1 /* 2 * DMM IOMMU driver support functions for TI OMAP processors. 3 * 4 * Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com/ 5 * Author: Rob Clark <rob@ti.com> 6 * Andy Gross <andy.gross@ti.com> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License as 10 * published by the Free Software Foundation version 2. 11 * 12 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 13 * kind, whether express or implied; without even the implied warranty 14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 */ 17 18 #include <linux/completion.h> 19 #include <linux/delay.h> 20 #include <linux/dma-mapping.h> 21 #include <linux/dmaengine.h> 22 #include <linux/errno.h> 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/list.h> 26 #include <linux/mm.h> 27 #include <linux/module.h> 28 #include <linux/platform_device.h> /* platform_device() */ 29 #include <linux/sched.h> 30 #include <linux/seq_file.h> 31 #include <linux/slab.h> 32 #include <linux/time.h> 33 #include <linux/vmalloc.h> 34 #include <linux/wait.h> 35 36 #include "omap_dmm_tiler.h" 37 #include "omap_dmm_priv.h" 38 39 #define DMM_DRIVER_NAME "dmm" 40 41 /* mappings for associating views to luts */ 42 static struct tcm *containers[TILFMT_NFORMATS]; 43 static struct dmm *omap_dmm; 44 45 #if defined(CONFIG_OF) 46 static const struct of_device_id dmm_of_match[]; 47 #endif 48 49 /* global spinlock for protecting lists */ 50 static DEFINE_SPINLOCK(list_lock); 51 52 /* Geometry table */ 53 #define GEOM(xshift, yshift, bytes_per_pixel) { \ 54 .x_shft = (xshift), \ 55 .y_shft = (yshift), \ 56 .cpp = (bytes_per_pixel), \ 57 .slot_w = 1 << (SLOT_WIDTH_BITS - (xshift)), \ 58 .slot_h = 1 << (SLOT_HEIGHT_BITS - (yshift)), \ 59 } 60 61 static const struct { 62 u32 x_shft; /* unused X-bits (as part of bpp) */ 63 u32 y_shft; /* unused Y-bits (as part of bpp) */ 64 u32 cpp; /* bytes/chars per pixel */ 65 u32 slot_w; /* width of each slot (in pixels) */ 66 u32 slot_h; /* height of each slot (in pixels) */ 67 } geom[TILFMT_NFORMATS] = { 68 [TILFMT_8BIT] = GEOM(0, 0, 1), 69 [TILFMT_16BIT] = GEOM(0, 1, 2), 70 [TILFMT_32BIT] = GEOM(1, 1, 4), 71 [TILFMT_PAGE] = GEOM(SLOT_WIDTH_BITS, SLOT_HEIGHT_BITS, 1), 72 }; 73 74 75 /* lookup table for registers w/ per-engine instances */ 76 static const u32 reg[][4] = { 77 [PAT_STATUS] = {DMM_PAT_STATUS__0, DMM_PAT_STATUS__1, 78 DMM_PAT_STATUS__2, DMM_PAT_STATUS__3}, 79 [PAT_DESCR] = {DMM_PAT_DESCR__0, DMM_PAT_DESCR__1, 80 DMM_PAT_DESCR__2, DMM_PAT_DESCR__3}, 81 }; 82 83 static int dmm_dma_copy(struct dmm *dmm, dma_addr_t src, dma_addr_t dst) 84 { 85 struct dma_async_tx_descriptor *tx; 86 enum dma_status status; 87 dma_cookie_t cookie; 88 89 tx = dmaengine_prep_dma_memcpy(dmm->wa_dma_chan, dst, src, 4, 0); 90 if (!tx) { 91 dev_err(dmm->dev, "Failed to prepare DMA memcpy\n"); 92 return -EIO; 93 } 94 95 cookie = tx->tx_submit(tx); 96 if (dma_submit_error(cookie)) { 97 dev_err(dmm->dev, "Failed to do DMA tx_submit\n"); 98 return -EIO; 99 } 100 101 status = dma_sync_wait(dmm->wa_dma_chan, cookie); 102 if (status != DMA_COMPLETE) 103 dev_err(dmm->dev, "i878 wa DMA copy failure\n"); 104 105 dmaengine_terminate_all(dmm->wa_dma_chan); 106 return 0; 107 } 108 109 static u32 dmm_read_wa(struct dmm *dmm, u32 reg) 110 { 111 dma_addr_t src, dst; 112 int r; 113 114 src = dmm->phys_base + reg; 115 dst = dmm->wa_dma_handle; 116 117 r = dmm_dma_copy(dmm, src, dst); 118 if (r) { 119 dev_err(dmm->dev, "sDMA read transfer timeout\n"); 120 return readl(dmm->base + reg); 121 } 122 123 /* 124 * As per i878 workaround, the DMA is used to access the DMM registers. 125 * Make sure that the readl is not moved by the compiler or the CPU 126 * earlier than the DMA finished writing the value to memory. 127 */ 128 rmb(); 129 return readl(dmm->wa_dma_data); 130 } 131 132 static void dmm_write_wa(struct dmm *dmm, u32 val, u32 reg) 133 { 134 dma_addr_t src, dst; 135 int r; 136 137 writel(val, dmm->wa_dma_data); 138 /* 139 * As per i878 workaround, the DMA is used to access the DMM registers. 140 * Make sure that the writel is not moved by the compiler or the CPU, so 141 * the data will be in place before we start the DMA to do the actual 142 * register write. 