same PAT.. but I'll leave that 134 * for later.. 135 */ 136 #define NUM_USERGART_ENTRIES 2 137 struct usergart_entry { 138 struct tiler_block *block; /* the reserved tiler block */ 139 dma_addr_t paddr; 140 struct drm_gem_object *obj; /* the current pinned obj */ 141 pgoff_t obj_pgoff; /* page offset of obj currently 142 mapped in */ 143 }; 144 static struct { 145 struct usergart_entry entry[NUM_USERGART_ENTRIES]; 146 int height; /* height in rows */ 147 int height_shift; /* ilog2(height in rows) */ 148 int slot_shift; /* ilog2(width per slot) */ 149 int stride_pfn; /* stride in pages */ 150 int last; /* index of last used entry */ 151 } *usergart; 152 153 static void evict_entry(struct drm_gem_object *obj, 154 enum tiler_fmt fmt, struct usergart_entry *entry) 155 { 156 if (obj->dev->dev_mapping) { 157 struct omap_gem_object *omap_obj = to_omap_bo(obj); 158 int n = usergart[fmt].height; 159 size_t size = PAGE_SIZE * n; 160 loff_t off = mmap_offset(obj) + 161 (entry->obj_pgoff << PAGE_SHIFT); 162 const int m = 1 + ((omap_obj->width << fmt) / PAGE_SIZE); 163 if (m > 1) { 164 int i; 165 /* if stride > than PAGE_SIZE then sparse mapping: */ 166 for (i = n; i > 0; i--) { 167 unmap_mapping_range(obj->dev->dev_mapping, 168 off, PAGE_SIZE, 1); 169 off += PAGE_SIZE * m; 170 } 171 } else { 172 unmap_mapping_range(obj->dev->dev_mapping, off, size, 1); 173 } 174 } 175 176 entry->obj = NULL; 177 } 178 179 /* Evict a buffer from usergart, if it is mapped there */ 180 static void evict(struct drm_gem_object *obj) 181 { 182 struct omap_gem_object *omap_obj = to_omap_bo(obj); 183 184 if (omap_obj->flags & OMAP_BO_TILED) { 185 enum tiler_fmt fmt = gem2fmt(omap_obj->flags); 186 int i; 187 188 if (!usergart) 189 return; 190 191 for (i = 0; i < NUM_USERGART_ENTRIES; i++) { 192 struct usergart_entry *entry = &usergart[fmt].entry[i]; 193 if (entry->obj == obj) 194 evict_entry(obj, fmt, entry); 195 } 196 } 197 } 198 199 /* GEM objects can either be allocated from contiguous memory (in which 200 * case obj->filp==NULL), or w/ shmem backing (obj->filp!=NULL). But non 201 * contiguous buffers can be remapped in TILER/DMM if they need to be 202 * contiguous... but we don't do this all the time to reduce pressure 203 * on TILER/DMM space when we know at allocation time that the buffer 204 * will need to be scanned out. 205 */ 206 static inline bool is_shmem(struct drm_gem_object *obj) 207 { 208 return obj->filp != NULL; 209 } 210 211 /** 212 * shmem buffers that are mapped cached can simulate coherency via using 213 * page faulting to keep track of dirty pages 214 */ 215 static inline bool is_cached_coherent(struct drm_gem_object *obj) 216 { 217 struct omap_gem_object *omap_obj = to_omap_bo(obj); 218 return is_shmem(obj) && 219 ((omap_obj->flags & OMAP_BO_CACHE_MASK) == OMAP_BO_CACHED); 220 } 221 222 static DEFINE_SPINLOCK(sync_lock); 223 224 /** ensure backing pages are allocated */ 225 static int omap_gem_attach_pages(struct drm_gem_object *obj) 226 { 227 struct drm_device *dev = obj->dev; 228 struct omap_gem_object *omap_obj = to_omap_bo(obj); 229 struct page **pages; 230 int npages = obj->size >> PAGE_SHIFT; 231 int i, ret; 232 dma_addr_t *addrs; 233 234 WARN_ON(omap_obj->pages); 235 236 /* TODO: __GFP_DMA32 .. but somehow GFP_HIGHMEM is coming from the 237 * mapping_gfp_mask(mapping) which conflicts w/ GFP_DMA32.. probably 238 * we actually want CMA memory for it all anyways.. 239 */ 240 pages = drm_gem_get_pages(obj, GFP_KERNEL); 241 if (IS_ERR(pages)) { 242 dev_err(obj->dev->dev, "could not get pages: %ld\n", PTR_ERR(pages)); 243 return PTR_ERR(pages); 244 } 245 246 /* for non-cached buffers, ensure the new pages are clean because 247 * DSS, GPU, etc. are not cache coherent: 248 */ 249 if (omap_obj->flags & (OMAP_BO_WC|OMAP_BO_UNCACHED)) { 250 addrs = kmalloc(npages * sizeof(*addrs), GFP_KERNEL); 251 if (!addrs) { 252 ret = -ENOMEM; 253 goto free_pages; 254 } 255 256 for (i = 0; i < npages; i++) { 257 addrs[i] = dma_map_page(dev->dev, pages[i], 258 0, PAGE_SIZE, DMA_BIDIRECTIONAL); 259 } 260 } else { 261 addrs = kzalloc(npages * sizeof(*addrs), GFP_KERNEL); 262 if (!addrs) { 263 ret = -ENOMEM; 264 goto free_pages; 265 } 266 } 267 268 omap_obj->addrs = addrs; 269 omap_obj->pages = pages; 270 271 return 0; 272 273 free_pages: 274 drm_gem_put_pages(obj, pages, true, false); 275 276 return ret; 277 } 278 279 /** release backing pages */ 280 static void omap_gem_detach_pages(struct drm_gem_object *obj) 281 { 282 struct omap_gem_object *omap_obj = to_omap_bo(obj); 283 284 /* for non-cached buffers, ensure the new pages are clean because 285 * DSS, GPU, etc. are not cache coherent: 286 */ 287 if (omap_obj->flags & (OMAP_BO_WC|OMAP_BO_UNCACHED)) { 288 int i, npages = obj->size >> PAGE_SHIFT; 289 for (i = 0; i < npages; i++) { 290 dma_unmap_page(obj->dev->dev, omap_obj->addrs[i], 291 PAGE_SIZE, DMA_BIDIRECTIONAL); 292 } 293 } 294 295 kfree(omap_obj->addrs); 296 omap_obj->addrs = NULL; 297 298 