1 /* 2 * DMM IOMMU driver support functions for TI OMAP processors. 3 * 4 * Author: Rob Clark <rob@ti.com> 5 * Andy Gross <andy.gross@ti.com> 6 * 7 * Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com/ 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License as 11 * published by the Free Software Foundation version 2. 12 * 13 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 14 * kind, whether express or implied; without even the implied warranty 15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 */ 18 #include <linux/init.h> 19 #include <linux/module.h> 20 #include <linux/platform_device.h> /* platform_device() */ 21 #include <linux/errno.h> 22 #include <linux/sched.h> 23 #include <linux/wait.h> 24 #include <linux/interrupt.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/slab.h> 27 #include <linux/vmalloc.h> 28 #include <linux/delay.h> 29 #include <linux/mm.h> 30 #include <linux/time.h> 31 #include <linux/list.h> 32 #include <linux/completion.h> 33 34 #include "omap_dmm_tiler.h" 35 #include "omap_dmm_priv.h" 36 37 #define DMM_DRIVER_NAME "dmm" 38 39 /* mappings for associating views to luts */ 40 static struct tcm *containers[TILFMT_NFORMATS]; 41 static struct dmm *omap_dmm; 42 43 #if defined(CONFIG_OF) 44 static const struct of_device_id dmm_of_match[]; 45 #endif 46 47 /* global spinlock for protecting lists */ 48 static DEFINE_SPINLOCK(list_lock); 49 50 /* Geometry table */ 51 #define GEOM(xshift, yshift, bytes_per_pixel) { \ 52 .x_shft = (xshift), \ 53 .y_shft = (yshift), \ 54 .cpp = (bytes_per_pixel), \ 55 .slot_w = 1 << (SLOT_WIDTH_BITS - (xshift)), \ 56 .slot_h = 1 << (SLOT_HEIGHT_BITS - (yshift)), \ 57 } 58 59 static const struct { 60 uint32_t x_shft; /* unused X-bits (as part of bpp) */ 61 uint32_t y_shft; /* unused Y-bits (as part of bpp) */ 62 uint32_t cpp; /* bytes/chars per pixel */ 63 uint32_t slot_w; /* width of each slot (in pixels) */ 64 uint32_t slot_h; /* height of each slot (in pixels) */ 65 } geom[TILFMT_NFORMATS] = { 66 [TILFMT_8BIT] = GEOM(0, 0, 1), 67 [TILFMT_16BIT] = GEOM(0, 1, 2), 68 [TILFMT_32BIT] = GEOM(1, 1, 4), 69 [TILFMT_PAGE] = GEOM(SLOT_WIDTH_BITS, SLOT_HEIGHT_BITS, 1), 70 }; 71 72 73 /* lookup table for registers w/ per-engine instances */ 74 static const uint32_t reg[][4] = { 75 [PAT_STATUS] = {DMM_PAT_STATUS__0, DMM_PAT_STATUS__1, 76 DMM_PAT_STATUS__2, DMM_PAT_STATUS__3}, 77 [PAT_DESCR] = {DMM_PAT_DESCR__0, DMM_PAT_DESCR__1, 78 DMM_PAT_DESCR__2, DMM_PAT_DESCR__3}, 79 }; 80 81 /* simple allocator to grab next 16 byte aligned memory from txn */ 82 static void *alloc_dma(struct dmm_txn *txn, size_t sz, dma_addr_t *pa) 83 { 84 void *ptr; 85 struct refill_engine *engine = txn->engine_handle; 86 87 /* dmm programming requires 16 byte aligned addresses */ 88 txn->current_pa = round_up(txn->current_pa, 16); 89 txn->current_va = (void *)round_up((long)txn->current_va, 16); 90 91 ptr = txn->current_va; 92 *pa = txn->current_pa; 93 94 txn->current_pa += sz; 95 txn->current_va += sz; 96 97 BUG_ON((txn->current_va - engine->refill_va) > REFILL_BUFFER_SIZE); 98 99 return ptr; 100 } 101 102 /* check status and spin until wait_mask comes true */ 103 static int wait_status(struct refill_engine *engine, uint32_t wait_mask) 104 { 105 struct dmm *dmm = engine->dmm; 106 uint32_t r = 0, err, i; 107 108 i = DMM_FIXED_RETRY_COUNT; 109 while (true) { 110 r = readl(dmm->base + reg[PAT_STATUS][engine->id]); 111 err = r & DMM_PATSTATUS_ERR; 112 if (err) 113 return -EFAULT; 114 115 if ((r & wait_mask) == wait_mask) 116 break; 117 118 if (--i == 0) 119 return -ETIMEDOUT; 120 121 udelay(1); 122 } 123 124 return 0; 125 } 126 127 static void release_engine(struct refill_engine *engine) 128 { 129 unsigned long flags; 130 131 spin_lock_irqsave(&list_lock, flags); 132 list_add(&engine->idle_node, &omap_dmm->idle_head); 133 spin_unlock_irqrestore(&list_lock, flags); 134 135 atomic_inc(&omap_dmm->engine_counter); 136 wake_up_interruptible(&omap_dmm->engine_queue); 137 } 138 139 static irqreturn_t omap_dmm_irq_handler(int irq, void *arg) 140 { 141 struct dmm *dmm = arg; 142 uint32_t status = readl(dmm->base + DMM_PAT_IRQSTATUS); 143 int i; 144 145 /* ack IRQ */ 146 writel(status, dmm->base + DMM_PAT_IRQSTATUS); 147 148 for (i = 0; i < dmm->num_engines; i++) { 149 if (status & DMM_IRQSTAT_LST) { 150 if (dmm->engines[i].async) 151 release_engine(&dmm->engines[i]); 152 153 complete(&dmm->engines[i].compl); 154 } 155 156 status >>= 8; 157 } 158 159 return IRQ_HANDLED; 160 } 161 162 /** 163 * Get a handle for a DMM transaction 164 */ 165 static struct dmm_txn *dmm_txn_init(struct dmm *dmm, struct tcm *tcm) 166 { 167 struct dmm_txn *txn = NULL; 168 struct refill_engine *engine = NULL; 169 int ret; 170 unsigned long flags; 171 172 173 /* wait until an engine is available */ 174 ret = wait_event_interruptible(omap_dmm->engine_queue, 175 atomic_add_unless(&omap_dmm->engine_counter, -1, 0)); 176 if (ret) 177 return ERR_PTR(ret); 178 179 /* grab an idle engine */ 180 spin_lock_irqsave(&list_lock, flags); 181 if (!list_empty(&dmm->idle_head)) { 182 engine = list_entry(dmm->idle_head.next, struct refill_engine, 183 idle_node); 184 list_del(&engine->idle_node); 185 } 186 spin_unlock_irqrestore(&list_lock, flags); 187 188 BUG_ON(!engine); 189 190 txn = &engine->txn; 191 engine->tcm = tcm; 192 txn->engine_handle = engine; 193 txn->last_pat = NULL; 194 txn->current_va = engine->refill_va; 195 txn->current_pa = engine->refill_pa; 196 197 return txn; 198 } 199 200 /** 201 * Add region to DMM transaction. If pages or pages[i] is NULL, then the 202 * corresponding slot is cleared (ie. dummy_pa is programmed) 203 */ 204 static void dmm_txn_append(struct dmm_txn *txn, struct pat_area *area, 205 struct page **pages, uint32_t npages, uint32_t roll) 206 { 207 dma_addr_t pat_pa = 0, data_pa = 0; 208 uint32_t *data; 209 struct pat *pat; 210 struct refill_engine *engine = txn->engine_handle; 211 int columns = (1 + area->x1 - area->x0); 212 int rows = (1 + area->y1 - area->y0); 213 int i = columns*rows; 214 215 pat = alloc_dma(txn, sizeof(struct pat), &pat_pa); 216 217 if (txn->last_pat) 218 txn->last_pat->next_pa = (uint32_t)pat_pa; 219 220 pat->area = *area; 221 222 /* adjust Y coordinates based off of container parameters */ 223 pat->area.y0 += engine->tcm->y_offset; 224 pat->area.y1 += engine->tcm->y_offset; 225 226 pat->ctrl = (struct pat_ctrl){ 227 .start = 1, 228 .lut_id = engine->tcm->lut_id, 229 }; 230 231 data = alloc_dma(txn, 4*i, &data_pa); 232 /* FIXME: what if data_pa is more than 32-bit ? */ 233 pat->data_pa = data_pa; 234 235 while (i--) { 236 int n = i + roll; 237 if (n >= npages) 238 n -= npages; 239 data[i] = (pages && pages[n]) ? 240 page_to_phys(pages[n]) : engine->dmm->dummy_pa; 241 } 242 243 txn->last_pat = pat; 244 245 return; 246 } 247 248 /** 249 * Commit the DMM transaction. 