143 */ 144 wmb(); 145 146 src = dmm->wa_dma_handle; 147 dst = dmm->phys_base + reg; 148 149 r = dmm_dma_copy(dmm, src, dst); 150 if (r) { 151 dev_err(dmm->dev, "sDMA write transfer timeout\n"); 152 writel(val, dmm->base + reg); 153 } 154 } 155 156 static u32 dmm_read(struct dmm *dmm, u32 reg) 157 { 158 if (dmm->dmm_workaround) { 159 u32 v; 160 unsigned long flags; 161 162 spin_lock_irqsave(&dmm->wa_lock, flags); 163 v = dmm_read_wa(dmm, reg); 164 spin_unlock_irqrestore(&dmm->wa_lock, flags); 165 166 return v; 167 } else { 168 return readl(dmm->base + reg); 169 } 170 } 171 172 static void dmm_write(struct dmm *dmm, u32 val, u32 reg) 173 { 174 if (dmm->dmm_workaround) { 175 unsigned long flags; 176 177 spin_lock_irqsave(&dmm->wa_lock, flags); 178 dmm_write_wa(dmm, val, reg); 179 spin_unlock_irqrestore(&dmm->wa_lock, flags); 180 } else { 181 writel(val, dmm->base + reg); 182 } 183 } 184 185 static int dmm_workaround_init(struct dmm *dmm) 186 { 187 dma_cap_mask_t mask; 188 189 spin_lock_init(&dmm->wa_lock); 190 191 dmm->wa_dma_data = dma_alloc_coherent(dmm->dev, sizeof(u32), 192 &dmm->wa_dma_handle, GFP_KERNEL); 193 if (!dmm->wa_dma_data) 194 return -ENOMEM; 195 196 dma_cap_zero(mask); 197 dma_cap_set(DMA_MEMCPY, mask); 198 199 dmm->wa_dma_chan = dma_request_channel(mask, NULL, NULL); 200 if (!dmm->wa_dma_chan) { 201 dma_free_coherent(dmm->dev, 4, dmm->wa_dma_data, dmm->wa_dma_handle); 202 return -ENODEV; 203 } 204 205 return 0; 206 } 207 208 static void dmm_workaround_uninit(struct dmm *dmm) 209 { 210 dma_release_channel(dmm->wa_dma_chan); 211 212 dma_free_coherent(dmm->dev, 4, dmm->wa_dma_data, dmm->wa_dma_handle); 213 } 214 215 /* simple allocator to grab next 16 byte aligned memory from txn */ 216 static void *alloc_dma(struct dmm_txn *txn, size_t sz, dma_addr_t *pa) 217 { 218 void *ptr; 219 struct refill_engine *engine = txn->engine_handle; 220 221 /* dmm programming requires 16 byte aligned addresses */ 222 txn->current_pa = round_up(txn->current_pa, 16); 223 txn->current_va = (void *)round_up((long)txn->current_va, 16); 224 225 ptr = txn->current_va; 226 *pa = txn->current_pa; 227 228 txn->current_pa += sz; 229 txn->current_va += sz; 230 231 BUG_ON((txn->current_va - engine->refill_va) > REFILL_BUFFER_SIZE); 232 233 return ptr; 234 } 235 236 /* check status and spin until wait_mask comes true */ 237 static int wait_status(struct refill_engine *engine, u32 wait_mask) 238 { 239 struct dmm *dmm = engine->dmm; 240 u32 r = 0, err, i; 241 242 i = DMM_FIXED_RETRY_COUNT; 243 while (true) { 244 r = dmm_read(dmm, reg[PAT_STATUS][engine->id]); 245 err = r & DMM_PATSTATUS_ERR; 246 if (err) { 247 dev_err(dmm->dev, 248 "%s: error (engine%d). PAT_STATUS: 0x%08x\n", 249 __func__, engine->id, r); 250 return -EFAULT; 251 } 252 253 if ((r & wait_mask) == wait_mask) 254 break; 255 256 if (--i == 0) { 257 dev_err(dmm->dev, 258 "%s: timeout (engine%d). PAT_STATUS: 0x%08x\n", 259 __func__, engine->id, r); 260 return -ETIMEDOUT; 261 } 262 263 udelay(1); 264 } 265 266 return 0; 267 } 268 269 static void release_engine(struct refill_engine *engine) 270 { 271 unsigned long flags; 272 273 spin_lock_irqsave(&list_lock, flags); 274 list_add(&engine->idle_node, &omap_dmm->idle_head); 275 spin_unlock_irqrestore(&list_lock, flags); 276 277 atomic_inc(&omap_dmm->engine_counter); 278 wake_up_interruptible(&omap_dmm->engine_queue); 279 } 280 281 static irqreturn_t omap_dmm_irq_handler(int irq, void *arg) 282 { 283 struct dmm *dmm = arg; 284 u32 status = dmm_read(dmm, DMM_PAT_IRQSTATUS); 285 int i; 286 287 /* ack IRQ */ 288 dmm_write(dmm, status, DMM_PAT_IRQSTATUS); 289 290 for (i = 0; i < dmm->num_engines; i++) { 291 if (status & DMM_IRQSTAT_ERR_MASK) 292 dev_err(dmm->dev, 293 "irq error(engine%d): IRQSTAT 0x%02x\n", 294 i, status & 0xff); 295 296 if (status & DMM_IRQSTAT_LST) { 297 if (dmm->engines[i].async) 298 release_engine(&dmm->engines[i]); 299 300 complete(&dmm->engines[i].compl); 301 } 302 303 status >>= 8; 304 } 305 306 return IRQ_HANDLED; 307 } 308 309 /** 310 * Get a handle for a DMM transaction 311 */ 312 static struct dmm_txn *dmm_txn_init(struct dmm *dmm, struct tcm *tcm) 313 { 314 struct dmm_txn *txn = NULL; 315 struct refill_engine *engine = NULL; 316 int ret; 317 unsigned long flags; 318 319 320 /* wait until an engine is available */ 321 ret = wait_event_interruptible(omap_dmm->engine_queue, 