drm_gem_put_pages(obj, omap_obj->pages, true, false); 299 omap_obj->pages = NULL; 300 } 301 302 /* get buffer flags */ 303 uint32_t omap_gem_flags(struct drm_gem_object *obj) 304 { 305 return to_omap_bo(obj)->flags; 306 } 307 308 /** get mmap offset */ 309 static uint64_t mmap_offset(struct drm_gem_object *obj) 310 { 311 struct drm_device *dev = obj->dev; 312 int ret; 313 size_t size; 314 315 WARN_ON(!mutex_is_locked(&dev->struct_mutex)); 316 317 /* Make it mmapable */ 318 size = omap_gem_mmap_size(obj); 319 ret = drm_gem_create_mmap_offset_size(obj, size); 320 if (ret) { 321 dev_err(dev->dev, "could not allocate mmap offset\n"); 322 return 0; 323 } 324 325 return drm_vma_node_offset_addr(&obj->vma_node); 326 } 327 328 uint64_t omap_gem_mmap_offset(struct drm_gem_object *obj) 329 { 330 uint64_t offset; 331 mutex_lock(&obj->dev->struct_mutex); 332 offset = mmap_offset(obj); 333 mutex_unlock(&obj->dev->struct_mutex); 334 return offset; 335 } 336 337 /** get mmap size */ 338 size_t omap_gem_mmap_size(struct drm_gem_object *obj) 339 { 340 struct omap_gem_object *omap_obj = to_omap_bo(obj); 341 size_t size = obj->size; 342 343 if (omap_obj->flags & OMAP_BO_TILED) { 344 /* for tiled buffers, the virtual size has stride rounded up 345 * to 4kb.. (to hide the fact that row n+1 might start 16kb or 346 * 32kb later!). But we don't back the entire buffer with 347 * pages, only the valid picture part.. so need to adjust for 348 * this in the size used to mmap and generate mmap offset 349 */ 350 size = tiler_vsize(gem2fmt(omap_obj->flags), 351 omap_obj->width, omap_obj->height); 352 } 353 354 return size; 355 } 356 357 /* get tiled size, returns -EINVAL if not tiled buffer */ 358 int omap_gem_tiled_size(struct drm_gem_object *obj, uint16_t *w, uint16_t *h) 359 { 360 struct omap_gem_object *omap_obj = to_omap_bo(obj); 361 if (omap_obj->flags & OMAP_BO_TILED) { 362 *w = omap_obj->width; 363 *h = omap_obj->height; 364 return 0; 365 } 366 return -EINVAL; 367 } 368 369 /* Normal handling for the case of faulting in non-tiled buffers */ 370 static int fault_1d(struct drm_gem_object *obj, 371 struct vm_area_struct *vma, struct vm_fault *vmf) 372 { 373 struct omap_gem_object *omap_obj = to_omap_bo(obj); 374 unsigned long pfn; 375 pgoff_t pgoff; 376 377 /* We don't use vmf->pgoff since that has the fake offset: */ 378 pgoff = ((unsigned long)vmf->virtual_address - 379 vma->vm_start) >> PAGE_SHIFT; 380 381 if (omap_obj->pages) { 382 omap_gem_cpu_sync(obj, pgoff); 383 pfn = page_to_pfn(omap_obj->pages[pgoff]); 384 } else { 385 BUG_ON(!(omap_obj->flags & OMAP_BO_DMA)); 386 pfn = (omap_obj->paddr >> PAGE_SHIFT) + pgoff; 387 } 388 389 VERB("Inserting %p pfn %lx, pa %lx", vmf->virtual_address, 390 pfn, pfn << PAGE_SHIFT); 391 392 return vm_insert_mixed(vma, (unsigned long)vmf->virtual_address, pfn); 393 } 394 395 /* Special handling for the case of faulting in 2d tiled buffers */ 396 static int fault_2d(struct drm_gem_object *obj, 397 struct vm_area_struct *vma, struct vm_fault *vmf) 398 { 399 struct omap_gem_object *omap_obj = to_omap_bo(obj); 400 struct usergart_entry *entry; 401 enum tiler_fmt fmt = gem2fmt(omap_obj->flags); 402 struct page *pages[64]; /* XXX is this too much to have on stack? */ 403 unsigned long pfn; 404 pgoff_t pgoff, base_pgoff; 405 void __user *vaddr; 406 int i, ret, slots; 407 408 /* 409 * Note the height of the slot is also equal to the number of pages 410 * that need to be mapped in to fill 4kb wide CPU page. If the slot 411 * height is 64, then 64 pages fill a 4kb wide by 64 row region. 412 */ 413 const int n = usergart[fmt].height; 414 const int n_shift = usergart[fmt].height_shift; 415 416 /* 417 * If buffer width in bytes > PAGE_SIZE then the virtual stride is 418 * rounded up to next multiple of PAGE_SIZE.. this need to be taken 419 * into account in some of the math, so figure out virtual stride 420 * in pages 421 */ 422 const int m = 1 + ((omap_obj->width << fmt) / PAGE_SIZE); 423 424 /* We don't use vmf->pgoff since that has the fake offset: */ 425 pgoff = ((unsigned long)vmf->virtual_address - 426 vma->vm_start) >> PAGE_SHIFT; 427 428 /* 429 * Actual address we start mapping at is rounded down to previous slot 430 * boundary in the y direction: 431 */ 432 base_pgoff = round_down(pgoff, m << n_shift); 433 434 /* figure out buffer width in slots */ 435 slots = omap_obj->width >> usergart[fmt].slot_shift; 436 437 vaddr = vmf->virtual_address - ((pgoff - base_pgoff) << PAGE_SHIFT); 438 439 entry = &usergart[fmt].entry[usergart[fmt].last]; 440 441 /* evict previous buffer using this usergart entry, if any: */ 442 if (entry->obj) 443 evict_entry(entry->obj, fmt, entry); 444 445 entry->obj = obj; 446 entry->obj_pgoff = base_pgoff; 447 448 /* now convert base_pgoff to phys offset from virt offset: */ 449 base_pgoff = (base_pgoff >> n_shift) * slots; 450 451 /* for wider-than 4k.. figure out which part of the slot-row we want: */ 452 if (m > 1) { 453 int off = pgoff % m; 454 entry->obj_pgoff += off; 455 base_pgoff /= m; 456 slots = min(slots - (off << n_shift), n); 457 base_pgoff += off << n_shift; 458 vaddr += off << PAGE_SHIFT; 459 } 460 461 /* 462 * Map in pages. Beyond the valid pixel part of the buffer, we set 463 * pages[i] to NULL to get a dummy page mapped in.. if someone 464 * reads/writes it they will get random/undefined content, but at 465 * least it won't be corrupting whatever other random page used to 466 * be mapped in, or other undefined behavior. 