1 /* 2 * DMM IOMMU driver support functions for TI OMAP processors. 3 * 4 * Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com/ 5 * Author: Rob Clark <rob@ti.com> 6 * Andy Gross <andy.gross@ti.com> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License as 10 * published by the Free Software Foundation version 2. 11 * 12 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 13 * kind, whether express or implied; without even the implied warranty 14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 */ 17 18 #include <linux/completion.h> 19 #include <linux/delay.h> 20 #include <linux/dma-mapping.h> 21 #include <linux/errno.h> 22 #include <linux/init.h> 23 #include <linux/interrupt.h> 24 #include <linux/list.h> 25 #include <linux/mm.h> 26 #include <linux/module.h> 27 #include <linux/platform_device.h> /* platform_device() */ 28 #include <linux/sched.h> 29 #include <linux/seq_file.h> 30 #include <linux/slab.h> 31 #include <linux/time.h> 32 #include <linux/vmalloc.h> 33 #include <linux/wait.h> 34 35 #include "omap_dmm_tiler.h" 36 #include "omap_dmm_priv.h" 37 38 #define DMM_DRIVER_NAME "dmm" 39 40 /* mappings for associating views to luts */ 41 static struct tcm *containers[TILFMT_NFORMATS]; 42 static struct dmm *omap_dmm; 43 44 #if defined(CONFIG_OF) 45 static const struct of_device_id dmm_of_match[]; 46 #endif 47 48 /* global spinlock for protecting lists */ 49 static DEFINE_SPINLOCK(list_lock); 50 51 /* Geometry table */ 52 #define GEOM(xshift, yshift, bytes_per_pixel) { \ 53 .x_shft = (xshift), \ 54 .y_shft = (yshift), \ 55 .cpp = (bytes_per_pixel), \ 56 .slot_w = 1 << (SLOT_WIDTH_BITS - (xshift)), \ 57 .slot_h = 1 << (SLOT_HEIGHT_BITS - (yshift)), \ 58 } 59 60 static const struct { 61 u32 x_shft; /* unused X-bits (as part of bpp) */ 62 u32 y_shft; /* unused Y-bits (as part of bpp) */ 63 u32 cpp; /* bytes/chars per pixel */ 64 u32 slot_w; /* width of each slot (in pixels) */ 65 u32 slot_h; /* height of each slot (in pixels) */ 66 } geom[TILFMT_NFORMATS] = { 67 [TILFMT_8BIT] = GEOM(0, 0, 1), 68 [TILFMT_16BIT] = GEOM(0, 1, 2), 69 [TILFMT_32BIT] = GEOM(1, 1, 4), 70 [TILFMT_PAGE] = GEOM(SLOT_WIDTH_BITS, SLOT_HEIGHT_BITS, 1), 71 }; 72 73 74 /* lookup table for registers w/ per-engine instances */ 75 static const u32 reg[][4] = { 76 [PAT_STATUS] = {DMM_PAT_STATUS__0, DMM_PAT_STATUS__1, 77 DMM_PAT_STATUS__2, DMM_PAT_STATUS__3}, 78 [PAT_DESCR] = {DMM_PAT_DESCR__0, DMM_PAT_DESCR__1, 79 DMM_PAT_DESCR__2, DMM_PAT_DESCR__3}, 80 }; 81 82 static u32 dmm_read(struct dmm *dmm, u32 reg) 83 { 84 return readl(dmm->base + reg); 85 } 86 87 static void dmm_write(struct dmm *dmm, u32 val, u32 reg) 88 { 89 writel(val, dmm->base + reg); 90 } 91 92 /* simple allocator to grab next 16 byte aligned memory from txn */ 93 static void *alloc_dma(struct dmm_txn *txn, size_t sz, dma_addr_t *pa) 94 { 95 void *ptr; 96 struct refill_engine *engine = txn->engine_handle; 97 98 /* dmm programming requires 16 byte aligned addresses */ 99 txn->current_pa = round_up(txn->current_pa, 16); 100 txn->current_va = (void *)round_up((long)txn->current_va, 16); 101 102 ptr = txn->current_va; 103 *pa = txn->current_pa; 104 105 txn->current_pa += sz; 106 txn->current_va += sz; 107 108 BUG_ON((txn->current_va - engine->refill_va) > REFILL_BUFFER_SIZE); 109 110 return ptr; 111 } 112 113 /* check status and spin until wait_mask comes true */ 114 static int wait_status(struct refill_engine *engine, u32 wait_mask) 115 { 116 struct dmm *dmm = engine->dmm; 117 u32 r = 0, err, i; 118 119 i = DMM_FIXED_RETRY_COUNT; 120 while (true) { 121 r = dmm_read(dmm, reg[PAT_STATUS][engine->id]); 122 err = r & DMM_PATSTATUS_ERR; 123 if (err) { 124 dev_err(dmm->dev, 125 "%s: error (engine%d). PAT_STATUS: 