322 atomic_add_unless(&omap_dmm->engine_counter, -1, 0)); 323 if (ret) 324 return ERR_PTR(ret); 325 326 /* grab an idle engine */ 327 spin_lock_irqsave(&list_lock, flags); 328 if (!list_empty(&dmm->idle_head)) { 329 engine = list_entry(dmm->idle_head.next, struct refill_engine, 330 idle_node); 331 list_del(&engine->idle_node); 332 } 333 spin_unlock_irqrestore(&list_lock, flags); 334 335 BUG_ON(!engine); 336 337 txn = &engine->txn; 338 engine->tcm = tcm; 339 txn->engine_handle = engine; 340 txn->last_pat = NULL; 341 txn->current_va = engine->refill_va; 342 txn->current_pa = engine->refill_pa; 343 344 return txn; 345 } 346 347 /** 348 * Add region to DMM transaction. If pages or pages[i] is NULL, then the 349 * corresponding slot is cleared (ie. dummy_pa is programmed) 350 */ 351 static void dmm_txn_append(struct dmm_txn *txn, struct pat_area *area, 352 struct page **pages, u32 npages, u32 roll) 353 { 354 dma_addr_t pat_pa = 0, data_pa = 0; 355 u32 *data; 356 struct pat *pat; 357 struct refill_engine *engine = txn->engine_handle; 358 int columns = (1 + area->x1 - area->x0); 359 int rows = (1 + area->y1 - area->y0); 360 int i = columns*rows; 361 362 pat = alloc_dma(txn, sizeof(*pat), &pat_pa); 363 364 if (txn->last_pat) 365 txn->last_pat->next_pa = (u32)pat_pa; 366 367 pat->area = *area; 368 369 /* adjust Y coordinates based off of container parameters */ 370 pat->area.y0 += engine->tcm->y_offset; 371 pat->area.y1 += engine->tcm->y_offset; 372 373 pat->ctrl = (struct pat_ctrl){ 374 .start = 1, 375 .lut_id = engine->tcm->lut_id, 376 }; 377 378 data = alloc_dma(txn, 4*i, &data_pa); 379 /* FIXME: what if data_pa is more than 32-bit ? */ 380 pat->data_pa = data_pa; 381 382 while (i--) { 383 int n = i + roll; 384 if (n >= npages) 385 n -= npages; 386 data[i] = (pages && pages[n]) ? 387 page_to_phys(pages[n]) : engine->dmm->dummy_pa; 388 } 389 390 txn->last_pat = pat; 391 392 return; 393 } 394 395 /** 396 * Commit the DMM transaction. 397 */ 398 static int dmm_txn_commit(struct dmm_txn *txn, bool wait) 399 { 400 int ret = 0; 401 struct refill_engine *engine = txn->engine_handle; 402 struct dmm *dmm = engine->dmm; 403 404 if (!txn->last_pat) { 405 dev_err(engine->dmm->dev, "need at least one txn\n"); 406 ret = -EINVAL; 407 goto cleanup; 408 } 409 410 txn->last_pat->next_pa = 0; 411 /* ensure that the written descriptors are visible to DMM */ 412 wmb(); 413 414 /* 415 * NOTE: the wmb() above should be enough, but there seems to be a bug 416 * in OMAP's memory barrier implementation, which in some rare cases may 417 * cause the writes not to be observable after wmb(). 418 */ 419 420 /* read back to ensure the data is in RAM */ 421 readl(&txn->last_pat->next_pa); 422 423 /* write to PAT_DESCR to clear out any pending transaction */ 424 dmm_write(dmm, 0x0, reg[PAT_DESCR][engine->id]); 425 426 /* wait for engine ready: */ 427 ret = wait_status(engine, DMM_PATSTATUS_READY); 428 if (ret) { 429 ret = -EFAULT; 430 goto cleanup; 431 } 432 433 /* mark whether it is async to denote list management in IRQ handler */ 434 engine->async = wait ? false : true; 435 reinit_completion(&engine->compl); 436 /* verify that the irq handler sees the 'async' and completion value */ 437 smp_mb(); 438 439 /* kick reload */ 440 dmm_write(dmm, engine->refill_pa, reg[PAT_DESCR][engine->id]); 441 442 if (wait) { 443 if (!wait_for_completion_timeout(&engine->compl, 444 msecs_to_jiffies(100))) { 445 dev_err(dmm->dev, "timed out waiting for done\n"); 446 ret = -ETIMEDOUT; 447 goto cleanup; 448 } 449 450 /* Check the engine status before continue */ 451 ret = wait_status(engine, DMM_PATSTATUS_READY | 452 DMM_PATSTATUS_VALID | DMM_PATSTATUS_DONE); 453 } 454 455 cleanup: 456 /* only place engine back on list if we are done with it */ 457 if (ret || wait) 458 release_engine(engine); 459 460 return ret; 461 } 462 463 /* 464 * DMM programming 465 */ 466 static int fill(struct tcm_area *area, struct page **pages, 467 u32 npages, u32 roll, bool wait) 468 { 469 int ret = 0; 470 struct tcm_area slice, area_s; 471 struct dmm_txn *txn; 472 473 /* 474 * FIXME 475 * 476 * Asynchronous fill does not work reliably, as the driver does not 477 * handle errors in the async code paths. The fill operation may 478 * silently fail, leading to leaking DMM engines, which may eventually 479 * lead to deadlock if we run out of DMM engines. 