467 */ 468 memcpy(pages, &omap_obj->pages[base_pgoff], 469 sizeof(struct page *) * slots); 470 memset(pages + slots, 0, 471 sizeof(struct page *) * (n - slots)); 472 473 ret = tiler_pin(entry->block, pages, ARRAY_SIZE(pages), 0, true); 474 if (ret) { 475 dev_err(obj->dev->dev, "failed to pin: %d\n", ret); 476 return ret; 477 } 478 479 pfn = entry->paddr >> PAGE_SHIFT; 480 481 VERB("Inserting %p pfn %lx, pa %lx", vmf->virtual_address, 482 pfn, pfn << PAGE_SHIFT); 483 484 for (i = n; i > 0; i--) { 485 vm_insert_mixed(vma, (unsigned long)vaddr, pfn); 486 pfn += usergart[fmt].stride_pfn; 487 vaddr += PAGE_SIZE * m; 488 } 489 490 /* simple round-robin: */ 491 usergart[fmt].last = (usergart[fmt].last + 1) % NUM_USERGART_ENTRIES; 492 493 return 0; 494 } 495 496 /** 497 * omap_gem_fault - pagefault handler for GEM objects 498 * @vma: the VMA of the GEM object 499 * @vmf: fault detail 500 * 501 * Invoked when a fault occurs on an mmap of a GEM managed area. GEM 502 * does most of the work for us including the actual map/unmap calls 503 * but we need to do the actual page work. 504 * 505 * The VMA was set up by GEM. In doing so it also ensured that the 506 * vma->vm_private_data points to the GEM object that is backing this 507 * mapping. 508 */ 509 int omap_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 510 { 511 struct drm_gem_object *obj = vma->vm_private_data; 512 struct omap_gem_object *omap_obj = to_omap_bo(obj); 513 struct drm_device *dev = obj->dev; 514 struct page **pages; 515 int ret; 516 517 /* Make sure we don't parallel update on a fault, nor move or remove 518 * something from beneath our feet 519 */ 520 mutex_lock(&dev->struct_mutex); 521 522 /* if a shmem backed object, make sure we have pages attached now */ 523 ret = get_pages(obj, &pages); 524 if (ret) 525 goto fail; 526 527 /* where should we do corresponding put_pages().. we are mapping 528 * the original page, rather than thru a GART, so we can't rely 529 * on eviction to trigger this. But munmap() or all mappings should 530 * probably trigger put_pages()? 531 */ 532 533 if (omap_obj->flags & OMAP_BO_TILED) 534 ret = fault_2d(obj, vma, vmf); 535 else 536 ret = fault_1d(obj, vma, vmf); 537 538 539 fail: 540 mutex_unlock(&dev->struct_mutex); 541 switch (ret) { 542 case 0: 543 case -ERESTARTSYS: 544 case -EINTR: 545 return VM_FAULT_NOPAGE; 546 case -ENOMEM: 547 return VM_FAULT_OOM; 548 default: 549 return VM_FAULT_SIGBUS; 550 } 551 } 552 553 /** We override mainly to fix up some of the vm mapping flags.. */ 554 int omap_gem_mmap(struct file *filp, struct vm_area_struct *vma) 555 { 556 int ret; 557 558 ret = drm_gem_mmap(filp, vma); 559 if (ret) { 560 DBG("mmap failed: %d", ret); 561 return ret; 562 } 563 564 return omap_gem_mmap_obj(vma->vm_private_data, vma); 565 } 566 567 int omap_gem_mmap_obj(struct drm_gem_object *obj, 568 struct vm_area_struct *vma) 569 { 570 struct omap_gem_object *omap_obj = to_omap_bo(obj); 571 572 vma->vm_flags &= ~VM_PFNMAP; 573 vma->vm_flags |= VM_MIXEDMAP; 574 575 if (omap_obj->flags & OMAP_BO_WC) { 576 vma->vm_page_prot = pgprot_writecombine(vm_get_page_prot(vma->vm_flags)); 577 } else if (omap_obj->flags & OMAP_BO_UNCACHED) { 578 vma->vm_page_prot = pgprot_noncached(vm_get_page_prot(vma->vm_flags)); 579 } else { 580 /* 581 * We do have some private objects, at least for scanout buffers 582 * on hardware without DMM/TILER. But these are allocated write- 583 * combine 584 */ 585 if (WARN_ON(!obj->filp)) 586 return -EINVAL; 587 588 /* 589 * Shunt off cached objs to shmem file so they have their own 590 * address_space (so unmap_mapping_range does what we want, 591 * in particular in the case of mmap'd dmabufs) 592 */ 593 fput(vma->vm_file); 594 vma->vm_pgoff = 0; 595 vma->vm_file = get_file(obj->filp); 596 597 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 598 } 599 600 return 0; 601 } 602 603 604 /** 605 * omap_gem_dumb_create - create a dumb buffer 606 * @drm_file: our client file 607 * @dev: our device 608 * @args: the requested arguments copied from userspace 609 * 610 * Allocate a buffer suitable for use for a frame buffer of the 611 * form described by user space. Give userspace a handle by which 612 * to reference it. 613 */ 614 int omap_gem_dumb_create(struct drm_file *file, struct drm_device *dev, 615 struct drm_mode_create_dumb *args) 616 { 617 union omap_gem_size gsize; 618 619 /* in case someone tries to feed us a completely bogus stride: */ 620 args->pitch = align_pitch(args->pitch, args->width, args->bpp); 621 args->size = PAGE_ALIGN(args->pitch * args->height); 622 623 gsize = (union omap_gem_size){ 624 .bytes = args->size, 625 }; 626 627 return omap_gem_new_handle(dev, file, gsize, 628 OMAP_BO_SCANOUT | OMAP_BO_WC, &args->handle); 629 } 630 631 /** 632 * omap_gem_dumb_map - buffer mapping for dumb interface 633 * @file: our drm client file 634 * @dev: drm device 635 * @handle: GEM handle to the object (from dumb_create) 636 * 637 * Do the necessary setup to allow the mapping of the frame buffer 638 * into user memory. We don't have to do much here at the moment. 