0x%08x\n", 126 __func__, engine->id, r); 127 return -EFAULT; 128 } 129 130 if ((r & wait_mask) == wait_mask) 131 break; 132 133 if (--i == 0) { 134 dev_err(dmm->dev, 135 "%s: timeout (engine%d). PAT_STATUS: 0x%08x\n", 136 __func__, engine->id, r); 137 return -ETIMEDOUT; 138 } 139 140 udelay(1); 141 } 142 143 return 0; 144 } 145 146 static void release_engine(struct refill_engine *engine) 147 { 148 unsigned long flags; 149 150 spin_lock_irqsave(&list_lock, flags); 151 list_add(&engine->idle_node, &omap_dmm->idle_head); 152 spin_unlock_irqrestore(&list_lock, flags); 153 154 atomic_inc(&omap_dmm->engine_counter); 155 wake_up_interruptible(&omap_dmm->engine_queue); 156 } 157 158 static irqreturn_t omap_dmm_irq_handler(int irq, void *arg) 159 { 160 struct dmm *dmm = arg; 161 u32 status = dmm_read(dmm, DMM_PAT_IRQSTATUS); 162 int i; 163 164 /* ack IRQ */ 165 dmm_write(dmm, status, DMM_PAT_IRQSTATUS); 166 167 for (i = 0; i < dmm->num_engines; i++) { 168 if (status & DMM_IRQSTAT_ERR_MASK) 169 dev_err(dmm->dev, 170 "irq error(engine%d): IRQSTAT 0x%02x\n", 171 i, status & 0xff); 172 173 if (status & DMM_IRQSTAT_LST) { 174 if (dmm->engines[i].async) 175 release_engine(&dmm->engines[i]); 176 177 complete(&dmm->engines[i].compl); 178 } 179 180 status >>= 8; 181 } 182 183 return IRQ_HANDLED; 184 } 185 186 /** 187 * Get a handle for a DMM transaction 188 */ 189 static struct dmm_txn *dmm_txn_init(struct dmm *dmm, struct tcm *tcm) 190 { 191 struct dmm_txn *txn = NULL; 192 struct refill_engine *engine = NULL; 193 int ret; 194 unsigned long flags; 195 196 197 /* wait until an engine is available */ 198 ret = wait_event_interruptible(omap_dmm->engine_queue, 199 atomic_add_unless(&omap_dmm->engine_counter, -1, 0)); 200 if (ret) 201 return ERR_PTR(ret); 202 203 /* grab an idle engine */ 204 spin_lock_irqsave(&list_lock, flags); 205 if (!list_empty(&dmm->idle_head)) { 206 engine = list_entry(dmm->idle_head.next, struct refill_engine, 207 idle_node); 208 list_del(&engine->idle_node); 209 } 210 spin_unlock_irqrestore(&list_lock, flags); 211 212 BUG_ON(!engine); 213 214 txn = &engine->txn; 215 engine->tcm = tcm; 216 txn->engine_handle = engine; 217 txn->last_pat = NULL; 218 txn->current_va = engine->refill_va; 219 txn->current_pa = engine->refill_pa; 220 221 return txn; 222 } 223 224 /** 225 * Add region to DMM transaction. If pages or pages[i] is NULL, then the 226 * corresponding slot is cleared (ie. dummy_pa is programmed) 227 */ 228 static void dmm_txn_append(struct dmm_txn *txn, struct pat_area *area, 229 struct page **pages, u32 npages, u32 roll) 230 { 231 dma_addr_t pat_pa = 0, data_pa = 0; 232 u32 *data; 233 struct pat *pat; 234 struct refill_engine *engine = txn->engine_handle; 235 int columns = (1 + area->x1 - area->x0); 236 int rows = (1 + area->y1 - area->y0); 237 int i = columns*rows; 238 239 pat = alloc_dma(txn, sizeof(*pat), &pat_pa); 240 241 if (txn->last_pat) 242 txn->last_pat->next_pa = (u32)pat_pa; 243 244 pat->area = *area; 245 246 /* adjust Y coordinates based off of container parameters */ 247 pat->area.y0 += engine->tcm->y_offset; 248 pat->area.y1 += engine->tcm->y_offset; 249 250 pat->ctrl = (struct pat_ctrl){ 251 .start = 1, 252 .lut_id = engine->tcm->lut_id, 253 }; 254 255 data = alloc_dma(txn, 4*i, &data_pa); 256 /* FIXME: what if data_pa is more than 32-bit ? */ 257 pat->data_pa = data_pa; 258 259 while (i--) { 260 int n = i + roll; 261 if (n >= npages) 262 n -= npages; 263 data[i] = (pages && pages[n]) ? 264 page_to_phys(pages[n]) : engine->dmm->dummy_pa; 265 } 266 267 txn->last_pat = pat; 268 269 return; 270 } 271 272 /** 273 * Commit the DMM transaction. 