480 * 481 * For now, always set 'wait' so that we only use sync fills. Async 482 * fills should be fixed, or alternatively we could decide to only 483 * support sync fills and so the whole async code path could be removed. 484 */ 485 486 wait = true; 487 488 txn = dmm_txn_init(omap_dmm, area->tcm); 489 if (IS_ERR_OR_NULL(txn)) 490 return -ENOMEM; 491 492 tcm_for_each_slice(slice, *area, area_s) { 493 struct pat_area p_area = { 494 .x0 = slice.p0.x, .y0 = slice.p0.y, 495 .x1 = slice.p1.x, .y1 = slice.p1.y, 496 }; 497 498 dmm_txn_append(txn, &p_area, pages, npages, roll); 499 500 roll += tcm_sizeof(slice); 501 } 502 503 ret = dmm_txn_commit(txn, wait); 504 505 return ret; 506 } 507 508 /* 509 * Pin/unpin 510 */ 511 512 /* note: slots for which pages[i] == NULL are filled w/ dummy page 513 */ 514 int tiler_pin(struct tiler_block *block, struct page **pages, 515 u32 npages, u32 roll, bool wait) 516 { 517 int ret; 518 519 ret = fill(&block->area, pages, npages, roll, wait); 520 521 if (ret) 522 tiler_unpin(block); 523 524 return ret; 525 } 526 527 int tiler_unpin(struct tiler_block *block) 528 { 529 return fill(&block->area, NULL, 0, 0, false); 530 } 531 532 /* 533 * Reserve/release 534 */ 535 struct tiler_block *tiler_reserve_2d(enum tiler_fmt fmt, u16 w, 536 u16 h, u16 align) 537 { 538 struct tiler_block *block; 539 u32 min_align = 128; 540 int ret; 541 unsigned long flags; 542 u32 slot_bytes; 543 544 block = kzalloc(sizeof(*block), GFP_KERNEL); 545 if (!block) 546 return ERR_PTR(-ENOMEM); 547 548 BUG_ON(!validfmt(fmt)); 549 550 /* convert width/height to slots */ 551 w = DIV_ROUND_UP(w, geom[fmt].slot_w); 552 h = DIV_ROUND_UP(h, geom[fmt].slot_h); 553 554 /* convert alignment to slots */ 555 slot_bytes = geom[fmt].slot_w * geom[fmt].cpp; 556 min_align = max(min_align, slot_bytes); 557 align = (align > min_align) ? ALIGN(align, min_align) : min_align; 558 align /= slot_bytes; 559 560 block->fmt = fmt; 561 562 ret = tcm_reserve_2d(containers[fmt], w, h, align, -1, slot_bytes, 563 &block->area); 564 if (ret) { 565 kfree(block); 566 return ERR_PTR(-ENOMEM); 567 } 568 569 /* add to allocation list */ 570 spin_lock_irqsave(&list_lock, flags); 571 list_add(&block->alloc_node, &omap_dmm->alloc_head); 572 spin_unlock_irqrestore(&list_lock, flags); 573 574 return block; 575 } 576 577 struct tiler_block *tiler_reserve_1d(size_t size) 578 { 579 struct tiler_block *block = kzalloc(sizeof(*block), GFP_KERNEL); 580 int num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 581 unsigned long flags; 582 583 if (!block) 584 return ERR_PTR(-ENOMEM); 585 586 block->fmt = TILFMT_PAGE; 587 588 if (tcm_reserve_1d(containers[TILFMT_PAGE], num_pages, 589 &block->area)) { 590 kfree(block); 591 return ERR_PTR(-ENOMEM); 592 } 593 594 spin_lock_irqsave(&list_lock, flags); 595 list_add(&block->alloc_node, &omap_dmm->alloc_head); 596 spin_unlock_irqrestore(&list_lock, flags); 597 598 return block; 599 } 600 601 /* note: if you have pin'd pages, you should have already unpin'd first! */ 602 int tiler_release(struct tiler_block *block) 603 { 604 int ret = tcm_free(&block->area); 605 unsigned long flags; 606 607 if (block->area.tcm) 608 dev_err(omap_dmm->dev, "failed to release block\n"); 609 610 spin_lock_irqsave(&list_lock, flags); 611 list_del(&block->alloc_node); 612 spin_unlock_irqrestore(&list_lock, flags); 613 614 kfree(block); 615 return ret; 616 } 617 618 /* 619 * Utils 620 */ 621 622 /* calculate the tiler space address of a pixel in a view orientation... 623 * below description copied from the display subsystem section of TRM: 624 * 625 * When the TILER is addressed, the bits: 626 * [28:27] = 0x0 for 8-bit tiled 627 * 0x1 for 16-bit tiled 628 * 0x2 for 32-bit tiled 629 * 0x3 for page mode 630 * [31:29] = 0x0 for 0-degree view 631 * 0x1 for 180-degree view + mirroring 632 * 0x2 for 0-degree view + mirroring 633 * 0x3 for 180-degree view 634 * 0x4 for 270-degree view + mirroring 635 * 0x5 for 270-degree view 636 * 0x6 for 90-degree view 637 * 0x7 for 90-degree view + mirroring 638 * Otherwise the bits indicated the corresponding bit address to access 639 * the SDRAM. 