639 */ 640 int omap_gem_dumb_map_offset(struct drm_file *file, struct drm_device *dev, 641 uint32_t handle, uint64_t *offset) 642 { 643 struct drm_gem_object *obj; 644 int ret = 0; 645 646 /* GEM does all our handle to object mapping */ 647 obj = drm_gem_object_lookup(dev, file, handle); 648 if (obj == NULL) { 649 ret = -ENOENT; 650 goto fail; 651 } 652 653 *offset = omap_gem_mmap_offset(obj); 654 655 drm_gem_object_unreference_unlocked(obj); 656 657 fail: 658 return ret; 659 } 660 661 /* Set scrolling position. This allows us to implement fast scrolling 662 * for console. 663 * 664 * Call only from non-atomic contexts. 665 */ 666 int omap_gem_roll(struct drm_gem_object *obj, uint32_t roll) 667 { 668 struct omap_gem_object *omap_obj = to_omap_bo(obj); 669 uint32_t npages = obj->size >> PAGE_SHIFT; 670 int ret = 0; 671 672 if (roll > npages) { 673 dev_err(obj->dev->dev, "invalid roll: %d\n", roll); 674 return -EINVAL; 675 } 676 677 omap_obj->roll = roll; 678 679 mutex_lock(&obj->dev->struct_mutex); 680 681 /* if we aren't mapped yet, we don't need to do anything */ 682 if (omap_obj->block) { 683 struct page **pages; 684 ret = get_pages(obj, &pages); 685 if (ret) 686 goto fail; 687 ret = tiler_pin(omap_obj->block, pages, npages, roll, true); 688 if (ret) 689 dev_err(obj->dev->dev, "could not repin: %d\n", ret); 690 } 691 692 fail: 693 mutex_unlock(&obj->dev->struct_mutex); 694 695 return ret; 696 } 697 698 /* Sync the buffer for CPU access.. note pages should already be 699 * attached, ie. omap_gem_get_pages() 700 */ 701 void omap_gem_cpu_sync(struct drm_gem_object *obj, int pgoff) 702 { 703 struct drm_device *dev = obj->dev; 704 struct omap_gem_object *omap_obj = to_omap_bo(obj); 705 706 if (is_cached_coherent(obj) && omap_obj->addrs[pgoff]) { 707 dma_unmap_page(dev->dev, omap_obj->addrs[pgoff], 708 PAGE_SIZE, DMA_BIDIRECTIONAL); 709 omap_obj->addrs[pgoff] = 0; 710 } 711 } 712 713 /* sync the buffer for DMA access */ 714 void omap_gem_dma_sync(struct drm_gem_object *obj, 715 enum dma_data_direction dir) 716 { 717 struct drm_device *dev = obj->dev; 718 struct omap_gem_object *omap_obj = to_omap_bo(obj); 719 720 if (is_cached_coherent(obj)) { 721 int i, npages = obj->size >> PAGE_SHIFT; 722 struct page **pages = omap_obj->pages; 723 bool dirty = false; 724 725 for (i = 0; i < npages; i++) { 726 if (!omap_obj->addrs[i]) { 727 omap_obj->addrs[i] = dma_map_page(dev->dev, pages[i], 0, 728 PAGE_SIZE, DMA_BIDIRECTIONAL); 729 dirty = true; 730 } 731 } 732 733 if (dirty) { 734 unmap_mapping_range(obj->filp->f_mapping, 0, 735 omap_gem_mmap_size(obj), 1); 736 } 737 } 738 } 739 740 /* Get physical address for DMA.. if 'remap' is true, and the buffer is not 741 * already contiguous, remap it to pin in physically contiguous memory.. (ie. 742 * map in TILER) 743 */ 744 int omap_gem_get_paddr(struct drm_gem_object *obj, 745 dma_addr_t *paddr, bool remap) 746 { 747 struct omap_drm_private *priv = obj->dev->dev_private; 748 struct omap_gem_object *omap_obj = to_omap_bo(obj); 749 int ret = 0; 750 751 mutex_lock(&obj->dev->struct_mutex); 752 753 if (remap && is_shmem(obj) && priv->has_dmm) { 754 if (omap_obj->paddr_cnt == 0) { 755 struct page **pages; 756 uint32_t npages = obj->size >> PAGE_SHIFT; 757 enum tiler_fmt fmt = gem2fmt(omap_obj->flags); 758 struct tiler_block *block; 759 760 BUG_ON(omap_obj->block); 761 762 ret = get_pages(obj, &pages); 763 if (ret) 764 goto fail; 765 766 if (omap_obj->flags & OMAP_BO_TILED) { 767 block = tiler_reserve_2d(fmt, 768 omap_obj->width, 769 omap_obj->height, 0); 770 } else { 771 block = tiler_reserve_1d(obj->size); 772 } 773 774 if (IS_ERR(block)) { 775 ret = PTR_ERR(block); 776 dev_err(obj->dev->dev, 777 "could not remap: %d (%d)\n", ret, fmt); 778 goto fail; 779 } 780 781 /* TODO: enable async refill.. */ 782 ret = tiler_pin(block, pages, npages, 783 omap_obj->roll, true); 784 if (ret) { 785 tiler_release(block); 786 dev_err(obj->dev->dev, 787 "could not pin: %d\n", ret); 788 goto fail; 789 } 790 791 omap_obj->paddr = tiler_ssptr(block); 792 omap_obj->block = block; 793 794 DBG("got paddr: %08x", omap_obj->paddr); 795 } 796 797 omap_obj->paddr_cnt++; 798 799 *paddr = omap_obj->paddr; 800 } else if (omap_obj->flags & OMAP_BO_DMA) { 801 *paddr = omap_obj->paddr; 802 } else { 803 ret = -EINVAL; 804 goto fail; 805 } 806 807 fail: 