250 */ 251 static int dmm_txn_commit(struct dmm_txn *txn, bool wait) 252 { 253 int ret = 0; 254 struct refill_engine *engine = txn->engine_handle; 255 struct dmm *dmm = engine->dmm; 256 257 if (!txn->last_pat) { 258 dev_err(engine->dmm->dev, "need at least one txn\n"); 259 ret = -EINVAL; 260 goto cleanup; 261 } 262 263 txn->last_pat->next_pa = 0; 264 265 /* write to PAT_DESCR to clear out any pending transaction */ 266 writel(0x0, dmm->base + reg[PAT_DESCR][engine->id]); 267 268 /* wait for engine ready: */ 269 ret = wait_status(engine, DMM_PATSTATUS_READY); 270 if (ret) { 271 ret = -EFAULT; 272 goto cleanup; 273 } 274 275 /* mark whether it is async to denote list management in IRQ handler */ 276 engine->async = wait ? false : true; 277 reinit_completion(&engine->compl); 278 /* verify that the irq handler sees the 'async' and completion value */ 279 smp_mb(); 280 281 /* kick reload */ 282 writel(engine->refill_pa, 283 dmm->base + reg[PAT_DESCR][engine->id]); 284 285 if (wait) { 286 if (!wait_for_completion_timeout(&engine->compl, 287 msecs_to_jiffies(1))) { 288 dev_err(dmm->dev, "timed out waiting for done\n"); 289 ret = -ETIMEDOUT; 290 } 291 } 292 293 cleanup: 294 /* only place engine back on list if we are done with it */ 295 if (ret || wait) 296 release_engine(engine); 297 298 return ret; 299 } 300 301 /* 302 * DMM programming 303 */ 304 static int fill(struct tcm_area *area, struct page **pages, 305 uint32_t npages, uint32_t roll, bool wait) 306 { 307 int ret = 0; 308 struct tcm_area slice, area_s; 309 struct dmm_txn *txn; 310 311 txn = dmm_txn_init(omap_dmm, area->tcm); 312 if (IS_ERR_OR_NULL(txn)) 313 return -ENOMEM; 314 315 tcm_for_each_slice(slice, *area, area_s) { 316 struct pat_area p_area = { 317 .x0 = slice.p0.x, .y0 = slice.p0.y, 318 .x1 = slice.p1.x, .y1 = slice.p1.y, 319 }; 320 321 dmm_txn_append(txn, &p_area, pages, npages, roll); 322 323 roll += tcm_sizeof(slice); 324 } 325 326 ret = dmm_txn_commit(txn, wait); 327 328 return ret; 329 } 330 331 /* 332 * Pin/unpin 333 */ 334 335 /* note: slots for which pages[i] == NULL are filled w/ dummy page 336 */ 337 int tiler_pin(struct tiler_block *block, struct page **pages, 338 uint32_t npages, uint32_t roll, bool wait) 339 { 340 int ret; 341 342 ret = fill(&block->area, pages, npages, roll, wait); 343 344 if (ret) 345 tiler_unpin(block); 346 347 return ret; 348 } 349 350 int tiler_unpin(struct tiler_block *block) 351 { 352 return fill(&block->area, NULL, 0, 0, false); 353 } 354 355 /* 356 * Reserve/release 357 */ 358 struct tiler_block *tiler_reserve_2d(enum tiler_fmt fmt, uint16_t w, 359 uint16_t h, uint16_t align) 360 { 361 struct tiler_block *block = kzalloc(sizeof(*block), GFP_KERNEL); 362 u32 min_align = 128; 363 int ret; 364 unsigned long flags; 365 366 BUG_ON(!validfmt(fmt)); 367 368 /* convert width/height to slots */ 369 w = DIV_ROUND_UP(w, geom[fmt].slot_w); 370 h = DIV_ROUND_UP(h, geom[fmt].slot_h); 371 372 /* convert alignment to slots */ 373 min_align = max(min_align, (geom[fmt].slot_w * geom[fmt].cpp)); 374 align = ALIGN(align, min_align); 375 align /= geom[fmt].slot_w * geom[fmt].cpp; 376 377 block->fmt = fmt; 378 379 ret = tcm_reserve_2d(containers[fmt], w, h, align, &block->area); 380 if (ret) { 381 kfree(block); 382 return ERR_PTR(-ENOMEM); 383 } 384 385 /* add to allocation list */ 386 spin_lock_irqsave(&list_lock, flags); 387 list_add(&block->alloc_node, &omap_dmm->alloc_head); 388 spin_unlock_irqrestore(&list_lock, flags); 389 390 return block; 391 } 392 393 struct tiler_block *tiler_reserve_1d(size_t size) 394 { 395 struct tiler_block *block = kzalloc(sizeof(*block), GFP_KERNEL); 396 int num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 397 unsigned long flags; 398 399 if (!block) 400 return ERR_PTR(-ENOMEM); 401 402 block->fmt = TILFMT_PAGE; 403 404 if (tcm_reserve_1d(containers[TILFMT_PAGE], num_pages, 