274 */ 275 static int dmm_txn_commit(struct dmm_txn *txn, bool wait) 276 { 277 int ret = 0; 278 struct refill_engine *engine = txn->engine_handle; 279 struct dmm *dmm = engine->dmm; 280 281 if (!txn->last_pat) { 282 dev_err(engine->dmm->dev, "need at least one txn\n"); 283 ret = -EINVAL; 284 goto cleanup; 285 } 286 287 txn->last_pat->next_pa = 0; 288 289 /* write to PAT_DESCR to clear out any pending transaction */ 290 dmm_write(dmm, 0x0, reg[PAT_DESCR][engine->id]); 291 292 /* wait for engine ready: */ 293 ret = wait_status(engine, DMM_PATSTATUS_READY); 294 if (ret) { 295 ret = -EFAULT; 296 goto cleanup; 297 } 298 299 /* mark whether it is async to denote list management in IRQ handler */ 300 engine->async = wait ? false : true; 301 reinit_completion(&engine->compl); 302 /* verify that the irq handler sees the 'async' and completion value */ 303 smp_mb(); 304 305 /* kick reload */ 306 dmm_write(dmm, engine->refill_pa, reg[PAT_DESCR][engine->id]); 307 308 if (wait) { 309 if (!wait_for_completion_timeout(&engine->compl, 310 msecs_to_jiffies(100))) { 311 dev_err(dmm->dev, "timed out waiting for done\n"); 312 ret = -ETIMEDOUT; 313 goto cleanup; 314 } 315 316 /* Check the engine status before continue */ 317 ret = wait_status(engine, DMM_PATSTATUS_READY | 318 DMM_PATSTATUS_VALID | DMM_PATSTATUS_DONE); 319 } 320 321 cleanup: 322 /* only place engine back on list if we are done with it */ 323 if (ret || wait) 324 release_engine(engine); 325 326 return ret; 327 } 328 329 /* 330 * DMM programming 331 */ 332 static int fill(struct tcm_area *area, struct page **pages, 333 u32 npages, u32 roll, bool wait) 334 { 335 int ret = 0; 336 struct tcm_area slice, area_s; 337 struct dmm_txn *txn; 338 339 /* 340 * FIXME 341 * 342 * Asynchronous fill does not work reliably, as the driver does not 343 * handle errors in the async code paths. The fill operation may 344 * silently fail, leading to leaking DMM engines, which may eventually 345 * lead to deadlock if we run out of DMM engines. 346 * 347 * For now, always set 'wait' so that we only use sync fills. Async 348 * fills should be fixed, or alternatively we could decide to only 349 * support sync fills and so the whole async code path could be removed. 350 */ 351 352 wait = true; 353 354 txn = dmm_txn_init(omap_dmm, area->tcm); 355 if (IS_ERR_OR_NULL(txn)) 356 return -ENOMEM; 357 358 tcm_for_each_slice(slice, *area, area_s) { 359 struct pat_area p_area = { 360 .x0 = slice.p0.x, .y0 = slice.p0.y, 361 .x1 = slice.p1.x, .y1 = slice.p1.y, 362 }; 363 364 dmm_txn_append(txn, &p_area, pages, npages, roll); 365 366 roll += tcm_sizeof(slice); 367 } 368 369 ret = dmm_txn_commit(txn, wait); 370 371 return ret; 372 } 373 374 /* 375 * Pin/unpin 376 */ 377 378 /* note: slots for which pages[i] == NULL are filled w/ dummy page 379 */ 380 int tiler_pin(struct tiler_block *block, struct page **pages, 381 u32 npages, u32 roll, bool wait) 382 { 383 int ret; 384 385 ret = fill(&block->area, pages, npages, roll, wait); 386 387 if (ret) 388 tiler_unpin(block); 389 390 return ret; 391 } 392 393 int tiler_unpin(struct tiler_block *block) 394 { 395 return fill(&block->area, NULL, 0, 0, false); 396 } 397 398 /* 399 * Reserve/release 400 */ 401 struct tiler_block *tiler_reserve_2d(enum tiler_fmt fmt, u16 w, 402 u16 h, u16 align) 403 { 404 struct tiler_block *block; 405 u32 min_align = 128; 406 int ret; 407 unsigned long flags; 408 u32 slot_bytes; 409 410 block = kzalloc(sizeof(*block), GFP_KERNEL); 411 if (!block) 412 return ERR_PTR(-ENOMEM); 413 414 BUG_ON(!validfmt(fmt)); 415 416 /* convert width/height to slots */ 417 w = DIV_ROUND_UP(w, geom[fmt].slot_w); 418 h = DIV_ROUND_UP(h, geom[fmt].slot_h); 419 420 /* convert alignment to slots */ 421 slot_bytes = geom[fmt].slot_w * geom[fmt].cpp; 422 min_align = max(min_align, slot_bytes); 