808 mutex_unlock(&obj->dev->struct_mutex); 809 810 return ret; 811 } 812 813 /* Release physical address, when DMA is no longer being performed.. this 814 * could potentially unpin and unmap buffers from TILER 815 */ 816 int omap_gem_put_paddr(struct drm_gem_object *obj) 817 { 818 struct omap_gem_object *omap_obj = to_omap_bo(obj); 819 int ret = 0; 820 821 mutex_lock(&obj->dev->struct_mutex); 822 if (omap_obj->paddr_cnt > 0) { 823 omap_obj->paddr_cnt--; 824 if (omap_obj->paddr_cnt == 0) { 825 ret = tiler_unpin(omap_obj->block); 826 if (ret) { 827 dev_err(obj->dev->dev, 828 "could not unpin pages: %d\n", ret); 829 goto fail; 830 } 831 ret = tiler_release(omap_obj->block); 832 if (ret) { 833 dev_err(obj->dev->dev, 834 "could not release unmap: %d\n", ret); 835 } 836 omap_obj->block = NULL; 837 } 838 } 839 fail: 840 mutex_unlock(&obj->dev->struct_mutex); 841 return ret; 842 } 843 844 /* Get rotated scanout address (only valid if already pinned), at the 845 * specified orientation and x,y offset from top-left corner of buffer 846 * (only valid for tiled 2d buffers) 847 */ 848 int omap_gem_rotated_paddr(struct drm_gem_object *obj, uint32_t orient, 849 int x, int y, dma_addr_t *paddr) 850 { 851 struct omap_gem_object *omap_obj = to_omap_bo(obj); 852 int ret = -EINVAL; 853 854 mutex_lock(&obj->dev->struct_mutex); 855 if ((omap_obj->paddr_cnt > 0) && omap_obj->block && 856 (omap_obj->flags & OMAP_BO_TILED)) { 857 *paddr = tiler_tsptr(omap_obj->block, orient, x, y); 858 ret = 0; 859 } 860 mutex_unlock(&obj->dev->struct_mutex); 861 return ret; 862 } 863 864 /* Get tiler stride for the buffer (only valid for 2d tiled buffers) */ 865 int omap_gem_tiled_stride(struct drm_gem_object *obj, uint32_t orient) 866 { 867 struct omap_gem_object *omap_obj = to_omap_bo(obj); 868 int ret = -EINVAL; 869 if (omap_obj->flags & OMAP_BO_TILED) 870 ret = tiler_stride(gem2fmt(omap_obj->flags), orient); 871 return ret; 872 } 873 874 /* acquire pages when needed (for example, for DMA where physically 875 * contiguous buffer is not required 876 */ 877 static int get_pages(struct drm_gem_object *obj, struct page ***pages) 878 { 879 struct omap_gem_object *omap_obj = to_omap_bo(obj); 880 int ret = 0; 881 882 if (is_shmem(obj) && !omap_obj->pages) { 883 ret = omap_gem_attach_pages(obj); 884 if (ret) { 885 dev_err(obj->dev->dev, "could not attach pages\n"); 886 return ret; 887 } 888 } 889 890 /* TODO: even phys-contig.. we should have a list of pages? */ 891 *pages = omap_obj->pages; 892 893 return 0; 894 } 895 896 /* if !remap, and we don't have pages backing, then fail, rather than 897 * increasing the pin count (which we don't really do yet anyways, 898 * because we don't support swapping pages back out). And 'remap' 899 * might not be quite the right name, but I wanted to keep it working 900 * similarly to omap_gem_get_paddr(). Note though that mutex is not 901 * aquired if !remap (because this can be called in atomic ctxt), 902 * but probably omap_gem_get_paddr() should be changed to work in the 903 * same way. If !remap, a matching omap_gem_put_pages() call is not 904 * required (and should not be made). 905 */ 906 int omap_gem_get_pages(struct drm_gem_object *obj, struct page ***pages, 907 bool remap) 908 { 909 int ret; 910 if (!remap) { 911 struct omap_gem_object *omap_obj = to_omap_bo(obj); 912 if (!omap_obj->pages) 913 return -ENOMEM; 914 *pages = omap_obj->pages; 915 return 0; 916 } 917 mutex_lock(&obj->dev->struct_mutex); 918 ret = get_pages(obj, pages); 919 mutex_unlock(&obj->dev->struct_mutex); 920 return ret; 921 } 922 923 /* release pages when DMA no longer being performed */ 924 int omap_gem_put_pages(struct drm_gem_object *obj) 925 { 926 /* do something here if we dynamically attach/detach pages.. at 927 * least they would no longer need to be pinned if everyone has 928 * released the pages.. 929 */ 930 return 0; 931 } 932 933 /* Get kernel virtual address for CPU access.. this more or less only 934 * exists for omap_fbdev. This should be called with struct_mutex 935 * held. 936 */ 937 void *omap_gem_vaddr(struct drm_gem_object *obj) 938 { 939 struct omap_gem_object *omap_obj = to_omap_bo(obj); 940 WARN_ON(!mutex_is_locked(&obj->dev->struct_mutex)); 941 if (!omap_obj->vaddr) { 942 struct page **pages; 943 int ret = get_pages(obj, &pages); 944 if (ret) 945 return ERR_PTR(ret); 946 omap_obj->vaddr = vmap(pages, obj->size >> PAGE_SHIFT, 947 VM_MAP, pgprot_writecombine(PAGE_KERNEL)); 948 } 949 return omap_obj->vaddr; 950 } 951 952 #ifdef CONFIG_PM 953 /* re-pin objects in DMM in resume path: */ 954 int omap_gem_resume(struct device *dev) 955 { 956 struct drm_device *drm_dev = dev_get_drvdata(dev); 957 struct omap_drm_private *priv = drm_dev->dev_private; 958 struct omap_gem_object *omap_obj; 959 int ret = 0; 960 961 list_for_each_entry(omap_obj, &priv->obj_list, mm_list) { 962 if (omap_obj->block) { 963 struct drm_gem_object *obj = &omap_obj->base; 964 uint32_t npages = obj->size >> PAGE_SHIFT; 965 WARN_ON(!omap_obj->pages); /* this can't happen */ 966 ret = tiler_pin(omap_obj->block, 967 omap_obj->pages, npages, 968 omap_obj->roll, true); 969 if (ret) { 970 dev_err(dev, "could not repin: %d\n", ret); 971 return ret; 972 } 973 } 974 } 975 976 return 0; 977 } 978 #endif 979 980 #ifdef CONFIG_DEBUG_FS 981 void omap_gem_describe(struct drm_gem_object *obj, struct seq_file *m) 982 { 983 struct drm_device *dev = obj->dev; 984 struct omap_gem_object *omap_obj = to_omap_bo(obj); 985 uint64_t off; 986 987 WARN_ON(!mutex_is_locked(&dev->struct_mutex)); 988 989 off = drm_vma_node_start(&obj->vma_node); 990 991 seq_printf(m, "%08x: %2d (%2d) %08llx %08Zx (%2d) %p %4d", 992 omap_obj->flags, obj->name, obj->refcount.refcount.counter, 993 off, omap_obj->paddr, omap_obj->paddr_cnt, 994 omap_obj->vaddr, omap_obj->roll); 995 996 if (omap_obj->flags & OMAP_BO_TILED) { 997 seq_printf(m, " %dx%d", omap_obj->width, omap_obj->height); 998 if (omap_obj->block) { 999 struct tcm_area *area = &omap_obj->block->area; 1000 seq_printf(m, " (%dx%d, %dx%d)", 1001 area->p0.x, area->p0.y, 1002 area->p1.x, area->p1.y); 1003 } 1004 } else { 1005 seq_printf(m, " %d", obj->size); 1006 } 1007 1008 seq_printf(m, "\n"); 1009 } 1010 1011 void omap_gem_describe_objects(struct list_head *list, struct seq_file *m) 1012 { 1013 struct omap_gem_object *omap_obj; 1014 int count = 0; 1015 size_t size = 0; 1016 1017 list_for_each_entry(omap_obj, list, mm_list) { 1018 struct drm_gem_object *obj = &omap_obj->base; 1019 seq_printf(m, " "); 1020 omap_gem_describe(obj, m); 1021 count++; 1022 size += obj->size; 1023 } 1024 1025 seq_printf(m, "Total %d objects, %zu bytes\n", count, size); 1026 } 1027 #endif 1028 1029 /* Buffer Synchronization: 1030 */ 1031 1032 struct omap_gem_sync_waiter { 1033 struct list_head list; 1034 struct omap_gem_object *omap_obj; 1035 enum omap_gem_op op; 1036 uint32_t read_target, write_target; 1037 /* notify called w/ sync_lock held */ 1038 void (*notify)(void *arg); 1039 void *arg; 1040 }; 1041 1042 /* list of omap_gem_sync_waiter.. the notify fxn gets called back when 1043 * the read and/or write target count is achieved which can call a user 1044 * callback (ex. to kick 3d and/or 2d), wakeup blocked task (prep for 1045 * cpu access), etc. 1046 */ 1047 static LIST_HEAD(waiters); 1048 1049 static inline bool is_waiting(struct omap_gem_sync_waiter *waiter) 1050 { 1051 struct omap_gem_object *omap_obj = waiter->omap_obj; 1052 if ((waiter->op & OMAP_GEM_READ) && 1053 (omap_obj->sync->read_complete < waiter->read_target)) 1054 return true; 1055 if ((waiter->op & OMAP_GEM_WRITE) && 1056 (omap_obj->sync->write_complete < waiter->write_target)) 1057 return true; 1058 return false; 1059 } 1060 1061 /* macro for sync debug.. */ 1062 #define SYNCDBG 0 1063 #define SYNC(fmt, ...) do { if (SYNCDBG) \ 1064 printk(KERN_ERR "%s:%d: "fmt"\n", \ 1065 __func__, __LINE__, ##__VA_ARGS__); \ 1066 } while (0) 1067 1068 1069 static void sync_op_update(void) 1070 { 1071 struct omap_gem_sync_waiter *waiter, *n; 1072 list_for_each_entry_safe(waiter, n, &waiters, list) { 1073 if (!is_waiting(waiter)) { 1074 list_del(&waiter->list); 1075 SYNC("notify: %p", waiter); 1076 waiter->notify(waiter->arg); 1077 kfree(waiter); 1078 } 1079 } 1080 } 1081 1082 static inline int sync_op(struct drm_gem_object *obj, 1083 enum omap_gem_op op, bool start) 1084 { 1085 struct omap_gem_object *omap_obj = to_omap_bo(obj); 1086 int ret = 0; 1087 1088 spin_lock(&sync_lock); 1089 1090 if (!omap_obj->sync) { 1091 omap_obj->sync = kzalloc(sizeof(*omap_obj->sync), GFP_ATOMIC); 1092 if (!omap_obj->sync) { 1093 ret = -ENOMEM; 1094 goto unlock; 1095 } 1096 } 1097 1098 if (start) { 1099 if (op & OMAP_GEM_READ) 1100 omap_obj->sync->read_pending++; 1101 if (op & OMAP_GEM_WRITE) 1102 omap_obj->sync->write_pending++; 1103 } else { 1104 if (op & OMAP_GEM_READ) 1105 omap_obj->sync->read_complete++; 1106 if (op & OMAP_GEM_WRITE) 1107 omap_obj->sync->write_complete++; 1108 sync_op_update(); 1109 } 1110 1111 unlock: 1112 spin_unlock(&sync_lock); 1113 1114 return ret; 1115 } 1116 1117 /* it is a bit lame to handle updates in this sort of polling way, but 1118 * in case of PVR, the GPU can directly update read/write complete 1119 * values, and not really tell us which ones it updated.. this also 1120 * means that sync_lock is not quite sufficient. So we'll need to 1121 * do something a bit better when it comes time to add support for 1122 * separate 2d hw.. 1123 */ 1124 void omap_gem_op_update(void) 1125 { 1126 spin_lock(&sync_lock); 1127 sync_op_update(); 1128 spin_unlock(&sync_lock); 1129 } 1130 1131 /* mark the start of read and/or write operation */ 1132 int omap_gem_op_start(struct drm_gem_object *obj, enum omap_gem_op op) 1133 { 1134 return sync_op(obj, op, true); 1135 } 1136 1137 int omap_gem_op_finish(struct drm_gem_object *obj, enum omap_gem_op op) 1138 { 1139 return sync_op(obj, op, false); 1140 } 1141 1142 static