640 */ 641 static u32 tiler_get_address(enum tiler_fmt fmt, u32 orient, u32 x, u32 y) 642 { 643 u32 x_bits, y_bits, tmp, x_mask, y_mask, alignment; 644 645 x_bits = CONT_WIDTH_BITS - geom[fmt].x_shft; 646 y_bits = CONT_HEIGHT_BITS - geom[fmt].y_shft; 647 alignment = geom[fmt].x_shft + geom[fmt].y_shft; 648 649 /* validate coordinate */ 650 x_mask = MASK(x_bits); 651 y_mask = MASK(y_bits); 652 653 if (x < 0 || x > x_mask || y < 0 || y > y_mask) { 654 DBG("invalid coords: %u < 0 || %u > %u || %u < 0 || %u > %u", 655 x, x, x_mask, y, y, y_mask); 656 return 0; 657 } 658 659 /* account for mirroring */ 660 if (orient & MASK_X_INVERT) 661 x ^= x_mask; 662 if (orient & MASK_Y_INVERT) 663 y ^= y_mask; 664 665 /* get coordinate address */ 666 if (orient & MASK_XY_FLIP) 667 tmp = ((x << y_bits) + y); 668 else 669 tmp = ((y << x_bits) + x); 670 671 return TIL_ADDR((tmp << alignment), orient, fmt); 672 } 673 674 dma_addr_t tiler_ssptr(struct tiler_block *block) 675 { 676 BUG_ON(!validfmt(block->fmt)); 677 678 return TILVIEW_8BIT + tiler_get_address(block->fmt, 0, 679 block->area.p0.x * geom[block->fmt].slot_w, 680 block->area.p0.y * geom[block->fmt].slot_h); 681 } 682 683 dma_addr_t tiler_tsptr(struct tiler_block *block, u32 orient, 684 u32 x, u32 y) 685 { 686 struct tcm_pt *p = &block->area.p0; 687 BUG_ON(!validfmt(block->fmt)); 688 689 return tiler_get_address(block->fmt, orient, 690 (p->x * geom[block->fmt].slot_w) + x, 691 (p->y * geom[block->fmt].slot_h) + y); 692 } 693 694 void tiler_align(enum tiler_fmt fmt, u16 *w, u16 *h) 695 { 696 BUG_ON(!validfmt(fmt)); 697 *w = round_up(*w, geom[fmt].slot_w); 698 *h = round_up(*h, geom[fmt].slot_h); 699 } 700 701 u32 tiler_stride(enum tiler_fmt fmt, u32 orient) 702 { 703 BUG_ON(!validfmt(fmt)); 704 705 if (orient & MASK_XY_FLIP) 706 return 1 << (CONT_HEIGHT_BITS + geom[fmt].x_shft); 707 else 708 return 1 << (CONT_WIDTH_BITS + geom[fmt].y_shft); 709 } 710 711 size_t tiler_size(enum tiler_fmt fmt, u16 w, u16 h) 712 { 713 tiler_align(fmt, &w, &h); 714 return geom[fmt].cpp * w * h; 715 } 716 717 size_t tiler_vsize(enum tiler_fmt fmt, u16 w, u16 h) 718 { 719 BUG_ON(!validfmt(fmt)); 720 return round_up(geom[fmt].cpp * w, PAGE_SIZE) * h; 721 } 722 723 u32 tiler_get_cpu_cache_flags(void) 724 { 725 return omap_dmm->plat_data->cpu_cache_flags; 726 } 727 728 bool dmm_is_available(void) 729 { 730 return omap_dmm ? true : false; 731 } 732 733 static int omap_dmm_remove(struct platform_device *dev) 734 { 735 struct tiler_block *block, *_block; 736 int i; 737 unsigned long flags; 738 739 if (omap_dmm) { 740 /* Disable all enabled interrupts */ 741 dmm_write(omap_dmm, 0x7e7e7e7e, DMM_PAT_IRQENABLE_CLR); 742 free_irq(omap_dmm->irq, omap_dmm); 743 744 /* free all area regions */ 745 spin_lock_irqsave(&list_lock, flags); 746 list_for_each_entry_safe(block, _block, &omap_dmm->alloc_head, 747 alloc_node) { 748 list_del(&block->alloc_node); 749 kfree(block); 750 } 751 spin_unlock_irqrestore(&list_lock, flags); 752 753 for (i = 0; i < omap_dmm->num_lut; i++) 754 if (omap_dmm->tcm && omap_dmm->tcm[i]) 755 omap_dmm->tcm[i]->deinit(omap_dmm->tcm[i]); 756 kfree(omap_dmm->tcm); 757 758 kfree(omap_dmm->engines); 759 if (omap_dmm->refill_va) 760 dma_free_wc(omap_dmm->dev, 761 REFILL_BUFFER_SIZE * omap_dmm->num_engines, 762 omap_dmm->refill_va, omap_dmm->refill_pa); 763 if (omap_dmm->dummy_page) 764 __free_page(omap_dmm->dummy_page); 765 766 if (omap_dmm->dmm_workaround) 767 dmm_workaround_uninit(omap_dmm); 768 769 iounmap(omap_dmm->base); 770 kfree(omap_dmm); 771 omap_dmm = NULL; 772 } 773 774 return 0; 775 } 776 777 static int omap_dmm_probe(struct platform_device *dev) 778 { 779 int ret = -EFAULT, i; 780 struct tcm_area area = {0}; 781 u32 hwinfo, pat_geom; 782 struct resource *mem; 783 784 omap_dmm = kzalloc(sizeof(*omap_dmm), GFP_KERNEL); 785 if (!omap_dmm) 786 goto fail; 787 788 /* initialize lists */ 789 INIT_LIST_HEAD(&omap_dmm->alloc_head); 790 INIT_LIST_HEAD(&omap_dmm->idle_head); 791 792 init_waitqueue_head(&omap_dmm->engine_queue); 793 794 if (dev->dev.of_node) { 795 const struct of_device_id *match; 796 797 match = of_match_node(dmm_of_match, dev->dev.of_node); 798 if (!match) { 799 dev_err(&dev->dev, "failed to find matching device node\n"); 800 ret = -ENODEV; 801 goto fail; 802 } 803 804 omap_dmm->plat_data = match->data; 805 } 806 807 /* lookup hwmod data - base address and irq */ 808 mem = platform_get_resource(dev, IORESOURCE_MEM, 0); 809 if (!mem) { 810 dev_err(&dev->dev, "failed to get base address resource\n"); 811 goto fail; 812 } 813 814 omap_dmm->phys_base = mem->start; 815 omap_dmm->base = ioremap(mem->start, SZ_2K); 816 817 if (!omap_dmm->base) { 818 dev_err(&dev->dev, "failed to get dmm base address\n"); 819 goto fail; 820 } 821 822 omap_dmm->irq = platform_get_irq(dev, 0); 823 if (omap_dmm->irq < 0) { 824 dev_err(&dev->dev, "failed to get IRQ resource\n"); 825 goto fail; 826 } 827 828 omap_dmm->dev = &dev->dev; 829 830 if (of_machine_is_compatible("ti,dra7")) { 831 /* 832 * DRA7 Errata i878 says that MPU should not be used to access 833 * RAM and DMM at the same time. As it's not possible to prevent 834 * MPU accessing RAM, we need to access DMM via a proxy. 835 */ 836 if (!dmm_workaround_init(omap_dmm)) { 837 omap_dmm->dmm_workaround = true; 838 dev_info(&dev->dev, 839 "workaround for errata i878 in use\n"); 840 } else { 841 dev_warn(&dev->dev, 842 "failed to initialize work-around for i878\n"); 843 } 844 } 845 846 hwinfo = dmm_read(omap_dmm, DMM_PAT_HWINFO); 847 omap_dmm->num_engines = (hwinfo >> 24) & 0x1F; 848 omap_dmm->num_lut = (hwinfo >> 16) & 0x1F; 849 omap_dmm->container_width = 256; 850 omap_dmm->container_height = 128; 851 852 atomic_set(&omap_dmm->engine_counter, omap_dmm->num_engines); 853 854 /* read out actual LUT width and height */ 855 pat_geom = dmm_read(omap_dmm, DMM_PAT_GEOMETRY); 856 omap_dmm->lut_width = ((pat_geom >> 16) & 0xF) << 5; 857 omap_dmm->lut_height = ((pat_geom >> 24) & 0xF) << 5; 858 859 /* increment LUT by one if on OMAP5 */ 860 /* LUT has twice the height, and is split into a separate container */ 861 if (omap_dmm->lut_height != omap_dmm->container_height) 862 omap_dmm->num_lut++; 863 864 /* initialize DMM registers */ 865 dmm_write(omap_dmm, 0x88888888, DMM_PAT_VIEW__0); 866 dmm_write(omap_dmm, 0x88888888, DMM_PAT_VIEW__1); 867 dmm_write(omap_dmm, 0x80808080, DMM_PAT_VIEW_MAP__0); 868 dmm_write(omap_dmm, 0x80000000, DMM_PAT_VIEW_MAP_BASE); 869 dmm_write(omap_dmm, 0x88888888, DMM_TILER_OR__0); 870 dmm_write(omap_dmm, 0x88888888, DMM_TILER_OR__1); 871 872 omap_dmm->dummy_page = alloc_page(GFP_KERNEL | __GFP_DMA32); 873 if (!omap_dmm->dummy_page) { 874 dev_err(&dev->dev, "could not allocate dummy page\n"); 875 ret = -ENOMEM; 876 goto fail; 877 } 878 879 /* set dma mask for device */ 880 ret = dma_set_coherent_mask(&dev->dev, DMA_BIT_MASK(32)); 881 if (ret) 882 goto fail; 883 884 omap_dmm->dummy_pa = page_to_phys(omap_dmm->dummy_page); 885 886 /* alloc refill memory */ 887 omap_dmm->refill_va = dma_alloc_wc(&dev->dev, 888 REFILL_BUFFER_SIZE * omap_dmm->num_engines, 889 &omap_dmm->refill_pa, GFP_KERNEL); 890 if (!omap_dmm->refill_va) { 891 dev_err(&dev->dev, "could not allocate refill memory\n"); 892 goto fail; 893 } 894 895 /* alloc engines */ 896 omap_dmm->engines = kcalloc(omap_dmm->num_engines, 897 sizeof(*omap_dmm->engines), GFP_KERNEL); 898 if (!omap_dmm->engines) { 899 ret = -ENOMEM; 900 goto fail; 901 } 902 903 for (i = 0; i < omap_dmm->num_engines; i++) { 904 omap_dmm->engines[i].id = i; 905 omap_dmm->engines[i].dmm = omap_dmm; 906 omap_dmm->engines[i].refill_va = omap_dmm->refill_va + 907 (REFILL_BUFFER_SIZE * i); 908 omap_dmm->engines[i].refill_pa = omap_dmm->refill_pa + 909 (REFILL_BUFFER_SIZE * i); 910 init_completion(&omap_dmm->engines[i].compl); 911 912 list_add(&omap_dmm->engines[i].idle_node, &omap_dmm->idle_head); 913 } 914 915 omap_dmm->tcm = kcalloc(omap_dmm->num_lut, sizeof(*omap_dmm->tcm), 916 GFP_KERNEL); 917 if (!omap_dmm->tcm) { 918 ret = -ENOMEM; 919 goto fail; 920 } 921 922 /* init containers */ 923 /* Each LUT is associated with a TCM (container manager). We use the 924 lut_id to denote the lut_id used to identify the correct LUT for 925 programming during reill operations */ 926 for (i = 0; i < omap_dmm->num_lut; i++) { 927 omap_dmm->tcm[i] = sita_init(omap_dmm->container_width, 928 omap_dmm->container_height); 929 930 if (!omap_dmm->tcm[i]) { 931 dev_err(&dev->dev, "failed to allocate container\n"); 932 ret = -ENOMEM; 933 goto fail; 934 } 935 936 omap_dmm->tcm[i]->lut_id = i; 937 } 938 939 /* assign access