405 &block->area)) { 406 kfree(block); 407 return ERR_PTR(-ENOMEM); 408 } 409 410 spin_lock_irqsave(&list_lock, flags); 411 list_add(&block->alloc_node, &omap_dmm->alloc_head); 412 spin_unlock_irqrestore(&list_lock, flags); 413 414 return block; 415 } 416 417 /* note: if you have pin'd pages, you should have already unpin'd first! */ 418 int tiler_release(struct tiler_block *block) 419 { 420 int ret = tcm_free(&block->area); 421 unsigned long flags; 422 423 if (block->area.tcm) 424 dev_err(omap_dmm->dev, "failed to release block\n"); 425 426 spin_lock_irqsave(&list_lock, flags); 427 list_del(&block->alloc_node); 428 spin_unlock_irqrestore(&list_lock, flags); 429 430 kfree(block); 431 return ret; 432 } 433 434 /* 435 * Utils 436 */ 437 438 /* calculate the tiler space address of a pixel in a view orientation... 439 * below description copied from the display subsystem section of TRM: 440 * 441 * When the TILER is addressed, the bits: 442 * [28:27] = 0x0 for 8-bit tiled 443 * 0x1 for 16-bit tiled 444 * 0x2 for 32-bit tiled 445 * 0x3 for page mode 446 * [31:29] = 0x0 for 0-degree view 447 * 0x1 for 180-degree view + mirroring 448 * 0x2 for 0-degree view + mirroring 449 * 0x3 for 180-degree view 450 * 0x4 for 270-degree view + mirroring 451 * 0x5 for 270-degree view 452 * 0x6 for 90-degree view 453 * 0x7 for 90-degree view + mirroring 454 * Otherwise the bits indicated the corresponding bit address to access 455 * the SDRAM. 456 */ 457 static u32 tiler_get_address(enum tiler_fmt fmt, u32 orient, u32 x, u32 y) 458 { 459 u32 x_bits, y_bits, tmp, x_mask, y_mask, alignment; 460 461 x_bits = CONT_WIDTH_BITS - geom[fmt].x_shft; 462 y_bits = CONT_HEIGHT_BITS - geom[fmt].y_shft; 463 alignment = geom[fmt].x_shft + geom[fmt].y_shft; 464 465 /* validate coordinate */ 466 x_mask = MASK(x_bits); 467 y_mask = MASK(y_bits); 468 469 if (x < 0 || x > x_mask || y < 0 || y > y_mask) { 470 DBG("invalid coords: %u < 0 || %u > %u || %u < 0 || %u > %u", 471 x, x, x_mask, y, y, y_mask); 472 return 0; 473 } 474 475 /* account for mirroring */ 476 if (orient & MASK_X_INVERT) 477 x ^= x_mask; 478 if (orient & MASK_Y_INVERT) 479 y ^= y_mask; 480 481 /* get coordinate address */ 482 if (orient & MASK_XY_FLIP) 483 tmp = ((x << y_bits) + y); 484 else 485 tmp = ((y << x_bits) + x); 486 487 return TIL_ADDR((tmp << alignment), orient, fmt); 488 } 489 490 dma_addr_t tiler_ssptr(struct tiler_block *block) 491 { 492 BUG_ON(!validfmt(block->fmt)); 493 494 return TILVIEW_8BIT + tiler_get_address(block->fmt, 0, 495 block->area.p0.x * geom[block->fmt].slot_w, 496 block->area.p0.y * geom[block->fmt].slot_h); 497 } 498 499 dma_addr_t tiler_tsptr(struct tiler_block *block, uint32_t orient, 500 uint32_t x, uint32_t y) 501 { 502 struct tcm_pt *p = &block->area.p0; 503 BUG_ON(!validfmt(block->fmt)); 504 505 return tiler_get_address(block->fmt, orient, 506 (p->x * geom[block->fmt].slot_w) + x, 507 (p->y * geom[block->fmt].slot_h) + y); 508 } 509 510 void tiler_align(enum tiler_fmt fmt, uint16_t *w, uint16_t *h) 511 { 512 BUG_ON(!validfmt(fmt)); 513 *w = round_up(*w, geom[fmt].slot_w); 514 *h = round_up(*h, geom[fmt].slot_h); 515 } 516 517 uint32_t tiler_stride(enum tiler_fmt fmt, uint32_t orient) 518 { 519 BUG_ON(!validfmt(fmt)); 520 521 if (orient & MASK_XY_FLIP) 522 return 1 << (CONT_HEIGHT_BITS + geom[fmt].x_shft); 523 else 524 return 1 << (CONT_WIDTH_BITS + geom[fmt].y_shft); 525 } 526 527 size_t tiler_size(enum tiler_fmt fmt, uint16_t w, uint16_t h) 528 { 529 tiler_align(fmt, &w, &h); 530 return geom[fmt].cpp * w * h; 531 } 532 533 