DECLARE_WAIT_QUEUE_HEAD(sync_event); 1143 1144 static void sync_notify(void *arg) 1145 { 1146 struct task_struct **waiter_task = arg; 1147 *waiter_task = NULL; 1148 wake_up_all(&sync_event); 1149 } 1150 1151 int omap_gem_op_sync(struct drm_gem_object *obj, enum omap_gem_op op) 1152 { 1153 struct omap_gem_object *omap_obj = to_omap_bo(obj); 1154 int ret = 0; 1155 if (omap_obj->sync) { 1156 struct task_struct *waiter_task = current; 1157 struct omap_gem_sync_waiter *waiter = 1158 kzalloc(sizeof(*waiter), GFP_KERNEL); 1159 1160 if (!waiter) 1161 return -ENOMEM; 1162 1163 waiter->omap_obj = omap_obj; 1164 waiter->op = op; 1165 waiter->read_target = omap_obj->sync->read_pending; 1166 waiter->write_target = omap_obj->sync->write_pending; 1167 waiter->notify = sync_notify; 1168 waiter->arg = &waiter_task; 1169 1170 spin_lock(&sync_lock); 1171 if (is_waiting(waiter)) { 1172 SYNC("waited: %p", waiter); 1173 list_add_tail(&waiter->list, &waiters); 1174 spin_unlock(&sync_lock); 1175 ret = wait_event_interruptible(sync_event, 1176 (waiter_task == NULL)); 1177 spin_lock(&sync_lock); 1178 if (waiter_task) { 1179 SYNC("interrupted: %p", waiter); 1180 /* we were interrupted */ 1181 list_del(&waiter->list); 1182 waiter_task = NULL; 1183 } else { 1184 /* freed in sync_op_update() */ 1185 waiter = NULL; 1186 } 1187 } 1188 spin_unlock(&sync_lock); 1189 1190 if (waiter) 1191 kfree(waiter); 1192 } 1193 return ret; 1194 } 1195 1196 /* call fxn(arg), either synchronously or asynchronously if the op 1197 * is currently blocked.. fxn() can be called from any context 1198 * 1199 * (TODO for now fxn is called back from whichever context calls 1200 * omap_gem_op_update().. but this could be better defined later 1201 * if needed) 1202 * 1203 * TODO more code in common w/ _sync().. 1204 */ 1205 int omap_gem_op_async(struct drm_gem_object *obj, enum omap_gem_op op, 1206 void (*fxn)(void *arg), void *arg) 1207 { 1208 struct omap_gem_object *omap_obj = to_omap_bo(obj); 1209 if (omap_obj->sync) { 1210 struct omap_gem_sync_waiter *waiter = 1211 kzalloc(sizeof(*waiter), GFP_ATOMIC); 1212 1213 if (!waiter) 1214 return -ENOMEM; 1215 1216 waiter->omap_obj = omap_obj; 1217 waiter->op = op; 1218 waiter->read_target = omap_obj->sync->read_pending; 1219 waiter->write_target = omap_obj->sync->write_pending; 1220 waiter->notify = fxn; 1221 waiter->arg = arg; 1222 1223 spin_lock(&sync_lock); 1224 if (is_waiting(waiter)) { 1225 SYNC("waited: %p", waiter); 1226 list_add_tail(&waiter->list, &waiters); 1227 spin_unlock(&sync_lock); 1228 return 0; 1229 } 1230 1231 spin_unlock(&sync_lock); 1232 } 1233 1234 /* no waiting.. */ 1235 fxn(arg); 1236 1237 return 0; 1238 } 1239 1240 /* special API so PVR can update the buffer to use a sync-object allocated 1241 * from it's sync-obj heap. Only used for a newly allocated (from PVR's 1242 * perspective) sync-object, so we overwrite the new syncobj w/ values 1243 * from the already allocated syncobj (if there is one) 1244 */ 1245 int omap_gem_set_sync_object(struct drm_gem_object *obj, void *syncobj) 1246 { 1247 struct omap_gem_object *omap_obj = to_omap_bo(obj); 1248 int ret = 0; 1249 1250 spin_lock(&sync_lock); 1251 1252 if ((omap_obj->flags & OMAP_BO_EXT_SYNC) && !syncobj) { 1253 /* clearing a previously set syncobj */ 1254 syncobj = kmemdup(omap_obj->sync, sizeof(*omap_obj->sync), 1255 GFP_ATOMIC); 1256 if (!syncobj) { 1257 ret = -ENOMEM; 1258 goto unlock; 1259 } 1260 omap_obj->flags &= ~OMAP_BO_EXT_SYNC; 1261 omap_obj->sync = syncobj; 1262 } else if (syncobj && !(omap_obj->flags & OMAP_BO_EXT_SYNC)) { 1263 /* replacing an existing syncobj */ 1264 if (omap_obj->sync) { 1265 memcpy(syncobj, omap_obj->sync, sizeof(*omap_obj->sync)); 1266 kfree(omap_obj->sync); 1267 } 1268 omap_obj->flags |= OMAP_BO_EXT_SYNC; 1269 omap_obj->sync = syncobj; 1270 } 1271 1272 unlock: 1273 spin_unlock(&sync_lock); 1274 return ret; 1275 } 1276 1277 /* don't call directly.. called from GEM core when it is time to actually 1278 * free the object.. 1279 */ 1280 void omap_gem_free_object(struct drm_gem_object *obj) 1281 { 1282 struct drm_device *dev = obj->dev; 1283 struct omap_gem_object *omap_obj = to_omap_bo(obj); 1284 1285 evict(obj); 1286 1287 WARN_ON(!mutex_is_locked(&dev->struct_mutex)); 1288 1289 list_del(&omap_obj->mm_list); 1290 1291 drm_gem_free_mmap_offset(obj); 1292 1293 /* this means the object is still pinned.. which really should 1294 * not happen. I think.. 1295 */ 1296 WARN_ON(omap_obj->paddr_cnt > 0); 1297 1298 /* don't free externally allocated backing memory */ 1299 if (!(omap_obj->flags & OMAP_BO_EXT_MEM)) { 1300 if (omap_obj->pages) 1301 omap_gem_detach_pages(obj); 1302 1303 if (!is_shmem(obj)) { 1304 dma_free_writecombine(dev->dev, obj->size, 1305 omap_obj->vaddr, omap_obj->paddr); 1306 } else if (omap_obj->vaddr) { 1307 vunmap(omap_obj->vaddr); 1308 } 1309 } 1310 1311 /* don't free externally allocated syncobj */ 1312 if (!