423 align = (align > min_align) ? ALIGN(align, min_align) : min_align; 424 align /= slot_bytes; 425 426 block->fmt = fmt; 427 428 ret = tcm_reserve_2d(containers[fmt], w, h, align, -1, slot_bytes, 429 &block->area); 430 if (ret) { 431 kfree(block); 432 return ERR_PTR(-ENOMEM); 433 } 434 435 /* add to allocation list */ 436 spin_lock_irqsave(&list_lock, flags); 437 list_add(&block->alloc_node, &omap_dmm->alloc_head); 438 spin_unlock_irqrestore(&list_lock, flags); 439 440 return block; 441 } 442 443 struct tiler_block *tiler_reserve_1d(size_t size) 444 { 445 struct tiler_block *block = kzalloc(sizeof(*block), GFP_KERNEL); 446 int num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 447 unsigned long flags; 448 449 if (!block) 450 return ERR_PTR(-ENOMEM); 451 452 block->fmt = TILFMT_PAGE; 453 454 if (tcm_reserve_1d(containers[TILFMT_PAGE], num_pages, 455 &block->area)) { 456 kfree(block); 457 return ERR_PTR(-ENOMEM); 458 } 459 460 spin_lock_irqsave(&list_lock, flags); 461 list_add(&block->alloc_node, &omap_dmm->alloc_head); 462 spin_unlock_irqrestore(&list_lock, flags); 463 464 return block; 465 } 466 467 /* note: if you have pin'd pages, you should have already unpin'd first! */ 468 int tiler_release(struct tiler_block *block) 469 { 470 int ret = tcm_free(&block->area); 471 unsigned long flags; 472 473 if (block->area.tcm) 474 dev_err(omap_dmm->dev, "failed to release block\n"); 475 476 spin_lock_irqsave(&list_lock, flags); 477 list_del(&block->alloc_node); 478 spin_unlock_irqrestore(&list_lock, flags); 479 480 kfree(block); 481 return ret; 482 } 483 484 /* 485 * Utils 486 */ 487 488 /* calculate the tiler space address of a pixel in a view orientation... 489 * below description copied from the display subsystem section of TRM: 490 * 491 * When the TILER is addressed, the bits: 492 * [28:27] = 0x0 for 8-bit tiled 493 * 0x1 for 16-bit tiled 494 * 0x2 for 32-bit tiled 495 * 0x3 for page mode 496 * [31:29] = 0x0 for 0-degree view 497 * 0x1 for 180-degree view + mirroring 498 * 0x2 for 0-degree view + mirroring 499 * 0x3 for 180-degree view 500 * 0x4 for 270-degree view + mirroring 501 * 0x5 for 270-degree view 502 * 0x6 for 90-degree view 503 * 0x7 for 90-degree view + mirroring 504 * Otherwise the bits indicated the corresponding bit address to access 505 * the SDRAM. 506 */ 507 static u32 tiler_get_address(enum tiler_fmt fmt, u32 orient, u32 x, u32 y) 508 { 509 u32 x_bits, y_bits, tmp, x_mask, y_mask, alignment; 510 511 x_bits = CONT_WIDTH_BITS - geom[fmt].x_shft; 512 y_bits = CONT_HEIGHT_BITS - geom[fmt].y_shft; 513 alignment = geom[fmt].x_shft + geom[fmt].y_shft; 514 515 /* validate coordinate */ 516 x_mask = MASK(x_bits); 517 y_mask = MASK(y_bits); 518 519 if (x < 0 || x > x_mask || y < 0 || y > y_mask) { 520 DBG("invalid coords: %u < 0 || %u > %u || %u < 0 || %u > %u", 521 x, x, x_mask, y, y, y_mask); 522 return 0; 523 } 524 525 /* account for mirroring */ 526 if (orient & MASK_X_INVERT) 527 x ^= x_mask; 528 if (orient & MASK_Y_INVERT) 529 y ^= y_mask; 530 531 /* get coordinate address */ 532 if (orient & MASK_XY_FLIP) 533 tmp = ((x << y_bits) + y); 534 else 535 tmp = ((y << x_bits) + x); 536 537 return TIL_ADDR((tmp << alignment), orient, fmt); 538 } 539 540 dma_addr_t tiler_ssptr(struct tiler_block *block) 541 { 542 BUG_ON(!validfmt(block->fmt)); 543 544 return TILVIEW_8BIT + tiler_get_address(block->fmt, 0, 545 block->area.p0.x * geom[block->fmt].slot_w, 546 block->area.p0.y * geom[block->fmt].slot_h); 547 } 548 549 dma_addr_t tiler_tsptr(struct tiler_block *block, u32 orient, 550 u32 x, u32 y) 551 { 552 struct tcm_pt *p = &block->area.p0; 553 BUG_ON(!validfmt(block->fmt)); 554 555 return tiler_get_address(block->fmt, orient, 