size_t tiler_vsize(enum tiler_fmt fmt, uint16_t w, uint16_t h) 534 { 535 BUG_ON(!validfmt(fmt)); 536 return round_up(geom[fmt].cpp * w, PAGE_SIZE) * h; 537 } 538 539 uint32_t tiler_get_cpu_cache_flags(void) 540 { 541 return omap_dmm->plat_data->cpu_cache_flags; 542 } 543 544 bool dmm_is_available(void) 545 { 546 return omap_dmm ? true : false; 547 } 548 549 static int omap_dmm_remove(struct platform_device *dev) 550 { 551 struct tiler_block *block, *_block; 552 int i; 553 unsigned long flags; 554 555 if (omap_dmm) { 556 /* free all area regions */ 557 spin_lock_irqsave(&list_lock, flags); 558 list_for_each_entry_safe(block, _block, &omap_dmm->alloc_head, 559 alloc_node) { 560 list_del(&block->alloc_node); 561 kfree(block); 562 } 563 spin_unlock_irqrestore(&list_lock, flags); 564 565 for (i = 0; i < omap_dmm->num_lut; i++) 566 if (omap_dmm->tcm && omap_dmm->tcm[i]) 567 omap_dmm->tcm[i]->deinit(omap_dmm->tcm[i]); 568 kfree(omap_dmm->tcm); 569 570 kfree(omap_dmm->engines); 571 if (omap_dmm->refill_va) 572 dma_free_writecombine(omap_dmm->dev, 573 REFILL_BUFFER_SIZE * omap_dmm->num_engines, 574 omap_dmm->refill_va, 575 omap_dmm->refill_pa); 576 if (omap_dmm->dummy_page) 577 __free_page(omap_dmm->dummy_page); 578 579 if (omap_dmm->irq > 0) 580 free_irq(omap_dmm->irq, omap_dmm); 581 582 iounmap(omap_dmm->base); 583 kfree(omap_dmm); 584 omap_dmm = NULL; 585 } 586 587 return 0; 588 } 589 590 static int omap_dmm_probe(struct platform_device *dev) 591 { 592 int ret = -EFAULT, i; 593 struct tcm_area area = {0}; 594 u32 hwinfo, pat_geom; 595 struct resource *mem; 596 597 omap_dmm = kzalloc(sizeof(*omap_dmm), GFP_KERNEL); 598 if (!omap_dmm) 599 goto fail; 600 601 /* initialize lists */ 602 INIT_LIST_HEAD(&omap_dmm->alloc_head); 603 INIT_LIST_HEAD(&omap_dmm->idle_head); 604 605 init_waitqueue_head(&omap_dmm->engine_queue); 606 607 if (dev->dev.of_node) { 608 const struct of_device_id *match; 609 610 match = of_match_node(dmm_of_match, dev->dev.of_node); 611 if (!match) { 612 dev_err(&dev->dev, "failed to find matching device node\n"); 613 return -ENODEV; 614 } 615 616 omap_dmm->plat_data = match->data; 617 } 618 619 /* lookup hwmod data - base address and irq */ 620 mem = platform_get_resource(dev, IORESOURCE_MEM, 0); 621 if (!mem) { 622 dev_err(&dev->dev, "failed to get base address resource\n"); 623 goto fail; 624 } 625 626 omap_dmm->base = ioremap(mem->start, SZ_2K); 627 628 if (!omap_dmm->base) { 629 dev_err(&dev->dev, "failed to get dmm base address\n"); 630 goto fail; 631 } 632 633 omap_dmm->irq = platform_get_irq(dev, 0); 634 if (omap_dmm->irq < 0) { 635 dev_err(&dev->dev, "failed to get IRQ resource\n"); 636 goto fail; 637 } 638 639 omap_dmm->dev = &dev->dev; 640 641 hwinfo = readl(omap_dmm->base + DMM_PAT_HWINFO); 642 omap_dmm->num_engines = (hwinfo >> 24) & 0x1F; 643 omap_dmm->num_lut = (hwinfo >> 16) & 0x1F; 644 omap_dmm->container_width = 256; 645 omap_dmm->container_height = 128; 646 647 atomic_set(&omap_dmm->engine_counter, omap_dmm->num_engines); 648 649 /* read out actual LUT width and height */ 650 pat_geom = readl(omap_dmm->base + DMM_PAT_GEOMETRY); 651 omap_dmm->lut_width = ((pat_geom >> 16) & 0xF) << 5; 652 omap_dmm->lut_height = ((pat_geom >> 24) & 0xF) << 5; 653 654 /* increment LUT by one if on OMAP5 */ 655 /* LUT has twice the height, and is split into a separate container */ 656 if (omap_dmm->lut_height != omap_dmm->container_height) 657 omap_dmm->num_lut++; 658 659 /* initialize DMM registers */ 660 writel(0x88888888, omap_dmm->base + DMM_PAT_VIEW__0); 661 writel(0x88888888, omap_dmm->base + DMM_PAT_VIEW__1); 662 writel(0x80808080, omap_dmm->base + DMM_PAT_VIEW_MAP__0); 663 writel(0x80000000, omap_dmm->base + DMM_PAT_VIEW_MAP_BASE); 664 writel(0x88888888, omap_dmm->base + DMM_TILER_OR__0); 665 writel(0x88888888, omap_dmm->base + DMM_TILER_OR__1); 666 667 ret = request_irq(omap_dmm->irq, omap_dmm_irq_handler, IRQF_SHARED, 668 "omap_dmm_irq_handler", omap_dmm); 669 670 if (ret) { 671 dev_err(&dev->dev, "couldn't register IRQ %d, error %d\n", 672 omap_dmm->irq, ret); 673 omap_dmm->irq = -1; 674 goto fail; 675 } 676 677 /* Enable all interrupts for each refill engine except 678 * ERR_LUT_MISS<n> (which is just advisory, and we don't care 679 * about because we want to be able to refill live scanout 680 * buffers for accelerated pan/scroll) and FILL_DSC<n> which 681 * we just generally don't care about. 682 */ 683 writel(0x7e7e7e7e, omap_dmm->base + DMM_PAT_IRQENABLE_SET); 684 685 omap_dmm->dummy_page = alloc_page(GFP_KERNEL | __GFP_DMA32); 686 if (!omap_dmm->dummy_page) { 687 dev_err(&dev->dev, "could not allocate dummy page\n"); 688 ret = -ENOMEM; 689 goto fail; 690 } 691 692 /* set dma mask for device */ 693 ret = dma_set_coherent_mask(&dev->dev, DMA_BIT_MASK(32)); 694 if (ret) 695 goto fail; 696 697 omap_dmm->dummy_pa = page_to_phys(omap_dmm->dummy_page); 698 699 /* alloc refill memory */ 700 omap_dmm->refill_va = dma_alloc_writecombine(&dev->dev, 701 REFILL_BUFFER_SIZE * omap_dmm->num_engines, 702 &omap_dmm->refill_pa, GFP_KERNEL); 703 if (!omap_dmm->refill_va) { 704 dev_err(&dev->dev, "could not allocate refill memory\n"); 705 goto fail; 706 } 707 708 /* alloc engines */ 709 omap_dmm->engines = kcalloc(omap_dmm->num_engines, 710 sizeof(struct refill_engine), GFP_KERNEL); 711 if (!omap_dmm->engines) { 712 ret = -ENOMEM; 713 goto fail; 714 } 715 716 for (i = 0; i < omap_dmm->num_engines; i++) { 717 omap_dmm->engines[i].id = i; 718 omap_dmm->engines[i].dmm = omap_dmm; 719 omap_dmm->engines[i].refill_va = omap_dmm->refill_va + 720 (REFILL_BUFFER_SIZE * i); 721 omap_dmm->engines[i].refill_pa = omap_dmm->refill_pa + 722 (REFILL_BUFFER_SIZE * i); 723 init_completion(&omap_dmm->engines[i].compl); 724 725 list_add(&omap_dmm->engines[i].idle_node, &omap_dmm->idle_head); 726 } 727 728 omap_dmm->tcm = kcalloc(omap_dmm->num_lut, sizeof(*omap_dmm->tcm), 729 GFP_KERNEL); 730 if (!omap_dmm->tcm) { 731 ret = -ENOMEM; 732 goto fail; 733 } 734 735 /* init containers */ 736 /* Each LUT is associated with a TCM (container manager). We use the 737 lut_id to denote the lut_id used to identify the correct LUT for 738 programming during reill operations */ 739 for (i = 0; i < omap_dmm->num_lut; i++) { 740 omap_dmm->tcm[i] = sita_init(omap_dmm->container_width, 741 omap_dmm->container_height, 742 NULL); 743 744 if (!omap_dmm->tcm[i]) { 745 dev_err(&dev->dev, "failed to allocate container\n"); 746 ret = -ENOMEM; 747 goto fail; 748 } 749 750 omap_dmm->tcm[i]->lut_id = i; 751 } 752 753 /* assign access mode containers to applicable tcm container */ 754 /* OMAP 4 has 1 container for all 4 views */ 755 /* OMAP 5 has 2 containers, 1 for 2D and 1 for 1D */ 756 containers[TILFMT_8BIT] = omap_dmm->tcm[0]; 757 containers[TILFMT_16BIT] = omap_dmm->tcm[0]; 758 containers[TILFMT_32BIT] = omap_dmm->tcm[0]; 759 760 if (omap_dmm->container_height != omap_dmm->lut_height) { 761 /* second LUT is used for PAGE mode. Programming must use 762 y offset that is added to all y coordinates. LUT id is still 763 0, because it is the same LUT, just the upper 128 lines */ 764 containers[TILFMT_PAGE] = omap_dmm->tcm[1]; 765 