mode containers to applicable tcm container */ 940 /* OMAP 4 has 1 container for all 4 views */ 941 /* OMAP 5 has 2 containers, 1 for 2D and 1 for 1D */ 942 containers[TILFMT_8BIT] = omap_dmm->tcm[0]; 943 containers[TILFMT_16BIT] = omap_dmm->tcm[0]; 944 containers[TILFMT_32BIT] = omap_dmm->tcm[0]; 945 946 if (omap_dmm->container_height != omap_dmm->lut_height) { 947 /* second LUT is used for PAGE mode. Programming must use 948 y offset that is added to all y coordinates. LUT id is still 949 0, because it is the same LUT, just the upper 128 lines */ 950 containers[TILFMT_PAGE] = omap_dmm->tcm[1]; 951 omap_dmm->tcm[1]->y_offset = OMAP5_LUT_OFFSET; 952 omap_dmm->tcm[1]->lut_id = 0; 953 } else { 954 containers[TILFMT_PAGE] = omap_dmm->tcm[0]; 955 } 956 957 area = (struct tcm_area) { 958 .tcm = NULL, 959 .p1.x = omap_dmm->container_width - 1, 960 .p1.y = omap_dmm->container_height - 1, 961 }; 962 963 ret = request_irq(omap_dmm->irq, omap_dmm_irq_handler, IRQF_SHARED, 964 "omap_dmm_irq_handler", omap_dmm); 965 966 if (ret) { 967 dev_err(&dev->dev, "couldn't register IRQ %d, error %d\n", 968 omap_dmm->irq, ret); 969 omap_dmm->irq = -1; 970 goto fail; 971 } 972 973 /* Enable all interrupts for each refill engine except 974 * ERR_LUT_MISS<n> (which is just advisory, and we don't care 975 * about because we want to be able to refill live scanout 976 * buffers for accelerated pan/scroll) and FILL_DSC<n> which 977 * we just generally don't care about. 978 */ 979 dmm_write(omap_dmm, 0x7e7e7e7e, DMM_PAT_IRQENABLE_SET); 980 981 /* initialize all LUTs to dummy page entries */ 982 for (i = 0; i < omap_dmm->num_lut; i++) { 983 area.tcm = omap_dmm->tcm[i]; 984 if (fill(&area, NULL, 0, 0, true)) 985 dev_err(omap_dmm->dev, "refill failed"); 986 } 987 988 dev_info(omap_dmm->dev, "initialized all PAT entries\n"); 989 990 return 0; 991 992 fail: 993 if (omap_dmm_remove(dev)) 994 dev_err(&dev->dev, "cleanup failed\n"); 995 return ret; 996 } 997 998 /* 999 * debugfs support 1000 */ 1001 1002 #ifdef CONFIG_DEBUG_FS 1003 1004 static const char *alphabet = "abcdefghijklmnopqrstuvwxyz" 1005 "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"; 1006 static const char *special = ".,:;'\"`~!^-+"; 1007 1008 static void fill_map(char **map, int xdiv, int ydiv, struct tcm_area *a, 1009 char c, bool ovw) 1010 { 1011 int x, y; 1012 for (y = a->p0.y / ydiv; y <= a->p1.y / ydiv; y++) 1013 for (x = a->p0.x / xdiv; x <= a->p1.x / xdiv; x++) 1014 if (map[y][x] == ' ' || ovw) 1015 map[y][x] = c; 1016 } 1017 1018 static void fill_map_pt(char **map, int xdiv, int ydiv, struct tcm_pt *p, 1019 char c) 1020 { 1021 map[p->y / ydiv][p->x / xdiv] = c; 1022 } 1023 1024 static char read_map_pt(char **map, int xdiv, int ydiv, struct tcm_pt *p) 1025 { 1026 return map[p->y / ydiv][p->x / xdiv]; 1027 } 1028 1029 static int map_width(int xdiv, int x0, int x1) 1030 { 1031 return (x1 / xdiv) - (x0 / xdiv) + 1; 1032 } 1033 1034 static void text_map(char **map, int xdiv, char *nice, int yd, int x0, int x1) 1035 { 1036 char *p = map[yd] + (x0 / xdiv); 1037 int w = (map_width(xdiv, x0, x1) - strlen(nice)) / 2; 1038 if (w >= 0) { 1039 p += w; 1040 while (*nice) 1041 *p++ = *nice++; 1042 } 1043 } 1044 1045 static void map_1d_info(char **map, int xdiv, int ydiv, char *nice, 1046 struct tcm_area *a) 1047 { 1048 sprintf(nice, "%dK", tcm_sizeof(*a) * 4); 1049 if (a->p0.y + 1 < a->p1.y) { 1050 text_map(map, xdiv, nice, (a->p0.y + a->p1.y) / 2 / ydiv, 0, 1051 256 - 1); 1052 } else if (a->p0.y < a->p1.y) { 1053 if (strlen(nice) < map_width(xdiv, a->p0.x, 256 - 1)) 1054 text_map(map, xdiv, nice, a->p0.y / ydiv, 1055 a->p0.x + xdiv, 256 - 1); 1056 else if (strlen(nice) < map_width(xdiv, 0, a->p1.x)) 1057 text_map(map, xdiv, nice, a->p1.y / ydiv, 1058 0, a->p1.y - xdiv); 1059 } else if (strlen(nice) + 1 < map_width(xdiv, a->p0.x, a->p1.x)) { 1060 text_map(map, xdiv, nice, a->p0.y / ydiv, a->p0.x, a->p1.x); 1061 } 1062 } 1063 1064 static void map_2d_info(char **map, int xdiv, int ydiv, char *nice, 1065 struct tcm_area *a) 1066 { 1067 sprintf(nice, "(%d*%d)", tcm_awidth(*a), tcm_aheight(*a)); 1068 if (strlen(nice) + 1 < map_width(xdiv, a->p0.x, a->p1.x)) 1069 text_map(map, xdiv, nice, (a->p0.y + a->p1.y) / 2 / ydiv, 1070 a->p0.x, a->p1.x); 1071 } 1072 1073 