556 (p->x * geom[block->fmt].slot_w) + x, 557 (p->y * geom[block->fmt].slot_h) + y); 558 } 559 560 void tiler_align(enum tiler_fmt fmt, u16 *w, u16 *h) 561 { 562 BUG_ON(!validfmt(fmt)); 563 *w = round_up(*w, geom[fmt].slot_w); 564 *h = round_up(*h, geom[fmt].slot_h); 565 } 566 567 u32 tiler_stride(enum tiler_fmt fmt, u32 orient) 568 { 569 BUG_ON(!validfmt(fmt)); 570 571 if (orient & MASK_XY_FLIP) 572 return 1 << (CONT_HEIGHT_BITS + geom[fmt].x_shft); 573 else 574 return 1 << (CONT_WIDTH_BITS + geom[fmt].y_shft); 575 } 576 577 size_t tiler_size(enum tiler_fmt fmt, u16 w, u16 h) 578 { 579 tiler_align(fmt, &w, &h); 580 return geom[fmt].cpp * w * h; 581 } 582 583 size_t tiler_vsize(enum tiler_fmt fmt, u16 w, u16 h) 584 { 585 BUG_ON(!validfmt(fmt)); 586 return round_up(geom[fmt].cpp * w, PAGE_SIZE) * h; 587 } 588 589 u32 tiler_get_cpu_cache_flags(void) 590 { 591 return omap_dmm->plat_data->cpu_cache_flags; 592 } 593 594 bool dmm_is_available(void) 595 { 596 return omap_dmm ? true : false; 597 } 598 599 static int omap_dmm_remove(struct platform_device *dev) 600 { 601 struct tiler_block *block, *_block; 602 int i; 603 unsigned long flags; 604 605 if (omap_dmm) { 606 /* free all area regions */ 607 spin_lock_irqsave(&list_lock, flags); 608 list_for_each_entry_safe(block, _block, &omap_dmm->alloc_head, 609 alloc_node) { 610 list_del(&block->alloc_node); 611 kfree(block); 612 } 613 spin_unlock_irqrestore(&list_lock, flags); 614 615 for (i = 0; i < omap_dmm->num_lut; i++) 616 if (omap_dmm->tcm && omap_dmm->tcm[i]) 617 omap_dmm->tcm[i]->deinit(omap_dmm->tcm[i]); 618 kfree(omap_dmm->tcm); 619 620 kfree(omap_dmm->engines); 621 if (omap_dmm->refill_va) 622 dma_free_wc(omap_dmm->dev, 623 REFILL_BUFFER_SIZE * omap_dmm->num_engines, 624 omap_dmm->refill_va, omap_dmm->refill_pa); 625 if (omap_dmm->dummy_page) 626 __free_page(omap_dmm->dummy_page); 627 628 if (omap_dmm->irq > 0) 629 free_irq(omap_dmm->irq, omap_dmm); 630 631 iounmap(omap_dmm->base); 632 kfree(omap_dmm); 633 omap_dmm = NULL; 634 } 635 636 return 0; 637 } 638 639 static int omap_dmm_probe(struct platform_device *dev) 640 { 641 int ret = -EFAULT, i; 642 struct tcm_area area = {0}; 643 u32 hwinfo, pat_geom; 644 struct resource *mem; 645 646 omap_dmm = kzalloc(sizeof(*omap_dmm), GFP_KERNEL); 647 if (!omap_dmm) 648 goto fail; 649 650 /* initialize lists */ 651 INIT_LIST_HEAD(&omap_dmm->alloc_head); 652 INIT_LIST_HEAD(&omap_dmm->idle_head); 653 654 init_waitqueue_head(&omap_dmm->engine_queue); 655 656 if (dev->dev.of_node) { 657 const struct of_device_id *match; 658 659 match = of_match_node(dmm_of_match, dev->dev.of_node); 660 if (!match) { 661 dev_err(&dev->dev, "failed to find matching device node\n"); 662 ret = -ENODEV; 663 goto fail; 664 } 665 666 omap_dmm->plat_data = match->data; 667 } 668 669 /* lookup hwmod data - base address and irq */ 670 mem = platform_get_resource(dev, IORESOURCE_MEM, 0); 671 if (!mem) { 672 dev_err(&dev->dev, "failed to get base address resource\n"); 673 goto fail; 674 } 675 676 omap_dmm->base = ioremap(mem->start, SZ_2K); 677 678 if (!omap_dmm->base) { 679 dev_err(&dev->dev, "failed to get dmm base address\n"); 680 goto fail; 681 } 682 683 omap_dmm->irq = platform_get_irq(dev, 0); 684 if (omap_dmm->irq < 0) { 685 dev_err(&dev->dev, "failed to get IRQ resource\n"); 686 goto fail; 687 } 688 689 omap_dmm->dev = &dev->dev; 690 691 hwinfo = dmm_read(omap_dmm, DMM_PAT_HWINFO); 692 omap_dmm->num_engines = (hwinfo >> 24) & 0x1F; 693 omap_dmm->num_lut = (hwinfo >> 16) & 0x1F; 694 omap_dmm->container_width = 256; 695 omap_dmm->container_height = 128; 696 697 atomic_set(&omap_dmm->engine_counter, omap_dmm->num_engines); 698 699 /* read out actual LUT width and height */ 700 