(omap_obj->flags & OMAP_BO_EXT_SYNC)) 1313 kfree(omap_obj->sync); 1314 1315 drm_gem_object_release(obj); 1316 1317 kfree(obj); 1318 } 1319 1320 /* convenience method to construct a GEM buffer object, and userspace handle */ 1321 int omap_gem_new_handle(struct drm_device *dev, struct drm_file *file, 1322 union omap_gem_size gsize, uint32_t flags, uint32_t *handle) 1323 { 1324 struct drm_gem_object *obj; 1325 int ret; 1326 1327 obj = omap_gem_new(dev, gsize, flags); 1328 if (!obj) 1329 return -ENOMEM; 1330 1331 ret = drm_gem_handle_create(file, obj, handle); 1332 if (ret) { 1333 drm_gem_object_release(obj); 1334 kfree(obj); /* TODO isn't there a dtor to call? just copying i915 */ 1335 return ret; 1336 } 1337 1338 /* drop reference from allocate - handle holds it now */ 1339 drm_gem_object_unreference_unlocked(obj); 1340 1341 return 0; 1342 } 1343 1344 /* GEM buffer object constructor */ 1345 struct drm_gem_object *omap_gem_new(struct drm_device *dev, 1346 union omap_gem_size gsize, uint32_t flags) 1347 { 1348 struct omap_drm_private *priv = dev->dev_private; 1349 struct omap_gem_object *omap_obj; 1350 struct drm_gem_object *obj = NULL; 1351 size_t size; 1352 int ret; 1353 1354 if (flags & OMAP_BO_TILED) { 1355 if (!usergart) { 1356 dev_err(dev->dev, "Tiled buffers require DMM\n"); 1357 goto fail; 1358 } 1359 1360 /* tiled buffers are always shmem paged backed.. when they are 1361 * scanned out, they are remapped into DMM/TILER 1362 */ 1363 flags &= ~OMAP_BO_SCANOUT; 1364 1365 /* currently don't allow cached buffers.. there is some caching 1366 * stuff that needs to be handled better 1367 */ 1368 flags &= ~(OMAP_BO_CACHED|OMAP_BO_UNCACHED); 1369 flags |= OMAP_BO_WC; 1370 1371 /* align dimensions to slot boundaries... */ 1372 tiler_align(gem2fmt(flags), 1373 &gsize.tiled.width, &gsize.tiled.height); 1374 1375 /* ...and calculate size based on aligned dimensions */ 1376 size = tiler_size(gem2fmt(flags), 1377 gsize.tiled.width, gsize.tiled.height); 1378 } else { 1379 size = PAGE_ALIGN(gsize.bytes); 1380 } 1381 1382 omap_obj = kzalloc(sizeof(*omap_obj), GFP_KERNEL); 1383 if (!omap_obj) 1384 goto fail; 1385 1386 list_add(&omap_obj->mm_list, &priv->obj_list); 1387 1388 obj = &omap_obj->base; 1389 1390 if ((flags & OMAP_BO_SCANOUT) && !priv->has_dmm) { 1391 /* attempt to allocate contiguous memory if we don't 1392 * have DMM for remappign discontiguous buffers 1393 */ 1394 omap_obj->vaddr = dma_alloc_writecombine(dev->dev, size, 1395 &omap_obj->paddr, GFP_KERNEL); 1396 if (omap_obj->vaddr) 1397 flags |= OMAP_BO_DMA; 1398 1399 } 1400 1401 omap_obj->flags = flags; 1402 1403 if (flags & OMAP_BO_TILED) { 1404 omap_obj->width = gsize.tiled.width; 1405 omap_obj->height = gsize.tiled.height; 1406 } 1407 1408 ret = 0; 1409 if (flags & (OMAP_BO_DMA|OMAP_BO_EXT_MEM)) 1410 drm_gem_private_object_init(dev, obj, size); 1411 else 1412 ret = drm_gem_object_init(dev, obj, size); 1413 1414 if (ret) 1415 goto fail; 1416 1417 return obj; 1418 1419 fail: 1420 if (obj) 1421 omap_gem_free_object(obj); 1422 1423 return NULL; 1424 } 1425 1426 /* init/cleanup.. if DMM is used, we need to set some stuff up.. */ 1427 void omap_gem_init(struct drm_device *dev) 1428 { 1429 struct omap_drm_private *priv = dev->dev_private; 1430 const enum tiler_fmt fmts[] = { 1431 TILFMT_8BIT, TILFMT_16BIT, TILFMT_32BIT 1432 }; 1433 int i, j; 1434 1435 if (!dmm_is_available()) { 1436 /* DMM only supported on OMAP4 and later, so this isn't fatal */ 1437 dev_warn(dev->dev, "DMM not available, disable DMM support\n"); 1438 return; 1439 } 1440 1441 usergart = kcalloc(3, sizeof(*usergart), GFP_KERNEL); 1442 if (!usergart) 1443 return; 1444 1445 /* reserve 4k aligned/wide regions for userspace mappings: */ 1446 for (i = 0; i < ARRAY_SIZE(fmts); i++) { 1447 uint16_t h = 1, w = PAGE_SIZE >> i; 1448 tiler_align(fmts[i], &w, &h); 1449 /* note: since each region is 1 4kb page wide, and minimum 1450 * number of rows, the height ends up being the same as the 1451 * # of pages in the region 1452 */ 1453 usergart[i].height = h; 1454 usergart[i].height_shift = ilog2(h); 1455 usergart[i].stride_pfn = tiler_stride(fmts[i], 0) >> PAGE_SHIFT; 1456 usergart[i].slot_shift = ilog2((PAGE_SIZE / h) >> i); 1457 for (j = 0; j < NUM_USERGART_ENTRIES; j++) { 1458 struct usergart_entry *entry = &usergart[i].entry[j]; 1459 struct tiler_block *block = 1460 tiler_reserve_2d(fmts[i], w, h, 1461 PAGE_SIZE); 1462 if (IS_ERR(block)) { 1463 dev_err(dev->dev, 1464 "reserve failed: %d, %d, %ld\n", 1465 i, j, PTR_ERR(block)); 1466 return; 1467 } 1468 entry->paddr = tiler_ssptr(block); 1469 entry->block = block; 1470 1471 DBG("%d:%d: %dx%d: paddr=%08x stride=%d", i, j, w, h, 1472 entry->paddr, 1473 usergart[i].stride_pfn << PAGE_SHIFT); 1474 } 1475 } 1476 1477 priv->has_dmm = true; 1478 } 1479 1480 void omap_gem_deinit(struct drm_device *dev) 1481 { 1482 /* I believe we can rely on there being no more outstanding GEM 1483 * objects which could depend on usergart/dmm at this point. 1484 */ 1485 kfree(usergart); 1486 } 1487