int tiler_map_show(struct seq_file *s, void *arg) 1074 { 1075 int xdiv = 2, ydiv = 1; 1076 char **map = NULL, *global_map; 1077 struct tiler_block *block; 1078 struct tcm_area a, p; 1079 int i; 1080 const char *m2d = alphabet; 1081 const char *a2d = special; 1082 const char *m2dp = m2d, *a2dp = a2d; 1083 char nice[128]; 1084 int h_adj; 1085 int w_adj; 1086 unsigned long flags; 1087 int lut_idx; 1088 1089 1090 if (!omap_dmm) { 1091 /* early return if dmm/tiler device is not initialized */ 1092 return 0; 1093 } 1094 1095 h_adj = omap_dmm->container_height / ydiv; 1096 w_adj = omap_dmm->container_width / xdiv; 1097 1098 map = kmalloc_array(h_adj, sizeof(*map), GFP_KERNEL); 1099 global_map = kmalloc_array(w_adj + 1, h_adj, GFP_KERNEL); 1100 1101 if (!map || !global_map) 1102 goto error; 1103 1104 for (lut_idx = 0; lut_idx < omap_dmm->num_lut; lut_idx++) { 1105 memset(map, 0, h_adj * sizeof(*map)); 1106 memset(global_map, ' ', (w_adj + 1) * h_adj); 1107 1108 for (i = 0; i < omap_dmm->container_height; i++) { 1109 map[i] = global_map + i * (w_adj + 1); 1110 map[i][w_adj] = 0; 1111 } 1112 1113 spin_lock_irqsave(&list_lock, flags); 1114 1115 list_for_each_entry(block, &omap_dmm->alloc_head, alloc_node) { 1116 if (block->area.tcm == omap_dmm->tcm[lut_idx]) { 1117 if (block->fmt != TILFMT_PAGE) { 1118 fill_map(map, xdiv, ydiv, &block->area, 1119 *m2dp, true); 1120 if (!*++a2dp) 1121 a2dp = a2d; 1122 if (!*++m2dp) 1123 m2dp = m2d; 1124 map_2d_info(map, xdiv, ydiv, nice, 1125 &block->area); 1126 } else { 1127 bool start = read_map_pt(map, xdiv, 1128 ydiv, &block->area.p0) == ' '; 1129 bool end = read_map_pt(map, xdiv, ydiv, 1130 &block->area.p1) == ' '; 1131 1132 tcm_for_each_slice(a, block->area, p) 1133 fill_map(map, xdiv, ydiv, &a, 1134 '=', true); 1135 fill_map_pt(map, xdiv, ydiv, 1136 &block->area.p0, 1137 start ? '<' : 'X'); 1138 fill_map_pt(map, xdiv, ydiv, 1139 &block->area.p1, 1140 end ? '>' : 'X'); 1141 map_1d_info(map, xdiv, ydiv, nice, 1142 &block->area); 1143 } 1144 } 1145 } 1146 1147 spin_unlock_irqrestore(&list_lock, flags); 1148 1149 if (s) { 1150 seq_printf(s, "CONTAINER %d DUMP BEGIN\n", lut_idx); 1151 for (i = 0; i < 128; i++) 1152 seq_printf(s, "%03d:%s\n", i, map[i]); 1153 seq_printf(s, "CONTAINER %d DUMP END\n", lut_idx); 1154 } else { 1155 dev_dbg(omap_dmm->dev, "CONTAINER %d DUMP BEGIN\n", 1156 lut_idx); 1157 for (i = 0; i < 128; i++) 1158 dev_dbg(omap_dmm->dev, "%03d:%s\n", i, map[i]); 1159 dev_dbg(omap_dmm->dev, "CONTAINER %d DUMP END\n", 1160 lut_idx); 1161 } 1162 } 1163 1164 error: 1165 kfree(map); 1166 kfree(global_map); 1167 1168 return 0; 1169 } 1170 #endif 1171 1172 #ifdef CONFIG_PM_SLEEP 1173 static int omap_dmm_resume(struct device *dev) 1174 { 1175 struct tcm_area area; 1176 int i; 1177 1178 if (!omap_dmm) 1179 return -ENODEV; 1180 1181 area = (struct tcm_area) { 1182 .tcm = NULL, 1183 .p1.x = omap_dmm->container_width - 1, 1184 .p1.y = omap_dmm->container_height - 1, 1185 }; 1186 1187 /* initialize all LUTs to dummy page entries */ 1188 for (i = 0; i < omap_dmm->num_lut; i++) { 1189 area.tcm = omap_dmm->tcm[i]; 1190 if (fill(&area, NULL, 0, 0, true)) 1191 dev_err(dev, "refill failed"); 1192 } 1193 1194 return 0; 1195 } 1196 #endif 1197 1198 static SIMPLE_DEV_PM_OPS(omap_dmm_pm_ops, NULL, omap_dmm_resume); 1199 1200 #if defined(CONFIG_OF) 1201 static const struct dmm_platform_data dmm_omap4_platform_data = { 1202 .cpu_cache_flags = OMAP_BO_WC, 1203 }; 1204 1205 static const struct dmm_platform_data dmm_omap5_platform_data = { 1206 .cpu_cache_flags = OMAP_BO_UNCACHED, 1207 }; 1208 1209 static const struct of_device_id dmm_of_match[] = { 1210 { 1211 .compatible = "ti,omap4-dmm", 1212 .data = &dmm_omap4_platform_data, 1213 }, 1214 { 1215 .compatible = "ti,omap5-dmm", 1216 .data = &dmm_omap5_platform_data, 1217 }, 1218 {}, 1219 }; 1220 #endif 1221 1222 struct platform_driver omap_dmm_driver = { 1223 .probe = omap_dmm_probe, 1224 .remove = omap_dmm_remove, 1225 .driver = { 1226 .owner = THIS_MODULE, 1227 .name = DMM_DRIVER_NAME, 1228 .of_match_table = of_match_ptr(dmm_of_match), 1229 .pm = &omap_dmm_pm_ops, 1230 }, 1231 }; 1232 1233 MODULE_LICENSE("GPL v2"); 1234 MODULE_AUTHOR("Andy Gross <andy.gross@ti.com>"); 1235 MODULE_DESCRIPTION("OMAP DMM/Tiler Driver"); 1236