pat_geom = dmm_read(omap_dmm, DMM_PAT_GEOMETRY); 701 omap_dmm->lut_width = ((pat_geom >> 16) & 0xF) << 5; 702 omap_dmm->lut_height = ((pat_geom >> 24) & 0xF) << 5; 703 704 /* increment LUT by one if on OMAP5 */ 705 /* LUT has twice the height, and is split into a separate container */ 706 if (omap_dmm->lut_height != omap_dmm->container_height) 707 omap_dmm->num_lut++; 708 709 /* initialize DMM registers */ 710 dmm_write(omap_dmm, 0x88888888, DMM_PAT_VIEW__0); 711 dmm_write(omap_dmm, 0x88888888, DMM_PAT_VIEW__1); 712 dmm_write(omap_dmm, 0x80808080, DMM_PAT_VIEW_MAP__0); 713 dmm_write(omap_dmm, 0x80000000, DMM_PAT_VIEW_MAP_BASE); 714 dmm_write(omap_dmm, 0x88888888, DMM_TILER_OR__0); 715 dmm_write(omap_dmm, 0x88888888, DMM_TILER_OR__1); 716 717 ret = request_irq(omap_dmm->irq, omap_dmm_irq_handler, IRQF_SHARED, 718 "omap_dmm_irq_handler", omap_dmm); 719 720 if (ret) { 721 dev_err(&dev->dev, "couldn't register IRQ %d, error %d\n", 722 omap_dmm->irq, ret); 723 omap_dmm->irq = -1; 724 goto fail; 725 } 726 727 /* Enable all interrupts for each refill engine except 728 * ERR_LUT_MISS<n> (which is just advisory, and we don't care 729 * about because we want to be able to refill live scanout 730 * buffers for accelerated pan/scroll) and FILL_DSC<n> which 731 * we just generally don't care about. 732 */ 733 dmm_write(omap_dmm, 0x7e7e7e7e, DMM_PAT_IRQENABLE_SET); 734 735 omap_dmm->dummy_page = alloc_page(GFP_KERNEL | __GFP_DMA32); 736 if (!omap_dmm->dummy_page) { 737 dev_err(&dev->dev, "could not allocate dummy page\n"); 738 ret = -ENOMEM; 739 goto fail; 740 } 741 742 /* set dma mask for device */ 743 ret = dma_set_coherent_mask(&dev->dev, DMA_BIT_MASK(32)); 744 if (ret) 745 goto fail; 746 747 omap_dmm->dummy_pa = page_to_phys(omap_dmm->dummy_page); 748 749 /* alloc refill memory */ 750 omap_dmm->refill_va = dma_alloc_wc(&dev->dev, 751 REFILL_BUFFER_SIZE * omap_dmm->num_engines, 752 &omap_dmm->refill_pa, GFP_KERNEL); 753 if (!omap_dmm->refill_va) { 754 dev_err(&dev->dev, "could not allocate refill memory\n"); 755 goto fail; 756 } 757 758 /* alloc engines */ 759 omap_dmm->engines = kcalloc(omap_dmm->num_engines, 760 sizeof(*omap_dmm->engines), GFP_KERNEL); 761 if (!omap_dmm->engines) { 762 ret = -ENOMEM; 763 goto fail; 764 } 765 766 for (i = 0; i < omap_dmm->num_engines; i++) { 767 omap_dmm->engines[i].id = i; 768 omap_dmm->engines[i].dmm = omap_dmm; 769 omap_dmm->engines[i].refill_va = omap_dmm->refill_va + 770 (REFILL_BUFFER_SIZE * i); 771 omap_dmm->engines[i].refill_pa = omap_dmm->refill_pa + 772 (REFILL_BUFFER_SIZE * i); 773 init_completion(&omap_dmm->engines[i].compl); 774 775 list_add(&omap_dmm->engines[i].idle_node, &omap_dmm->idle_head); 776 } 777 778 omap_dmm->tcm = kcalloc(omap_dmm->num_lut, sizeof(*omap_dmm->tcm), 779 GFP_KERNEL); 780 if (!omap_dmm->tcm) { 781 ret = -ENOMEM; 782 goto fail; 783 } 784 785 /* init containers */ 786 /* Each LUT is associated with a TCM (container manager). We use the 787 lut_id to denote the lut_id used to identify the correct LUT for 788 programming during reill operations */ 789 for (i = 0; i < omap_dmm->num_lut; i++) { 790 omap_dmm->tcm[i] = sita_init(omap_dmm->container_width, 791 omap_dmm->container_height); 792 793 if (!omap_dmm->tcm[i]) { 794 dev_err(&dev->dev, "failed to allocate container\n"); 795 ret = -ENOMEM; 796 goto fail; 797 } 798 799 omap_dmm->tcm[i]->lut_id = i; 800 } 801 802 /* assign access mode containers to applicable tcm container */ 803 /* OMAP 4 has 1 container for all 4 views */ 804 /* OMAP 5 has 2 containers, 1 for 2D and 1 for 1D */ 805 containers[TILFMT_8BIT] = omap_dmm->tcm[0]; 806 containers[TILFMT_16BIT] = omap_dmm->tcm[0]; 807 containers[TILFMT_32BIT] = omap_dmm->tcm[0]; 808 809 if (omap_dmm->container_height != omap_dmm->lut_height) { 810 /* second LUT is used for PAGE mode. Programming must use 811 y offset that is added to all y coordinates. LUT id is still 812 0, because it is the same LUT, just the upper 128 lines */ 813 containers[TILFMT_PAGE] = omap_dmm->tcm[1]; 814 omap_dmm->tcm[1]->y_offset = OMAP5_LUT_OFFSET; 815 omap_dmm->tcm[1]->lut_id = 0; 816 } else { 817 containers[TILFMT_PAGE] = omap_dmm->tcm[0]; 818 } 819 820 area = (struct tcm_area) { 821 .tcm = NULL, 822 .p1.x = omap_dmm->container_width - 1, 823 .p1.y = omap_dmm->container_height - 1, 824 }; 825 826 /* initialize all LUTs to dummy page entries */ 827 for (i = 0; i < omap_dmm->num_lut; i++) { 828 area.tcm = omap_dmm->tcm[i]; 829 if (fill(&area, NULL, 0, 0, true)) 830 dev_err(omap_dmm->dev, "refill failed"); 831 } 832 833 dev_info(omap_dmm->dev, "initialized all PAT entries\n"); 834 835 return 0; 836 837 fail: 838 if (omap_dmm_remove(dev)) 839 dev_err(&dev->dev, "cleanup failed\n"); 840 return ret; 841 } 842 843 /* 844 * debugfs support 845 */ 846 847 #ifdef CONFIG_DEBUG_FS 848 849 static const char *alphabet = "abcdefghijklmnopqrstuvwxyz" 850 "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"; 851 static const char *special = ".,:;'\"`~!^-+"; 852 853 static void fill_map(char **map, int xdiv, int ydiv, struct tcm_area *a, 854 char c, bool ovw) 855 { 856 int x, y; 857 for (y = a->p0.y / ydiv; y <= a->p1.y / ydiv; y++) 858 for (x = a->p0.x / xdiv; x <= a->p1.x / xdiv; x++) 859 if (map[y][x] == ' ' || ovw) 860 map[y][x] = c; 861 } 862 863 static void fill_map_pt(char **map, int xdiv, int ydiv, struct tcm_pt *p, 864 char c) 865 { 866 map[p->y / ydiv][p->x / xdiv] = c; 867 } 868 869 static char read_map_pt(char **map, int xdiv, int ydiv, struct tcm_pt *p) 870 { 871 return map[p->y / ydiv][p->x / xdiv]; 872 } 873 874 static int map_width(int xdiv, int x0, int x1) 875 { 876 return (x1 / xdiv) - (x0 / xdiv) + 1; 877 } 878 879 static void text_map(char **map, int xdiv, char *nice, int yd, int x0, int x1) 880 { 881 char *p = map[yd] + (x0 / xdiv); 882 int w = (map_width(xdiv, x0, x1) - strlen(nice)) / 2; 883 if (w >= 0) { 884 p += w; 885 while (*nice) 886 *p++ = *nice++; 887 } 888 } 889 890 static void map_1d_info(char **map, int xdiv, int ydiv, char *nice, 891 struct tcm_area *a) 892 { 893 sprintf(nice, "%dK", tcm_sizeof(*a) * 4); 894 if (a->p0.y + 1 < a->p1.y) { 895 text_map(map, xdiv, nice, (a->p0.y + a->p1.y) / 2 / ydiv, 0, 896 256 - 1); 897 } else if (a->p0.y < a->p1.y) { 898 if (strlen(nice) < map_width(xdiv, a->p0.x, 256 - 1)) 899 text_map(map, xdiv, nice, a->p0.y / ydiv, 900 a->p0.x + xdiv, 256 - 1); 901 else if (strlen(nice) < map_width(xdiv, 0, a->p1.x)) 902 text_map(map, xdiv, nice, a->p1.y / ydiv, 903 0, a->p1.y - xdiv); 904 } else if (strlen(nice) + 1 < map_width(xdiv, a->p0.x, a->p1.x)) { 905 text_map(map, xdiv, nice, a->p0.y / ydiv, a->p0.x, a->p1.x); 906 } 907 } 908 909 static void map_2d_info(char **map, int xdiv, int ydiv, char *nice, 910 struct tcm_area *a) 911 { 912 sprintf(nice, "(%d*%d)", tcm_awidth(*a), tcm_aheight(*a)); 913 if (strlen(nice) + 1 < map_width(xdiv, a->p0.x, a->p1.x)) 914 text_map(map, xdiv, nice, (a->p0.y + a->p1.y) / 2 / ydiv, 915 a->p0.x, a->p1.x); 916 } 917 918 int tiler_map_show(struct seq_file *s, void *arg) 919 { 920 int xdiv = 2, ydiv = 1; 921 char **map = NULL, *global_map; 922 struct tiler_block *block; 923 struct tcm_area a, p; 924 int i; 925 const char *m2d = alphabet; 926 const char *a2d = special; 927 const char *m2dp = m2d, *a2dp = a2d; 928 char nice[128]; 929 int h_adj; 930 int w_adj; 931 unsigned long flags; 932 int lut_idx; 933 934 935 if (!omap_dmm) { 936 /* early return if dmm/tiler device is not initialized */ 937 return 0; 938 } 939 940 h_adj = omap_dmm->container_height / ydiv; 941 w_adj = omap_dmm->container_width / xdiv; 942 943 map = kmalloc_array(h_adj, sizeof(*map), GFP_KERNEL); 944 global_map = kmalloc_array(w_adj + 1, h_adj, GFP_KERNEL); 945 946 if (!map || !global_map) 947 goto error; 948 949 for (lut_idx = 0; lut_idx < omap_dmm->num_lut; lut_idx++) { 950 memset(map, 0, h_adj * sizeof(*map)); 951 memset(global_map, ' ', (w_adj + 1) * h_adj); 952 953 for (i = 0; i < omap_dmm->container_height; i++) { 954 map[i] = global_map + i * (w_adj + 1); 955 map[i][w_adj] = 0; 956 } 957 958 spin_lock_irqsave(&list_lock, flags); 959 960 list_for_each_entry(block, &omap_dmm->alloc_head, alloc_node) { 961 if (block->area.tcm == omap_dmm->tcm[lut_idx]) { 962 if (block->fmt != TILFMT_PAGE) { 963 fill_map(map, xdiv, ydiv, &block->area, 964 *m2dp, true); 965 if (!*++a2dp) 966 a2dp = a2d; 967 if (!*++m2dp) 968 m2dp = m2d; 969 map_2d_info(map, xdiv, ydiv, nice, 970 &block->area); 971 } else { 972 bool start = read_map_pt(map, xdiv, 973 ydiv, &block->area.p0) == ' '; 974 bool end = read_map_pt(map, xdiv, ydiv, 975 &block->area.p1) == ' '; 976 977 tcm_for_each_slice(a, block->area, p) 978 fill_map(map, xdiv, ydiv, &a, 979 '=', true); 980 fill_map_pt(map, xdiv, ydiv, 981 &block->area.p0, 982 start ? '<' : 'X'); 983 fill_map_pt(map, xdiv, ydiv, 984 &block->area.p1, 985 end ? '>' : 'X'); 986 map_1d_info(map, xdiv, ydiv, nice, 987 &block->area); 988 } 989 } 990 } 991 992 spin_unlock_irqrestore(&list_lock, flags); 993 994 if (s) { 995 seq_printf(s, "CONTAINER %d DUMP BEGIN\n", lut_idx); 996 for (i = 0; i < 128; i++) 997 seq_printf(s, "%03d:%s\n", i, map[i]); 998 seq_printf(s, "CONTAINER %d DUMP END\n", lut_idx); 999 } else { 1000 dev_dbg(omap_dmm->dev, "CONTAINER %d DUMP BEGIN\n", 1001 lut_idx); 1002 for (i = 0; i < 128; i++) 1003 dev_dbg(omap_dmm->dev, "%03d:%s\n", i, map[i]); 1004 dev_dbg(omap_dmm->dev, "CONTAINER %d DUMP END\n", 1005 lut_idx); 1006 } 1007 } 1008 1009 error: 1010 kfree(map); 1011 kfree(global_map); 1012 1013 return 0; 1014 } 1015 #endif 1016 1017 #ifdef CONFIG_PM_SLEEP 1018 static int omap_dmm_resume(struct device *dev) 1019 { 1020 struct tcm_area area; 1021 int i; 1022 1023 if (!omap_dmm) 1024 return -ENODEV; 1025 1026 area = (struct tcm_area) { 1027 .tcm = NULL, 1028 .p1.x = omap_dmm->container_width - 1, 1029 .p1.y = omap_dmm->container_height - 1, 1030 }; 1031 1032 /* initialize all LUTs to dummy page entries */ 1033 for (i = 0; i < omap_dmm->num_lut; i++) { 1034 area.tcm = omap_dmm->tcm[i]; 1035 if (fill(&area, NULL, 0, 0, true)) 1036 dev_err(dev, "refill failed"); 1037 } 1038 1039 return 0; 1040 } 1041 #endif 1042 1043 static SIMPLE_DEV_PM_OPS(omap_dmm_pm_ops, NULL, omap_dmm_resume); 1044 1045 #if defined(CONFIG_OF) 1046 static const struct dmm_platform_data dmm_omap4_platform_data = { 1047 .cpu_cache_flags = OMAP_BO_WC, 1048 }; 1049 1050 static const struct dmm_platform_data dmm_omap5_platform_data = { 1051 .cpu_cache_flags = OMAP_BO_UNCACHED, 1052 }; 1053 1054 static const struct of_device_id dmm_of_match[] = { 1055 { 1056 .compatible = "ti,omap4-dmm", 1057 .data = &dmm_omap4_platform_data, 1058 }, 1059 { 1060 .compatible = "ti,omap5-dmm", 1061 .data = &dmm_omap5_platform_data, 1062 }, 1063 {}, 1064 }; 1065 #endif 1066 1067 struct platform_driver omap_dmm_driver = { 1068 .probe = omap_dmm_probe, 1069 .remove = omap_dmm_remove, 1070 .driver = { 1071 .owner = THIS_MODULE, 1072 .name = DMM_DRIVER_NAME, 1073 .of_match_table = of_match_ptr(dmm_of_match), 1074 .pm = &omap_dmm_pm_ops, 1075 }, 1076 }; 1077 1078 MODULE_LICENSE("GPL v2"); 1079 MODULE_AUTHOR("Andy Gross <andy.gross@ti.com>"); 1080 MODULE_DESCRIPTION("OMAP DMM/Tiler Driver"); 1081