omap_dmm->tcm[1]->y_offset = OMAP5_LUT_OFFSET; 766 omap_dmm->tcm[1]->lut_id = 0; 767 } else { 768 containers[TILFMT_PAGE] = omap_dmm->tcm[0]; 769 } 770 771 area = (struct tcm_area) { 772 .tcm = NULL, 773 .p1.x = omap_dmm->container_width - 1, 774 .p1.y = omap_dmm->container_height - 1, 775 }; 776 777 /* initialize all LUTs to dummy page entries */ 778 for (i = 0; i < omap_dmm->num_lut; i++) { 779 area.tcm = omap_dmm->tcm[i]; 780 if (fill(&area, NULL, 0, 0, true)) 781 dev_err(omap_dmm->dev, "refill failed"); 782 } 783 784 dev_info(omap_dmm->dev, "initialized all PAT entries\n"); 785 786 return 0; 787 788 fail: 789 if (omap_dmm_remove(dev)) 790 dev_err(&dev->dev, "cleanup failed\n"); 791 return ret; 792 } 793 794 /* 795 * debugfs support 796 */ 797 798 #ifdef CONFIG_DEBUG_FS 799 800 static const char *alphabet = "abcdefghijklmnopqrstuvwxyz" 801 "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"; 802 static const char *special = ".,:;'\"`~!^-+"; 803 804 static void fill_map(char **map, int xdiv, int ydiv, struct tcm_area *a, 805 char c, bool ovw) 806 { 807 int x, y; 808 for (y = a->p0.y / ydiv; y <= a->p1.y / ydiv; y++) 809 for (x = a->p0.x / xdiv; x <= a->p1.x / xdiv; x++) 810 if (map[y][x] == ' ' || ovw) 811 map[y][x] = c; 812 } 813 814 static void fill_map_pt(char **map, int xdiv, int ydiv, struct tcm_pt *p, 815 char c) 816 { 817 map[p->y / ydiv][p->x / xdiv] = c; 818 } 819 820 static char read_map_pt(char **map, int xdiv, int ydiv, struct tcm_pt *p) 821 { 822 return map[p->y / ydiv][p->x / xdiv]; 823 } 824 825 static int map_width(int xdiv, int x0, int x1) 826 { 827 return (x1 / xdiv) - (x0 / xdiv) + 1; 828 } 829 830 static void text_map(char **map, int xdiv, char *nice, int yd, int x0, int x1) 831 { 832 char *p = map[yd] + (x0 / xdiv); 833 int w = (map_width(xdiv, x0, x1) - strlen(nice)) / 2; 834 if (w >= 0) { 835 p += w; 836 while (*nice) 837 *p++ = *nice++; 838 } 839 } 840 841 static void map_1d_info(char **map, int xdiv, int ydiv, char *nice, 842 struct tcm_area *a) 843 { 844 sprintf(nice, "%dK", tcm_sizeof(*a) * 4); 845 if (a->p0.y + 1 < a->p1.y) { 846 text_map(map, xdiv, nice, (a->p0.y + a->p1.y) / 2 / ydiv, 0, 847 256 - 1); 848 } else if (a->p0.y < a->p1.y) { 849 if (strlen(nice) < map_width(xdiv, a->p0.x, 256 - 1)) 850 text_map(map, xdiv, nice, a->p0.y / ydiv, 851 a->p0.x + xdiv, 256 - 1); 852 else if (strlen(nice) < map_width(xdiv, 0, a->p1.x)) 853 text_map(map, xdiv, nice, a->p1.y / ydiv, 854 0, a->p1.y - xdiv); 855 } else if (strlen(nice) + 1 < map_width(xdiv, a->p0.x, a->p1.x)) { 856 text_map(map, xdiv, nice, a->p0.y / ydiv, a->p0.x, a->p1.x); 857 } 858 } 859 860 static void map_2d_info(char **map, int xdiv, int ydiv, char *nice, 861 struct tcm_area *a) 862 { 863 sprintf(nice, "(%d*%d)", tcm_awidth(*a), tcm_aheight(*a)); 864 if (strlen(nice) + 1 < map_width(xdiv, a->p0.x, a->p1.x)) 865 text_map(map, xdiv, nice, (a->p0.y + a->p1.y) / 2 / ydiv, 866 a->p0.x, a->p1.x); 867 } 868 869 int tiler_map_show(struct seq_file *s, void *arg) 870 { 871 int xdiv = 2, ydiv = 1; 872 char **map = NULL, *global_map; 873 struct tiler_block *block; 874 struct tcm_area a, p; 875 int i; 876 const char *m2d = alphabet; 877 const char *a2d = special; 878 const char *m2dp = m2d, *a2dp = a2d; 879 char nice[128]; 880 int h_adj; 881 int w_adj; 882 unsigned long flags; 883 int lut_idx; 884 885 886 if (!omap_dmm) { 887 /* early return if dmm/tiler device is not initialized */ 888 return 0; 889 } 890 891 h_adj = omap_dmm->container_height / ydiv; 892 w_adj = omap_dmm->container_width / xdiv; 893 894 map = kmalloc(h_adj * sizeof(*map), GFP_KERNEL); 895 global_map = kmalloc((w_adj + 1) * h_adj, GFP_KERNEL); 896 897 if (!map || !global_map) 898 goto error; 899 900 for (lut_idx = 0; lut_idx < omap_dmm->num_lut; lut_idx++) { 901 memset(map, 0, h_adj * sizeof(*map)); 902 memset(global_map, ' ', (w_adj + 1) * h_adj); 903 904 for (i = 0; i < omap_dmm->container_height; i++) { 905 map[i] = global_map + i * (w_adj + 1); 906 map[i][w_adj] = 0; 907 } 908 909 spin_lock_irqsave(&list_lock, flags); 910 911 list_for_each_entry(block, &omap_dmm->alloc_head, alloc_node) { 912 if (block->area.tcm == omap_dmm->tcm[lut_idx]) { 913 if (block->fmt != TILFMT_PAGE) { 914 fill_map(map, xdiv, ydiv, &block->area, 915 *m2dp, true); 916 if (!*++a2dp) 917 a2dp = a2d; 918 if (!*++m2dp) 919 m2dp = m2d; 920 map_2d_info(map, xdiv, ydiv, nice, 921 &block->area); 922 } else { 923 bool start = read_map_pt(map, xdiv, 924 ydiv, &block->area.p0) == ' '; 925 bool end = read_map_pt(map, xdiv, ydiv, 926 &block->area.p1) == ' '; 927 928 tcm_for_each_slice(a, block->area, p) 929 fill_map(map, xdiv, ydiv, &a, 930 '=', true); 931 fill_map_pt(map, xdiv, ydiv, 932 &block->area.p0, 933 start ? '<' : 'X'); 934 fill_map_pt(map, xdiv, ydiv, 935 &block->area.p1, 936 end ? '>' : 'X'); 937 map_1d_info(map, xdiv, ydiv, nice, 938 &block->area); 939 } 940 } 941 } 942 943 spin_unlock_irqrestore(&list_lock, flags); 944 945 if (s) { 946 seq_printf(s, "CONTAINER %d DUMP BEGIN\n", lut_idx); 947 for (i = 0; i < 128; i++) 948 seq_printf(s, "%03d:%s\n", i, map[i]); 949 seq_printf(s, "CONTAINER %d DUMP END\n", lut_idx); 950 } else { 951 dev_dbg(omap_dmm->dev, "CONTAINER %d DUMP BEGIN\n", 952 lut_idx); 953 for (i = 0; i < 128; i++) 954 dev_dbg(omap_dmm->dev, "%03d:%s\n", i, map[i]); 955 dev_dbg(omap_dmm->dev, "CONTAINER %d DUMP END\n", 956 lut_idx); 957 } 958 } 959 960 error: 961 kfree(map); 962 kfree(global_map); 963 964 return 0; 965 } 966 #endif 967 968 #ifdef CONFIG_PM_SLEEP 969 static int omap_dmm_resume(struct device *dev) 970 { 971 struct tcm_area area; 972 int i; 973 974 if (!omap_dmm) 975 return -ENODEV; 976 977 area = (struct tcm_area) { 978 .tcm = NULL, 979 .p1.x = omap_dmm->container_width - 1, 980 .p1.y = omap_dmm->container_height - 1, 981 }; 982 983 /* initialize all LUTs to dummy page entries */ 984 for (i = 0; i < omap_dmm->num_lut; i++) { 985 area.tcm = omap_dmm->tcm[i]; 986 if (fill(&area, NULL, 0, 0, true)) 987 dev_err(dev, "refill failed"); 988 } 989 990 return 0; 991 } 992 #endif 993 994 static SIMPLE_DEV_PM_OPS(omap_dmm_pm_ops, NULL, omap_dmm_resume); 995 996 #if defined(CONFIG_OF) 997 static const struct dmm_platform_data dmm_omap4_platform_data = { 998 .cpu_cache_flags = OMAP_BO_WC, 999 }; 1000 1001 static const struct dmm_platform_data dmm_omap5_platform_data = { 1002 .cpu_cache_flags = OMAP_BO_UNCACHED, 1003 }; 1004 1005 static const struct of_device_id dmm_of_match[] = { 1006 { 1007 .compatible = "ti,omap4-dmm", 1008 .data = &dmm_omap4_platform_data, 1009 }, 1010 { 1011 .compatible = "ti,omap5-dmm", 1012 .data = &dmm_omap5_platform_data, 1013 }, 1014 {}, 1015 }; 1016 #endif 1017 1018 struct platform_driver omap_dmm_driver = { 1019 .probe = omap_dmm_probe, 1020 .remove = omap_dmm_remove, 1021 .driver = { 1022 .owner = THIS_MODULE, 1023 .name = DMM_DRIVER_NAME, 1024 .of_match_table = of_match_ptr(dmm_of_match), 1025 .pm = &omap_dmm_pm_ops, 1026 }, 1027 }; 1028 1029 MODULE_LICENSE("GPL v2"); 1030 MODULE_AUTHOR("Andy Gross <andy.gross@ti.com>"); 1031 MODULE_DESCRIPTION("OMAP DMM/Tiler Driver"); 1032 MODULE_ALIAS("platform:" DMM_DRIVER_NAME); 1033